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Abstract

This paper describes a new vibration damping technique based on Integral Force Feedback (IFF). Classical IFF utilises a force
sensor and integral controller to damp the resonance modes of a mechanical system. However, the maximum modal damping
depends on the frequency difference between the system’s poles and zeros. If the frequency difference is small, the achievable
modal damping may be severely limited. The proposed technique allows an arbitrary damping ratio to be achieved by introducing
an additional feed-through term to the control system. This results in an extra degree of freedom that allows the position of the
zeros to be modified and the maximum modal damping to be increased. The second contribution of this paper is a structured
PI tracking controller that is parameterized to cancel the additional pole introduced by integral force feedback. The parameterized
controller has only one tuning parameter and does not suffer from reduced phase margin. The proposed techniques are demonstrated
on a piezoelectric objective lens positioner. The results show exceptional tracking and damping performance while maintaining
insensitivity to changes in resonance frequency. The maximum bandwidth achievable with a commercial PID controller is 26.1 Hz.
In contrast, with the proposed damping and tracking controller, the bandwidth is increased to 255 Hz.
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1. Introduction

High-speed precision positioners are widely used in appli-
cations such as confocal microscopes [1], scanning probe mi-
croscopy [2, 3], nanofabrication [4] and electrical characteriza-
tion of semiconductors [5]. A typical nanopositioning system
is illustrated in Figure 1. One difficulty with nanopositioning
systems is the mechanical resonances that arise from the in-
teraction between the platform mass and flexures, mechanical
linkages and actuators. As a result, the frequency of the driving
signal for instance a triangular reference is commonly limited to
1%−10% of the resonance frequency to avoid excitation of the
mechanical resonance. In commercial nanopositioning systems
the most common type of control is sensor-based feedback con-
trol using proportional integral or integral controllers. The ben-
efits of these controllers include robustness to modelling error,
simplicity of implementation and reduced piezoelectric non-
linearity due to a high loop gain at low frequency. However,
the bandwidth of an integral tracking controller Ct(s) = K/s
is limited by the presence of highly resonant modes. In refer-
ences [6, 7] it was shown that the maximum closed-loop band-
width is 2ζ ωn, where ζ is the damping ratio and ωn is the nat-
ural frequency. Since the damping ratio is usually in the order
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Figure 1: Single-degree-of freedom positioning stage.

of 0.01, the maximum closed-loop bandwidth is less than 2%
of the resonance frequency.

To improve the closed-loop bandwidth of nanopositioning
systems, techniques such as notch filters or plant inversion fil-
ters can be implemented [8]. Such techniques can provide sig-
nificantly improved closed-loop bandwidth provided an accu-
rate model of the system is available. Therefore, notch or plant
inversion filters are most practical in systems with stable reso-
nance frequencies or where the feedback controller can be con-
tinually recalibrated. On the other hand, model-based control
such as robust H∞ controllers [9] and LMI based controllers
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[10] have also been successfully applied to control such sys-
tems.

An alternative method to improve the closed-loop response
is damping control. Damping controllers have the advantage
of being insensitive to variations in resonance frequency. Fur-
thermore, it has been shown that damping controllers provide
better external disturbance rejection than inversion-based sys-
tems [11]. A number of techniques for damping control have
been successfully demonstrated in the literature. These include
Positive Position Feedback (PPF) [12], polynomial based con-
trol [13], acceleration feedback [14], shunt control [15, 16],
resonant control [17], and Integral Resonance Control (IRC)
[18, 19]. Among these techniques, PPF controllers, velocity
feedback controllers, force feedback controllers, and IRC con-
trollers have been shown to guarantee stability when the plant
is strictly negative imaginary [20].

Integral force feedback (IFF) a damping control technique
described in references [6, 21–25]. The advantages of IFF are
the simplicity of the controller, guaranteed stability and excel-
lent performance robustness. Furthermore, IFF can also be im-
plemented using an analog filter. However, one of the limita-
tions of IFF is that the maximum modal damping depends on
the frequency difference between the system’s poles and ze-
ros. If the frequency difference is small, the achievable modal
damping may be severely limited. Furthermore, when the IFF
system is enclosed in a tracking loop , the closed-loop perfor-
mance is limited by an additional pole introduced by the inte-
gral force feedback controller.

In this work, we proposed a technique that allows an arbi-
trary damping ratio to be achieved by introducing an additional
feed-through term to the control system. This allows the posi-
tion of the zeros to be modified, hence, increasing the maximum
modal damping. Furthermore, we identified the additional pole
that is introduced by the integral force feedback controller and
compensate it by parameterising the tracking controller with a
zero that cancels the additional pole.

The remainder of the paper is organised as follows. In Sec-
tion 2, the modelling of a single-degree-of-freedom positioning
system is shown. Section 3 compares the proposed damping
control technique with classical integral force feedback control.
The tracking controller designs are discussed in Section 4. A
simulation example is shown Section 5 follow by the experi-
mental result on a commercial objective lens positioner in Sec-
tion 6.

2. Modelling a Nanopositioning System

The single-degree-of-freedom positioner illustrated in Fig-
ure 2 can be represented by a second-order mechanical system.
The equation of motion for this system is

Mpd̈ + c f ḋ +(Ka + k f )d = Fa, (1)

where Mp is the mass of the platform and the stiffness and
damping coefficient of the flexures are denoted by k f and c f
respectively. The force applied by the actuator is Fa and the

Figure 2: Mechanical diagram of a single-degree-of freedom positioner where
Fs is the measured force acting between the actuator and the mass of the plat-
form in the vertical direction.

actuator stiffness is Ka. A force sensor is collocated with the
actuator and measures the load force, Fs.

The configuration of the system is such that the actuator and
flexure appear mechanically in parallel, hence, the stiffness co-
efficients can be grouped together, k = Ka+k f which simplifies
the equation of motion (1) to

Mpd̈ + c f ḋ + k = Fa. (2)

The transfer function from actuator force, Fa, to the displace-
ment of the platform , d is

GdFa(s) =
d
Fa

=
1

Mps2 + c f s+ k
. (3)

The sensor force, Fs, can be written as

Fs = Fa −dKa,

= Fa −KaFaGdFa(s),

= Fa (1−KaGdFa (s)) . (4)

The transfer function between the applied force, Fa, and mea-
sured force, Fs, is found by rearranging (4).

GFsFa(s) =
Fs

Fa
= 1−KaGdFa (s) . (5)

The force developed by the actuator, Fa, is

Fa = Kaδ (6)

where δ is the unconstrained piezo expansion.
Substituting (6) into (5), we obtain the transfer function

from the unconstrained piezo expansion δ to the force of the
sensor Fs

GFsδ =
Fs

δ
= Ka

Fs

Fa
= Ka (1−KaGdFa (s)) . (7)

A valid assumption is that the effect of the damping in the flex-
ure, c f , is small and thus negligible. The frequency of the open-
loop poles ω1 and zeros z1 of (5) are

ω1 =

√
k

Mp
=

√
Ka + k f

Mp
z1

√
k f

Mp
. (8)
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(a) Classical Integral Force Feedback.

(b) Optimal Integral Force Feedback with new feedthrough term β .

(c) Optimal Integral Force Feedback with new equivalent controller.

Figure 3: Damping Control: Integral Force Feedback Block Diagrams.
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Figure 4: Typical frequency response of GFsFa (s).

3. Damping Control

Integral force feedback (IFF) is a popular method for damp-
ing control, as described in references [6, 21–25]. This tech-
nique utilizes a force sensor and integral controller to directly
augment the damping of a mechanical system. The major ad-
vantages of IFF is the simplicity of the controller, guaranteed
stability, excellent performance robustness, and the ability to
damp a large number of resonance modes with a first order con-
troller. Moreover, a piezoelectric force sensor has significantly
lower noise density as compared to inductive or resistive strain
sensors [26].

3.1. Classical Integral Force Feedback
The technique of Classical Integral Force Feedback (CIFF)

has been widely applied for augmenting the damping of flexi-
ble structures. The feedback law is simple to implement and,
under common circumstances, provides excellent damping per-
formance with guaranteed stability.

The open loop transfer function between the unconstrained
piezo expansion δ to the sensor force Fs is adapted from Ref.[22]

(a) Classical method. (b) Optimized method.

Figure 5: Damping Control: Typical Root Locus Plots

GFsδ (s) =
Fs

δ
= Ka

{
1−

n

∑
i=1

vi

1+ s2/ω2
i

}
, (9)

where the sum extends to all the modes, ωi is the natural fre-
quency of the system and vi is the fraction of modal strain en-
ergy for the ith mode. The corresponding zeros of each mode is
given as z2

i = ω2
i (1− vi) [22].

For the positioning application the first resonance mode is
of significant interest, this reduce (9) to a second order sys-
tem (7) . The feedback diagram of an IFF damping controller
is shown in Figure 3(a). The frequency response of GFsFa is
shown in Figure 4. A key observation of the system GFsFa is
that its phase response lies between 0 and 180◦. This is a gen-
eral feature of flexible structures with inputs and outputs pro-
portional to applied and measured forces. A unique property of
such systems is that integral control can be directly applied to
achieve damping, i.e.

Cd1(s) =
Kd1

Kas
, (10)

where Kd1 is the damping control gain. As the integral con-
troller has a constant phase lag of 90◦, the loop-gain phase lies
between −90 and 90◦. That is, the closed-loop system has an
infinite gain margin and phase margin of 90◦. Simplicity and ro-
bustness are two outstanding properties of systems with CIFF.

A solution for the optimal feedback gain has already been
derived in [22]. These results can be directly adapted for the
system considered in this study. The method makes the valid
assumption that system damping coefficients are small and can
be neglected. With these assumptions, the maximum modal
damping is [22]

ζ
max
i =

ωi − zi

2zi
, (11)

and is achieved for

Kd1 = ωi

√
ωi

zi
. (12)

The root locus plot corresponding to CIFF is shown in Fig-
ure 5(a). Note that a key characteristic of this system is that
the position of the poles and zeros alternates. The main limita-
tion of the classical method is that the maximum modal damp-
ing (11) depends on the distance between the system poles ωi
and modal zeros zi. If the distance between the pole and zero
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is small, the maximum modal damping achievable with CIFF
is reduced. This means that some systems can be critically
damped using CIFF while other systems exhibit insufficient
damping.

3.2. Optimal Integral Force Feedback
Here, we discuss an extension to the classical technique of

Integral Force Feedback that allows an arbitrary damping ratio
to be achieved for any system. A new feed-through term β is in-
troduced into the system as shown in Figure 3(b). The location
of the modal zeros is given as

ẑi(β ) =

√
ω2

i

(
1− Ka

Ka +β

Ka

k

)
. (13)

This results in an extra degree of freedom that allows the posi-
tion of the zeros to be modified. As β decreases, the zeros of
the system will move closer to the real axis, under the condition
that Ka(vi−1)< β < 0 is satisfied.The new maximum damping
ratio of the system is given as

ζ̂
max
i =

ωi − ẑi(β )

2ẑi(β )
, (14)

The controller is given as

Cd2(s) =
Kd2

(Ka +β )s
. (15)

The corresponding optimal gain is given as

Kd2 = ωi

√
ωi

ẑi(β )
. (16)

Given a desired damping ratio ζd < 1, the expression for β is
found by replacing (13) into (14) and rearranging the equation
as

β =−Ka +
Kavi(2ζd +1)2

4ζd(1+ζd)
. (17)

where vi = Ka/k for the nanopositioning system in Section 2.
The typical root locus plot corresponding to OIFF is given in
Figure 5(b). Note that the zero location changes with respect to
β . The equivalent controller Ĉd(s) can be written as

Ĉd(s) =
Cd2(s)

1+Cd2(s)β
, (18)

as shown in Figure 3(c). The modification amounts to re-
placing the integral controller with a first-order low-pass filter.
Although the additional complexity is negligible, the damping
performance is significantly improved. This result allows inte-
gral force feedback control to be applied to systems that were
not previously suited.

4. Tracking Control

4.1. Integral Control with Displacement Feedback
The most straightforward technique for achieving displace-

ment tracking is to simply enclose the system in an integral

Figure 6: Tracking Loop.
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Figure 7: Pole-zero map of the Damping Loop.

feedback loop, as depicted in Figure 6. The tracking controller
Ct1(s) is simply

Ct1(s) =
Kt1

s
(19)

In this strategy, the displacement, d, must be obtained with a
physical displacement sensor such as a capacitive, inductive, or
optical sensor [26]. However, from the pole-zero map shown in
Figure 7, the damped system contains a pair of resonance poles,
plus an additional real axis pole due to OIFF. The additional
pole unnecessarily increases the system order and reduces the
achievable tracking bandwidth due to low-phase margin.

The characteristic equation of the closed-loop transfer func-
tion is given by the numerator of

1+
Kt1Kd1

γ4s4 + γ3s3 + γ2s2 + γ1s1 (20)

where

γ4 = KaMp +Mpβ , (21)
γ3 = c f Ka +KaKd1Mp + c f β +Kd1Mpβ , (22)
γ2 = kKa + c f KaKd1 + kβ + c f Kd1β , (23)

γ1 = kKaKd1 −K2
a Kd1 + kKd1β . (24)

Proposition 1. Let Kd1 and Kt1 be the OIFF damping and in-
tegral tracking gain respectively. For a closed-loop system as
implemented in Figure 6 to be stable, the gains must obey the
following inequality:
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Kd1Kt1 <
(K2

a (−K2
a + k(Ka +β )))

(Mp(Ka +β ))
(25)

Proof. In order to check the stability of the closed-loop transfer
function, the zeros/numerator of (20) should be evaluated. The
system is stable if all the zeros have negative real parts. As-
suming that damping in the system is negligible, all necessary
and sufficient conditions for stability are met if 1) all the coef-
ficients of (20) are positive and 2) all the elements of the first
column of the Routh-Hurwitz table are positive. The condition
of stability is given as

K3
d1Kt1Mp(Ka +β )(KaMp +Mpβ )+

K2
d1Mp(Ka +β )(K4

a − kK2
a (Ka +β ))< 0 (26)

Rearranging (26) for Kt1Kd1 results in the expression (25).

4.2. Structured PI Control with Displacement Feedback

The location of the additional pole can be found by examin-
ing the characteristic equation (20) of the damped system. For
the system under consideration, the roots of the characteristic
equation contain a complex pair and a pole on the real axis as
shown before.

To eliminate the additional pole from the tracking loop, the
controller can be parameterised so that it contains a zero at the
same frequency. A controller that achieves this is

Ct2(s) =
Kt2(s+ p)

sp
(27)

where p is the location of the additional pole identified by find-
ing the roots of (20) using Cardano’s method [27],

p =−(A+B−a/3) ,

a = Kd2 +
c f

Mp
,

b =
k+ c f Kd2

Mp
,

c =
Kd2(−K2

a + k(Ka +β ))

Mp(Ka +β )
,

Q =
a2 −3b

9
, R =

2a3 −9ab+27c
54

,

A =− 3
√

R+ 2
√

R2 −Q3, B = Q/A.

The integral gain is chosen in the normal way to provide the
desired stability margins. The form of this controller is identical
to a PI controller except that the zero location is fixed. This
is advantageous since the controller has only one free tuning
parameter.

5. Example System

Here, we examine a single degree of freedom positioner
based on the mechanical diagram shown in Figure 2 with mass
Mp = 250 g, flexure stiffness k f = 300 N/µm, actuator stiffness
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Figure 8: Example System: Root locus comparison between CIFF and OIFF.

Table 1: Comparison between analytic and numerically obtained damping ratio
ζ max and feedback gain Kd2 for the example system.

Analytic Numerical
β ζ max Kd2 ζ max Kd2

−6.67×107 0.500 5.65×104 0.501 5.57×104

−6.98×107 0.707 6.21×104 0.708 6.23×104

−7.13×107 0.900 6.69×104 0.902 6.70×104

Ka = 100 N/µm and flexure damping c f = 10 N/ms−1.The fre-
quency of the open-loop poles and zeros of the system are

ω1 = 6.37 kHz z1 = 5.5 kHz (28)

The optimal gain and maximum damping ratio for the example
system using CIFF is Kd1 = 4.3× 104 and ζ max

1 = 0.077. The
numerically obtained optimal gain is 4.57×104 and the damp-
ing ratio is 0.077. These values are obtained from the root-locus
plot shown in Figure 8 and correlate closely with the predicted
values which supports the accuracy of the assumptions made in
deriving the optimal gain. With OIFF, the relationship between
β and ζ is described in (17) and plotted in Figure 9. The maxi-
mum modal damping with CIFF is 0.077; however, with OIFF,
the maximum modal damping can be varied from 0.077 to 1 at
different values of β .

The root locus of the system is shown in Figure 8. The opti-
mal feedback gain, maximum damping ratio and corresponding
value of β is given in Table 1. These values can be validated by
the numerical root-locus plot in Figure 8 and are summarized
in Table 1.

If a disturbance, w, is added into the system. The transfer
function from the disturbance, w, to the sensor force , Fs, is

GFsw(s) =
Fs

w
=

GFsδ

1+CdGFsδ

. (29)

where Cd =Cd1 for CIFF and Cd = Ĉd for OIFF. The simulated
open-loop and closed-loop frequency responses of (29) are plot-
ted in Figure 10 for both CIFF and OIFF. The transfer function
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Figure 9: Example System: The relationship between β and ζ for OIFF.
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Figure 10: Example System: Frequency response from the input disturbance w
to the sensor force Fs

.

from the disturbance w to the displacement of the platform d
are given as

Gdw(s) =
d
w

=
KaGdFa

1+CdGFsδ

. (30)

The simulated open-loop and closed-loop frequency responses
of (30) for both cases are shown in Figure 11. For the OIFF
case, the closed-loop transfer function measured from the ref-
erence, r, to the sensor force, Fs, is

GFsr(s) =
Fs

r
=

CdGFsδ

1+CdGFsδ

. (31)

when s = 0

GFsr(0) =
CdGFsδ (0)

1+CdGFsδ (0)
=

GFsδ (0)
GFsδ (0)+β

. (32)

This shows that the DC gain of the closed-loop increases as
β is decreased. Recall that the maximum damping ratio of the
closed-loop system increases as β is decreased.
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Figure 11: Example System: Frequency response from the input disturbance w
to the displacement of the platform d.
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Figure 12: Example System: Frequency response from the input disturbance w
to the control action u as β is increased.

.

In addition, the effect of control action with respect to in-
put disturbance is examined. The transfer function between the
input disturbance w to the control action u is

Guw(s) =
u
w

=
CdGFsδ

−1−CdGFsδ

. (33)

The frequency response of this transfer function is shown in
Figure 12. The sensitivity of the control action toward input
disturbance increases as the desired damping ratio is increased.

We now examine the performance of the tracking controllers.
The example system is damped using OIFF with a desired damp-
ing ratio of 0.707. With the basic integral tracking control, the
closed-loop bandwidth of the system is 400 Hz with a gain mar-
gin of 20dB. As expected, the closed-loop bandwidth is limited
by low-phase margin. The corresponding damping and track-
ing gain are 6.21×104 and 4.0×1010. The product of the two
gains satisfies the stability condition given in (25). However,
with the structured PI tracking controller, the closed-loop band-
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Figure 13: Example System: Closed-loop frequency responses from the refer-
ence r to the displacement of the platform d of the system.

width of the system is increased to 1200Hz with a phase-margin
of 60 degrees. This shows an improvement of threefold just by
cancelling an additional real pole induced by the inner damp-
ing loop. Figure 13 shows the closed-loop frequency response
of the system using the two tracking control architecture dis-
cussed previously.

To examine the constant velocity tracking performance, a
triangular waveform was applied as a reference with a frequency
of 200Hz. Figure 14(a) shows the displacement of the system.
The tracking error is plotted in Figure 14(b), The optimal force
feedback controller can be observed to heavily reduce the track-
ing error.

Effect of Higher Order Modes

So far, only a single degree of freedom system has been
considered. Although this is appropriate for modelling the first
resonance mode, it does not capture the higher order modes that
occur in distributed mechanical systems. However, the higher
order modes do not disturb the zero-pole ordering of the trans-
fer function from the applied actuator voltage to the measured
force. To illustrate this concept, we augment the open-loop sys-
tem with an additional second-order system at five times the
resonance frequency of the first mode. Figure 15 shows the
closed-loop frequency responses of the system. Note that the
second mode does not affect the performance of the system.

The transfer function of a generalized mechanical system
with a discrete piezoelectric transducer and collocated force
sensor is guaranteed to exhibit zero-pole ordering as shown in
[22]. That is, the transfer function GFsFa will always exhibit
zero-pole ordering. As the zero-pole ordering of the system is
guaranteed, it follows that the controller discussed in the pre-
vious section will also guarantee the stability of systems with
multiple modes.

6. Application to Objective Lens Positioner

The experiment was conducted on a Queensgate OSM-Z-
100B objective lens positioner with 3 different objective loads
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Figure 14: Example System: Constant velocity tracking with triangular wave.

as shown in Figure 16. This single-axis lens positioner has a
range of 100 µm and a static stiffness of 1.5 N/m. The inner
loop damping controller is implemented using analog electron-
ics. The outer tracking loop is implemented using a Queensgate
NPS4110 controller. The block diagram of the experimental
setup is shown in Figure 17.

By referring to set-up in Figure 17, the open-loop frequency
response of the positioner with 100× objective was measured
from the voltage amplifier input u2 which is proportional to the
internal actuator force, Fa, to the force sensor, Fs, and position
sensor output, d, with an excitation of 100 mVpp random noise
signal. The open-loop frequency responses are shown in Fig-
ure 18 which exhibits a resonance frequency at around 383 Hz.
The first two modes are relatively close in frequency. The sys-
tem can be approximated by a second-order transfer function
given as

GFsFa(s) =
2.141s2 +736.4s+6.072×106

s2 +214s+5.606×106 (34)

6.1. Damping Controller Design
The optimal gain and maximum damping ratio of system

(34) using CIFF are Kd1 = 1500 and ζ max
1 = 0.3. These values

can also be obtained numerically from the root locus plot in Fig-
ure 19. The numerically found optimal gain is 1700 and the cor-
responding damping ratio is 0.33. Figure 19 also includes the
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Figure 17: Block diagram of the experimental setup.
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Figure 15: Example System: Closed-loop frequency responses from the refer-
ence r to the displacement of the platform d of the system with higher order
model.

Table 2: Experimental results: Numerically obtained data for OIFF.

β ζ max
i Kd2 β ζ max

i Kd2

0.0 0.33 1700 -0.4 0.49 2350
-0.1 0.36 1840 -0.5 0.57 2500
-0.2 0.39 2060 -0.6 0.68 2840
-0.3 0.44 2160 -0.7 0.85 3300

root locus plots of the system using OIFF with different feed-
through terms β . The relationship between β and ζ max (shown
in Figure 20) was numerically obtained from the root locus plot
and summarised in Table 2. The maximum damping ratio is
increased from 0.33 (CIFF) to 0.85 by just adjusting the value
of β . Figure 18 includes the closed-loop frequency responses
of the system using OIFF with β =−0.6. The closed-loop fre-
quency responses are measured using the same procedure as the
open-loop responses. The closed-loop response shows that the
first and second resonance modes have been effectively elimi-
nated. The higher frequency modes have also been damped by
up to 5dB.

6.2. Tracking Control Design

The performance of the commercial PID controller was tuned
experimentally as there was no direct access to the PID param-
eters on the commercial controller. The tuning minimized the
settling time due to a step input reference. The implemented

Figure 16: Queensgate OSM-Z-100B objective lens positioner (Left) and
Olympus 4×, 40× and 100× objective lens (Right).

PID controller has the following structure

Ct(s) = kp +
ki

s
+

kds
τds+1

. (35)

where kp = 0.01,ki = 2000, kd = 1x10−6 and τd = 1.25x10−7.
The derivative component is an approximation that facilitates
practical implementation. The approximation acts as a deriva-
tive at low frequency, while reducing the gain at high frequency
with an additional pole [28]. The term τd limits the gain,hence,
the high-frequency signal is amplified at most by a factor of
kd/τd = 8.

The structured PI controller is

Ct(s) =
700(s+2914)

2914s
(36)

where s = −2914 is the location of the additional pole. The
only tuning parameter here is Kt which was tuned to provide
acceptable stability margins. The loop return ratio plot of the
controllers are shown in Figure 21. The gain and phase margin
of the system with commercial PID control is 3.2 dB and 86
degrees respectively. The gain and phase margin of the system
with Optimal Integral Force Feedback and Structured PI control
is 17.3 dB and 75 degrees respectively.

The closed-loop frequency responses of the standard com-
mercial controller and the proposed controller are plotted in
Figure 22. The achievable tracking bandwidth of the commer-
cial PID controller is 26.1 Hz compared to 255 Hz with the
proposed controller.
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(a) Open-loop (dashed line) and closed-loop (solid line) frequency re-
sponse measured from u2 to the output of the sensor force.
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(b) Open-loop (dashed line) and closed-loop (solid line) frequency re-
sponse measured from u2 to the output of the position sensor.

Figure 18: Experimental Results: Open-loop and closed-loop frequency re-
sponses using CIFF and OIFF.

6.3. Sensitivity to Variations in Resonance Frequency

The force feedback loop was initially tuned for the 100×
objective which has a nominal mass of 88.8 g. In order to
show the insensitivity to variation in resonance frequency, other
objectives were considered without retuning the tracking loop.
The objectives are 4x objective (47.8 g) and a modified 40x ob-
jective (163.3 g). The variations in resonance frequency and
performance are summarized in Table 3. The open-loop and
force feedback response of the stage with different loads are
plotted in Figure 23 and Figure 24. It can be observed that the
tuning of the force feedback loop is not sensitive to changes
in resonance frequency. The tracking controller frequency re-
sponses with, and without force feedback are plotted in Fig-
ure 25 and Figure 26. As expected from the results in Figure 24,
the only significant change in the force feedback response is the
bandwidth, which is proportional to the resonance frequency.

6.4. Constant Velocity Tracking and Step Response

To examine the constant velocity tracking performance, a
80 µm sawtooth waveform was applied as a reference with a
frequency of 3 Hz and at 95% duty cycle. Figure 27(a) shows
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Figure 19: Experimental results: Root locus using OIFF.
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Figure 20: Experimental results: Relationship between ζ max and β using OIFF.

the displacement of the system. The tracking error is plotted
in Figure 27(b), The optimal force feedback controller can be
observed to reduce the tracking error by upto 65%.

The step responses for different objective masses are also
plotted in Figure 28. The heavier objective requires a propor-
tionally longer settling time. The settling time of the system
with the proposed damping and tracking controller is greatly
improved compared to the standard PID controller.

Table 3: Experimental results: Influence of objective mass on performance.

4× 100× 40×+mass
Mass 47.8g 88.8g 163.3g
Resonance Freq. 412Hz 378Hz 264Hz
Force Feedback BW 500Hz 398Hz 326Hz
Tracking BW (PID) 31.6Hz 26.1Hz 21.5Hz
Tracking BW (OIFF) 167Hz 255Hz 212Hz
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Figure 21: Experimental Result: Comparison between the loop return ratio
plots of the system with a commercial PID controller (solid line) and Optimal
Integral Force Feedback and Structured PI Control (dashed line).
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Figure 22: Experimental Result: Closed-loop frequency response of the track-
ing loop measured from r to the position sensor output d, scaled to um/V.

7. Conclusions

The maximum damping achievable with classical Integral
Force Feedback control is limited by the frequency difference
between the systems poles and zeros. This paper describes a
novel improvement that allows an arbitrary damping ratio to
be achieved for any system by introducing an additional feed-
through term. For systems with closely spaced poles and zeros,
the damping performance may be significantly improved.

The second contribution is a structured PI controller for
tracking loop of systems with force feedback. The proposed
tracking controller is parameterized so that it contains a zero
that cancel the additional pole due introduced by the damping
controller. This approach improves the system phase margin
and closed-loop servo bandwidth.

The proposed techniques are demonstrated on an objective
lens positioning system. With a commercial PID controller, the
maximum tracking bandwidth is 26.1 Hz. However, with the
proposed tracking and damping controller, the tracking band-
width is increased to 255 Hz.
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Figure 23: Experimental Results: Open-loop frequency response measured
from u2 to the output of the position sensor output d, scaled to um/V with
different objectives.

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

 

 

102 103

−400

−300

−200

−100

0

P
ha

se
 (

de
g)

Frequency (Hz)

100x 40x + mass 4x

Figure 24: Experimental Results: Closed-loop frequency response of the damp-
ing loop measure from u2 to the output of the position sensor output d, scaled
to um/V with different objectives.
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Figure 27: Experimental results: Constant velocity tracking of a 80 µm saw-
tooth waveform with a frequency of 3 Hz and at 95% duty cycle.
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