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Abstract: The role played by gas compressibility in gas cushioned liquid-solid impacts
is investigated within a viscous gas and inviscid liquid regime. A full analysis of the en-
ergy conservation in the gas is conducted for the first time, which indicates that both
thermal diffusion across the gas film and viscous dissipation play an important role in
gas cushioning once gas compression becomes significant. Consequently existing models
of gas compressibility based on either an isothermal or an adiabatic equation of state for
the gas do not fully reflect the physics associated with this phenomena. Models incorpo-
rating thermal diffusion and viscous dissipation are presented, which are appropriate for
length scales consistent with droplet impacts, and for larger scale liquid-solid impacts.
The evolution of the free surface is calculated alongside the corresponding pressure, tem-
perature and density profiles. These profiles indicate that a pocket of gas can become
trapped during an impact. Differences between the new model and older models based
on isothermal and adiabatic equations of state are discussed, along with predictions of
the size of the trapped gas pocket.
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1. Introduction

Bubble trapping and capture is a commonly observed and important phenomena in
many areas of violent impacts and water entry problems. Experiments have shown this
in droplet impact with a rigid substrate (Thoroddsen et al. 2003; van Dam & Le Clerc
2004) as well as in solid impacts into water layers (Colagrossi et al. 2004; Abrahamsen
& Faltinsen 2011). Applications are widespread from small length-scales of printing and
spray coating, to larger length-scale engineering problems such as ship slamming and
fluid sloshing. The underlying mechanism is common; the bubbles are formed by the
narrowing gap between the water and solid producing a high pressure in the gas, which
deforms the liquid free-surface, although depending on the typical length-scale either
viscous or inertial forces in the air can be dominant. Rather than touchdown occurring
at a single point (at the bottom of an approaching droplet, or at the minimum on an
impinging solid), the air-cushioning forces the initial impact to occur instead at some
positive horizontal distance away, and results in the capture of a gas pocket which goes
on to form a bubble. Violent flows and impacts are much studied but the influence of the
air is usually neglected entirely, although it is known to have significant influence on the
pressure experienced by an impacting body (Chuang 1966; Takagi & Dobashi 2003), flow
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dynamics in a sloshing tank (Rognebakke & Faltinsen 2005; Abrahamsen & Faltinsen
2011) and on the post-impact dynamics of droplet impacts (Xu et al. 2005). Investiga-
tions focusing on the role of gas-cushioning generally assume incompressible behaviour,
although the parameter regimes and typical velocities involved for many applications
suggest compressibility is important (Mandre et al. 2009; Hicks & Purvis 2012).

The earliest models of gas-cushioned liquid-solid impact, due to Smith et al. (2003),
investigated liquid impact onto a solid in the presence of an incompressible isothermal
gas layer. A scaling argument for the flow was developed for the cushioning phase, when
the small vertical separation between the liquid and the substrate is much less than
the horizontal extent of the interactions. This led to a model with a viscous lubrication
equation for the gas layer behaviour and an inviscid description of the liquid. This model
has been extended to three dimensions allowing predictions to be made for the size of the
trapped bubble in terms of the approach speed U , and L the radius of curvature of either
the undisturbed droplet or solid body at the point closest to impact (Hicks & Purvis
2010). These predictions are in good agreement with the available experimental data
for droplet impacts. Recently the impact of a larger solid body with a locally spherical
impact region and an initially stationary body of water has been investigated within
the viscous gas and inviscid liquid regime. This again shows good agreement with the
predicted air pocket radius, over a much wider range of parameters (Hicks et al. 2012).

Under the assumption that the gas behaves either isothermally or adiabatically when
compressed Mandre et al. (2009) and Mani et al. (2010) extended the earlier models
of droplet impact to incorporate gas compressibility, while providing an upper limit on
the impact speed for which the gas may be considered incompressible. As with the in-
compressible case, when isothermal or adiabatic gas compression is included, the droplet
free-surface deforms in response to the pressure build up in the viscous gas film, lead-
ing to the trapping of a gas bubble. The gas behaviour can be assumed to be adiabatic
providing both the thermal diffusion and the viscous dissipation in the gas are small
in comparison to both thermal advection and the work done by compression (Batchelor
1967). It is well known that these assumptions may not be valid in compressible viscous
fluid flow, and in particular, Stewartson (1964) shows that viscous dissipation is signifi-
cant within a compressible boundary layer flow; which like a thin film is a flow known for
having a large discrepancy between the parallel and normal flow velocities. In the current
investigation, it will be shown that thermal diffusion and viscous dissipation within the
thin compressible viscous lubrication gas film are significant for liquid-solid impacts in
many parameter regimes of interest including for droplet impacts.

High temperatures and pressures have been observed in many problems associated
with bubble formation and bubble compression. The most extreme example of this is
the phenomenon of sonoluminescence, where the compression of a bubble can produce
temperatures of several thousand Kelvin for very short periods of time Brenner et al.
(2002). Models of heat generation in sonoluminescence often neglect viscosity and assume
the gas within the bubble behaves adiabatically. Within viscous fluids, the generation of
heat through the viscous dissipation of energy has been previously studied in thin gas
films in the context of a scroll compressor (Howell 2001). The distribution of energy has
also been included when modelling post impact droplet behaviour (Bhardwaj et al. 2007;
Bhardwaj & Attinger 2008).

The viscous gas and inviscid liquid regime is but one of many different types of cush-
ioning in liquid-solid impacts. For higher momentum impacts the gas layer becomes
inviscid like the droplet. This configuration has been investigated for an incompressible
gas phase by Wilson (1991) and has applications in ship slamming and wave impacts.
However, open questions remain regarding the stability of the models developed in this
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case (see Oliver 2002; Purvis & Smith 2004). For lower momentum impacts viscous effects
become important in the droplet as well as the gas, and rather than impact and splashing,
the lower momentum regime describes droplet coalescence and spreading. In this regime
Baldessari et al. (2007) and Kaur & Leal (2009) have investigated the free-surface evolu-
tion. Throughout the different momentum regimes, common features of the free-surface
evolution are apparent, with the free surface evolving to capture a region of the sepa-
rating fluid. If a second fluid phase separating the liquid free-surface and the impactor
is not included and the liquid-solid impact is considered in a vacuum, as is typically the
case in a classical Wagner theory (see e.g. Oliver 2002), then no pre-impact cushioning
occurs and the liquid free-surface does not deform until after touchdown actually occurs.

In the current paper a full analysis of the energy conservation in an gas-cushioned
liquid-solid impact is undertaken within the viscous gas and inviscid liquid regime, with
the aim of assessing whether the gas really does behaves isothermally or adiabatically,
or whether other effects such as thermal diffusion or viscous heating play a role in the
evolution of energy. Prior to impact it is assumed that the liquid, gas and the solid are at
the same ambient temperature. Note this assumption may not be valid in many physical
situations, including ink-jet printing (where droplets are initially heated to aid their flow),
and aircraft icing (where supercooled droplets strike heated aircraft surfaces (Gent et al.
2000)). However, this additional complication will not be considered here. In §2 a model
is described that incorporates the conservation of energy in the gas, liquid and solid.
These equations are non-dimensionalized and the leading-order behaviour is determined,
by exploiting the small aspect ratio of the gas layer height to horizontal between the
liquid and the solid immediately prior to impact. Although significant overlap exists
between the parameter regimes, a model which is broadly appropriate to discussing air
cushioning in droplet impacts is presented in §4, while a second model is presented in §5
that is appropriate for considering impacts of solid bodies into liquids at larger length
scales. The model appropriate for droplet impacts is further divided into two sub-models:
a model in which the gas is weakly compressible and a model in which the gas is fully
compressible. Although only the fully compressible gas behaviour is considered in the case
of solid body impacts into liquids, provisional results for weakly compressible case have
previously been presented by Hicks & Purvis (2012). The similarities and differences
between all these different models are discussed in §6, while also outlining methods
through which these models could be further extended to cover wider parameter regimes.

2. Model equations and nondimensionalization

An idealized two dimensional problem is considered in which a solid body and a liquid
are approaching impact, but remain separated by a dividing gas film. Attention will
be restricted to droplet impacts and to solid body impacts into liquids. In the former
case a frame of reference is considered in which the droplet moves towards a stationary
substrate, while for solid body slamming, a frame of reference is considered in which the
solid body moves towards an initially stationary liquid. A coordinate system x = (x, y)
is used, with an origin on the substrate (undisturbed free-surface) directly below the
centre of the droplet (solid body). The x direction lies parallel to either the substrate (in
a droplet impact), or the undisturbed free-surface (in solid body slamming), while the y
direction points upwards towards either the droplet or the solid body. Note, while it is
straightforward to extend the model to describe gas cushioning in liquid-liquid collisions
(see e.g. Hicks & Purvis 2011), in the current paper only gas cushioning in liquid-solid
impacts is considered.

The velocity field is denoted u = (u, v). The liquid (with density ρl, temperature Tl and
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pressure pl), is separated from the wall by a region of gas (with density ρg, temperature Tg
and pressure pg). Here and subsequently, a subscript l is used to denote a property of
the liquid and a subscript g is used to denote a property of the gas. The solid body
has the thermal properties of glass, to match many of the experiments, although our
findings are insensitive to the exact thermal properties of the solid and hold for most
common materials. In particular the solid has a density ρs and a temperature Ts, where
the subscript s denotes a property of the solid phase.

In the gas film, conservation of mass, momentum and energy can be written as

∂ρg
∂t

+∇ · (ρgug) = 0, (2.1a)

ρg

(
∂ug
∂t

+ ug ·∇ug
)

= −∇pg +∇ · (µg∇ug) +∇ [(µg + λg)∇ · ug] , (2.1b)

ρgcv,g

(
∂Tg
∂t

+ ug ·∇Tg
)

= −pg∇ · ug + kg∇2Tg + Φg, (2.1c)

where µg and λg are the shear and dilatational viscosities, respectively; kg is the thermal
conductivity and cv,g is the specific heat capacity at constant volume of the gas. In
practical situations, both the thermal conductivity and the specific heat capacity will
have a weak dependence upon temperature. However, if the model of Rohsenow et al.
(1998, section 2.4) for the dependence of thermal conductivity upon temperature in dry
air is used, then (for the case describe by figure 2), the maximum variation in thermal
conductivity is less than 9% and this only occurs for a very small portion of the impact.
Consequently both the thermal conductivity and the specific heat capacity are assumed
to be constant throughout. The terms in the energy conservation equations, correspond to
the rate of change of thermal energy, work done by pressure, diffusion of heat and viscous
dissipation. In the conservation laws for the gas, it is assumed that the thermal properties
of the gas are constant, while the viscosities are allowed to vary with temperature. The
viscous dissipation term is given by

Φg = µg

[
2

(
∂ug
∂x

)2

+ 2

(
∂vg
∂y

)2

+

(
∂ug
∂y

+
∂vg
∂x

)2
]

+ λg (∇ · ug)2 . (2.1d)

In a viscous gas film, it is expected that the kinetic energy imparted to the gas film will
be dissipated as heat, raising its temperature. To close the model an equation of state is
required. If the gas behaves like a perfect gas, then the equation of state is given by the
ideal gas law

pg = ρgRgTg, (2.1e)

where the specific gas constant Rg = cp,g − cv,g, while cp,g is the specific heat capacity
at constant pressure.

The gas shear viscosity is independent of pressure, but it does depends on temperature
through Sutherland’s formula (see e.g. Stewartson 1964)

µg = µ0
Tg,0 + C

Tg + C

(
Tg
Tg,0

)3/2

, (2.2)

where µ0 = 1.827 × 10−5 Pa s, a reference viscosity (in this case for air), measured at
a reference temperature Tg,0 = 291.15 K. The parameter C is Sutherland’s constant for
the material in the gas film, and takes the value 120 K if that gas is air. In principle, the
dependence of the dilatational viscosity on temperature should also be specified. This
dependence is harder to quantify. However, in a thin gas film of small aspect ratio, it
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Figure 1. Two situations where a gas bubble may become trapped during a liquid-solid impact:
(a) a droplet approaching impact with a rigid body and (b) a solid body approaching impact
with a liquid. In both diagrams a thick solid line indicates a rigid surface, while a thin solid line
indicates a liquid-gas interface, which can evolve over time.

will subsequently be shown that the leading order behaviour does not depend on the
dilatational viscosity at all, providing the shear and dilatational viscosities are of the
same order of magnitude. Therefore there is no need to specify how the dilatational
viscosity depends on temperature.

If the liquid is incompressible, then conservation of mass, momentum and energy can
be written as

∇ · ul = 0, (2.3a)

ρl

(
∂ul
∂t

+ ul ·∇ul
)

= −∇pl +∇ · (µl∇ul) , (2.3b)

ρlcp,l

(
∂Tl
∂t

+ ul ·∇Tl
)

= kl∇2Tl + Φl, (2.3c)

where µl is the shear viscosity, cp,l the specific heat at constant pressure and kl the
thermal conductivity of the liquid. In principle, the shear viscosity of the liquid may
again depend upon temperature. However, again it shall be shown that to leading order
the behaviour of the gas is inviscid, allowing this complication to be neglected. As the
liquid is incompressible the viscous dissipation of energy takes the simpler form

Φl = µg

[
2

(
∂ul
∂x

)2

+ 2

(
∂vl
∂y

)2

+

(
∂ul
∂y

+
∂vl
∂x

)2
]
. (2.3d)

The solid body involved in the liquid-solid body is assumed to be rigid. However, if
the temperature can change in both the gas film and the liquid droplet, then it may also
be able to change in the solid. Energy conservation in the solid implies

ρscp,s
∂Ts
∂t

= ks∇2Ts, (2.4)

where cp,s is the specific heat capacity at constant pressure and ks is the thermal con-
ductivity of the solid.

Next the appropriate boundary conditions on both the free surface and the boundary of
the solid body must be considered. It is assumed that a single, stable interface between
the liquid and gas phases exists throughout the pre-impact gas cushioning and that
detached small droplets and bubbly regions containing a mixture of liquid and gas are
not formed. This is consistent with the experimental observations of droplet impacts
(Thoroddsen et al. 2003) and also of moderate length-scale slamming body impacts
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into liquid (Hicks et al. 2012), which motivate this study. However, this contrasts with
behaviour observed for much larger bodies and higher impact speeds (as seen in ship
slamming), where the additional gas inertia produces free-surface instabilities that can
lead to small droplet ejecta and regions of entrained bubbles close to the liquid-gas
boundary. Initially the position of upper boundary of the gas film is written as y =
f+(x, t), while the position of the lower boundary is written as y = f−(x, t). Here (and
subsequently), the subscript + indicates a property of the upper boundary of the gas
layer, while the subscript − indicates a property of the lower boundary of the gas layer.
During an impact of a droplet approaching a solid body (as shown in figure 1(a)), the
upper + interface takes the properties of the liquid droplet, while the lower − interface
takes the properties of the solid body. Conversely as a solid body approaches impact with
an initially stationary liquid (as shown in figure 1(b)), the upper + interface takes the
properties of the solid, while the lower − interface takes the properties of the liquid. In
a droplet impact, the upper boundary is free to deform and is denoted y = f+(x, t) =
f(x, t), while the lower boundary is rigid and is given by y = f−(x, t) = 0. For the impact
of a solid body into liquid the solid is rigid, although it does move towards the liquid
with the position of its boundary being denoted y = f+(x, t) = s(x, t), while the liquid
interface at the below the gas film is able to deform and has position y = f−(x, t) =
h(x, t).

No-slip and no-penetration boundary conditions are required on the boundary of the
solid body. On the free surface the kinematic boundary conditions are applied in both
the liquid and gas phases, while the pressure is coupled across the free surface through
the balance of normal stresses. It is assumed that no evaporation or other phase change
phenomena occurs over the very short time scale associated with the liquid-solid impact,
so that energy conservation at both the gas-liquid and gas-solid boundaries implies

kg∇Tg · n± = k±∇T± · n±, (2.5)

conserving the heat flux across each interface.

The problem of a droplet or solid body with undisturbed radius of curvature L, ap-
proaching impact from the normal direction with velocity U will be considered. When
combined with the liquid density ρl and a liquid viscosity µl, this gives a Reynolds num-
ber for the liquid, Re = ρlUL/µl. For a water droplet with radius L = 1 mm and an
approach speed U = 1 m s−1, the Reynolds number Re = 1000, while for a solid body
of radius L = 0.5 m and an approach speed U = 0.1 m s−1, the corresponding Reynolds
number Re = 49, 900 when calculated using the properties of water. Next equations
are developed for the gas film where it shall be shown that the gas viscosity cannot be
neglected in the regime of interest.

2.1. Gas film

As impact approaches the viscous forces in the gas are initially too small to influence the
bulk liquid flow, until the gas layer becomes thin enough to induce gas pressures which
are comparable to the inertial flow in the liquid phase. Consequently, a non-dimensional
scaling will be chosen which focus on this thin region. A horizontal length scale εL is
used, which is based on the droplet or solid body radius L and a small parameter ε, the
value of which has yet to be determined. Very close to impact the separation between
the droplet and impactor is smaller than even this horizontal length scale, so a vertical
length scale ε2L is used. A corresponding time scale is chosen, which would allow the
motion of the droplet or the solid body to close the gap if the motion of the droplet or
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the body is not retarded and the liquid free-surface does not deform. Written together
this scaling implies

(x, y, f±, t) =

(
εLx′, ε2Ly′, ε2Lf ′±,

ε2L

U
t′
)
, (2.6a)

where the primes are used to denote dimensionless quantities. In order to preserve mass
conservation, the additional factor of ε in the vertical length scale results in a similar
difference between the horizontal and vertical velocities. The increase in the gas pressure
over the ambient gas pressure p0 is ε−1ρlU

2, where the liquid density ρl is used to match
the pressure in the droplet and the ε factor retains the gas pressure at leading order.
Taken together, alongside a non-dimensionalization for the gas density and temperature,

(ug, vg, pg, ρg, Tg) =

(
U

ε
u′g, Uv

′
g, p0 +

ρlU
2

ε
p′g, [ρg] ρ

′
g, T0 + [T ]T ′g

)
. (2.6b)

Here, the gas density scale [ρg] and the change in gas temperature [T ], are both deter-
mined by the ideal gas law (2.1e), and have the form

[ρg] =
p0

RgT0
, and [T ] =

ρlU
2

ε

1

Rg [ρg]
, (2.6c)

where the ambient temperature is denoted T0. Finally, to complete the gas film non-
dimensionalization, scalings are required for the viscosities and the viscous dissipation
term in the energy conservation equation. These are taken to be

(µg, λg, Φg) =
(
µ0 + [µg]µ

′
g, λ0 + [µg]λ

′
g, [Φg] Φ′g

)
. (2.6d)

If this non-dimensionalization is substituted into the equations governing the gas (and
the primes signifying non-dimensional variables are dropped for convenience), then the
mass conservation equation for the gas (2.1a) implies

∂ρg
∂t

+
∂

∂x
(ρgug) +

∂

∂y
(ρgvg) = 0. (2.7)

If the small parameter ε is chosen to be

ε =

(
µ0

µlRe

)1/3

=

(
µ0

µl

µl
ρlUL

)1/3

, (2.8)

then the pressure gradient in the horizontal momentum conservation equation balances
the largest viscous term.

In the equation governing viscous dissipation (2.1d), the leading order behaviour is
given by

[Φg] Φg ∼
µ0U

2

ε6L2
(1 +mµg)

(
∂ug
∂y

)2

+O
(
ε−4
)
, (2.9)

where m = [µg] /µ0. Subsequently the viscous dissipation scaling is taken to be

[Φg] =
µ0U

2

ε6L2
, (2.10)

and in conjunction with the temperature scale (2.6c), this implies the energy conservation
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equation (2.1c) can be written as

ρg

(
∂Tg
∂t

+ ug ·∇Tg
)
− γ − 1

γ

(
∂pg
∂t

+ ug ·∇pg
)

=
1

ε2Peg

(
ε2
∂2Tg
∂x2

+
∂2Tg
∂y2

)
+
γ − 1

γ
(1 +mµg)

(
∂ug
∂y

)2

. (2.11)

where the gas Péclet number is defined to be

Peg =
[ρg] cp,gUL

kg
, (2.12)

and

K =
ρlU

2

p0
. (2.13)

Here ε−1K is the ratio of the gas pressure increase in the gas induced by the approaching
impact to the ambient gas pressure and measures the importance of gas compressibility.
If ε−1K � 1, then the pressure induced in the viscous gas is much smaller the ambient
gas pressure and to a good level of approximation the gas can be considered to be incom-
pressible. Alternatively the pressure induced in the gas is either approximately equal to,
or is much greater than, the ambient gas pressure and effects due to the compressibility
of the gas are significant.

If the terms on the right-hand side of (2.11), corresponding to thermal diffusion and
viscous dissipation are negligible, then the gas flow would be adiabatic and the energy
conservation equation simplifies to

D

Dt

(
1 + ε−1Kpg

ργg

)
= 0, (2.14)

so that

ρg =
(
1 + ε−1Kpg

)1/γ
. (2.15)

This simplified equation of state, which does not include an explicit temperature depen-
dence, was used by Mandre et al. (2009) and Mani et al. (2010) to model compressible
gas behaviour in droplet impacts with adiabatic (γ = 1.4) and isothermal (γ = 1) gas
compression. However, the terms on the right-hand side of (2.11) may not be small. In
particular, for a droplet with radius L = 1 mm and an approach speed U = 1 m s−1, the
reduced Péclet number in the gas, ε2Peg = 0.01, while Peg = 47. Similarly for an impact
of a solid body with radius of curvature L = 0.5 m and an approach speed towards an
initially stationary body of water U = 0.1 m s−1, ε−2Peg = 0.11, while Peg = 2347.
Therefore in the parameter range of interest the right hand side of (2.11) is not small
and should not be neglected. In fact, to leading order, the thermal diffusion across the
gas film dominates the energy conservation equation.

If either the thermal diffusion and viscous dissipation terms are retained, then the
temperature must be explicitly retained, and the full equation of state (2.1e) non-
dimensionalizes to give

1 + ε−1Kpg =ρg
(
1 + ε−1KTg

)
. (2.16)

Hence, the leading order behaviour is governed by the size of ε−1K. If ε−1K � 1, then in
addition to the gas being incompressible, it is also isothermal. Conversely, if ε−1K ∼ 1,
or ε−1K � 1, then thermal effects are important in the gas, as well as the gas being
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compressible. In non-dimensional variables, the viscosity depends on the gas temperature
through

1 +mµg =
Θ
(
1 + ε−1KTg

)3/2
(1 + Π + ε−1KTg)

, (2.17)

where Π = [ρg]RgC/p0, and Θ = T
1/2
0 (Tg,0 + C) /T

3/2
g,0 . At an ambient pressure p0 =

100000 Pa and temperature T0 = 300 K, Π = 0.4 and Θ = 1.433. Therefore in the
limit ε−1K � 1 the gas viscosity is independent of temperature to leading order.

2.2. Liquid and solid wall

The behaviour of the liquid over the very short time scales envisaged for gas cushioning
is of interest. Close to the point of impact the horizontal and vertical length scales
associated with the liquid remain roughly comparable, unlike in the gas film. The gas
flow drives a flow in the liquid phase and is expected to initially induce variations in the
free-surface position of order ε. Therefore

(x, y, f±, t) =

(
εLx′, εLy′, ε2Lf ′±,

ε2L

U
t′
)
. (2.18a)

To satisfy conservation of liquid mass the scaling on the horizontal and vertical velocity
components must be equal and this is taken to be the approach velocity U . The pressure
and temperature in the liquid is chosen to match that in the gas film in order to couple
the behaviour of the droplet and the gas film. Together with a non-dimensionalization
for the viscous dissipation term

(ul, vl, pl, Tl, Φl) =

(
Uu′l, Uv

′
l, p0 +

ρlU
2

ε
p′l, T0 + [T ]T ′l ,

µlU
2

ε2L2
Φ′l

)
. (2.18b)

Applying this non-dimensionalization to the governing equations for the liquid (2.3),
and immediately dropping the dashes results in

∇ · ul = 0, (2.19a)

∂ul
∂t

+ εul ·∇ul = −∇pl +
1

Re
∇2ul, (2.19b)

∂Tl
∂t

+ εul ·∇Tl =
1

Pel
∇2Tl +

Br l
Pel

Φl, (2.19c)

where the non-dimensional Péclet and Brinkman numbers in the liquid are defined to be

Pel =
ρlcp,lUL

kl
, and Br l =

µlU
2

kl [T ]
=
εµlRg [ρg]

klρl
, (2.20)

respectively. For a droplet with radius L = 1 mm and an approach speed U = 1 m s−1, Pel =
7000 and Br l = 1.5×10−5; while for a solid body with L = 0.5 m and U = 0.1 m s−1, Pel =
8.7×104 and Br l = 1.7×10−9, indicating viscous heating can be neglected in the liquid.

The solid body is assumed to be rigid and isotropic with respect the thermal conduc-
tivity. However, as the heat flux from the gas film may transfer energy into the solid, the
conservation of energy must be considered within the solid. The vertical extent of the
solid is assumed to be at least εL and therefore length scales within the solid are given
by equation (2.18a). It should be noted that if the vertical extent of the solid material
is small compared to εL (which would correspond to a thin solid layer), then a more
complicated analysis of the energy conservation in the solid is required. In the solid the
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temperature is scaled with

Ts = T0 + [T ]T ′s, (2.21)

to match the gas temperature. When applied to the energy conservation equation in the
solid (2.4),

∂Ts
∂t

=
1

Pes
∇2Ts, (2.22)

where the Péclet number for the solid is

Pes =
ρscp,sUL

ks
. (2.23)

Assuming the solid has the properties of glass, then for a droplet with radius L = 1 mm
and an approach speed U = 1 m s−1 the corresponding Péclet number, Pes = 1770; while
for a solid body with L = 0.5 m and U = 0.1 m s−1, Pes = 1× 105.

2.3. Interface conditions

The non-dimensionalization of the no-slip, no-penetration and kinematic boundary con-
ditions remain unchanged from their counterparts in the incompressible case. The normal
stress balance across the free-surface is modified due to gas compressibility. However, the
additional terms corresponding to gas compressibility are not present at leading order
in ε and for brevity the full non-dimensional normal stress balance is not included at this
stage.

The non-dimensional gas-liquid and gas-solid thermal conductivity ratios are defined
to be

λgl =
kg
kl
, and λgs =

kg
ks
, (2.24)

respectively. For air, water and glass the values of λgl = 0.042 and λgs = 0.022. Now
energy conservation across the interfaces (2.5) implies

λg±
ε

(
∂Tg
∂y
− ε2 ∂f±

∂x

∂Tg
∂x

)
=
∂T±
∂y
− ε∂f±

∂x

∂T±
∂x

. (2.25)

3. Small ε asymptotic behaviour

The momentum and energy conservation equations in the gas involve the small pa-
rameter ε. To exploit this small parameter, asymptotic expansions of the gas velocity
components, pressure, density, viscosity and film height are proposed with the form

(ug, vg, pg, ρg, µg, f±) =
(
u(0)g , v(0)g , p(0)g , ρ(0)g , µ(0)

g , f
(0)
±

)
+ ε

(
u(1)g , v(1)g , p(1)g , ρ(1)g , µ(1)

g , f
(1)
±

)
+O

(
ε2
)
. (3.1)

To leading order in ε, the gas mass conservation equation (2.7) implies

∂ρ
(0)
g

∂t
+

∂

∂x

(
ρ(0)g u(0)g

)
+

∂

∂y

(
ρ(0)g v(0)g

)
= 0. (3.2)

Similarly, in gas momentum conservation equations (2.1b), if

[ρg]

ρl
� ε, (3.3)
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then gas inertia can be neglected and to leading order

0 =− ∂p
(0)
g

∂x
+

∂

∂y

[(
1 +mµ(0)

g

) ∂u(0)g
∂y

]
, (3.4a)

0 =− ∂p
(0)
g

∂y
. (3.4b)

The vertical momentum conservation equation (3.4b) immediately implies that the gas

pressure does not vary across the gas film, so that p
(0)
g = p

(0)
g (x, t). Subsequently to

leading order, (3.4) implies the gas flow is governed by a lubrication equation.
Similarly in the liquid the velocity components and the pressure are again expanded

in terms of the small parameter ε by taking asymptotic expansion with the form

(ul, vl, pl) =
(
u
(0)
l , v

(0)
l , p

(0)
l

)
+ ε

(
u
(1)
l , v

(1)
l , p

(1)
l

)
+O

(
ε2
)
. (3.5)

As Re � 1, to leading order, the liquid droplet is inviscid and its behaviour is governed
by the linearized Euler equations

∇ · u(0)
l = 0, and

∂u
(0)
l

∂t
= −∇p(0)l . (3.6)

This implies that the liquid pressure (and in particular derivatives of pressure with respect
to x), are solutions of the Laplace equation.

In the kinematic boundary conditions on the liquid interface imply

v
(0)
l =

∂f
(0)
+

∂t
, as y ↘ 0, (3.7a)

and

v
(0)
l =

∂f
(0)
−
∂t

, as y ↗ 0, (3.7b)

to leading order. Similarly the normal stress balance implies

p
(0)
±l − p

(0)
g =∓ ε

We

∂2f
(0)
±

∂x2
+O

(
ε2
)
, on y = f

(0)
± . (3.8)

Here the Weber number We = ρlU
2L/σ, where σ denotes the surface tension. For a

droplet with radius L = 1 mm and approach speed U = 1 m s−1, the Weber number We =
14, while for a solid body with radius L = 0.5 m and approach speed U = 0.1 m s−1, the
Weber number We = 69. Consequently as ε� 1, surface tension effects can be neglected
within the problem, except perhaps at the final instants prior to touchdown when a cusp

appears to form on the free surface, and locally f
(0)
±,xx = O

(
ε−1We

)
. Consequently the

pressure in the gas as it approaches the interface equals the pressure in the liquid at
that point. Subsequently this common leading-order pressure is denoted p(0), coupling
the behaviour of the gas film to the behaviour of the liquid.

Using either complex variable methods (Smith et al. 2003) or Green’s functions (Wilson
1991), the acceleration of the free surface can now be written as a principle valued integral
of the pressure over the free surface, with the form

∂2f
(0)
±

∂t2
= ± 1

π
−
∞∫
−∞

∂p(0)

∂ξ

dξ

ξ − x
. (3.9)
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Here the kinematic boundary condition (3.7) has been used to introduce f
(0)
± .

The temperatures in the gas, liquid and solid are expanded in the form

(Tg, Tl, Ts) =
(
T (0)
g , T

(0)
l , T (0)

s

)
+ ε

(
T (1)
g , T

(1)
l , T (1)

s

)
+O

(
ε2
)
, (3.10)

in order to keep the temperature variations the same size in each of the gas, liquid and
solid phases. Across the boundary of the gas film the heat flux boundary condition is
given by (2.25). If Λg± = ε−1λg± = O(1), then matching coefficients at O(1), O(ε)
and O

(
ε2
)

gives

Λg±
∂T

(0)
g

∂y
=
∂T

(0)
±
∂y

, (3.11a)

Λg±
∂T

(1)
g

∂y
=
∂T

(1)
±
∂y

−
∂f

(0)
±
∂x

∂T
(0)
±
∂x

, (3.11b)

and

Λg±

(
∂T

(2)
g

∂y
− ∂f (0)

∂x

∂T
(0)
g

∂x

)
=
∂T

(2)
±
∂y

−
∂f

(0)
±
∂x

∂T
(1)
±
∂x

−
∂f

(1)
±
∂x

∂T
(0)
±
∂x

, (3.11c)

respectively. If a droplet of radius L = 1 mm and approach speed U = 1 m s−1, impacting
a solid with the thermal properties of glass, then Λgl = 1.59 and Λgl = 0.86. Similarly
for a solid body with radius L = 0.5 m and approach speed U = 0.1 m s−1, Λgl = 5.92
and Λgs = 3.55 and therefore Λg± = O(1) in the parameter regime of interest.

In the liquid energy conservation equation (2.19c), if Pe−1l = O
(
ε2
)

and Br lPe−1l � ε2,

then matching coefficients at O
(
ε0
)

implies

T
(0)
l (x, y, t) = 0. (3.12)

Proceeding inductively to higher powers of ε implies

T
(1)
l (x, y, t) = T

(2)
l (x, y, t) = 0, (3.13)

indicating that there is no temperature increase in the liquid droplet over the very short
time scales associated with cushioning. Similarly in the solid,

T (0)
s (x, y, t) = T (1)

s (x, y, t) = T (2)
s (x, y, t) = 0, (3.14)

as Pe−1s = O(ε). The liquid and solid retain the ambient temperature over the gas
cushioning time-scale because this is much shorter than the time scale associated with
thermal diffusion into either the liquid or solid.

Together the boundary conditions (3.11), and temperature fields (3.12), (3.13) and (3.14)
imply

∂T
(0)
g

∂y
= 0, on y = f

(0)
± , (3.15a)

∂T
(1)
g

∂y
= 0, on y = f

(0)
± , (3.15b)

∂T
(2)
g

∂y
=
∂f

(0)
±
∂x

∂T
(0)
g

∂x
, on y = f

(0)
± . (3.15c)

Hence as both the solid and the liquid phase temperatures are constant, the gas film is
insulated and any heat created in the gas film is unable to escape.
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Table 1. Values of non-dimensional parameters at an ambient pressure p0 = 100000 Pa and
temperature T0 = 300 K, corresponding to weakly compressible gas flow (with K ∼ ε2), and
compressible gas flow (K ∼ ε) for droplet impacts (with Peg = O(1)) and solid body impacts
into liquids (with εPeg = O(1)). The numbers highlighted in bold indicate the O(1) parameters
in each of the distinguished limits.

Droplet impacts Solid-body impacts
Weakly compressible Compressible Weakly compressible Compressible

L 0.0005 0.0002 0.4 0.05 m
U 0.3 1 0.05 0.5 m s−1

ε 0.049 0.044 0.010 0.009
K 0.0009 0.01 2.5× 10−5 0.0025

ε−1K 0.018 0.23 0.003 0.28
ε−2K 0.378 5.09 0.274 31.8

Peg 7.04 9.39 938.8 1173.5
εPeg 0.343 0.416 8.962 10.4

Re 150 200 19960 24950
We 0.625 2.78 13.88 173.61
Pel 1045 1393 1.4× 105 1.7× 105

Pes 532 1773 4.2× 104 5.3× 104

Br l 2× 10−11 2× 10−10 6× 10−13 6× 10−11

Λgs 0.51 0.56 2.61 2.82
Λgl 0.85 0.94 4.36 4.70

If the equation of state for the gas (2.16) is used to eliminate the gas density ρg from
the gas energy conservation (2.11), then the resulting equation contains five different
non-dimensional parameters: γ, m, ε, K and Peg. Of these parameters the ratio of spe-
cific heats γ = 1.4 for air, while the ratio of viscosities m is also an O(1) property for air
and these quantities are not affected by the impact speed and length scale. The remain-
ing three non-dimensional parameters only ever explicitly appear in one of two larger
non-dimensional groups: a reduced Péclet number ε2Peg and a compressibility param-
eter ε−1K, both of which depend upon the impact approach speed U and the length
scale L. To determine the leading-order behaviour of the gas energy equation, it is nec-
essary to consider the relative size of the groups ε2Peg and ε−1K compared to powers
of ε. For smaller droplet impacts Peg = O(1), while for solid body impacts into wa-
ter εPeg = O(1). Similarly two different regimes will be considered for the gas compress-
ibility parameter: ε−1K = O(1) for which the gas is compressible and ε−1K � 1 for which
the gas is incompressible. In the incompressible case the particular limit ε−2K = O(1) is
considered for which the gas is weakly compressible. Given two pairs of different parame-
ter regimes, four different distinguished limits are identified corresponding to: compress-
ible gas-cushioned droplet impacts, weakly-compressible gas-cushioned droplet impacts,
compressible gas-cushioned solid body impacts into liquids and weakly compressible gas-
cushioned solid body impacts into liquids. The first three of these limits are discussed
in the following section while the case corresponding to weakly compressible solid body
impacts into liquids was previously considered by Hicks & Purvis (2012). Typical values
of the approach speed U and length scale L that give rise to each distinguished limit are
shown in table 1.
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Subsequently all impacts for which Peg = O(1) are all described as droplet impacts,
while all impacts for which εPeg = O(1) are described as solid body impacts into liquid.
However, this distinction is made solely for clarity of presentation and given the impact
of a solid body whose dimensions roughly match those of a droplet (such as in the
experiments by Marston et al. (2011)), then the cushioning may be more accurately
described by the Peg = O(1) model, while for very large droplets with radii of 2 mm and
impact speeds in excess of 1 m s−1 the εPeg = O(1) model can be more appropriate.

The four distinguished limits described do not cover the full range of applications in
which one can find gas-cushioned liquid-solid impacts. Mandre et al. (2009) and Mani
et al. (2010) investigate a highly compressible gas-cushioned droplet impact regime (albeit
with a adiabatic equation of state), which corresponds to ε−1K � 1 in the current
notation. Additionally for very large bodies at high speed ε2Peg can be O(1) or even
higher, which is beyond the scope of the current analysis.

4. Models of gas-cushioned droplet impact

For a gas-cushioned droplet impact of the form shown in figure 1(a), the droplet is
assumed to be undeformed and circular when the separation between droplet and sub-
strate is so large that there has been no opportunity for a build up of pressure in the gas
film. Given the disparate horizontal and vertical scalings, a droplet (which is circular in
dimensional variables), results in an undisturbed surface profile close to the bottom of
the droplet with the form

f
(0)
+ (x, t) = f (0)(x, t) =

x2

2
− t, (4.1)

for large negative t. As time progresses the droplet free-surface is coupled to the pressure
in the squeeze film through the integral equation (3.9), which takes the form

∂2f (0)

∂t2
=

1

π
−
∞∫
−∞

p
(0)
ξ dξ

ξ − x
. (4.2)

for droplet impacts and is subject to the far-field conditions

f (0)(x, t) ∼ x2

2
− t and p(0) → 0, as |x| → ∞. (4.3)

The substrate that the droplet hits is flat and remains rigid throughout the impact,
so that

f
(0)
− (x, t) = 0, (4.4)

for all x and t. Although not included here, substrate roughness can be incorporated into
the substrate via the method outlined by Hicks & Purvis (2010).

4.1. Compressible gas regime

If Peg = O(1) and K ∼ ε, so that there exists κ = ε−1K = O(1), then to leading-order
in the gas energy conservation equation (2.11) implies

∂2T
(0)
g

∂y2
= 0. (4.5)

This homogeneous partial differential equation must be solved subject to the Neumann
boundary conditions (3.15a), giving a solution for the leading-order temperature profile
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with the form T
(0)
g = T

(0)
g (x, t). Therefore the leading-order temperature profile does not

vary with height across the gas film. From the vertical momentum conservation equation
in the gas film (3.4b), the gas pressure is also independent of the height across the gas
film. In the equation of state, to leading order

1 + κp(0) =ρ(0)g

(
1 + κT (0)

g

)
, (4.6)

and consequently ρ
(0)
g = ρ

(0)
g (x, t), so that the gas density is also independent of the

height across the gas film. To leading order the gas viscosity equation is

1 +mµ(0)
g =

Θ
(

1 + κT
(0)
g

)3/2
(

1 + Π + κT
(0)
g

) , (4.7)

and therefore µ
(0)
g = µ

(0)
g (x, t) is also independent of the distance across the gas film.

Although the leading-order temperature has been shown to be independent of the
gas-film height, the leading order behaviour of the energy conservation equation is insuf-

ficient to explicitly determine how T
(0)
g varies with position along the gas film and time.

Therefore it is necessary to proceed to higher order in ε in order to close the system
of equations. At O

(
ε−1
)

a second homogeneous Neumann problem is again recovered

with boundary conditions (3.15b), which has the solution T
(1)
g = T

(1)
g (x, t). Again the

first correction to the temperature profile is independent of height across the gas film.

However, no further information about how T
(0)
g varies along the gas film is gained at

this level of approximation and it is necessary to continue to higher orders in ε to ex-
plicitly determine this dependence. Exploiting the fact the leading-order pressure and
gas density are independent of the distance across the film height, at O

(
ε0
)
, the energy

conservation equation in the gas implies

1

Peg

∂2T
(2)
g

∂y2
=ρ(0)g

(
∂T

(0)
g

∂t
+ u(0)g

∂T
(0)
g

∂x

)
− γ − 1

γ

(
∂p(0)

∂t
+ u(0)g

∂p(0)

∂x

)
− 1

Peg

∂2T
(0)
g

∂x2

− γ − 1

γ

(
1 +mµ(0)

g

)(∂u(0)g
∂y

)2

, (4.8)

an inhomogenous Neumann problem, which must be solved subject to the boundary
conditions (3.15c). A solution to this problem can only be obtained subject to a solvability
condition, which is determined by integrating over the gas film height from the rigid
substrate at y = 0 to the droplet free-surface at y = f (0). After this integration, the

boundary conditions (3.15c) allow T
(2)
g to be eliminated, leaving

ρ(0)g

(
∂T

(0)
g

∂t
+
∂T

(0)
g

∂x
u
(0)
g

)
− γ − 1

γ

(
∂p(0)

∂t
+
∂p(0)

∂x
u
(0)
g

)

=
1

Pegf (0)
∂

∂x

[
f (0)

∂T
(0)
g

∂x

]
+
γ − 1

γ

(
1 +mµ(0)

g

)(∂u(0)g
∂y

)2

, (4.9)

where the average of a quantity over the film height is denoted

χ =
1

f (0)

f(0)∫
0

χdy. (4.10)
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Consequently, calculating the average velocity over the gas film height provides

u
(0)
g =− f (0)

2

12
(

1 +mµ
(0)
g

) ∂p(0)
∂x

, and

(
∂u

(0)
g

∂y

)2

=
f (0)

2

12
(

1 +mµ
(0)
g

)2 (∂p(0)∂x

)2

. (4.11)

Finally substituting into the energy conservation equation gives

∂T
(0)
g

∂t
− f (0)

2

12
(

1 +mµ
(0)
g

) ∂p(0)
∂x

∂T
(0)
g

∂x
=

1

Pegρ
(0)
g f (0)

∂

∂x

[
f (0)

∂T
(0)
g

∂x

]
+
γ − 1

γρ
(0)
g

∂p(0)

∂t
,

(4.12)

a non-linear advection-diffusion equation with source terms governing how the leading
order gas temperature evolves. Using the gas mass and momentum conservation equa-
tions (3.2) and (3.4), the corresponding lubrication equation is given by

∂

∂t

[
ρ(0)g f (0)

]
=

1

12

∂

∂x

 ρ
(0)
g f (0)

3(
1 +mµ

(0)
g

) ∂p(0)
∂x

 , (4.13)

where the leading-order gas density is given by (4.6) and the leading-order gas viscosity
is related to the temperature through (4.7). The free-surface integral equation takes the
form (4.2) for droplet impacts and together with equations (4.6) and (4.12-4.13) forms
a closed system of four equations for the leading-order gas density, gas temperature,
pressure and the free-surface profile.

Figure 2 illustrates the evolution in profiles of (a) the leading-order free-surface posi-
tion, (b) the leading-order pressure, (c) the leading order gas temperature and (d) the
leading order density at integer time increments over the course of a typical compressible
gas cushioned droplet impact. The particular case shown has κ = 0.5 and Peg = 7.5,
which corresponds to the impact of a droplet of radius L = 0.1 mm with an approach
speed U = 1.54 m s−1. The free-surface and pressure profiles are qualitatively similar to
results presented for the incompressible impact case (see e.g. Smith et al. 2003), with an
initial increase in pressure below the minimum point of the droplet interface, which grow-
ing over time. This slows the descent of the droplet free-surface directly above this point,
while away from its lowest point the free surface of the droplet continues to descend. The
continued descent of the droplet free-surface away from the initial free-surface minimum
coupled with the reduced speed of the free surface close to the initial minimum causes
the free-surface to deform, which ultimately leads to touchdown some horizontal distance
away from the point below the centre of the droplet and between these touchdown points
a gas bubble is formed. Time is scaled so that in a vacuum the droplet would touchdown
at t = 0. However, with air cushioning the droplet free-surface at t = 0 (indicated by the
thin solid line in figure 2(a)), is still some distance above the solid body and, as with
the incompressible case, the time at which touchdown occurs is delayed to a scaled time
t = 8 (indicated by the thick solid line), after the time at which touchdown would have
occurred in a vacuum. As initial touchdown approaches (at a time t = 8, and a hori-
zontal distance x = 5.35 away from the undisturbed free-surface minimum), the droplet
free-surface appears to tends to a cusp. In a small local region close to this point surface
tension may re-emerge at leading order and thus play a role in the final rupture of the
gas film. To the right of the free-surface minimum, the gas pressure rapidly decays and
the free-surface profiles tend to the undisturbed far-field behaviour (4.3).

Unlike the incompressible case, the temperature and density profiles corresponding
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Figure 2. Profiles of (a) the leading-order free-surface position, (b) the leading-order pres-
sure, (c) the leading order gas temperature and (d) the leading order density for a compress-
ible gas-cushioned droplet impact with κ = 0.5 and Peg = 7.5 (corresponding to a droplet
radius L = 0.1 mm and impact speed U = 1.54 m s−1). Results are shown at integer time in-
crements with the thin solid line indicating the profiles at t = 0 (the time the droplet would
touchdown in the absence of air cushioning), and the thick solid line showing the profile at the
actual delayed instant of touchdown.

to a full analysis of the energy conservation equation can be seen for the first time.
Following the pressure, both the temperature and gas density profiles initially increase
directly below the oncoming droplet. However, the evolution of the free surface leads
to a pair of maxima in both the gas temperature and density, which occur where the
separation between the droplet and substrate is at a minimum. The gradients surrounding
the pressure, gas density and gas temperature maxima differ due to the difference in the
effective diffusion coefficients in (4.13) and (4.12), with increases in gas temperature
occurring over a wider horizontal range due to heat diffusion. This diffusion of heat
outside the confines of the trapped gas bubble leads to a small region with below ambient
density just outside the touchdown point, created by the different rates at which the
pressure and gas temperature approach their far-field values.

The same properties are shown in figure 3 for a range of different value of κ, while Peg
remains fixed. The initial non-dimensional radius of the air pocket is independent of
changes κ. This means that gas compressibility does not effect the initial radius of the
air pocket, although the dimensional air pocket radius still increases with droplet radius L
and decreases with impact speed U following the incompressible impact theory outlined
by Hicks & Purvis (2010). Consequently the prediction of the incompressible theory, that
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Figure 3. Profiles close to touchdown of (a) the leading-order free-surface position, (b) the
leading-order pressure, (c) the leading order gas temperature and (d) the leading order density
for a compressible gas-cushioned droplet impact. Profiles are shown for Peg = 7.5 with κ = 0.5
(L = 0.103 mm, U = 1.54 m s−1), κ = 2.0 (L = 0.052 mm, U = 3.09 m s−1) and κ = 8.0
(L = 0.026 mm, U = 6.18 m s−1).

the radius of air pocket

rp = r?p

(
µgL

2

ρlU

)1/3

, (4.14)

for a prefactor r?p, persists upon entry to the compressible regime, with the value of the
prefactor remaining unchanged. As the gas is known to compress as κ increases while
the initial radius of the air pocket remains independent of κ, the initial height of the
air pocket must decrease as κ rises. This is confirmed from the numerically computed
free-surface profiles in figure 3(a), with the greatest reduction in height occurring directly
below the centre of the droplet.

Figure 4 shows the solution profiles close to touchdown except that κ is fixed and
the changes in the profile with variations in Peg are now illustrated. In this case the
non-dimensional leading-order free-surface profile and pressure do not vary with changes
in Peg, corresponding to the fact that Peg appears only in the energy conservation equa-
tion and not in the lubrication equation. Changing Peg does alter the non-dimensional
leading-order temperature, with increases in Peg corresponding to a reduction in the
thermal diffusion coefficient along the gap and a consequently a reduced lateral spread-
ing of the heat generated by cushioning and a greater maximum temperature. Changes
in Peg correspond to only small changes in the non-dimensional leading-order gas den-
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sity profile, with small changes being observed between the point of touchdown and the
far-field conditions.

4.2. Weakly compressible gas regime

If K � ε, then from (2.16) the leading order equation of state for the gas is given by

ρ(0)g = 1. (4.15)

In a similar way µ
(0)
g = 0 to leading order. In this case the mass conservation equation

for the gas (3.2) simplifies to give

∂u
(0)
g

∂x
+
∂v

(0)
g

∂y
= 0, (4.16)

while the leading order momentum conservation equations (3.4) also simplifies, leaving

0 =− ∂p(0)

∂x
+
∂2u

(0)
g

∂y2
, (4.17a)

0 =− ∂p(0)

∂y
. (4.17b)

Hence the corresponding leading-order lubrication equation for droplet impact is

∂f (0)

∂t
=

1

12

∂

∂x

[
f (0)

3 ∂p(0)

∂x

]
, (4.18)
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while the free-surface profile is again coupled to the pressure through the integral con-
dition (4.2). The combination of (4.18) and (4.2), exactly form the incompressible cush-
ioning model first derived by Smith et al. (2003). Although this model is described as in
the literature as the incompressible model, what is really meant is that variations in the
gas density are at least an O(ε) smaller than the gas pressure variations.

In particular, the correction to the constant density approximation at O(ε) will be
investigated in the case where K = O

(
ε2
)
. Note from table 1 that a droplet with ini-

tial radius L = 0.5 mm and approach speed U = 0.3 m s−1, the compressibility parame-
ter κ = 0.018 indicating compressibility is not very important and hence the leading-order
pressure and free-surface evolution is governed by the closed system (4.18) and (4.2).
If K = ε2k where k = O(1), then the equation of state (2.16) implies

1 + εkp =ρg (1 + εkTg) . (4.19)

Upon substituting for the asymptotic expansions (3.1) and (3.10), the leading-order den-
sity is found to be given by (4.15). Proceeding to O(ε), shows that the first correction to
the constant density approximation is given by

ρ(1)g = k
(
p(0) − T (0)

g

)
. (4.20)

In the energy conservation equation (2.11), if the coefficients of ε are matched atO
(
ε−2
)
,

then

∂2T
(0)
g

∂y2
= 0. (4.21)

When subject to boundary condition (3.15a) this again forms a homegenous Neumann

problem, with solutions of the form T
(0)
g = T

(0)
g (x, t), i.e. the leading-order gas temper-

ature is again independent of the height across the gap width. Proceeding to O
(
ε−1
)

∂2T
(1)
g

∂y2
= 0, (4.22)

subject to boundary conditions (3.15b). This again gives a homogeneous Neumann prob-

lem for T
(1)
g , with the for T

(1)
g = T

(1)
g (x, t). Given the equation of state (4.20) and the

vertical momentum conservation in the gas film (4.17b), the gas density ρ
(1)
g = ρ

(1)
g (x, t).

Matching coefficients at O(1) gives

1

Peg

∂2T
(2)
g

∂y2
=

(
∂T

(0)
g

∂t
+ u(0)g

∂T
(0)
g

∂x

)
− γ − 1

γ

(
∂p(0)

∂t
+ u(0)g

∂p(0)

∂x

)
− 1

Peg

∂2T
(0)
g

∂x2

− γ − 1

γ

(
∂u

(0)
g

∂y

)2

, (4.23)

an inhomogenous Neumann problem, which is again subject to the boundary condi-
tions (3.15c). A solution to this problem only exists if a solvability condition is satisfied.
Again this condition is obtained by integrating from y = 0 to y = f (0). Subsequently sub-
stituting for the average velocity fluxes from the appropriately modified versions of (4.11)
gives

∂T
(0)
g

∂t
− f (0)

2

12

∂p(0)

∂x

∂T
(0)
g

∂x
=

1

Pegf (0)
∂

∂x

[
f (0)

∂T
(0)
g

∂x

]
+
γ − 1

γ

∂p(0)

∂t
, (4.24)
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Figure 5. The leading-order temperature profile (top) and the first correction to the gas density
(bottom) at touchdown in weakly compressible gas-cushioned droplet impacts for variations in k
with Peg = 5 fixed (left) and for variations in Peg with k = 0.5 fixed (right).

an advection-diffusion equation with source terms for the leading-order gas tempera-

ture T
(0)
g . Having determined the leading-order free-surface and pressure profiles from (4.18)

and (4.2), this solvability condition can be used to calculate the correction to the leading-
order gas temperature and subsequently the first correction to the gas density can be
determined from (4.20).

The evolution in the free-surface profile and gas properties as a droplet approaches
touchdown when cushioned by a weakly compressible gas a qualitatively similar to the
results presented for the fully compressible case, except for the gas density correction,
which now evolves from zero and tends to zero in the far-field, unlike the leading-order gas
density of the fully compressible case which uniformly takes the value one before being
disturbed. The free surface again evolves to trap a small gas pocket, which subsequently
can evolve into a trapped gas bubble.

Figure 5 illustrates how variations in k and Peg effect the leading-order gas temperature
and the first correction to the constant gas density. Figures 5(a) and (c) illustrate the
changes in the gas temperature and the gas density correction at touchdown for a range
of values of k = ε−2K while Peg remains fixed, while conversely figures 5(b) and (d)
show the change in touchdown profile for fixed k as Peg varies. For fixed Peg the gas
temperature profile appears independent of k in the range tested, while larger values of k
correspond to the largest increases in density, which is consistent with a return to the
compressible regime for large k. For fixed k, increases in Peg act to reduce the effective
thermal diffusion coefficient along the gas film, which results in much higher temperature
maxima. For low values of Peg the thermal diffusion along the gas film is significant and
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the increases in gas temperature close to the point of touchdown are reduced as the heat
diffuses along the gas film.

5. Models of gas-cushioned solid body impact into water

The bottom of a circular body with radius of curvature L and approach speed U , has
the scaled non-dimensional profile

f
(0)
+ (x, t) = s(x, t) =

x2

2
− t, (5.1)

for all x and t as it approaches impact with the liquid. For large negative t, the gas squeeze
film does not experience a build up of pressure and so initially the liquid free-surface

f
(0)
− (x, t) = h(x, t) = 0. (5.2)

However, as impact is approached the motion of the free surface is governed by the
integral equation (3.9), which takes the form

∂2f
(0)
−

∂t2
=
∂2h(0)

∂t2
= − 1

π
−
∞∫
−∞

p
(0)
ξ dξ

ξ − x
, (5.3)

in response to the increase in gas pressure, while in the far-field

f
(0)
− (x, t) = h(x, t)→ 0 and p(0) → 0, as |x| → ∞. (5.4)

An analysis for weakly-compressible impacts with k = O(1) and P̃eg = εPeg = O(1)
has previously been conducted by Hicks & Purvis (2012). Consequently in this section

the focus is on fully compressible impacts in which κ = O(1) and P̃eg = O(1). In this
case the leading-order behaviour of the gas energy conservation equation (2.11) again

implies T
(0)
g = T

(0)
g (x, t) as a result of the boundary conditions (3.15a). Therefore the

leading-order temperature profile does not vary with height across the gas film and it is
again necessary to proceed to higher orders in ε to close the problem. In this limit, the
vertical momentum conservation equation in the gas film (3.4b) again implies that the
gas pressure is also independent of the height across the gas film and consequently the
leading-order gas density and viscosity satisfy (4.6) and (4.7), respectively.

Continuing with the expansion to next order,

1

P̃eg

∂2T
(1)
g

∂y2
=ρ(0)g

(
∂T

(0)
g

∂t
+ u(0)g

∂T
(0)
g

∂x

)
− γ − 1

γ

(
∂p(0)

∂t
+ u(0)g

∂p(0)

∂x

)

− γ − 1

γ

(
1 +mµ(0)

g

)(∂u(0)g
∂y

)2

, (5.5)

an inhomogenous Neumann problem when subject to the boundary conditions (3.15b).

In this expression T
(1)
g can be eliminated by integrating over the gas film height from the

liquid free-surface y = h(0) to the solid body y = s(0). Performing this integration

ρ(0)g

(
∂T

(0)
g

∂t
+ u

(0)
g
∂T

(0)
g

∂x

)
−γ − 1

γ

(
∂p(0)

∂t
+ u

(0)
g
∂p(0)

∂x

)

=
γ − 1

γ

(
1 +mµ(0)

g

)(∂u(0)g
∂y

)2

, (5.6)
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where the average of a quantity across the gas film is given by

χ =
1

s− h(0)

s∫
h(0)

χdy, (5.7)

Consequently, calculating the average velocity over the gas film height provides

u
(0)
g =−

(
s− h(0)

)2
12
(

1 +mµ
(0)
g

) ∂p(0)
∂x

, and

(
∂u

(0)
g

∂y

)2

=

(
s− h(0)

)2
12
(

1 +mµ
(0)
g

)2 (∂p(0)∂x

)2

. (5.8)

Substituting for the averaged velocities from (5.8) gives

∂T
(0)
g

∂t
−

(
s− h(0)

)2
12
(

1 +mµ
(0)
g

) ∂p(0)
∂x

∂T
(0)
g

∂x
=
γ − 1

γρ
(0)
g

∂p(0)

∂t
, (5.9)

another advection-diffusion equation with source terms, governing the evolution of the
leading-order gas temperature. Note that for the larger body impacts of interest here
(unlike the earlier smaller droplet impact problem), curvature effects do not enter the

heat flux boundary conditions before T
(0)
g can be determined.

In this case the mass and momentum equations imply

∂

∂t

[
ρ(0)g

(
s− h(0)

)]
=

1

12

∂

∂x

ρ(0)g (
s− h(0)

)3(
1 +mµ

(0)
g

) ∂p(0)

∂x

 , (5.10)

Together with the free-surface integral equation (5.3), the equations (4.6), (4.7), (5.9)
and (5.10) form a closed system of equations for the leading-order gas density, gas tem-
perature, gas viscosity, pressure and the free-surface profile.

The evolution of (a) the solid body and leading-order free-surface position, (b) the
leading-order pressure, (c) the leading-order gas temperature and (d) the leading-order
gas density are shown in figure 6 for a solid body approaching impact with a liquid
separated by a fully compressible gas phase. In this case, as the solid body approaches
impact with the liquid, the pressure in the gas rises as it is both compressed and forced
out of the way. This initially presses down on the liquid free-surface, causing it to deform
out of the path of the oncoming solid. Subsequently liquid mass conservation causes
the free-surface to rise above its undisturbed level some horizontal distance away from
the initial downwards deflection of the free surface. Touchdown is again delayed. The
leading-order pressure, gas temperature and gas density have maxima at the location
of the closest separation between solid and liquid. The temperature maxima have wider
lateral support than the pressure maxima due to the thermal diffusion in the energy
conservation equations. This leads to a small region of below ambient gas density just
outside the region of touchdown.

Figure 7 shows the variation in dimensional profiles close to the initial point of touch-
down for a solid body with a radius of curvature L = 0.05 m and a range of impact
speeds U between 0.4 and 2 m s−1. As with the compressible droplet impact case the
initial radius of the trapped air pocket again matches the predictions of the incompress-
ible theory of Hicks et al. (2012). However, the results again show that the height of the
gas pocket falls with increasing impact speed, both in term of the absolute height and
the height compared to the incompressible predictions, indicating the gas is compressed.
As one would expect higher pressures are obtained with higher impact speeds, while gas
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Figure 6. Profiles of (a) the solid body position and the leading-order free-surface position, (b)
the leading-order pressure, (c) the leading-order gas temperature and (d) the leading-order gas
density for a compressible gas-cushioned impact of a solid body into a liquid with L = 0.05 m

and U = 1.2 m s−1 (corresponding to κ = 2.18 and P̃eg = 18.6. Results are shown at two integer
time increments with the thin solid line indicating the profiles at t = 0. For clarity only the
body shapes for positive values of x are shown.

temperature and density also increases with impact speed due to an increase both in
the work done compressing the gas and in viscous heating. Increases in U for fixed L
correspond to increases in both κ and P̃eg.

6. Conclusions and further discussion

New models for a range of compressible gas-cushioned liquid-solid impacts have been
proposed, which can be applied to both droplet impacts and the impact of solid bodies
into water. Unlike existing models of compressible gas cushioned liquid-solid impacts, a
full analysis of the energy conservation has been incorporated for the first time and this
has shown that the previous use of either an isothermal or an adiabatic equation of state
is inappropriate in this regime.

To assess what difference a full analysis of the energy conservation makes compared to
either an adiabatic or isothermal equation of state for the gas, the results of the current
theory for droplet impacts are compared with the earlier models. In the current notation
the free-surface profile f (0) and pressure p(0), associated with the earlier adiabatic and
isothermal models of Mandre et al. (2009) and Mani et al. (2010) are related through
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into water with velocity U = 0.4 m s−1 (κ = 0.168, P̃eg = 8.96), U = 0.8 m s−1 (κ = 0.845,

P̃eg = 14.2), U = 1.2 m s−1 (κ = 2.18, P̃eg = 18.6), U = 1.6 m s−1 (κ = 4.26, P̃eg = 22.6) and

U = 2.0 m s−1 (κ = 7.17, P̃eg = 26.2).

equations (4.13) and (4.2), while the gas density is given by

ρ(0)g =
(

1 + κp(0)
)γ
, (6.1)

with γ = 1.4 in the adiabatic case and γ = 1 in the isothermal case. Equation (4.13)
additionally includes temperature dependent viscosity, which was not incorporated into
the earlier models.

Figure 8 shows profiles at touchdown corresponding to a full analysis of the energy con-
servation equation, an adiabatic equation of state and an isothermal equation of state. In
the case of the full model and the isothermal model results are presented for κ = 2, while
in the adiabatic case the results are additionally presented for κ = 0.5. The results of the
full analysis are presented for Peg = 7.5. Coincidentally the maximum temperature pre-
dicted in this case is close to that given by the adiabatic model. However, for cushioning
with an adiabatic or isothermal equation of state, the choice κ = 2 determines a partic-
ular impact speed U for each choice of L across the range of applicability of the theory.
With the full analysis of the energy conservation, the additional choice of Peg, uniquely
determines both the impact speed and radius of curvature: in this case U = 3.09 m s−1

while L = 0.052 mm.
The key differences between the current compressible models and the earlier isentropic
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Figure 8. As figure 3, but showing profiles calculated using the full energy conservation equation
with κ = 2 and Peg = 7.5, an adiabatic equation of state with κ = 2 and with κ = 0.5 and an
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and isothermal theories are apparent in the temperature profiles. The current model,
which incorporates the full energy conservation equation produces temperature profiles
that change over time unlike profiles generated in the isothermal case. The temperature
maxima generated by the full theory are broader and more diffuse than those created
through the use of an adiabatic equation of state. Figure 4 indicates that increases in Peg
(which correspond to a decreases in the effective temperature diffusion coefficient), will
produce higher maximum temperatures as the heat energy generated is less able to diffuse
away from the point of touchdown. Conversely decreases in Peg (which correspond to
an increases in the effective temperature diffusion coefficient), produce lower maximum
temperatures as the heat energy generated is more able to diffuse away from the point
of touchdown. Therefore by increasing or decreases Peg, temperature profiles can be
generated with temperature maxima either above or below those found for an isentropic
impact with the equivalent value of κ. However, for given fluid properties, the impact
parameters L and U uniquely determine both κ and Peg. Therefore while there may
be impacts in which the use of either an adiabatic or an isothermal equation of state
may roughly approximate the correct temperature profile, in general a deeper analysis
of energy conservation is required.

The second key difference between the results from the full model and the earlier
isentropic and isothermal theories is present in the density profiles, which in the case
of a full analysis of the energy conservation equation can take below ambient values for
horizontal locations just beyond the droplet free-surface minima. These below ambient
densities are not formed in either the adiabatic or incompressible cases, as in these cases
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the gas density is a monotonically increasing function of the gas pressure, which itself
is non-negative in normal liquid-solid impacts. However, in the full model the enhanced
lateral diffusion of heat energy about the temperature maximum, coupled to the pressure
via the ideal gas equation can produce below ambient gas densities.

The final key difference between the current model and the earlier isentropic studies is
that, in the adiabatic case, the initial air pocket radius decreases as κ rises, as indicated
by the κ = 0.5 and 2 profiles in figure 8. This differs from the behaviour seen in the
full analysis (as presented in figure 3), where the initial radius of the air pocket is inde-
pendent of κ. The greater lateral spreading associated with a full analysis of the energy
conservation equation compared to either the adiabatic or the isothermal cases, results
in a larger initial gas pocket radius. This is a result of interactions of between the gas
density, temperature and steeper slope on the free surface in this region. Together these

factors contribute to an effective diffusion coefficient ρ
(0)
g f (0)

3
/12, in (4.13), which pro-

motes the lateral spreading of the droplet. If the initial gas pocket radius is independent
of κ once the theory is extended to axisymmetry, then experimentally measuring the ini-
tial radius of an air pocket in the compressible regime provides a means of validating the
developed theory. This is because the functional dependence of the initial air pocket ra-
dius rp upon U and R is given equation (4.14) in both two-dimensional and axisymmetric
geometries. The difference between the two geometries is the value of the prefactor r?p.
Equation (4.14) has been successfully validated in the incompressible regime where ex-
cellent agreement is obtained with experiments (Hicks et al. 2012). However, if the gas
really does behave either adiabatically or isothermally in the compressible regime, then
experimentally measured initial trapped gas pocket radii should be less than the incom-
pressible predictions, while if the full analysis presented holds, then the incompressible
predictions are expected to hold.

The inclusion of temperature dependent gas viscosity results in a 4% increase in the
volume of the gas pocket in the full model and a 6% increase in the volume of the gas
pocket in the adiabatic model, for the results presented in figure 8 with κ = 2, compared
to the equivalent model with constant viscosity. The profiles between those with and
without temperature dependent viscosity increase with κ. However, these changes are so
small in the range of interest that the results are not presented.

Recently developed experimental techniques such as optical interferometry have cap-
tured the free-surface profile as a droplet entrains a bubble during a gas cushioned im-
pact (Dell’Aversana et al. 1997; Driscoll & Nagel 2011; van der Veen et al. 2012; Liu
et al. 2013). Quantitative comparisons of the current compressible theory against droplet
impact experiments are not yet possible because interferometry profiles have not been
published alongside the radius of curvature at the bottom of the droplet just prior to
cushioning. Due to the oscillations of a free falling droplet, this key length scale can vary
significantly from the undisturbed droplet radius (Thoroddsen et al. 2005). Additionally
the current theory is limited to two spatial dimensions and would need to be extended
to cover axisymmetric geometries to enable direct quantitative comparisons. However,
these comparisons remain a goal for future work as and when suitable experimental data
becomes available. Direct measurements of the pressure evolution in a gas-cushioned im-
pact give good qualitatively agreement with theoretical computations (Lesser & Field
1983). However, such measurements require highly sensitive pressure sensors and more
recent experimental studies have not tried to directly measure the pressure in spite of
the fact there are many applications, such as surface erosion by droplet impacts, where
the pressure distribution is arguably of more importance than the free-surface profile.
For the first time the current work links the free-surface profile and pressure with the
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gas temperature and density in a manor consistent with a full analysis of the energy con-
servation equation. High speed optical cameras have captured the evolution of the free
surface and it would be very interesting to see whether high speed infra-red cameras can
capture the spatial and temporal temperature evolution. The improved understanding on
the relationship between temperature and pressure in gas cushioned impacts potentially
opens up new avenues for experimental determination of the pressure profile which could
be calculated from the temperature profile.

The theory describes gas cushioning for liquid-solid impacts in which either Peg =

O(1) or P̃eg = O(1). For impacts of larger bodies with higher momentum ε2Peg could
be O(1) or higher. As an example of an impact in this regime, a body with radius of
curvature L = 4 m and an approach speed U = 5 m s−1, corresponding to an impact which
may be expected in ship slamming gives ε2Peg = 0.86, indicating that thermal diffusion
across the gap no longer dominates the energy conservation equation. In this regime the
leading-order gas temperature satisfies an inhomogeneous Neumann problem allowing
the gas temperature to vary across the height of the gap. For impacts of this size or
even droplet impacts with much higher velocities κ� 1, indicating that gas compression
dominates lateral motion in the squeeze film. A full analysis of the energy conservation
equations in these physically significant regimes remains an interesting candidate for
further study.
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