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Abstract— This paper presents model for Modular Multilevel 

Converter (MMC) in phasor format, which is convenient for 

power flow and parameter studies. The model is derived in 

rotating dq coordinate frame, and the coordinate frame at double 

the fundamental frequency, in steady-state. A substantial 

analytical basis is presented in order to facilitate direct 

mathematical manipulations of non-linear terms in the rotating 

frame. An 8th order model is firstly derived which includes 

circulating current representation. Later, the circulating current 

suppression controller (CCSC) is modelled and the magnitude of 

second harmonic control inputs is studied. The final model for 

MMC with CCSC is given in a simple and convenient form for 

power flow studies. The accuracy of the proposed models is 

verified against a detailed dynamic MMC benchmark model in 

PSCAD. Finally, a comparison between the MMC model and 2-

level VSC model is given. 

Index Terms—Converter modeling, DC power transmission, 

MMC, CCSC. 

I. INTRODUCTION 

In recent years, Modular Multilevel Converter (MMC) has 
become dominant topology for High Voltage Direct Current 
(HVDC) applications [1]-[3]. Compared to conventional 
two/three level voltage-source converter (VSC), MMC allows 
higher power-handling capability with reduced switching 
power losses and harmonic distortion [4].  

The detailed non-linear dynamic models of MMC with 
different modulation techniques are presented in [5],[6]. These 
models are developed in PSCAD/EMTDC, which represents 
detailed characteristics of all switches. These detailed models 
are discrete in nature and require a considerable amount of 
simulation time. The model complexity and computation 
burden is increasing when the number of levels increases.  

To overcome these issues with detailed model, the average 
models are introduced [1],[6] and [7]. The aim of average 
modeling is to replicate the average response of switching 
devices, converters and controls by using mathematical 
equations and controlled voltage or current sources. These 
MMC average models are very accurate and suitable for 
transient simulation, but they are implemented in static abc 
frame, and are suitable only for time-domain simulation.  

Phasor domain models use dq (active and reactive) 
components of all variables assuming that frequency is 
constant and all dynamics are neglected. They are required for 
power flow studies and power system analysis in steady-state, 
like parametric studies or component dimensioning. The 
advantage of Phasor modeling is in the simulation speed 
(elimination of oscillating variables) and parametric steady-
state studies (abc frame models support only time-domain 

studies). It is generally simple to derive phasor model from 
dynamic equations for common linear systems, dq frame 
modeling becomes much more challenging with complex non-
linear systems like MMC converter.  

Reference [8] proposes a dynamic phasor modeling for 
MMC. However, it does not derive steady-state model, the 
number of equations is high (98 states), and detailed 
verification is not provided. The analytical MMC model in [9] 
employs equivalent fixed capacitor on DC side, which is an 
overly simplified approach under varying operating conditions 
and second harmonic is neglected altogether. The MMC power 
flow model is studied in [10], but the model is derived only in 
abc frame with oscillating input variables.   

Reference [11] presents a detailed harmonic function 
analysis of the arm currents and the relation between the arm 
inductance and capacitance at resonant frequencies. Although it 
is a valuable work regarding higher harmonics, it does not 
propose full steady-state model for MMC and the circulating 
current suppression controller (CCSC) is not considered.  

Reference [12] derives formulae for all harmonics using a 
similar approach from [11], and it makes contribution in 
analysis of elimination of circulating current second harmonic.   

In this article, the elementary sinusoidal signals are 
employed to study their modulation with control signals in time 
domain. These results will be used to develop analytical theory 
for representing non-linear multiplying terms in the rotating dq 
frame. The developed formulae will then be applied to the 
complex terms of MMC model directly in the rotating frame.   

The model will firstly consider in detail all second 
harmonic terms since they are important for power flow. In the 
last part, the study considers the case when circulating current 
suppression controller (CCSC) [13] is active and second 
harmonic is suppressed. The aim is to produce a sufficiently 
simple Phasor model for MMC and to verify accuracy.  

II. MMC TIME DOMAIN DYNAMIC MODEL 

Fig.1 shows the structure of one phase leg of MMC [1], 

[6]and [7]. It consists of two arms (positive and negative) per 

each phase (x). Each arm comprises of N sub-modules (SMs), 

one equivalent resistor Rarmx, and one inductor Larmx which is 

required to smooth the voltage difference and phase current.  

An average dynamic model for MMC is developed by 

substituting the arm SMs with an equivalent controlled voltage 

source as shown in Fig. 1. [1],[6],[7]: 
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where C
arm

=C/N, C is the capacitance of one SM, N is the 

number of SMs per arm, Idiff is the differential current, VCP and 

VCN are the positive and negative pole voltages, CPV and CNV

are equivalent sum (maximal) voltages of positive and negative 

arms, Iv is the converter ac side current, VDC and IDC are the DC 

bus voltage and current, and mP and mN are modulation indices 

of positive and negative arms.  

When the average value modeling is used [6],[7], the MMC 

submodules are replaced with a controllable voltage source as 

shown in Fig 2, where the converter AC voltage is ex.: 

1

2
x Nx CNx Px CPxe m V m V    (2) 

 

Fig. 1. Circuit diagram of one phase (x) leg of MMC 
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Fig. 2. Structural diagram of the average MMC model. 

III. MMC PHASOR MODEL 

The inputs to the phasor model are assumed to be: dq 

components of the AC current Iv (Ivd and Ivq), dq components of 

the control signal m (Md, Mq) and DC voltage Vdc. The aim is to 

derive expressions for dc current Idc, dq components of 

converter AC voltage e (ed and eq), dq components of second 

harmonic circulating current Idiff (Idiffd2 and Idiffq2), and also 

second harmonic arm voltages. 

A. Assumptions 

The standard MMC average modeling assumptions are:  

 modulation index m(t), is a fundamental sine signal, 

 AC current Iv(t), is fundamental sine signal,  

 differential current Idiff(t), is DC plus second harmonic,  

 sum capacitor voltages ( ), ( )CP CNV t V t , are DC, 

fundamental and second harmonic,  
These signals are represented as follows: 
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Where d,q subscripts denote the two components in the 
coordinate frame rotating at fundamental frequency ω=2πf, 
while d2,q2 subscripts denote the two components in the 
coordinate frame rotating at second harmonic 2ω=4πf, and 
subscript 0 denotes zero sequence component. 

B. Zero sequence model  

Model (1) can be rewritten for zero sequence as follows: 

0

0 0

0
0

0
0

0
2 2 2

0
2

0
2

P CP N CN DC
arm diff

P
P diff V

N
N diff V

m V m V V
R I

m
m I I

m
m I I

  (8) 

In (8), it is required to derive zero sequence of the product 

of two phasor signals. Appendix I gives generic expression for 

multiplication of two phasors which may contain zero 

sequence, fundamental frequency and second harmonics, in dq 

frame. Therefore, using (43), the last equation of model (8) 

gives DC component of differential current: 

0 / 4diff d vd q vqI M I M I    (9) 

The DC current is the sum of zero sequence currents in the 

three phases which gives the DC side equation known from 

average modeling [7]: 

03 3 / 4dc diff d vd q vqI I M I M I    (10) 

C. Fundamental frequency model 

The fundamental frequency model needs to be derived 

separately for positive and negative poles. The second equation 

of (1) takes the following form in dq frame: 
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The corresponding d and q components of the product terms 

can be determined form the algebra (43) in the Appendix I:  
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It is observed that in the above expression the variables 

from zero sequence model (Idiff0) and also from the second 

harmonic model (Idiffd2, Idiffq2) are present, which denotes cross-

coupling between the three coordinate frames.  

By expanding the first equation of (8) and also assuming

0 0P CP N CNm V m V , the DC component of 
CPV is: 
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The equations for the negative pole sum voltages can be 

developed in a similar way starting from third equation in (1):   
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D. Second harmonic model 

Starting from the second and third equations in model (1), 

and considering the expression for second harmonic of a 

product of two signals from (43) in Appendix I, the d2, q2 

components for CP CN,V V  are calculated as: 
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And similarly for negative pole: 

2 2

2 2

1 1

2 2 8 8

1 1

2 2 8 8

q Vd d Vq

CNd diffqarm

q Vqd Vd
CNq diffdarm

M I M I
V I

C

M IM I
V I

C

 (17) 

It is clear from (16) and(17) that second harmonic variables 

depend on the fundamental components, i.e. on converter 

loading. By comparing (13) with (15), (12) with (14), and (16) 

with (17), the following equalities are observed: 
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The circulating current (first) equation in model (1) can also 

be written for second harmonic as: 
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By separating (19) into d2 and q2 components: 
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Eq. (20) can be used to derive the magnitude of circulating 

current, Idiff2, in terms of AC currents and modulation indices. 

The derivation is given in Appendix II.  

E. The expression for MMC AC voltage  

The dq components of the MMC AC voltage in (2) are: 
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By expanding the multiplication terms of (21): 
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F. Full MMC phasor model in matrix form 

Considering the derivations all three coordinate frames, the 
phasor model of MMC can be summarized in matrix form as:  

,Ax Bu y Cx     (23) 

Where x, u and y are state, input and output vectors:  
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The matrices are: 
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IV. CIRCULATING CURRENT CONTROL MODELLING   

The circulating current is usually eliminated by using 

feedback PI control [14], in d2,q2 rotating frame. As a result, 

the modulation indices will include second harmonic terms 

Md2 and Mq2. Therefore, the following form for the positive 

and negative modulation indices is considered:  
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The second harmonic control terms will modify all 

equations for the MMC phasor model derived in Section III. It 

will be assumed that CCSC achieves ideally the control goals: 

Idiffd2=Idiffq2=0. Following full derivation, it can be verified that 

conclusions (18) are still valid. Therefore, the dq components 

of positive and negative pole voltages are: 
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The zero sequence pole voltages are 
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The second harmonic dq components are derived similarly 

as in section III.C as follows: 
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The MMC AC voltage is derived by expanding the 

multiplication terms of (21): 
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The third model output, IDC, is the same as given in (9). 

It is now possible to derive the magnitude of control signals 

Md2 and Mq2, required to eliminate second harmonic current. 

Such result will give theoretical background for possible open 

loop CCSC. Replacing Idiffd2=Idiffq2=0 in (19): 
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By expanding (33): 
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Assuming that the values for Md2 and Mq2 are very small, as 

it will be confirmed in Section VI, the last two terms in (30) 

are neglected to simplify the derivation: 
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Md2 and Mq2 is obtained by replacing (29),(31), (35) in (34): 
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V. SIMPLIFIED MODEL OF MMC WITH CCSC   

The system model with CCSC is given in (29)-(32). 

However simulation studies have demonstrated, as it will be 

shown in verification section, that the magnitude of CCSC 

control signals Md2 and Mq2 even at full power is very small. 

Therefore it is justified to simplify further the practical MMC 

model by neglecting CCSC control signals. Therefore, from 

(29)-(32) the simple MMC phasor model with CCSC is: 
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Note that the DC current equation (9) should be included to 
complete the MMC model in (37). The above MMC steady-
state model is in simple convenient form for system 
dimensioning and power flow studies, while it is very accurate 
as it will be verified in the next section.    

VI. MODEL VERIFICATION 

A. PSCAD benchmark model  

The PSCAD benchmark model consists of a MMC 
converter represented as given in [5], which is “type 4” from 
[7], and which is connected to an AC and a simple DC source. 
The MMC is a 401-level 1000MVA converter with CSM=10mF 
and Rarm=1.2Ω, with Larm=0.15H in case without CCSC. In 
the case the CCSC is active the inductance is Larm=0.08H. The 
AC grid and DC bus voltages are VAC=370KV, VDC=640KV, 
and AC parameters are: SCR=8.5, X/R=10, Xt=8%.  

The model inputs are Md, Mq, Ivd, Ivq and Vdc, and they have 
the same values for the PSCAD and the analytical model in all 
tests. The outputs ed, eq, Idiff2 and Idiff0 (also Md2, Mq2 in CCSC 
tests) are observed and compared with PSCAD Benchmark.     

B. Verification of model without CCSC  

The proposed phasor model without CCSC, eq. (23), is 
verified against detailed PSCAD model for different range of 
power levels and the results are shown in table I. These power 
levels are obtained by keeping Md=0.92 and manipulating Mq. 
The two models are compared for Idiff0, ed,eq and also Idiff2 as 
the outputs. The results confirm excellent matching between 
the model and detailed PSCAD benchmark.  

The phasor model is tested for different Larm parameters, 
and for wide range of power levels. For brevity, the results are 
reported only for full power and three different values of Larm 
as shown in Table II. Excellent matching is observed. 

TABLE I.  VERIFICATION OF MODEL WITHOUT CCSC (LARM=0.15H) 

Larm=0.15H P=0.1pu P=0.5pu P=1pu P=-0.1pu P=-0.5pu P=-1pu 

Idiff0 

(KA) 

PSCAD 0.518 0.259 0.052 -0.052 -0.261 -0.524 

Model 0.518 0.259 0.052 -0.052 -0.261 -0.524 

Idiff2 

(KA) 
PSCAD 0.1874 0.0924 0.0291 0.0319 0.0955 0.186 

Model 0.1776 0.0878 0.0278 0.0304 0.0907 0.176 

ed (KV) PSCAD 208.5 207.2 206.3 205.9 205.4 204.9 

Model 208.5 207.1 206.3 205.9 205.3 204.8 

eq (KV) PSCAD -52.5 -26.1 -5.10 5.31 26.10 52.2 

Model -52.2 -25.9 -5.10 5.29 25.98 51.9 

TABLE II.  VERIFICATION OF MODEL WITHOUT CCSC (P=1PU) 

P=1pu Larm=0.1H Larm=0.15H Larm=0.2H 

Idiff0 (KA) PSCAD 0.517 0.518 0.518 

Model 0.517 0.518 0.518 

Idiff2 (KA) PSCAD 0.342 0.1874 0.130 

Model 0.313 0.1776 0.1253 

ed (KV) PSCAD 208.6 208.5 208.5 

Model 208.6 208.5 208.5 

eq (KV) PSCAD -39.95 -52.5 -65.0 

Model -39.22 -52.18 -64.8 

C. Investigation of resonance condition for Larm and C
arm

 

Fig. 3 shows the magnitude of Idiff2 versus Larm for 3 values 

of C
arm

, using the model (23). The control signals are kept 

constant: Md=0.92, Md = -0.055. Therefore, the power flow is 

different for every Larm and C
arm

. It is equal to 1pu for the 

following pairs (C
arm

=20uF, Larm=0.076H), (C
arm

=25uF, 

Larm=0.059H) and (C
arm

=30uF, Larm=0.047H). It is seen that 

Idiff2 has multiple peaks for each C
arm

 which correspond to 

various harmonic resonances. The magnitudes of second 

harmonic at resonant conditions are very high even with 

realistic arm resistances and clearly resonances should be 

avoided.  

Following the derivation from Appendix II, the analytical 

expression for the arm inductance at resonance is given as: 
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The values obtained from (38) correspond well with peaks 

in Fig 3, and the values are close to the resonant inductor 

values reported in [11] (there is 10% difference comparing 

(38) with formula (119) in [11]).  

 

Fig. 3. Idiff2 versus Larm for 3 Carm 

D. Verification of CCSC control mangnitude  

Table III compares the Md2 and Mq2 of eq. (36) against the 
PSCAD model with CCSC for different operating points. The 
results show good matching for the wide range of power flow. 
This implies that (36) can be used for open loop active second 
harmonic suppression which would avoid control dynamic 
interactions. Also, this table confirms that magnitude of Md2 
and Mq2 is small, and justifies simplifications in model (37). 

TABLE III.  VERIFICATION OF CCSC CONTROL MAGNITUDES  

Larm=0.08H Md2 Mq2 

PSCAD Model PSCAD Model 

P=1 pu -0.0028 -0.003 -0.0565 -0.0557 

P=0.5 pu -0.0064 -0.0064 -0.0276 -0.0273 

P=0.1 pu -0.0091 -0.0091 -0.0055 -0.0054 

P=-0.1 pu -0.0105 -0.0104 0.0546 0.0557 

P=-0.5 pu -0.013 -0.0132 0.0271 0.0267 

P=-1 pu -0.016 -0.0167 0.0546 0.0536 

E. Verification of simplified model with CCSC   

The simplified model with CCSC, eq. (37), is verified 
against PSCAD MMC benchmark with CCSC active and the 
results for various power flows are given in table IV. The 
results show excellent model accuracy despite simplifications.  

TABLE IV.  VERIFICATION OF SIMPLIFIED MMC MODEL WITH CCSC 

Larm=0.08H P=0.1pu P=0.5pu P=1pu P=-0.1pu P=-0.5pu P=-1pu 

Idiff0 

(KA) 

PSCAD 0.518 0.260 0.0519 -0.052 -0.261 -0.524 

Model 0.518 0.260 0.0519 -0.052 -0.261 -0.524 

ed (KV) PSCAD 208.5 207.1 206.2 205.8 205.2 204.7 

Model 208.5 207.1 206.2 205.8 205.2 204.7 

eq (KV) PSCAD -35.00 -17.40 -3.38 3.62 17.60 35.05 

Model -34.98 -17.35 -3.37 3.61 17.54 35.00 
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This model is also verified against PSCAD benchmark for 
three different Larm are shown in Table V. It can be seen that 
the matching between the two models is excellent. 

TABLE V.  TEST RESULTS FOR DIFFERENT LARM WITH CCSC (P=1PU)  

P=1pu Larm=0.02H Larm=0.04H Larm=0.06H 

Idiff0 (KA) PSCAD 0.518 0.518 0.518 

Model 0.518 0.518 0.518 

ed (KV) PSCAD 208.5 208.5 208.5 

Model 208.5 208.5 208.5 

eq (KV) PSCAD -20.00 -25.00 -30.00 

Model -19.95 -24.97 -29.98 

VII. MODEL APPLICATION EXAMPLE AND COMPARISON WITH 

2-LEVEL VSC  

This section considers a simple AC system with MMC as 
shown in Fig 2, and calculates converter AC voltages for a 
range of control inputs. Appendix III shows how the MMC 
model is analytically connected to the AC system model in 
order to determine current vector components.  

In the MMC model in (37) it is seen that the last term 
0.5MVdc is the well-known 2-level VSC converter equation. It 
is interesting to examine if MMC can be modelled as a 2-level 
VSC, by neglecting the load dependent first terms in (37). 
Therefore a comparable 2-level VSC converter model which 
has series inductance as MMC total inductance (transformer 
inductance and half arm inductance, LT_VSC=LT_MMC+Larm/2) is 
also tested. The test system is shown in Fig. 2 where the 
converter is either MMC or VSC. The Mq varies from -0.07 to 
+0.07 while Md is kept equal to 0.92.  

Fig. 4 shows the AC side voltages for the two converters. It 
is seen that MMC and 2-level VSC have different responses 
and therefore load dependent terms in MMC model have  

 

Fig. 4. Comparison of AC equivalent voltages for MMC and VSC  

significant influence. It is concluded that an MMC should not 

be represented using simple 2-level VSC models. For the same 

control signal Mq, the load dependent terms in MMC act to 

increase the converter voltage eq. The MMC therefore responds 

as a controllable voltage source with a series capacitor.    

This can also be confirmed analytically. If the converter 

resistance is neglected in (37) Rarm=0, than the MMC model 

has the following format: 

2

2

Vq d dc
d

MMC

q dcVd
d

MMC

I M V
e

C

M VI
e

C

    (39) 

Where the equivalent MMC capacitance is: 

2 264 / 8 3arm

MMC d qC C M M    (40) 

assuming further that in most operating conditions: 
2 2 1d qM M , eq. (40) becomes: 

64 5arm

MMCC C      (41) 

The model in (39) implies that MMC responds like a 2-level 

VSC with an additional series capacitance CMMC. Fig 5 shows 

the equivalent simplified MMC model. 

 

 

Fig. 5. Simplified MMC model connected to the AC grid. 

VIII. CONCLUSION 

A detailed phasor model for MMC is proposed considering 
variables in the dq frame rotating at fundamental frequency and 
the coordinate frame d2q2 rotating at double the fundamental 
frequency. A set of generic equations for manipulating 
nonlinear terms directly in dq frame is first developed. It is 
concluded that there is significant coupling between the zero 
sequence variables, variables in dq frame and second harmonic 
variables.  

The circulating current control is also modelled and it is 
found that very small magnitudes of second harmonic control 
signals can completely cancel the circulating current second 
harmonics. It is proposed to neglect the second harmonic 
control signals and this enabled derivation of a 2-equation final 
MMC model. If converter losses are also neglected, it is 
demonstrated that MMC behaves as 2-level VSC with an 
equivalent series capacitance which depends on the control 
signal magnitudes.  

The validity and accuracy of the proposed phasor models is 
verified against a benchmark model in PSCAD. The models 
are tested for different power flows and various Larm. The 
results for all cases verify accuracy of the proposed phasor 
models.  

APPENDIX I. DQ FRAME ALGEBRA 

Eq. (11) and others require multiplication of two phasor 

signals in dq frame. Here, a general formula for signal 

multiplication in dq frame is derived. Starting with a time 

domain expression for two signals X(t) and Y(t), each 
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consisting of zero sequence, fundamental and second 

harmonic: 

0 2 2

0 2 2

( ) cos sin cos 2 sin 2

( ) cos sin cos 2 sin 2

D Q D Q

D Q D Q

X t X X t X t X t X t

Y t Y Y t Y t Y t Y t
(42) 

The product signal Z(t)=X(t)xY(t) will also contain zero 

sequence, basic frequency, second harmonic but also third and 

fourth harmonics: 

0

2 2Q QD D 2 2

0 0

D 0 0 2 2 2 2

Q 0 0 2 2 2 2

( )
2 2 2 2

1 1 1 1
cos

2 2 2 2

1 1 1 1

2 2 2 2

d

q

Q QD D

Z

D D D Q Q D D Q Q

Z

Q D Q Q D D Q Q D

Z

X YX YX Y X Y
Z t X Y

X Y X Y X Y X Y Y X Y X t

X Y X Y X Y X Y Y X Y X

2

2

Q QD D

2 0 2 0

Q D D Q

2 0 2 0

sin

cos 2
2 2

sin 2
2 2

d

q

D D

Z

Q Q

Z

t

X YX Y
X Y Y X t

X Y X Y
X Y Y X t

(43) 

where third and fourth harmonics are neglected. The 

corresponding terms in dq frame are indicated in (43). 

It is also required to derive the dq components of 

differential signals as shown on left hand side of (1). A 

general oscillating signal x(t) is differentiated in dq frame as: 

0( ) cos sin

( ) sin cos

d q

d q

d d
x t X X t X t

dt dt

d
x t X t X t

dt

 (44) 

Therefore, in the rotating frame differential of signal x(t) is: 

( ) Q D qd
dq

d
x t k X k X

dt
   (45) 

Where k=1 for basic frequency and k=2 for second harmonic. 

APPENDIX II. DERIVATION OF IDIFF2 AND RESONANT LARM 

By substituting Eq. (12) and (16) in (20) and rearranging: 

2 2

2 2

diffd diffq

diffq diffd

B AI BI C

B AI BI D

   (46) 

where 

2
2 2 2 2

2 2

0

0

2
8 ,

4

4

33

2 8 8

3 3

8 8

arm

arm d q

arm

arm

d q q Vqd Vd
diff

d Vq q Vd

d q diff

m
A L C m M M

B C R

M M M IM I
C I

M I M I
D M M I

  (47) 

From (46) differential currents are determined: 

2 2

2

2 2

2

diffd

diffq

I AC BD A B

I AD BC A B

   (48) 

The magnitude of Idiff2 from (48) becomes: 

2 2 2 2 2 2

2 , 0diffI C D A B A B   (49) 

By differentiating Idiff2 with respect to Larm and considering 

that C and D do not depend on Larm,  

1/2
2 2

2 2 2

3/2
2 2

8 0
diff diff arm

arm arm

C D AI I A
C

L A L A B

 (50) 

Eq. (50) requires that A=0. Note that if B=0, the final 

condition is also A=0. Therefore, 

2 2
2

_ 2

2 2
8 0

4 32

arm

arm arm res arm

m m
L C L

C
 (51) 

APPENDIX III. DERIVATION OF AC CURRENT IN AN AC 

SYSTEM WITH MMC 

The ac side KVL equation is: 

Vd Vq x x ac d q

x Vd x Vq ac d

x Vq x Vd q

I jI R jX V e je

R I X I V e

R I X I e

  (52) 

whereRx=Rarm/2 and Xx=(Lt+Larm/2)ω. 

By substituting (37) in (52) and rearranging: 

22 12 31 22 32 12

11 22 12 21 11 22 12 21

21 11 31 21 32 11

12 21 11 22 12 21 11 22

x x
Vd ac DC

x x
Vq ac DC

R K X K K K K K
I V V

K K K K K K K K

R K X K K K K K
I V V

K K K K K K K K

 (53) 

where 

2 2

11 11 21

12 12 22

31 1 2

21 11 21

2 2

22 12 22

32 1 2

x x x x

x x

x x

x x

x x x x

x x

K R X R A X A

K R A X A

K R b X b

K X A R A

K R X X A R A

K X b R b

   (54) 

The ac side equation from VS to Vac is 

ac Vd ac Vq ac sd

ac Vd ac Vq sq

R I X I V V

X I R I V

   (55) 

which can be written in following form 

2 2
2

ac Vd ac Vq ac ac Vd ac Vq SR I X I V X I R I V  (56) 

By substituting (46) in (49), 

2 2 2 2 2 22 2 0ac ac SR T V QR ST V Q S V  (57) 
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where 

31 22 32 12 31 21 32 11

11 22 12 21 12 21 11 22

22 12 21 11

11 22 12 21 12 21 11 22

,

1

ac DC ac DC

x x x x
ac ac

K K K K K K K K
Q R V X V

K K K K K K K K

R K X K R K X K
R R X

K K K K K K K K

 (58) 

31 22 32 12 31 21 32 11

11 22 12 21 12 21 11 22

22 12 21 11

11 22 12 21 12 21 11 22

ac DC ac DC

x x x x
ac ac

K K K K K K K K
S X V R V

K K K K K K K K

R K X K R K X K
T X R

K K K K K K K K

 (59) 

By calculating Vac from (57), IVd and IVq can be obtained 

from (53). 
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