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Phasor model of Modular Multilevel Converter with
Circulating Current Suppression Control
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Abstract— This paper presents model for Modular Multilevel
Converter (MMC) in phasor format, which is convenient for
power flow and parameter studies. The model is derived in
rotating dq coordinate frame, and the coordinate frame at double
the fundamental frequency, in steady-state. A substantial
analytical basis is presented in order to facilitate direct
mathematical manipulations of non-linear terms in the rotating
frame. An 8" order model is firstly derived which includes
circulating current representation. Later, the circulating current
suppression controller (CCSC) is modelled and the magnitude of
second harmonic control inputs is studied. The final model for
MMC with CCSC is given in a simple and convenient form for
power flow studies. The accuracy of the proposed models is
verified against a detailed dynamic MMC benchmark model in
PSCAD. Finally, a comparison between the MMC model and 2-
level VSC model is given.

Index Terms—Converter modeling, DC power transmission,
MMC, CCSC.

. INTRODUCTION

In recent years, Modular Multilevel Converter (MMC) has
become dominant topology for High Voltage Direct Current
(HVDC) applications [1]-[3]. Compared to conventional
two/three level voltage-source converter (VSC), MMC allows
higher power-handling capability with reduced switching
power losses and harmonic distortion [4].

The detailed non-linear dynamic models of MMC with
different modulation techniques are presented in [5],[6]. These
models are developed in PSCAD/EMTDC, which represents
detailed characteristics of all switches. These detailed models
are discrete in nature and require a considerable amount of
simulation time. The model complexity and computation
burden is increasing when the number of levels increases.

To overcome these issues with detailed model, the average
models are introduced [1],[6] and [7]. The aim of average
modeling is to replicate the average response of switching
devices, converters and controls by using mathematical
equations and controlled voltage or current sources. These
MMC average models are very accurate and suitable for
transient simulation, but they are implemented in static abc
frame, and are suitable only for time-domain simulation.

Phasor domain models use dg (active and reactive)
components of all variables assuming that frequency is
constant and all dynamics are neglected. They are required for
power flow studies and power system analysis in steady-state,
like parametric studies or component dimensioning. The
advantage of Phasor modeling is in the simulation speed
(elimination of oscillating variables) and parametric steady-
state studies (abc frame models support only time-domain
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studies). It is generally simple to derive phasor model from
dynamic equations for common linear systems, dgq frame
modeling becomes much more challenging with complex non-
linear systems like MMC converter.

Reference [8] proposes a dynamic phasor modeling for
MMC. However, it does not derive steady-state model, the
number of equations is high (98 states), and detailed
verification is not provided. The analytical MMC model in [9]
employs equivalent fixed capacitor on DC side, which is an
overly simplified approach under varying operating conditions
and second harmonic is neglected altogether. The MMC power
flow model is studied in [10], but the model is derived only in
abc frame with oscillating input variables.

Reference [11] presents a detailed harmonic function
analysis of the arm currents and the relation between the arm
inductance and capacitance at resonant frequencies. Although it
is a valuable work regarding higher harmonics, it does not
propose full steady-state model for MMC and the circulating
current suppression controller (CCSC) is not considered.

Reference [12] derives formulae for all harmonics using a
similar approach from [11], and it makes contribution in
analysis of elimination of circulating current second harmonic.

In this article, the elementary sinusoidal signals are
employed to study their modulation with control signals in time
domain. These results will be used to develop analytical theory
for representing non-linear multiplying terms in the rotating dq
frame. The developed formulae will then be applied to the
complex terms of MMC model directly in the rotating frame.

The model will firstly consider in detail all second
harmonic terms since they are important for power flow. In the
last part, the study considers the case when circulating current
suppression controller (CCSC) [13] is active and second
harmonic is suppressed. The aim is to produce a sufficiently
simple Phasor model for MMC and to verify accuracy.

Il.  MMC TIME DOMAIN DYNAMIC MODEL

Fig.1 shows the structure of one phase leg of MMC [1],
[6]and [7]. It consists of two arms (positive and negative) per
each phase (x). Each arm comprises of N sub-modules (SMs),
one equivalent resistor Rymx, and one inductor Ly Which is
required to smooth the voltage difference and phase current.

An average dynamic model for MMC is developed by
substituting the arm SMs with an equivalent controlled voltage
source as shown in Fig. 1. [1],[6],[7]:

Rarm Mp My _VDC
Idiff I-arm 2I-arm 2I-arm |diff 2Lau'm (l)
dlys —Mp s —mply
a (;_P = caW 0 0 ViP + 2cam
Ven —my, 0 0 Ven myl,
cam 2Cam
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where C*™=C/N, C is the capacitance of one SM, N is the
number of SMs per arm, lgirr is the differential current, Vcp and

Vey are the positive and negative pole voltages, VZ, and V3,

are equivalent sum (maximal) voltages of positive and negative
arms, |, is the converter ac side current, Vpc and Ipc are the DC
bus voltage and current, and mp and my are modulation indices
of positive and negative arms.

When the average value modeling is used [6],[7], the MMC
submodules are replaced with a controllable voltage source as
shown in Fig 2, where the converter AC voltage is e,.:
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Fig. 1. Circuit diagram of one phase (x) leg of MMC
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Fig. 2. Structural diagram of the average MMC model.

1. MMC PHASOR MODEL

The inputs to the phasor model are assumed to be: dq
components of the AC current 1, (1,4 and l,4), dg components of
the control signal m (Mg, M) and DC voltage V. The aim is to
derive expressions for dc current lg, dq components of
converter AC voltage e (gq and eg), dq components of second
harmonic circulating current lgix (lgiraz and lgirgz), and also
second harmonic arm voltages.

A. Assumptions

The standard MMC average modeling assumptions are:
e modulation index m(t), is a fundamental sine signal,
e AC current 1,(t), is fundamental sine signal,
o differential current ly(t), is DC plus second harmonic,

e sum capacitor voltages VZ(t),VZ(t), are DC,

fundamental and second harmonic,
These signals are represented as follows:

me =% 1-Mcos(wt-6,) =

%) %%)d cos(ot) +(—%j sin(at) ®

q

=% 1+ M cos(wt—6,) =

(%jo +(%l cos(mt) +[ Mz Jq sin(wt)

I, ()= Ly, cos(@t-6)= I, ,+ I, (4)
L (©) = Lo + Lo COS(200t = B ,) = Lo + i a2t e a2 (5)
Vep () =Vepo +Vepm COS(0t +85) +Vepr, COS(20t +6,p,) 6)

=Vepo + Vera a7t VCPq + Vepas a2t VCPqZ a2
en (©) =Veno +Venm COS(0t + 6y ) +Veym, COS(2at +8,y,) (7
=Veno+ Vons 4+ VCNq + Venaz g2+ Venge

q2

Where d,q subscripts denote the two components in the
coordinate frame rotating at fundamental frequency w=2xf,
while d2,g2 subscripts denote the two components in the
coordinate frame rotating at second harmonic 2w=4xf, and
subscript 0 denotes zero sequence component.

B. Zero sequence model
Model (1) can be rewritten for zero sequence as follows:

0-R 1 +[MeVer | | (MVen | _Voc
arm © diff 0 2 s 2 . 2

®)
(me,
5]

m
0=— mylyy ‘*{vaj
0 2 ,

In (8), it is required to derive zero sequence of the product
of two phasor signals. Appendix | gives generic expression for
multiplication of two phasors which may contain zero
sequence, fundamental frequency and second harmonics, in dq
frame. Therefore, using (43), the last equation of model (8)
gives DC component of differential current:

0=-—m,l

Pdiff

Lo = Mgl + Ml /4 ©)

The DC current is the sum of zero sequence currents in the
three phases which gives the DC side equation known from
average modeling [7]:

lie =340 =3 Myl +M,I,, /4 (10)

C. Fundamental frequency model

The fundamental frequency model needs to be derived
separately for positive and negative poles. The second equation
of (1) takes the following form in dg frame:
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amm s s loading. By comparing (13) with (15), (12) with (14), and (16)
c [ N, + oV, J: : ! "
era o @lerd (11) with (17), the following equalities are observed:
Mol —ml, /2 — ml, — ml, /2
P " diff d PV d P " diff q PV q VCZNO :VCZPO
The corresponding d and g components of the product terms Vi, =i, Vo, =V, (18)
can be determined form the algebra (43) in the Appendix I: s . Zq . ‘
1 M M M | VCPdZ :VCNdZ' VCqu :VCNqZ
Vi
Ve =W(Tq diff 0 —Tq lgifta2 +Td Liig2 —Tq] (12) The circulating current (first) equation in model (1) can also
be written for second harmonic as:
VE :L _ﬂy _ﬂy —%L +Iﬂ
CPa = Cam o diffo T T, Ndifidz T Ndiffg2 Ty =20L 0 itz w 20L,0 g @ =R ifia2 w —Ram] g2 «(19)

meVCPx + meVCNx j + ( meVCPx + meVCNx ]
d2 q2

It is observed that in the above expression the variables +( 2 ? ” ?

from zero sequence model (lgi) and also from the second

harmonic model (lgifg, lairig2) are present, which denotes cross- By separating (19) into d2 and g2 components;
coupling between the three coordinate frames. . . .
By expanding the first equation of (8) and also assuming __ L gy Mo, MoVees | Ver
s 5 - - diffd2 — 20L arm ' diffq2 4 4 2 20
mVS = mVz . the DCcomponentof V.2 is: olym (20)
0 0
VE —2R | Vv | . — 1 _ + MchZPd _ MqVCqu _chsz
CcPO — arm Vaifo T Ve (13) diffq2 ZwLarm arm © diffd 2 4 4 2

1 MdIVq Mql\,d MdMq —Md2+Mq2 . ) . )
|l s 8 g giftaz + 3 laifqz Eq. (20) can be used to derive the magnitude of circulating

current, lgi, in terms of AC currents and modulation indices.
The equations for the negative pole sum voltages can be The derivation is given in Appendix I1.

developed in a similar way starting from third equation in (1): E. The expression for MMC AC voltage

. 1 M M M I, The dg components of the MMC AC voltage in (2) are:
Vena = —<am - Lo +— l gira -—L diffq2 +—=1
oC*? 2 4 4 4 )(14) 1
g, == mVa, — MV
d ™ Nx “ CN. Px " CP:
VCqu:L{ﬂldiﬁo'*_ﬂldiﬁdz_"_qldiﬁZ_Iﬁj 2 e e (21)
oC*™ | 2 4 q M2y 1 s s
eq :E meVCNx q - meVCPx q
VCENO =2R,mlairo +Voc 15 . o
1 [M L ML, M.M _M24+M?2 (15) By expanding the multiplication terms of (21):
- arm e + . ldlﬁd2+ : . Imffdz]
C 8 8 4 € = ~WVgpg +2M Voo + M Vipy, + MchZqu 14 (22)
D. Second harmonic model €= ~Nepg +2M Voo =M Vipg, + MV, 14
Starting from the second and third equations in model (1), ) )
and considering the expression for second harmonic of a F- Full MMC phasor model in matrix form
product of two signals from (43) in Appendix I, the d2, g2 Considering the derivations all three coordinate frames, the
components for V5, V.2, are calculated as: phasor model of MMC can be summarized in matrix form as:
cprVeN .
Ax=Bu, y=Cx (23)
s 1 1 Ml Mgly, .
CP2 T sam | T Ldife2 + 3 +—8 (16) Where x, u and y are state, input and output vectors:
s 1 1 B Ml . |\/|q|\,q X' =|:Vcipd2 V(:\—l;’qZ V(;—l;’d Vc\j:q Vcipo ‘ lio  lainaz Idiﬁq2:|(24)
cha 20C*™ | 2 oz 8 8 u’ :|:Ivd I\/q Voc | yT :[ed & IDC]
And similarly for negative pole: The matrices are:
s 1 1 Ml Myly, 0 0 0 0 160C™ 0 0 0](25)
oNdz2 = % s | T itz ¥ g T B'=— 1 M, M, 40 -2M, 4MC™ 0 0
wC 2 8 8 (17) 160C™™ | a a @
M| . M, 0 4 2M, 4M,eC™ 0 0
T 1 l ) _Mdlvd+ q'Vq
e ecim| 2 Mt 8 8 My, M, -2 0 2M,

1 (26)
—|-M, M 0 -2 2M
It is clear from (16) and(17) that second harmonic variables 4 K ‘ K

00
00
depend on the fundamental components, i.e. on converter 0 0 00 0 1200
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10 0
A= A A v Ar=lss A, =|0 1 M
Ay Ay 2oL
_Rarm
| 2oL ]
[0 0 4 (27)
0 -4 0
A=t | -8M, aMm, —4M,
16aC 8M, aM, aMm,
| -32R,,0C™™ 4M M, 2 -M}+M?
L oo o 0o
Ay=g=—|0 -2 M, -M, 0
™2 0 -M, M, 0

IV. CIRCULATING CURRENT CONTROL MODELLING

The circulating current is usually eliminated by using
feedback PI control [14], in d2,g2 rotating frame. As a result,
the modulation indices will include second harmonic terms
Mg, and Mg,. Therefore, the following form for the positive
and negative modulation indices is considered:

=% 1-M cos(wt-6,,) —M, cos(Rut-0,,) =

%)O + (_%)d cos(wt) + [—Nzlqjq sin(t)

(28)
M
+[—M“2) cos(2wt)+[—q2j sin(2wt)
2 ), 2 ),
%1+Mcos(a)t 6,,)—M,cos(2mt -6,,) =
M
(%) (%)d cos(mt) + (2“1 sin(wt)
M,) .
( 2) cos(2mt) +| — 2“ sin(2mt)
q2
The second harmonic control terms will modify all

equations for the MMC phasor model derived in Section I1I. It
will be assumed that CCSC achieves ideally the control goals:
lyia2=l4irigz=0. Following full derivation, it can be verified that
conclusions (18) are still valid. Therefore, the dg components
of positive and negative pole voltages are:

s 1 M | M M
VCZPd = VCNd = Carm[ : IdlffO %_ 8d2 qu +qz|vd] (29)
1 M | M M
VCZPq VC_Nq oCa™ (_;Idiﬁ0+2d_8d2|vd - 8112 qu]
The zero sequence pole voltages are
1 M, M, I
chpo VCZNO 2Rarm|diff0 +VDC + wCam ( ;Vq - qud J (30)
1 MM, +M M, M My, +M M,
+ w T qu
wC¥™ 32 32

The second harmonic dg components are derived similarly
as in section I11.C as follows:

1 (Mylye My, Ml
VC_PdZ Vchdz 2 Carm( CI22dff0+ qgvd + (18qu (31)
M, M,
VC_PqZ V(;qu 2 éarm (_ d22d'ff0_M118|\/d q8qu

The MMC AC voltage is derived by expanding the
multiplication terms of (21):

+MV

CcPq2

V&, +2M VL, + M VE

CPd CPO CPd2

zvcpq +2M chpo

+M ZVCPd +M 02 CEPq /4(32)
M qvczpdz +M ch/_qu +M qzvczpd -M dZVCEPq 14

The third model output, Ipc, is the same as given in (9).

It is now possible to derive the magnitude of control signals
Mg, and Mg, required to eliminate second harmonic current.
Such result will give theoretical background for possible open
loop CCSC. Replacing lgitaz=laifrq2=0 in (19):

m VCPx+m VCNx d2

=0 (33)
m VCPx+m VCNx 2 =0

By expanding (33):
MVE M A s
Mdz =|-— +VC—Pd2 /cho
2 2
M V2 M,V
Mg, :(_qchd_ dchq CquJ/VEPo

Assuming that the values for Mg, and My, are very small, as
it will be confirmed in Section VI, the last two terms in (30)
are neglected to simplify the derivation:

1 [MdIVq

(34)

Lo\
VCPO _VCNO ~ ZRarmIdiﬁO +VDc + oCam

Ml J(ss)
8 8

Mg, and My is obtained by replacing (29),(31), (35) in (34):
|:Md2:|_ 1| 3-2M! M, 3-2M? M, {IW}
My | Z| MZ2-MZ2-3 M, M2-M2+3 M, |l

where
Z=80C™ Ny —R,, Myl +M 1, =3 Myl

(36)

Ml

arm q

V. SIMPLIFIED MODEL OF MMC wiITH CCSC

The system model with CCSC is given in (29)-(32).
However simulation studies have demonstrated, as it will be
shown in verification section, that the magnitude of CCSC
control signals Mg, and My, even at full power is very small.
Therefore it is justified to simplify further the practical MMC
model by neglecting CCSC control signals. Therefore, from
(29)-(32) the simple MMC phasor model with CCSC is:

R e oel e

\ MdRarm 83 MZ+MZ M MR, ©7
+
1 2
64wCH™ 4
Az 8-3 Md+Ml]2 M MdRarm A2 quRarm
= + s =" =
! 640C*™ 4 2 4

0885-8977 (c) 2013 |EEE. Personal use is permitted, but republication/redistribution requires |EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.



This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TPWRD.2014.2372780, | EEE Transactions on Power Delivery

Note that the DC current equation (9) should be included to
complete the MMC model in (37). The above MMC steady-
state model is in simple convenient form for system
dimensioning and power flow studies, while it is very accurate
as it will be verified in the next section.

VI. MODEL VERIFICATION

A. PSCAD benchmark model

The PSCAD benchmark model consists of a MMC
converter represented as given in [5], which is “type 4” from
[7], and which is connected to an AC and a simple DC source.
The MMC is a 401-level 1000MVA converter with Cgy=10mF
and R,m=1.2Q, with L,,=0.15H in case without CCSC. In
the case the CCSC is active the inductance is L,,»,=0.08H. The
AC grid and DC bus voltages are Vac=370KV, Vpc=640KV,
and AC parameters are: SCR=8.5, X/R=10, X;=8%.

The model inputs are Mg, Mg, l,g, l,q and Vg, and they have
the same values for the PSCAD and the analytical model in all
tests. The outputs eq, eq, lgirz and lgimo (2lSO Mgz, Mgz in CCSC
tests) are observed and compared with PSCAD Benchmark.

B. Verification of model without CCSC

The proposed phasor model without CCSC, eq. (23), is
verified against detailed PSCAD model for different range of
power levels and the results are shown in table I. These power
levels are obtained by keeping My=0.92 and manipulating M.
The two models are compared for lgito, €464 and also lgin, as
the outputs. The results confirm excellent matching between
the model and detailed PSCAD benchmark.

The phasor model is tested for different L, parameters,
and for wide range of power levels. For brevity, the results are
reported only for full power and three different values of L
as shown in Table 1I. Excellent matching is observed.

TABLE I. VERIFICATION OF MODEL WITHOUT CCSC (L arv=0.15H)
Lam=0.15H P=0.1pu | P=0.5pu | P=1pu |P=-0.1pu|P=-0.5pu| P=-1pu
lao | PSCAD | 0518 | 0.259 | 0.052 | -0.052 | -0.261 | -0.524
(KA) | Model 0.518 | 0.259 | 0.052 | -0.052 | -0.261 | -0.524
la. | PSCAD | 0.1874 | 0.0924 | 0.0291 | 0.0319 | 0.0955 | 0.186
(KA) | Model | 0.1776 | 0.0878 | 0.0278 | 0.0304 | 0.0907 | 0.176
eqs(KV)| PSCAD | 2085 | 207.2 | 206.3 | 2059 | 2054 | 204.9
Model 2085 | 207.1 | 206.3 | 205.9 | 205.3 | 204.8
eq(KV)| PSCAD | -525 -26.1 -5.10 5.31 26.10 52.2
Model -52.2 -25.9 -5.10 5.29 25.98 51.9
TABLE II. VERIFICATION OF MODEL WITHOUT CCSC (P=1pPuU)
P=1pu Lam=0.1H | Lam=0.15H | Lam=0.2H
laifro (KA) PSCAD 0517 0.518 0.518
Model 0.517 0.518 0.518
Laitrz (KA) PSCAD 0.342 0.1874 0.130
Model 0.313 0.1776 0.1253
eq(KV) PSCAD 208.6 208.5 208.5
Model 208.6 208.5 208.5
eq(KV) PSCAD -39.95 -52.5 -65.0
Model -39.22 -52.18 -64.8

arm

C. Investigation of resonance condition for L, and C

Fig. 3 shows the magnitude of 1y, versus Ly, for 3 values
of C*™ using the model (23). The control signals are kept
constant: My=0.92, My = -0.055. Therefore, the power flow is
different for every L., and C*™. It is equal to 1pu for the
following pairs (C*™=20uF, Lan=0.076H), (C*™=25uF,

Larm=0.059H) and (C*™=30uF, L,,=0.047H). It is seen that
lsir, has multiple peaks for each C*™ which correspond to
various harmonic resonances. The magnitudes of second
harmonic at resonant conditions are very high even with
realistic arm resistances and clearly resonances should be
avoided.

Following the derivation from Appendix I, the analytical
expression for the arm inductance at resonance is given as:

2+M7+M/?

(38)
320°C*™

I_ =

arm_res

The values obtained from (38) correspond well with peaks
in Fig 3, and the values are close to the resonant inductor
values reported in [11] (there is 10% difference comparing
(38) with formula (119) in [11]).

40

Carm=30uF Carm=25uF
30 3 1 /\

1diff2 (KA)

0.06 0.08

Fig. 3. Idiff2 versus Larm for 3 Carm

D. Verification of CCSC control mangnitude

Table Il compares the Mg, and Mg, of eq. (36) against the
PSCAD model with CCSC for different operating points. The
results show good matching for the wide range of power flow.
This implies that (36) can be used for open loop active second
harmonic suppression which would avoid control dynamic
interactions. Also, this table confirms that magnitude of My,
and Mg, is small, and justifies simplifications in model (37).

TABLE IlI. VERIFICATION OF CCSC CONTROL MAGNITUDES
Larm:0.0BH Mdz qu
PSCAD Model PSCAD Model
P=1pu -0.0028 -0.003 -0.0565 -0.0557
P=0.5 pu -0.0064 -0.0064 -0.0276 -0.0273
P=0.1 pu -0.0091 -0.0091 -0.0055 -0.0054
P=-0.1 pu -0.0105 -0.0104 0.0546 0.0557
P=-0.5 pu -0.013 -0.0132 0.0271 0.0267
P=-1 pu -0.016 -0.0167 0.0546 0.0536

E. Verification of simplified model with CCSC

The simplified model with CCSC, eq. (37), is verified
against PSCAD MMC benchmark with CCSC active and the
results for various power flows are given in table IV. The
results show excellent model accuracy despite simplifications.

TABLE IV. VERIFICATION OF SIMPLIFIED MMC MODEL WITH CCSC
Lam=0.08H P=0.1pu | P=0.5pu | P=1pu |P=-0.1pu|P=-0.5pu| P=-1pu
lairo | PSCAD | 0.518 0.260 | 0.0519 | -0.052 | -0.261 | -0.524
(KA) | Model 0.518 0.260 | 0.0519 | -0.052 | -0.261 | -0.524
eq(KV)| PSCAD | 208.5 207.1 206.2 205.8 205.2 | 204.7
Model 208.5 207.1 206.2 205.8 205.2 | 204.7
eq(KV)| PSCAD | -35.00 | -17.40 | -3.38 3.62 17.60 | 35.05
Model -3498 | -17.35 | -3.37 3.61 17.54 | 35.00
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This model is also verified against PSCAD benchmark for

three different L, are shown in Table V. It can be seen that

the matching between the two models is excellent.

This can also be confirmed analytically. If the converter
resistance is neglected in (37) Ryn=0, than the MMC model
has the following format:

TABLE V. TEST RESULTS FOR DIFFERENT Lagy WITH CCSC (PZlPU) |V M.V
_ q d Vdc
P=1pu Larm=0.02H | Lan=0.04H [ L.m=0.06H € = @Cpyye - 2 (39)
lairo (KA) [ PSCAD 0.518 0.518 0.518
Model | 0518 0518 0518 o - ha MV
eq (KV) PSCAD 208.5 208.5 208.5 47 wC 2
OCpmme
Model 208.5 208.5 208.5 ) ) )
eq(KV) PSCAD -20.00 -25.00 -30.00 Where the equivalent MMC capacitance is:
Model -19.95 -24.97 -29.98 . 40
arm
Cywe =64C™™/ 8-3 MZ +M? (40)
VIl. MODEL APPLICATION EXAMPLE AND COMPARISON WITH . ) ) .
2_LEVEL VSC assuming further that in most operating conditions:
. . . . . 2 M2 ~1, €0. (40) becomes:
This section considers a simple AC system with MMC as Mg +M, ~1. €d (40)
shown in Fig 2, and calculates converter AC voltages for a Cope =B4C™ /5 (41)
range of control inputs. Appendix Il shows how the MMC MMC

model is analytically connected to the AC system model in
order to determine current vector components.

In the MMC model in (37) it is seen that the last term
0.5MVy is the well-known 2-level VSC converter equation. It
is interesting to examine if MMC can be modelled as a 2-level
VSC, by neglecting the load dependent first terms in (37).
Therefore a comparable 2-level VSC converter model which
has series inductance as MMC total inductance (transformer
inductance and half arm inductance, Ly vsc=Lt mmctLarm/2) IS
also tested. The test system is shown in Fig. 2 where the
converter is either MMC or VSC. The M, varies from -0.07 to
+0.07 while Mqis kept equal to 0.92.

Fig. 4 shows the AC side voltages for the two converters. It
is seen that MMC and 2-level VSC have different responses
and therefore load dependent terms in MMC model have

209

~ 208
I
& = ed (MMQ) \
= 207 T y
2 LA Ved (2-level VSC)
B 206 e

205

40

~ 20
=
)
= 0
g =
2 —=
- 5T
S 20 pr i Veq (2 -level VSC)

-40

008 006 -004 -0.02 0 002 004 006 008
Mq

Fig. 4. Comparison of AC equivalent voltages for MMC and VSC

significant influence. It is concluded that an MMC should not
be represented using simple 2-level VSC models. For the same
control signal Mg, the load dependent terms in MMC act to
increase the converter voltage e;. The MMC therefore responds
as a controllable voltage source with a series capacitor.

The model in (39) implies that MMC responds like a 2-level
VSC with an additional series capacitance Cymc. Fig 5 shows
the equivalent simplified MMC model.

2-level
VsC

"i I 0.5MV,,

I R(\I'Il‘l Larm C‘ .
= —5 - Cwmmc

Ri Lac I,PSC L,
1 |

Fig. 5. Simplified MMC model connected to the AC grid.

VIIl. CONCLUSION

A detailed phasor model for MMC is proposed considering
variables in the dg frame rotating at fundamental frequency and
the coordinate frame d2g2 rotating at double the fundamental
frequency. A set of generic equations for manipulating
nonlinear terms directly in dq frame is first developed. It is
concluded that there is significant coupling between the zero
sequence variables, variables in dq frame and second harmonic
variables.

The circulating current control is also modelled and it is
found that very small magnitudes of second harmonic control
signals can completely cancel the circulating current second
harmonics. It is proposed to neglect the second harmonic
control signals and this enabled derivation of a 2-equation final
MMC model. If converter losses are also neglected, it is
demonstrated that MMC behaves as 2-level VSC with an
equivalent series capacitance which depends on the control
signal magnitudes.

The validity and accuracy of the proposed phasor models is
verified against a benchmark model in PSCAD. The models
are tested for different power flows and various L,m,. The

results for all cases verify accuracy of the proposed phasor
models.

APPENDIX |. DQ FRAME ALGEBRA

Eqg. (11) and others require multiplication of two phasor
signals in dq frame. Here, a general formula for signal
multiplication in dq frame is derived. Starting with a time
domain expression for two signals X(t) and Y(t), each
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consisting of zero sequence, fundamental and second

harmonic:

X(t) = X, + X cos ot + X, sinot + X, cos 2wt + X, sin 2mt (42)

Y(t) =Y, +Y coswt +Y, sinawt +Yy, cos 2wt +Y,, sin 2at

The product signal Z(t)=X(t)xY(t) will also contain zero
sequence, basic frequency, second harmonic but also third and
fourth harmonics:

XDYD

+ XQYQ + XDZYDZ + XQZYQZJ+

2 2 2

Zy

Z(t)=(XOYo +

[XDY0 + XoYp +%XDZYD +% Xo2Yo +%YD2XD +%YQZXQJCOSQ)I

2 (43)

1 1 1 1 .
+[XQY0 + XY —EXDZYQ +EX°2YD —EYDZXQ +EYQ2XDjsmwt

Z

XYy  XoY,
+[%-%+ XD2Y0+YD2X0jcos(wt)

Zg2

X, Y,
+DTQ+ XQ2Y0+YQ2X0]sin ot

Zq2

X, Y,
I e )
2

where third and fourth harmonics are neglected. The
corresponding terms in dq frame are indicated in (43).

It is also required to derive the dq components of
differential signals as shown on left hand side of (1). A
general oscillating signal x(t) is differentiated in dq frame as:

L]
dt
d

pm X(t) =-oX,sin ot —wX, cos ot

Therefore, in the rotating frame differential of signal x(t) is:

X(t) :di[XOJer cos ot —X,sin ot |
‘ (44)

(dﬂx(t)j = —koX,  + koX, (45)
t )

Where k=1 for basic frequency and k=2 for second harmonic.

APPENDIX Il. DERIVATION OF | 5;e.» AND RESONANT L gy
By substituting Eq. (12) and (16) in (20) and rearranging:

B Aldiffd2+B|diffq2 =C (46)
-B AIdiﬁqZ_BIdiﬁdZ =D
where
2

A=80L, Co" -2 e Mz
B=4wC*"R,,, (47)

2 2
C:Md_Mq I _3Mgly My,

2 diff 0 8 8

3M, | 3M, I

D=MyM_ g0 — ; ¥ ——Sq v

From (46) differential currents are determined:

g, = AC—BD / A’ +B° (48)
o = AD+BC / A’+B’

The magnitude of 1, from (48) becomes:
Idiﬁ2:\/C2+D2/A2+BZ ., A*+B? %0 (49)

By differentiating Iy, With respect to L, and considering
that C and D do not depend on L,

_c2+p? A

3/2

i
oL,

arm

_ Ny, OA _

_ _ o 69)
oA al‘arm A2 + B2

8[()2Carm

Eqg. (50) requires that A=0. Note that if B=0, the final
condition is also A=0. Therefore,

2 2
Moy oM
32w°C*™

4 arm_res

8w?L,, C*™ - (51)

APPENDIX Ill. DERIVATION OF AC CURRENT IN AN AC
SYSTEM WITH MMC

The ac side KVL equation is:
=V

IVd + jIVq Rx + JXX ac "€ jeq

RXIVd _XXIVq = Vac_ed
Rleq-i-XxlVd =—e

(52)

q

whereR,=R,m/2 and X,=(Li+Lam/2)w.
By substituting (37) in (52) and rearranging:
-K; K, —K,K

3272 VDC
K11 Kzz - K12 K21
-K.,. K,,—K_K
317N21 32 11VDC

K12 K21 - KnKzz

L, = RKat XKy o
K11K22 - K12 K21

e = RKy+ XKy
K12 K21 - K11K22

(53)

where
Kll = sz + xx2 + RxAil + xxAZ].
K12 = RxAiz + XxAzz
K31 = Rxbl + Xxbz
Ko ==X, A1 +RA,
KZZ = sz + sz - XxA].Z + RXAZZ
Ky = X0 —RD,

(54)

The ac side equation from Vs to V. is

R Ivd _XaCIVq +Vac :Vsd

Xl R, =V

ac " Vg sq

ac

(55)

which can be written in following form

VT Xy +R L, =V2 (56)

ac'vd ac Vg

R

ac

I\/d - Xac I\/q

By substituting (46) in (49),
RZ+T2 V2+ 2QR+2ST V, +Q?+S?-VZ =0 (57)
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