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Abstract

Background: Geobacter metallireducens was the first organism that can be grown in pure culture to completely
oxidize organic compounds with Fe(lll) oxide serving as electron acceptor. Geobacter species, including G.
sulfurreducens and G. metallireducens, are used for bioremediation and electricity generation from waste organic
matter and renewable biomass. The constraint-based modeling approach enables the development of genome-
scale in silico models that can predict the behavior of complex biological systems and their responses to the
environments. Such a modeling approach was applied to provide physiological and ecological insights on the
metabolism of G. metallireducens.

Results: The genome-scale metabolic model of G. metallireducens was constructed to include 747 genes and 697
reactions. Compared to the G. sulfurreducens model, the G. metallireducens metabolic model contains | I8 unique
reactions that reflect many of G. metallireducens' specific metabolic capabilities. Detailed examination of the G.
metallireducens model suggests that its central metabolism contains several energy-inefficient reactions that are
not present in the G. sulfurreducens model. Experimental biomass yield of G. metallireducens growing on pyruvate
was lower than the predicted optimal biomass yield. Microarray data of G. metallireducens growing with benzoate
and acetate indicated that genes encoding these energy-inefficient reactions were up-regulated by benzoate.
These results suggested that the energy-inefficient reactions were likely turned off during G. metallireducens
growth with acetate for optimal biomass yield, but were up-regulated during growth with complex electron
donors such as benzoate for rapid energy generation. Furthermore, several computational modeling approaches
were applied to accelerate G. metdllireducens research. For example, growth of G. metallireducens with different
electron donors and electron acceptors were studied using the genome-scale metabolic model, which provided
a fast and cost-effective way to understand the metabolism of G. metallireducens.

Conclusion: We have developed a genome-scale metabolic model for G. metallireducens that features both
metabolic similarities and differences to the published model for its close relative, G. sulfurreducens. Together
these metabolic models provide an important resource for improving strategies on bioremediation and bioenergy
generation.
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Background

Geobacter species are environmentally significant because
of their capacity for dissimilatory Fe(IIl) reduction [1].
They can conserve energy for growth by completely oxi-
dizing organic compounds to carbon dioxide coupled to
Fe(III) reduction and have been found to be ubiquitous in
subsurface environments [2-6]. In addition to Fe(III)
reduction, Geobacter species can also reduce a variety of
toxic and radioactive metals, thus can be applied to effi-
cient bioremediation of uranium, plutonium, techne-
tium, and vanadium [7-9]. Geobacter species can also
transfer electrons to electrodes to conserve energy for
growth [10,11]. It has been demonstrated that Geobacter
sulfurreducens produces electrically conductive pili that
function as nanowires to promote electron transfer to
insoluble electron acceptors such as Fe(III) oxide and elec-
trodes [12,13]. Therefore, Geobacter species have been uti-
lized to harvest electricity from waste organic matter
[10,14] and as a biocatalyst in microbial fuel cell applica-
tions [15,16].

Geobacter metallireducens was the first organism in pure
culture that could oxidize organic compounds with Fe(III)
oxide serving as electron acceptor [2,17]. This strict anaer-
obe can utilize a wide range of organic compounds as
electron donors, including acetate, ethanol, propionate,
butyrate, pyruvate, propanol, and butanol [2]. More
importantly, G. metallireducens was found to completely
oxidize monoaromatic compounds such as toluene, phe-
nol, cresol, benzoate, benzaldehyde, and benzylalcohol
coupled to Fe(III) reduction [2,18]. Several recent studies
suggested a core benzoyl-CoA degradation pathway in the
utilization of these aromatic compounds [19-22]. G. met-
allireducens can also use nitrate as electron acceptor [2,23].

Constraint-based modeling enables the development of
genome-scale in silico models that can predict the behav-
ior of complex biological systems and their responses to
the environments. Such a modeling approach was suc-
cessfully applied to provide physiological and ecological
insights on the metabolism of G. sulfurreducens [24], and
has been used to optimize its applications in energy pro-
duction and bioremediation [25]. Due to its wide range of
electron donors and acceptors, G. metallireducens has
more metabolic capabilities and therefore more potential
applications than G. sulfurreducens. The genome sequence
of G. metallireducens was recently completed http://
www.jgi.doe.gov/. Here, we report the development of a
genome-scale metabolic model of G. metallireducens and
the application of the model to study its metabolism.

Methods

Metabolic network reconstruction

The G. metallireducens metabolic network was recon-
structed by a modified version of previously published
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procedure [26]. The reconstruction was carried out in Sim-
Pheny (Genomatica, Inc., CA) from the annotated open
reading frames (ORFs) encoded in the G. metallireducens
genome. The sequence similarity search (BLAST) results of
the G. metallireducens genome with the genomes of several
high-quality genome-scale metabolic models were uti-
lized to create a draft model that served to accelerate the
reconstruction of the genome-scale metabolic model. The
reactions and genes in the draft model were manually
reviewed using the gene annotations and the available
biochemical and physiological information. The biomass
demand reaction based on biomass composition and
maintenance parameters in the published G. sulfurredu-
cens model were used in the reconstructed G. metalliredu-
cens model. The resulting network was then subjected to
the gap filling process to allow biomass formation under
physiological growth conditions. For gap filling, simula-
tions were performed to determine if the network could
synthesize every single component of the biomass and the
missing reactions in the pathways were identified. These
reactions were reviewed for gene association, or added as
non-gene associated reactions to enable the formation of
biomass by the reconstructed network under physiologi-
cal conditions. The reconstructed model was then used to
generate a set of experimentally testable hypotheses and
predictions. The experimental findings were in turn used
to further refine and expand the reconstructed model in
an iterative process.

In silico analysis of metabolism

The metabolic capabilities of the G. metallireducens
model were calculated using flux balance analysis
through linear optimization [26] in SimPheny. For
growth simulations, biomass synthesis was selected as
the objective function to be maximized. For energy
requirement simulations, the ATP maintenance require-
ment reaction was selected as the objective function to
be maximized. The simulations resulted in flux values in
unit of mmol/g dry weight (gdw)/h. All simulations were
of anaerobic growth on minimal media, where the fol-
lowing external metabolites were allowed to freely enter
and leave the network: CO,, H+, H,O, K*, Mg2+, NH,*,
PO,3;, and SO,?. The electron donors or electron accep-
tors tested were allowed a maximum uptake rate into the
network as specified in the results. All other external
metabolites were only allowed to leave the system. Flux
variability analysis was carried out in SimPheny using
method described before [27].

In silico deletion analysis was carried out for growth with
acetate as the electron donor and Fe(III) or fumarate as the
electron acceptor with acetate as the limiting nutrient.
Maximization of biomass synthesis was the objective
function. Deletions resulting in reduced growth compared
to wild type were categorized as intermediate phenotype.
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Strains and culture conditions

The G. metallireducens strain used in the growth experi-
ments was constructed with a dicarboxylic acid trans-
porter from G. sulfurreducens that grew with fumarate as
the sole electron acceptor [28]. The strain was cultured
with appropriate electron donors in the NBAF medium
that contained 4.64 g/l fumaric acid, 0.42 g/l KH,PO,,
0.22 g/l K,HPO,, 0.20 g/l NH,Cl, 0.38 g/l KCl, 0.36 g/l
NacCl, 0.04 g/l CaCl-H,20, 0.12 g/l MgSO,-7H,0, 1.8 g/l
NaHCO;, 0.5 g/l Na,CO;-H,0, and 1 pM Na,SeO,. The
NBAF medium was supplemented with 15 ml/l vitamin
mixtures and 10 ml/l mineral mixtures [29,30], and was
adjusted to pH 7.0. For growth experiments, the electron
donors were added separately from the prepared stocks to
the NBAF medium. Final electron donor concentration in
the NBAF medium was fixed to 25 mM for both ethanol
and pyruvate.

Stock solutions of ethanol and pyruvate were prepared,
filtered with 0.2 pm filters, bubbled with N,, and capped
separately. For the growth experiments, serum bottles
containing the culture medium were flushed with N,:CO,
(80/20) to remove any trace of oxygen in the bottles,
capped with thick butyl-rubber stoppers, and autoclaved.

For growth with benzoate, G. metallireducens cultures were
grown in triplicate at 30°C in anaerobic continuous cul-
ture vessels as previously described [30]. Defined, bicar-
bonate-buffered media with 1.0 mM benzoate as the
limiting electron donor and Fe(III) citrate as the electron
acceptor was provided at a dilution rate of 0.05 h-l. At
steady state, protein concentration was 8.2 (+ 0.2) mg/L
and Fe(IT) concentration was 30.3 (+ 0.4) mM. Fe(II) was
determined using the ferrozine assay as previously
described [31].

Analytical techniques

Samples for organic acid analysis were filtered using 0.2
pm filters and stored at -20°C. The samples were analyzed
together using an HPLC (Dionex, Sunnyvale, CA) with a
mobile phase of 0.5 mM H,SO, at a flow rate of 0.3 ml/
min. Peaks were identified and quantified by comparing
to those obtained from the standards of ethanol, pyruvate,
and fumarate. HPLC data were used to estimate the time
profiles of the electron donor and electron acceptor con-
centrations in samples of G. metallireducens in NBAF
media.

Results and discussion

Metabolic network reconstruction

A draft model of G. metallireducens was built by using pair-
wise BLASTp comparison of the G. metallireducens genome
with the genomes of the several high-quality base models
in Genomatica model database including previously pub-
lished G. sulfurreducens [24], Escherichia coli [26,32,33]and
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Bacillus subtilis [34] models. The G. metallireducens draft
model comprised 514 reactions. Among the base models
used, G. sulfurreducens contributed 93% of the top BLASTp
matches; this confirmed the close relationship between
these two organisms. The G. metallireducens draft model
captured significant portions of central metabolism, and
the biosynthetic pathways for amino acids, nucleotides,
and lipids.

The reactions and their gene associations in the draft
model of G. metallireducens were evaluated manually
based on gene annotations, published biochemical and
physiological information, and external references as pre-
viously described [35]. The remaining genes were also
reviewed for inclusion in the reconstructed network. A
biomass demand reaction based on the combination of
biomass components that were experimentally deter-
mined in G. metallireducens and represented in the pub-
lished G. sulfurreducens model [24] was used in G.
metallireducens model. Similarly, the energy parameters
such as growth-associated energy requirements in the
published G. sulfurreducens model [24] were used in the G.
metallireducens model for the close relationship between
these two organisms.

The unique metabolic capabilities of G. metallireducens to
degrade monoaromatic compounds were reconstructed in
the metabolic model. Monoaromatic compounds such as
toluene, phenol, cresol, benzoate, benzaldehyde, and
benzylalcohol are converted into benzoyl-CoA and then
through the benzoyl-CoA degradation pathway to acetyl-
CoA [19-22]. Specifically, benzylalcohol and benzalde-
hyde are oxidized by dehydrogenases to benzoate, which
is then converted into benzoyl-CoA by benzoate CoA
ligase, whereas cresol and phenol are converted to 4-
hydroxybenzoate and then reduced to benzoyl-CoA
through 4-hydroxybenzoyl-CoA. Toluene is converted to
benzoyl-CoA via benzylsuccinyl-CoA.

For gap filling, the ability of the metabolic network to syn-
thesize a full complement of amino acids, nucleotides,
lipids, carbohydrates, and cofactors from a minimal
medium containing the known electron donors and
acceptors was assessed. The missing reactions in the path-
ways were identified and reviewed. Some missing reac-
tions were associated with G. metallireducens genes based
on biochemical or genomic evidences and were included
in the reconstructed network. Other missing reactions
were added to the model as non-gene associated reactions
to enable the reconstructed network to synthesize metab-
olites for biomass formation. The reconstructed network
contains 30 non-gene associated reactions with different
justification. These non-gene associated reactions fell into
several categories: 2 reactions, 2-Oxo-4-methyl-3-carbox-
ypentanoate decarboxylation and L-glutamate 5-semial-
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dehyde dehydratase, are non-enzymatic conversions that
happen spontaneously under physiological conditions; 4
gas diffusion processes allow the transport of these gases;
1 reaction is for ATP maintenance requirement; 5 trans-
porter reactions for electron donors ensure consistency
with growth results; and 18 non-gene associated reactions
are required for biomass formation under known growth
conditions (see Additional file 1 for details). Non-gene
associated reactions in the latter two categories are pre-
sumptive metabolic functions encoded potentially by
unknown genes, and thus will be subjected for further
genomic and biochemical investigation in the future.

Simulations were also utilized to understand individual
reactions in the network. For example, the initial step of
benzoyl-CoA degradation pathway is catalyzed by a ben-
zoyl-CoA reductase. In Thauera aromatica, benzoyl-CoA
reductase reduces the aromatic ring in two single-electron
transfer steps to yield cyclohexa-1,5-diene-1-carbonyl-
CoA with stoichiometric 2-ATP hydrolysis [36]. To under-
stand the ATP hydrolysis stoichiometry associated with
benzoyl-CoA reduction in G. metallireducens, biomass was
collected from G. metallireducens cells grown with ben-
zoate in chemostat and the experimental results were
compared to simulation results where different ATP
hydrolysis stoichiometry was assumed for the benzoyl-
CoA reduction (Figure 1). The experimental growth data,
a protein yield of 8.2 (+ 0.2) mg/L from 1.0 mM benzoate
at a dilution rate of 0.05 h-1, predicted a biomass yield of
0.59 (+ 0.02) gdw per mol of electrons at benzoate flux of
2.81 mmol/gdw/h assuming 46% biomass content as pro-

0.8

0.6

0.4 4

0.2 +

Biomass yield (gdw/mol electrons)

0 ‘ ‘ ‘ — ==
0ATP 1ATP 2ATP 3ATP 4ATP

Experiment

ATP hydrolysis stoichiometry of benzoyl-CoA reductase

Figure |

ATP hydrolysis stoichiometry of benzoyl-CoA reduc-
tion in G. metallireducens metabolic model. Benzoyl-
CoA reductase reactions with 0—4 ATP hydrolysis stoichiom-
etry were applied in simulations. The predicted biomass
yields as gdw/mol electrons were calculated and compared
to the experimental result obtained from protein content
measurement at steady state.
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tein. The biomass yields from a benzoate flux of 2.81
mmol/gdw/h with an ATP hydrolysis stoichiometry for
benzoyl-CoA reduction between 0-4 were simulated and
the in silico results were compared to the experimental
result (Figure 1). As shown in Figure 1, the 2-ATP hydrol-
ysis stoichiometry for benzoyl-CoA reduction closely
matched the experimental result. Thus, the benzoyl-CoA
reduction in G. metallireducens model shared the same
ATP hydrolysis stoichiometry as in T. aromatica.

Metabolic network of G. metallireducens

Atits completion, the manually curated genome-scale net-
work of G. metallireducens included 747 genes of the 3389
genes in the G. metallireducens genome (Table 1). The G.
metallireducens metabolic model contains 697 reactions
and 769 metabolites including 58 extracellular metabo-
lites. The detailed list of genes, reactions, metabolites, and
gene-protein-reaction (GPR) associations in the meta-
bolic model are available as supplementary information
(see Additional file 2). The characteristics of the G. metal-
lireducens model are similar to those of the updated G. sul-
furreducens model (the published G. sulfurreducens model
[24] was updated to incorporate the most recent results
from both experimental and computational research, see
Additional file 3 for detailed list of reactions). The 697
reactions of the G. metallireducens model were categorized
into 9 functional groups and the results were summarized
in Figure 2. Among different functional groups, reactions
for biosynthesis of amino acids, lipids and cell wall com-
ponents, cofactors, and nucleic acids are the most abun-
dant, accounting for almost 70% of all the reactions.
Currently, there are 76 reactions associated with trans-
porting metabolites, including redundant transporters for
the some extracellular metabolites. In addition, G. metal-
lireducens genome contains many genes encoding compo-
nents of these ABC transporters that are not included in
the network because the substrate specificity of these ABC

143
@ Amino acid and related molecules

O Carbohydrate and related molecules
@ Central Metabolism

24 @OCofactors and prosthetic group
@ Energy Metabolism

g2 W Lipids and cell walls
B Nucleotide and nucleic acids
O Transport
M Other functions

104

Figure 2

Functional classification of metabolic reactions in G.
metallireducens model. The 697 reactions in G. metalliredu-
cens model were categorized into 9 functional groups.
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Table I: Characteristics of the G. metallireducens genome-scale metabolic model compared with the G. sulfurreducens model.

G. metallireducens G. sulfurreducens

Total Genes
Included Genes
Excluded Genes

Total Proteins

Total Reactions
Non-gene Reactions
Input/Output Reactions

Total Metabolites
Extracellular Metabolites

3532 3468

747 (21.2%) 730 (21.1%)
2785 (78.8%) 2738 (78.9%)
623 582

697 649

30 (3.7%) 32 (4.9%)

60 55

769 698

58 (7.7%) 55 (7.9%)

transporters is largely unknown. Future experiments on
physiology in different environments will provide addi-
tional evidence to include these transporting systems.

To study the conservation between the G. metallireducens
and G. sulfurreducens models, reactions were categorized
and compared (Table 2). Overall, the two models share
579 common reactions, representing 83% of all G. metal-
lireducens reactions and 89% of all G. sulfurreducens
reactions. Among these common reactions, 140 reactions
related to amino acid biosynthesis, 119 reactions in lipids
and cell walls metabolism, 104 reactions of cofactor bio-
synthesis, and 74 reactions for nucleotide metabolism are
shared between the two models, which together account
for 75% of all the common reactions.

G. metallireducens can utilize a much wider range of elec-
tron donors and acceptors [2,18,23] than G. sulfurredu-
cens, which uses only acetate, H, and lactate as the
electron donors. The G. metallireducens metabolic model
contains 118 unique reactions out found in the G. sulfurre-
ducens model. Many of these unique reactions reflect of
the diversity of G. metallireducens' metabolic capabilities.
For example, the G. metallireducens model contains 32
unique reactions involved in the degradation pathways of

aromatic compounds. G. metallireducens can also utilize
several substrates other than the aromatic compounds
that G. sulfurreducens does not use. G. metallireducens con-
tains several alcohol dehydrogenase genes with substrate
specificities for ethanol, propanol, and butanol that are
not believed to be present in G. sulfurreducens. The
enzymes coded by these genes catalyze several unique
reactions that are key steps in the utilization of these alco-
hol substrates. The corresponding transporter reactions
were also added to the G. metallireducens model, but not
in the G. sulfurreducens model. Similarly, a butyrate kinase
reaction unique to the G. metallireducens model allows the
utilization of butyrate. These unique reactions in the G.
metallireducens model enable the growth of the G. metal-
lireducens model on a wide range of substrates and has
accurately captured the known physiological characteris-
tics of G. metallireducens [2,18,23].

In silico characterization of G. metallireducens
metabolism

Simulations of metabolism with the G. metallireducens
model were utilized to make testable predictions of G.
metallireducens metabolism. In silico characterization of G.
metallireducens growth with different substrates was car-
ried out and the results are summarized in Figure 3. The

Table 2: Comparison of reactions in G. metallireducens and G. sulfurreducens metabolic models.

G. sulfurreducens

G. metallireducens

All Unique Percentage All Unique Percentage Common
Amino acid and related molecules 148 8 541% 143 3 2.10% 140
Carbohydrate and related molecules 21 4 19.05% 24 7 29.17% 17
Central Metabolism 56 8 14.29% 62 14 22.58% 48
Cofactors and prosthetic group 106 2 1.89% 104 0 0.00% 104
Energy Metabolism 22 5 22.73% 20 3 15.00% 17
Lipids and cell walls 130 I 8.46% 159 40 25.16% 119
Nucleotide and nucleic acids 77 3 3.90% 76 2 2.63% 74
Transport 6l 24 39.34% 62 25 40.32% 37
Other functions 28 5 17.86% 47 24 51.06% 23
Total reactions 649 70 10.79% 697 118 16.93% 579
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growth of G. metallireducens was simulated using 9 sub-
strates as electron donors with either Fe(III) or fumarate as
electron acceptor and setting the electron donor or elec-
tron acceptor as the limiting factor. Under all 4 condi-
tions, 4-cresol provided the largest biomass yield per
substrate (calculated as gdw/mol substrate) for G. metal-
lireducens growth while acetate produced the lowest bio-
mass yield among the 9 substrates tested. Aromatic
compounds generated higher biomass yield per mole of
substrate than acetate and ethanol. The biomass yields for
the 9 substrates under electron acceptor limiting condi-
tions were similar to those under electron donor limiting
conditions (Figure 3A&3B, 3C&3D), suggesting G. metal-
lireducens might not fully utilize the excess electron
donors under acceptor limiting conditions. During Fe(III)
reduction, G. metallireducens had similar predicted bio-
mass yields on pyruvate and benzoate. This is because of
the energy gain associated with the conversion of pyruvate
to acetyl-CoA, whereas benzoate degrades to acetyl-CoA
and energy is consumed to convert acetyl-CoA to pyruvate
for biomass.

When biomass yields were calculated based on acceptor
consumed, pyruvate resulted in the highest biomass yield
per mol of electron acceptor under all conditions, suggest-
ing that pyruvate may have advantages over other sub-
strates in electron acceptor limiting environments. Acetate
and ethanol had similar biomass yield per electron accep-
tor compared to the aromatic compounds, suggesting that
they may produce the same amount of biomass when lim-
ited to same amount of electron acceptors in growth
medium. Therefore, the modeling study rapidly predicted
the growth yields of G. metallireducens under varying nutri-
ent conditions.

Comparison of G. metallireducens metabolic model to G.
sulfurreducens model

G. metallireducens also contains genes for several pathways
in central metabolism that do not have corresponding
homologues in G. sulfurreducens. Therefore, the unique
reactions associated with these genes may provide specific
metabolic capacities in the G. metallireducens model. For
example, G. metallireducens is known to use nitrate as an
electron acceptor [2,23] and the model predicts such capa-
bility. The G. metallireducens network has transporters for
nitrate uptake via nitrite antiport and the nitrate reductase
(cytochrome c) to reduce nitrate, which are not present in
G. sulfurreducens. These two reactions together allow elec-
trons from cytochrome ¢ to be transferred to nitrate.
Nitrate is reduced and the resulting intracellular nitrite is
exchanged with extracellular nitrate using the antiporter.
The G. metallireducens model also contains a nitrite proton
antiporter and nitrite reductase that further reduce nitrite
to ammonium and allows the utilization of nitrite.

http://www.biomedcentral.com/1752-0509/3/15

Other reactions that are not present in the G. sulfurredu-
cens model include the glucose 6-phosphate dehydroge-
nase, 6-phosphogluconolactonase, and
phosphogluconate dehydrogenase, which is a part of the
oxidative branch of the pentose phosphate pathway. This
branch provides an efficient way to produce D-ribose-5-
phosphate and is an important source of NADPH. How-
ever, simulations of G. metallireducens growth predict that
G. metallireducens can produce D-ribose-5-phosphate by
using glyceraldehyde 3-phosphate and D-fructose-6-phos-
phate to produce D-xylulose 5-phosphate through tran-
sketolase and transaldolase, and then converting D-
xylulose 5-phosphate to D-ribose-5-phosphate, similar as
simulation of G. sulfurreducens growth. Simulations also
suggest that G. metallireducens can generate NADPH
through isocitrate dehydrogenase (NADP) and other reac-
tions with NADP as cofactor in a manner similar to the G.
sulfurreducens network. There was no significant change in
the expression levels of these genes during growth with
acetate vs. benzoate couples with Fe(III) reduction. The
exact role of this oxidative branch of pentose pathway in
G. metallireducens requires further examination.

ATP-consuming futile cycles involve multiple reactions
allowing the interconversion between metabolites with a
net ATP consumption, and can decrease growth. However,
it is hypothesized that these futile cycles balance the
metabolite pools to make other key reactions thermody-
namically feasible [37]. Recent 13C-labeling studies in G.
metallireducens confirmed the existence of an ATP-con-
suming futile cycle between pyruvate and phosphoe-
nolpyruvate [37].

The central metabolism of G. metallireducens has several
reactions that are missing in G. sulfurreducens. These reac-
tions include the acetyl-CoA synthetase (ACS), acetyl-CoA
hydrolase (ACOAH), and phosphoenolpyruvate carboxy-
lase (PPC) reactions. These reactions may be energetically
inefficient because they can participate in futile cycles that
drain ATP (Figure 4A). The acetate activation reaction ACS
in G. metallireducens is energetically inefficient (consum-
ing two ATP equivalents to form one acetyl-CoA), com-
pared to the acetyl-CoA transferase (ATO) and the
combined acetate kinase/phosphotransacetylase (ACK/
PTA) pathway (consuming one ATP equivalent to form
one acetyl-CoA) that are present in both models. The
ACOAH reaction produces zero ATP to convert acetyl-CoA
to acetate and can form futile cycles with the three routes
of acetate activation, namely, the ATO, the ACS and the
ACK/PTA pathways. A similar futile cycle involves phos-
phoenolpyruvate carboxylase and phosphoenolpyruvate
carboxykinase allowing ATP-consuming interconversion
between phosphoenolpyruvate and oxaloacetate (Figure
4A). Model simulations also predict that increasing fluxes
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Figure 3

In silico characterization of G. metallireducens metabolism. G. metallireducens was simulated to grow with 9 different
electron donors (acetate, ethanol, pyruvate, benzoate, benzaldehyde, benzyl alcohol, phenol, toluene, and 4-cresol) and 2 elec-
tron acceptors [fumarate and Fe(lll)]. The biomass yields to substrate (gdw/mol substrate) and the acceptor to substrate ratios
(mol:mol) predicted by the model are shown in the figures. A. Fumarate as the electron acceptor under donor limiting condi-
tions; B. Fumarate as the electron acceptor and the limiting nutrient; C. Fe(lll) as the electron acceptor under donor limiting
conditions; and D. Fe(lll) as the electron acceptor and the limiting nutrient.

Page 7 of 15

(page number not for citation purposes)



BMC Systems Biology 2009, 3:15 http://www.biomedcentral.com/1752-0509/3/15

A atp coa amp ppi —_— i olp

” N 7
0@ Q/ PPC N

accoa pep

O O O gdp co2 gtp

B 1.2 -Growth rate
(normalized) o ACOAH

————ACS
—m—PPC

0.8 A

0.6 -

0.4 -

0.2 A

0 5 10 15 20 25

Flux Value (mmol/gdw hr.)

Figure 4
Potential futile cycles in the central metabolism of G. metallireducens model. A, Two examples of energetically inef-
ficient reactions that can form futile cycles in the central metabolism of G. metallireducens model. B, Effect of increasing flux

through the energetically inefficient reactions on the growth rate.
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through these reactions result in an energetic penalty and
consequently lowered biomass yield (Figure 4B).

G. metallireducens growth with electron donors

In order to further investigate the potential for these ener-
getically inefficient reactions to decrease biomass yields,
we measured the experimental growth of G. metalliredu-
cens in the presence of different electron donors. Unlike G.
sulfurreducens, G. metallireducens can oxidize ethanol and
pyruvate, thus enabling the further investigation of the
central metabolism of the Geobacter species. In order to
isolate the effect of the different electron donor oxidation
pathways on the yield, a G. metallireducens strain with a
dicarboxylic acid transporter that allows growth using
fumarate as electron acceptor, was cultured with ethanol
and pyruvate as electron donors. The G. metallireducens
model simulations suggested that the biomass yield to
substrate consumed (calculated as gdw/mol substrate) of
pyruvate should be 34% higher than that of ethanol (Fig-
ure 5). However, the experimental results showed that
similar biomass yields were obtained in pyruvate or etha-
nol cultures (Figure 5). HPLC measurements confirmed
the complete utilization of pyruvate (data not shown).
These results suggested potential energetic inefficiencies
during growth with pyruvate. Most likely, the energy-inef-
ficient reactions discussed above were active and resulted
in the decreased biomass yield during growth on pyru-
vate.

Microarray data for the above growth conditions were not
readily available. Instead, we analyzed the microarray
data for G. metallireducens growing with benzoate versus

25
@ experimental yield

A20 il | predicted yield
S
c
[<]
Q 45 -
o
£
3
210
o
2
>

5 .

0

ethanol pyruvate

Figure 5

Comparison of experimental and predicted biomass
yields. The experimental and predicted biomass yields were
obtained for growth with fumarate and two different elec-
tron donors, namely, pyruvate and ethanol.
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acetate [21]. Among G. metallireducens genes that were sig-
nificantly up-regulated (> 50%) by growth with benzoate
versus acetate, genes encoding for ACS, PPC, and ACOAH
were up-regulated by 161% to 270%. The up-regulation of
these genes encoding for the energy-inefficient reactions
during growth with the complex substrate benzoate indi-
cated the involvement of these energy-inefficient reac-
tions in the metabolism of G. metallireducens when high-
energy substrate benzoate is consumed. It is likely that
similar up-regulation of these genes occurs during growth
with pyruvate and not with ethanol.

Simulations of the G. metallireducens growth were per-
formed using maximal biomass yield as the objective
function, usually to be true in natural growth conditions
where nutrients are limited. However, optimizing bio-
mass yield may not always be the growth strategy of
choice and recent studies have illustrated that under con-
ditions of nutrient excess, maximizing the ATP production
might be the chosen growth strategy [38]. Growth with
high-energy substrates may also lead to a growth strategy
of maximal ATP production. Under this growth strategy,
the energetically inefficient reactions can be advantageous
for utilizing the ATP produced. The abundance of these
energetically inefficient reactions in G. metallireducens sug-
gests that the evolution of G. sulfurreducens and G. metal-
lireducens might have occurred in environments with
different nutrient levels. In this scenario, G. sulfurreducens
probably evolved in predominantly acetate limiting envi-
ronments, whereas G. metallireducens probably evolved in
environments with nutrient excess or with complex nutri-
ents available.

Growth simulations of G. metallireducens using nitrate as
electron acceptor

G. metallireducens can use nitrate as an electron acceptor
[2,23]. To better understand this capacity of nitrate respi-
ration, G. metallireducens growth simulations were per-
formed using nitrate as electron acceptor and acetate,
ethanol, pyruvate or benzoate as electron donor. As
shown in Figure 6, when nitrate was used as acceptor for
G. metallireducens growth, benzoate was predicted to give
the highest biomass yield to substrate (gdw/mol sub-
strate). Pyruvate and ethanol were predicted to equally
produce more biomass per substrate consumed than ace-
tate. However, using pyruvate as substrate allowed the
lowest acceptor:donor ratio, whereas benzoate had the
highest. Pyruvate as substrate was predicted to have the
highest biomass yield per nitrate (gdw/mol nitrate) simi-
lar to the cases discussed earlier when Fe(III) or fumarate
is the electron acceptor.

Growth simulations of G. metallireducens using nitrate,
fumarate or Fe(IlI) as electron acceptor were compared
(Figure 7). Among the three electron acceptors, nitrate
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Figure 6

Simulated growth of G. metallireducens with nitrate
as electron acceptor. Growth of G. metallireducens was
simulated using different electron donors under donor-limit-
ing conditions. Biomass yields were predicted for both elec-
tron donor (gdw/mol substrate) and electron acceptor (gdw/
mol nitrate). The ratios of nitrate to electron donors are also
shown in the figure.

resulted in the highest biomass yield per substrate con-
sumed (gdw/mol substrate) or per electron acceptor con-
sumed (gdw/mol electron acceptor). This is consistent
with the higher energy yield coupled to nitrate reduction.
The large increase in biomass yield during nitrate reduc-
tion relative to Fe(III) reduction predicts that G. metallire-
ducens is not limited by energy generation during nitrate
reduction. For example, the fraction of the benzoate used
to generate energy during nitrate reduction was predicted
to be 63%, compared to 94% of the benzoate used for
generating energy during Fe(III) reduction. This require-
ment of a relatively high fraction of donor for energy gen-
eration results in higher substrate utilization rates for the
same growth rate during Fe(IIl) reduction clearly high-
lighting a significant challenge associated with metal
reduction.

Flux distribution comparison between model prediction
and '3C labeling results

13C isotopomer labeling flux analysis was applied to study
a simplified central metabolic network of G. metalliredu-
cens by Tang, et al. [37]. The results from that study pro-
vided an experimentally determined flux distribution. To
validate the G. metallireducens model reconstructed in this
work, the flux distribution results from !3C isotopomer
labeling flux analysis study was compared to an in silico
flux distribution from the G. metallireducens model under
the same acetate/Fe(Ill) growth conditions (21 mmol/
gdw/h of acetate uptake flux with acetate as the limiting
factor). Fluxes were normalized according to acetate

http://www.biomedcentral.com/1752-0509/3/15

uptake rate that was set at 100%. The 13C isotopomer
labeling flux analysis suggested that about 90% of flux
from acetyl-CoA joined the TCA cycle to produce energy
and 10% of flux was routed to pyruvate and other inter-
mediates for biomass [37]. As shown in Figure 8, model
simulations predicted 91.6% of acetate was completely
oxidized to CO, via the complete TCA cycle, compared to
the 90.5% from the [1-13C] acetate isotopomer labeling
flux analysis. Overall, the flux distributions were similar
(mean of the flux difference = 1% + 0.8%, R2= 0.99). The
computationally predicted and experimentally deter-
mined values were well matched at high fluxes, but less
consistent at low fluxes. One difference between the two
analysis is that the [1-13C] acetate isotopomer labeling
flux analysis used a network where serine, glycine, and
cysteine were derived from 3-phosphoglycerate. However,
gene encoding for these functions has not been found in
G. metallireducens, whereas genes for a pathway where ser-
ine, glycine, and cysteine were derived from oxaloacetate
in the TCA cycle were identified and used in G. metallire-
ducens genome-scale model and simulations. This may
account for some of the differences, such as the differences
of fluxes from 3-phosphoglycerate or oxaloacetate to bio-
mass, observed between the model simulation and the
13C labeling flux analysis results.

Flux variability analysis defines a feasible range of fluxes
for each individual reaction [27]. A flux variability analy-
sis under the same constraints indicated that most flux
values determined by !3C labeling experiments were
within such feasible ranges (data not shown), and vali-
dated the consistency between the experimental and pre-
dicted results. These results suggested that in silico growth
simulation optimized for biomass formation and flux var-
iability analysis to define the feasible flux ranges together
provided a fast and easy alternative method to estimate
flux distribution for the metabolism of G. metallireducens.

Functional analysis of G. metallireducens mutant
phenotype

Genome-scale metabolic model enabled the systems level
gene deletion analysis for growth in defined medium.
This information will provide important insight into the
potential phenotypes associated with gene deletions in
genetic investigations. In silico deletion analyses for G.
metallireducens growth using electron donor/acceptor
pairs of acetate/Fe(IlI) or acetate/fumarate were com-
pleted and the results were shown in Figure 9. Three pos-
sible phenotypes were predicted from the deletion
analysis: 1) lethal deletion with no growth observed, 2)
silent mutation growing same as wild type, and 3) inter-
mediate phenotype with reduced growth. Simulation
results were the same when either Fe(Ill) or fumarate was
used as electron acceptor. More than 68% of all reactions
or 80% of all included genes were predicted to have no
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Figure 7

Comparison of G. metallireducens growth with different electron acceptors. Growth of G. metallireducens was simu-
lated with the oxidation of four different electron donors (acetate, ethanol, pyruvate, and benzoate) coupled to the reduction
of electron acceptors nitrate, fumarate, and Fe(lll) under donor-limiting conditions. A. Predicted biomass yields to the electron
donors (gdw/mol substrate) with nitrate, fumarate and Fe(lll) as the acceptor; B. Predicted biomass yields to the electron
acceptors (gdw/mol acceptor) during nitrate, fumarate and Fe(lll) reduction with different electron donors.
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Metabolic flux distributions in G. metallireducens by in silico genome-scale modeling. G. metallireducens growth with
acetate as electron donor and Fe(lll) as electron acceptor was simulated with under 21 mmol/gdw/h of acetate uptake flux with
acetate as the limiting factor, the same as a '3C isotopomer labeling flux analysis. The predicted flux distributions by the
genome-scale modeling (upper numbers) were compared to the flux distributions determined in the [1-'3Clacetate labeling
experiments (lower numbers). Dotted arrows indicated the pathways involving some energy-inefficient reactions that had no
flux under this condition.
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Functional analysis of G. metallireducens mutant phe-
notype. In silico deletion analyses for G. metallireducens
growth were completed using electron donor/acceptor pairs
of acetate/Fe(lll) or acetate/fumarate for every single reac-
tion or every single gene included in the genome-scale meta-
bolic model.

effect on growth upon deletion. About 30% of all reac-
tions and 19% of included genes were lethal mutations
reflecting the inability of the perturbed network to synthe-
size essential components. Only for 1-2% of all reactions
and included genes, deletions were predicted to have an
intermediate effect on the growth rate of the G. metallire-
ducens growth under the conditions. These deletion anal-
ysis results are similar to the results from the G.
sulfurreducens model. This suggests that the core metabolic
pathways are conserved among Geobacteraceae, and that
the models of G. metallireducens and G. sulfurreducens can
be used to represent of the physiology of Geobacteraceae.

Conclusion

Environmental pollution and sustainable energy are
among the most important challenges that the world is
facing in the 21st century. Consequently, these areas have
attracted significant research efforts. In particular, Geo-
bacter species are being extensively studied for their appli-
cations in bioremediation and bioelectricity production.
However, similarities and differences in the metabolism
and physiology of Geobacter species have not been well
characterized. In this report, we have developed a
genome-scale metabolic model for G. metallireducens to
accelerate discovery and gain insight into its metabolism.
Together with the published G. sulfurreducens model, the
G. metallireducens metabolic model provides an important
resource for the improving strategies for bioremediation
and bioenergy generation.

The reconstructed metabolic model of G. metallireducens
was used to gain insight into the metabolism of this bacte-

http://www.biomedcentral.com/1752-0509/3/15

rium. The G. metallireducens model is metabolically distinct
from the G. sulfurreducens model, largely due to the wider
range of G. metallireducens substrate utilization. The G. met-
allireducens metabolic model contains many additional
reactions reflecting these specific metabolic capabilities
that the G. sulfurreducens model does not have. In silico
modeling of these additional metabolic capabilities can be
used to understand how these substrates are utilized by G.
metallireducens and how these capabilities can be applied in
bioremediation and bioelectricity production.

Detailed examination of the G. metallireducens model sug-
gested that its central metabolism contains several energy-
inefficient reactions that are not present in the G. sulfurredu-
cens model. Experimental biomass yield of G. metallireducens
growing with pyruvate was lower than the predicted optimal
in silico biomass yield, and microarray data of G. metalliredu-
cens growing with benzoate and acetate indicated that genes
encoding these unique reactions were up-regulated by ben-
zoate. These results suggested that the energy-inefficient reac-
tions were likely turned off during G. metallireducens growth
with acetate to optimize biomass yield, but were up-regu-
lated during growth with complex electron donors to
improve flux for rapid energy generation. Thus, the evolu-
tion of G. sulfurreducens and G. metallireducens might have
occurred in environments with different nutrient levels: G.
sulfurreducens in a predominantly acetate limiting environ-
ments, whereas G. metallireducens probably in environments
in the presence of complex nutrients or nutrient abundance.
These results will help understand the physiology of these
Geobacter species in the subsurface environments.

Furthermore, several in silico computational modeling
approaches were applied to accelerate G. metallireducens
research. For example, growth of G. metallireducens with dif-
ferent electron donors and electron acceptors were simulated
using the genome-scale metabolic model. These simulations
provided an easy and cost-effective way further understand-
ing the metabolism of G. metallireducens. Flux distribution
was compared between in silico prediction and 13C labeling
flux analysis results, suggesting that in silico prediction could
provide a fast alternative method to estimate metabolic
fluxes. Finally, the deletion analysis of the G. metallireducens
metabolic model predicts phenotypes of gene knock-outs
systematically and quickly. It is also important to understand
that the testable hypotheses and predictions generated by in
silico computational modeling with the reconstructed model
should be evaluated experimentally. The experimental find-
ings will in turn further refine and expand the reconstructed
model, as well as improve our understanding of the Geo-
bacter metabolism, in an iterative fashion.
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