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Abstract. Let S(V ) be a complex linear sphere of a finite groupG. Let
S(V )∗n denote the n-fold join of S(V ) with itself and let autG(S(V )∗)
denote the space of G-equivariant self homotopy equivalences of S(V )∗n.
We show that for any k ≥ 1 there exists M > 0 which depends only on
V such that |πk autG(S(V )∗n)| ≤ M is for all n ≫ 0.

1. Introduction

Let aut(X) denote the space of self homotopy equivalences of a space X
with the identity as a basepoint. If X is a G-space we write autG(X) for
the equivariant self equivalences. It is well known that for any k ≥ 1 the
sequence of groups

πk aut(S
0) → πk aut(S

1) → · · · → πk aut(S
n)

πk(ϕ 7→Σϕ)
−−−−−−−→ πk aut(S

n+1) → . . .

stabilizes on a finite group, namely for all n ≫ 0 all the arrows become iso-
morphisms of finite groups. The stable group is the stable k-homotopy group
of S0. This can be deduced from the fibration ΩnSn → map(Sn, Sn) → Sn

together with [10, 19.1.2]) and the classical fact that the groups πn+kS
n

stabilize on πS
k .

Equivariantly, one replaces S0 with a sphere X on which a finite group
G acts. Let X∗n denote the n-fold join of X with itself equipped with the
natural action of G. We obtain a sequence of spaces

autG(X) → · · · → autG(X
∗n)

ϕ 7→ϕ∗1X−−−−−−→ autG(X
∗(n+1)) → . . .

If the G-sphere X has a fixed point, the stabilization of {πk autG(X
∗n)}n

where k ≥ 1 can be deduced from the results of Hauschild [5, Satz 2.4]. In
the absence of fixed points, the problem is much harder.

A complex representation V of a finite group G admits a G-invariant
scalar product, unique up to equivalence, and the subspace S(V ) of V con-
sisting of the unit vectors is called a linear sphere. The stabilization of
{πk autG(S(V )∗n)}n was established if G is cyclic by Schultz [12, Proposi-
tion 6.5], or if G acts freely on S(V ) by Becker and Schultz [1]. The finiteness
of the groups πk autG(S(V )∗n) for all sufficiently large n was proven by Klaus

[7, Proposition 2.5] and Ünlü-Yalçın [15, Theorem 3.1].

Definition 1.1. A sequence of (abelian) groups E1, E2, . . . is called essen-
tially bounded if there exists some M > 0 such that |En| ≤ M for all n ≫ 0.
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The main result of this paper is the following theorem. It has its origin
and motivation in the problem of constructing free actions of finite groups
on products of spheres, see [15], [7]. We will prove it in Section 7.

Theorem 1.2. Let V be a complex representation of a finite group G. Then
for any k ≥ 1 the sequence of groups {πk autG(S(V )∗n)}n≥1 is essentially
bounded.

Corollary 1.3. For any k ≥ 1 the group lim
−→n

πk autG(S(V )∗n) is finite.

Proof. In general, if G = lim
−→n

Gn where G0 → G1 → G2 → . . . is a sequence
of groups, then for any finite subset X ⊆ G there exists n ≥ 0 such that the
natural map Gn → G contains X in its image. Therefore, if the sequence
{Gn}n is essentially bounded with |Gn| ≤ M for all n ≫ 0, then |G| ≤ M
since |X| ≤ M for any finite subset X ⊆ G. �

2. Polytopes and isotropy groups

Let G be a finite group. Let X be a G-space. For any x ∈ X let Gx

denote the isotropy group of x.

Definition 2.1. For any K ≤ G let XK denote the subspace of X fixed by
K. Set

X>K := {x ∈ X : Gx > K} =
⋃

K<H

XH

When K is the trivial subgroup, X>e is the subspace of X consisting of
the non-free orbits of G.

Remark 2.2. Clearly X>K ⊆ XK and both are invariant under the action
of NGK. Hence, they both admit an action of W = NGK/K. Clearly, if we
regard XK as a W -space, then X>K ⊇ (XK)>e. If K < H ≤ NG(K) and
X>K ⊆ A ⊆ XK is W -invariant then AH = XH because XH ⊆ X>K ⊆
A ⊆ XK .

Recall from [13] that an abstract simplicial complex X is a collection of
non-empty subsets, called simplices, of an underlying set V of “vertices”,
which contains all the singletons in V and if σ ∈ X is a simplex then any
non empty τ ⊆ σ is also a simplex. A polytope is the geometric realization of
a simplicial complex X. By abuse of terminology we will not distinguish be-
tween a simplicial complex X and the associated polytope. A sub-polytope
of X is the geometric realization of a sub-complex.

Throughout, whenever a finite group G acts on a polytope X, it is un-
derstood that it acts simplicially. By possibly passing to the barycentric
subdivision sdX we may always assume that for any K ≤ G, XK is a sub-
polytope of X on which NGK acts simplicially. In particular, also X>K is
a sub-polytope. See [6, Sec. 1] for more details.

Lemma 2.3. Let W be a finite group acting simplicially on a finite polytope
Y . Let A be a W -invariant sub-polytope of Y which contains Y >e. Then,
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by possibly passing to the second barycentric subdivision sd2(Y ), there is a
W -invariant open subset U ⊆ Y which contains A and

(1) U and B := Y \U are W -invariant sub-polytopes of Y .
(2) The inclusions A ⊆ U ⊆ U and Y \U ⊆ B ⊆ Y \A are W -homotopy

equivalences.

Proof. By [9, Lemma 72.2] and the remarks in the beginning of [9, §70],
the open subset U := St(A, sd2(Y )), namely the star of A in the second
barycentric subdivision of Y , has the properties in points (1) and (2) non-
equivariantly. Since A isW -invariant, it is clear that U must beW -invariant,
and hence so are U and B. Thus, point (1) follows.

To prove point (2) we must show that for any H ≤ W the inclusions

AH ⊆ UH ⊆ U
H

and (Y \U)H ⊆ BH ⊆ (Y \A)H are homotopy equivalences.

If H 6= 1 then AH = UH = U
H

and (Y \A)H = ∅ by Remark 2.2 (with
K = 1). If H = 1 then these inclusions are homotopy equivalences by the
choice of U . �

3. Bredon homology and cohomology

In this section we will recall the definitions and some of the basic prop-
erties of Bredon homology and cohomology groups. Most of the results are
contained in Bredon’s book [3] in the cohomological setting.

Let G be a finite group. Let OG denote the category of transitive left
G-sets. It is equivalent to its full subcategory whose objects are the left
cosets G/H. A cohomological coefficient functor is a functor M : Oop

G →
Ab. The cohomological coefficient functors form an abelian category with
natural transformations as morphisms which will be denoted Oop

G -mod. It
has enough injectives and projectives. Similarly, a homological coefficient
functor is a functor M : OG → Ab. The abelian category of homological
coefficient functors will be denoted OG -mod; It has enough injectives and
projectives.

A G-module M gives rise to the following coefficient functors described
in [3, I.4]. For any G-set Ω let Z[Ω] denote the permutation G-module
whose underlying set is the free abelian group with Ω as a basis. If M is
a left (resp. right) G-module, there is a cohomological (resp. homological)
coefficient functor

M : Ω 7→ HomZG(Z[Ω],M), M : Ω 7→ M ⊗ZG Z[Ω].

Associated to a cohomological coefficient functor M there is a unique equi-
variant cohomology theory, called Bredon cohomology, defined on the cat-
egory of G-CW complexes with the property that H∗

G(Ω;M) = M(Ω) for
any G-set Ω viewed as a discrete G-space. See [3, I.6] for details. When the
coefficient functor M is associated with a G-module M these cohomology
groups have a particularly nice description as the homology groups of the
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cochain complex

C∗
G(X;M) := HomZG(C∗(X;Z),M)

where C∗(X;Z) is the ordinary (cellular) chain complex of X. See [3, I.9, p.
I-22]. If X is a polytope on which G acts simplicially, then H∗

G(X;M) can
be calculated by applying HomZG(−,M) to the simplicial chain complex of
X. See [13, §4.3].

In a similar way, one defines the Bredon homology groups HG
∗ (X;M)

with respect to a homological coefficient functor. If M is associated with a
right G-module M then these groups are the homology groups of the chain
complex

CG
∗ (X;M) := M ⊗ZG C∗(X;Z).

IfX is a polytope on whichG acts simplicially then C∗(X;Z) can be replaced
with the simplicial chain complex of X.

For any G-space X and n ≥ 0 there is an associated coefficient functor
Hn(X;Z) in Oop

G -mod, see [3, I.9],

Hn(X;Z) : G/H 7→ Hn(X
H ;Z).

In other words this functor has the effect Ω 7→ Hn(mapG(Ω, X);Z). Given
any cohomological coefficient functor M there is a first quadrant cohomo-
logical spectral sequence, see [3, Section I.10, (10.4)],

Ep,q
2 = Extp

Oop
G

-mod
(Hq(X;Z),M) ⇒ Hp+q

G (X;M).

Similarly, for any homological coefficient functor M there is a first quadrant
homological spectral sequence

E2
p,q = TorOG -mod

p (Hq(X;Z),M) ⇒ HG
p+q(X;M).

Recall that a map f : X → Y of G spaces is a weak G-homotopy equivalence
if it induces weak homotopy equivalences on the fixed points XH ≃ Y H for
all H ≤ G. The spectral sequences above imply the homotopy invariance of
Bredon (co)homology.

4. An equivariant Lefschetz duality

The main result of this section is Proposition 4.2 which is an equivariant
form of Lefschetz duality for Bredon (co)homology with respect to coefficient
functors associated with trivial modules. Its hypotheses should be compared
with Lemma 2.3.

For any set X let Z[X] denote the free abelian group with X as a basis.
The assignment X 7→ Z[X] is clearly functorial. If X is a (left) G-set then
Z[X] is naturally a (left) ZG-module.

Lemma 4.1. Let M be a trivial ZG-module. Then in the category of finite
G-sets there are isomorphisms, natural in Ω

(1) Ψ: Hom(Z[Ω],Z)⊗ZG M
∼=
−→ HomZG(Z[Ω],M)

(2) Θ: HomZG(Hom(Z[Ω],Z),M)
∼=
−→ M ⊗ZG Z[Ω].
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Proof. The G-module Z[Ω] has a canonical basis {ω}ω∈Ω. For any abelian
group R, any ω ∈ Ω and any r ∈ R, let χR

ω (r) ∈ Hom(Z[Ω], R) denote
the homomorphism determined by the assignment ω′ 7→ 0 if ω′ 6= ω and
ω 7→ r. Since Ω is finite, the (right) G-module Hom(Z[Ω],Z) has a canonical
G-invariant basis χω := χZ

ω(1) where ω runs through Ω. For any ω ∈ Ω let
Gω denote the orbit of ω in Ω. Given Ω we will also choose a set {ωi} of
representatives to the orbits of G on Ω; the index i runs through Ω/G. The
homomorphisms Ψ and Θ are defined by

Ψ : χω ⊗ZG m 7→
∑

ω′∈Gω

χM
ω′ (m)

Θ : ϕ 7→
∑

i∈Ω/G

ϕ(χωi
)⊗ZG ωi.

To see that Ψ is well-defined one uses the fact that G acts trivially on M
and χR

ω (r) ◦ g−1 = χR
gω(r). For the same reasons Θ is independent of the

choice of the representatives ωi. By inspection Ψ and Θ are natural with
respect to G-maps f : Ω → Γ. The details are left to the reader. �

For any polytope X we will write C∗(X) for the simplicial chain complex
of X, see [13, §4.3]. In the presence of a simplicial action of the group G,
this becomes a chain complex of permutation G-modules, namely Cn(X) is
the ZG-module Z[Xn] where Xn is the G-set of the n-simplices of X. If G
acts freely on X then C∗(X) is a chain complex of free ZG-modules. The
cochain complex C∗(X) is by definition Hom(C∗(X),Z). If M is an abelian
group then by definition

C∗(X;M) = C∗(X)⊗M and C∗(X;M) = Hom(C∗(X),M).

Proposition 4.2 (Lefschetz duality). Suppose that G is a finite group acting
simplicially on a finite n-dimensional polytope Y which is a compact con-
nected and orientable homology n-manifold. Let U be an open G-subspace
which contains Y >e. Assume that U and B := Y \U are sub-polytopes of Y
and that the inclusion Y \U ⊆ Y \U is a homotopy equivalence. Also assume
that G acts trivially on Hn(Y ) = Z and that Hn(Y ) → Hn(Y, U) is an iso-
morphism. Set D = B ∩ U . Then for any abelian group M and any p ≥ 0
there are isomorphisms

Hp
G(B;M) ∼= HG

n−p(B,D;M)
excision
∼= HG

n−p(Y, U ;M) and

HG
p (B;M) ∼= Hn−p

G (B,D;M)
excision
∼= Hn−p

G (Y, U ;M).

Proof. Throughout we let C∗(Y ), C∗(B), C∗(B,D) etc. denote the simplicial
chain complexes of these finite polytopes. For every g ∈ G we obtain an
automorphism g# of C∗(B) which in every degree p permutes the basis
elements of Cp(B), namely permutes the set of p-simplices of B. Similarly

there is an automorphism g# of C∗(B,D) which has the following effect on
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a p-cochain cp

g#(cp) : σ 7→ cp(g#(σ)), σ is a p-simplex of B.

In this way C∗(B) and C∗(B,D) become (co)chain complexes of left ZG-
modules where

g · cp = g#(cp), and g · cp = (g−1)#(cp).

Since U ⊇ Y >e, the action of G on B and D is free and therefore C∗(B) and
C∗(B,D) are (co)chain complexes of finitely generated free ZG-modules.

Let Γ be an orientation cycle for Y , namely Γ is an n-cycle of Y whose
image [Γ] ∈ Hn(Y ) = Z is a generator. Let [ΓU ] ∈ Hn(B,D) be the image
of [Γ] under the isomorphism

Hn(Y )
∼=

−−→ Hn(Y, U)
∼=

−−−−−→
excision

Hn(B,D)

For dimensional reasons, Zn(Y ) = Hn(Y ). Since G acts trivially on Hn(Y ),
it follows that Γ is G-invariant. Hence, [ΓU ] is G-invariant and therefore
its preimage ΓU ∈ Zn(B,D) is also a G-invariant orientation cycle since
Zn(B,D) = Hn(B,D). By [9, Theorem 66.1] the assignments

Φp : Cp(B,D)
cp 7→ (−1)n−p·(cp∩ΓU )

−−−−−−−−−−−−−−−−→ Cn−p(B)

form a morphism of cochain complexes (we view Cn−∗(B) as a cochain com-
plex). It follows from the G-invariance of ΓU and from the naturality state-
ment in [9, Theorem 66.1] that Φ is a morphism of cochain complexes of
ZG-modules because for any p, set ǫ = (−1)n−p and then

g · Φ(g−1 · cp) = ǫ · g#(g
#(cp) ∩ ΓU ) = ǫ · cp ∩ g#(ΓU ) = ǫ · cp ∩ ΓU = Φ(cp).

We now apply [9, Theorem 70.6] to the inclusion D ⊆ B and the orienta-
tion class ΓU , and use excision together with the fact that j∗ : H∗(Y \U) →
H∗(Y \U) is an isomorphism by hypothesis on Y \U ⊆ Y \U , to deduce that
Φ induces an isomorphism in homology.

Set R∗(B,D) := Cn−∗(B,D). Thus, R∗(B,D) is a chain complex which
is obtained from the cochain complex C∗(B,D) by simply re-indexing the
modules. So

Φ: R∗(B,D) → C∗(B)

is a morphism of chain complexes of finitely generated free ZG-modules. It
follows from Künneth’s spectral sequence [14, Theorem 5.6.4] that the maps
below induce isomorphism in (co)homology

M ⊗ZG R∗(B,D)
M⊗ZGΦ

−−−−−−→ M ⊗ZG C∗(B)

HomZG(C∗(B),M)
HomZG(Φ,M)

−−−−−−−−−−→ HomZG(R∗(B,D),M).
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By applying Lemma 4.1 to C∗(B,D) and C∗(B,D) and using the notation
and results in Section 3, we obtain isomorphisms of chain complexes

M ⊗ZG R∗(B,D) = M ⊗ZG Cn−∗(B,D) ∼= Cn−∗
G (B,D;M)

HomZG(R∗(B,D),M) = HomZG(C
n−∗(B,D),M) ∼= CG

n−∗(B,D;M)

Therefore Hn−p
G (B,D;M) ∼= HG

p (B;M) and Hp
G(B;M) ∼= HG

n−p(B,D;M).
�

5. The key lemma

Throughout this section we will fix a finite group G and a sequence
{Xn}n≥1 of compact polytopes on which G acts simplicially. By possibly
passing to the barycentric subdivisions, we may assume that for any H ≤ G,
the subspaces (Xn)

H are sub-polytope of Xn. We will make the following
assumptions on {Xn}n. Important examples are given by Xn = S(V )∗n

where S(V ) is a linear sphere. See Propositions 7.2 and 7.4.

(I) For any H ≤ G either XH
n are empty for all n ≫ 0, or for any n ≫ 0

these are connected compact and orientable homology N -manifolds
for some N (which depends on n) such that NG(H) acts trivially on
HN (XH

n ;Z) ∼= Z.
(II) For any H ≤ G, if i ≥ 1 then Hi(X

H
n ;Z) = 0 for all n ≫ 0.

(III) If H ′ ≤ H then either

(i) limn→∞(dimXH′

n − dimXH
n ) = ∞, or

(ii) XH
n = XH′

n for all n ≫ 0.

Let us now fix a subgroup K ≤ G and set W = NGK/K. For every
n ≥ 1 set Yn = XK

n and An = X>K
n (Definition 2.1). These are polytopes

on which W acts simplicially. By Remark 2.2, An ⊇ (Yn)
>e.

By Proposition 2.3, for every n ≥ 1 we can choose a W -invariant neigh-
bourhood Un ⊆ Yn of An such that Un and Bn := Yn\Un are sub-polytopes
of Yn, and the inclusions An ⊆ Un ⊆ Un and Yn\Un ⊆ Bn ⊆ Yn\An are
W -homotopy equivalences. Set Dn = Bn ∩ Un.

Lemma 5.1. Let G be a finite group. Let {Xn}n be a sequence of compact
G-polytopes satisfying (I)–(III) above. Fix K ≤ G, set W = NGK/K, and
let An, Un, Bn, Dn ⊆ Xn be the subspaces defined above. Assume further that
An ( Yn for all n ≫ 0. Write N for the dimension of Yn. Then

(A) For any abelian group T and any k ≥ 0 there are isomorphisms
HW

k (Bn;T ) ∼= Hk(W ;T ) for all n ≫ 0. The right hand side is group
homology with the trivial W–module T .

(B) For any finite abelian group R and any k ≥ 0, the sequences of groups
{HW

k (Yn;R)}n and {HW
k (An;R)}n are essentially bounded.

(C) If k ≥ 1 then {HN−k
W (Yn;Z)}n and {HN−k

W (Yn, An;Z)}n are essen-

tially bounded. If R is a finite abelian group then {HN−k
W (Yn;R)}n

and {HN−k
W (Bn;R)}n and {HN−k

W (Dn;R)}n are essentially bounded
for any k ≥ 0.
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(D) Consider the homomorphisms H i
W (Dn;Z)

λi−→ H i
W (Bn;Z) induced by

Dn ⊆ Bn. Then {kerλN−k}n is essentially bounded for any k ≥ 1
and {cokerλN−k}n is essentially bounded for any k ≥ 2.

Proof. For all n ≫ 0, Yn 6= ∅ since An ( Yn. Since dim(An) is the maximum
of dim(XH

n ) where H > K, hypothesis (III) implies

(1) lim
n→∞

(dimYn − dimAn) = ∞.

Proof of (A): Recall that N denotes dimYn. Given 0 ≤ i ≤ k, we obtain
the isomorphisms below for all n ≫ 0. The first isomorphism follows from
the equivalence Yn\Un ≃ Yn\An and from Lefschetz duality [9, Theorem
70.2] for An ⊆ Yn which is applicable by hypothesis (I) since Yn = XK

n . The
second isomorphism follows from (1), the third from Poincaré duality, and
the fourth from hypotheses (II) and (I) since Yn 6= ∅.

Hi(Bn;Z) ∼= HN−i(Yn, An;Z) ∼= HN−i(Yn;Z)

∼= Hi(Yn;Z) ∼=

{
Z if i = 0
0 if 1 ≤ i ≤ k

By construction,W acts freely onBn, so C∗(Bn) is a chain complex of finitely
generated free W -modules. We obtain a Künneth’s spectral sequence [14,
Theorem 5.6.4] for XW

∗ (Bn;T ) = C∗(Bn)⊗ZW T

E2
p,q(n) = TorZWp (Hq(Bn);T ) ⇒ HW

p+q(Bn;T )

We have seen above that if n ≫ 0 then Hq(Bn) = 0 for any 1 ≤ q ≤ k and
therefore we obtain isomorphisms, for all 0 ≤ i ≤ k

HW
i (Bn;T ) ∼= TorZWi (H0(Bn), T ) = TorZWi (Z, T ) = Hi(W ;T ).

Proof of (B): Consider the coefficient functors Hj(Yn) defined in Section 3.
Given i > 0, hypothesis (II) implies that H i(Yn) = 0 for all n ≫ 0 and,
that the sequence of functors {H0(Yn)}n stabilizes on a coefficient functor
F : Oop

W → Ab whose values are the groups 0 or Z (depending on whether

XH
n , where K ≤ H ≤ NG(H), are connected or empty for all n ≫ 0). As a

consequence, for all n ≫ 0, the spectral sequence

E2
i,j(n) = TorOW -mod

i (Hj(Yn), R) ⇒ HW
i+j(Yn;R)

vanishes for 1 ≤ j ≤ k and E2
i,0(n) = TorOW -mod

i (F,R). HenceHW
k (Yn;R) ∼=

TorOW -mod
k (F,R) whose order is bounded by |R|α for some α which depends

only on OW by Lemma 5.2. Thus, {HW
k (Yn;R)}n is essentially bounded.

We now prove the second assertion of point (B). The first step is to show
that there is some number β ≥ 1 such that for any 0 ≤ i ≤ k we have
rkHi(An) ≤ β for all n ≫ 0. Let I denote the poset of all the subgroup
H ≤ G such that H > K. For every n there is a functor Fn : I

op → Spaces

given by Fn(H) = XH
n . By hypothesis (II), for all sufficiently large n, if

0 ≤ j ≤ k then Hj(Fn) = 0, and the sequence of functors H0(Fn) stabilize
of a functor F ′ : Iop → Ab whose values are the groups 0 or Z.
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Note that Fn(H) ∩ Fn(H
′) = Fn(〈H,H ′〉) and since An = ∪H∈IFn(H),

it follows that An = colim
Iop

Fn. In fact since XH
n are polytopes, this also

shows that the functors Fn are Reedy cofibrant in the sense of [4, Section
22]. Therefore the natural maps

hocolim
Iop

Fn → colim
Iop

Fn = An

are homotopy equivalences. We obtain a Bousfield-Kan spectral sequence

E2
i,j(n) = colimIop -mod

i Hj(Fn;Z) ⇒ Hi+j(An;Z).

We have seen that if n ≫ 0 then E2
i,j(n) = 0 for all 1 ≤ j ≤ k and therefore

Hi(An) ∼= colimIop -mod
i F ′ = TorI

op -mod
i (Z, F ′) for all 0 ≤ i ≤ k. It follows

from Lemma 5.2(b) that there is β ≥ 1 such that rkHi(An) ≤ β for any
0 ≤ i ≤ k provided n ≫ 0,

For every j ≥ 0 consider the coefficient functors Hj(An) : H 7→ Hj(A
H
n )

defined in Section 3 (here H ≤ W ). If H 6= 1 then by Remark 2.2, AH
n = XH̃

n

where H̃ is the preimage of H ≤ W in G. By hypothesis (II), Hj(A
H
n ) = 0

for all 1 ≤ j ≤ k provided n ≫ 0. Also, the sequence {H0(A
H
n )}n stabilizes

on a either Z or 0. If H = 1 then we have seen that rkHj(A
H
n ) ≤ β for

all 0 ≤ j ≤ k provided n ≫ 0. Thus, for any n ≫ 0, if 0 ≤ j ≤ k then
rk(Hj(An)(−)) ≤ β. Applying Lemma 5.2(a) to the spectral sequence (see
section 3)

E2
i,j(An) = TorOW -mod

i (Hj(An);R) ⇒ HW
i+j(An;R)

we deduce that there is α > 0 such that for any 0 ≤ i, j ≤ k we have
|E2

i,j(An)| ≤ |R|αβ provided n ≫ 0. As a result |HW
k (An;R)| ≤ |R|(k+1)αβ

for all n ≫ 0, namely {HW
k (An;R)}n is essentially bounded.

Proof of (C) and (D): Let M be an abelian group. Since Yn 6= ∅, it is, by
hypothesis (I) a compact connected orientable homology N -manifold. For
any 0 ≤ i ≤ k, equation (1), the choice of Un ⊇ An, Proposition 4.2, excision
and point (A), yield the following isomorphisms for all n ≫ 0

HN−i
W (Yn;M) ∼= HN−i

W (Yn, An;M) ∼= HN−i
W (Yn, Un;M) ∼=

HN−i
W (Bn, Dn;M) ∼= HW

i (Bn;M) ∼= Hi(W ;M).

If k ≥ 1 and M = Z then |Hk(W ;Z)| ≤ |W ||W |k by Remark 5.3, and

therefore {HN−k
W (Yn;Z)}n is essentially bounded. This is the first part of

point (C). Similarly, if k ≥ 0 and M is a finite group then |Hk(W ;M)| ≤

|M ||W |k , and therefore {HN−k
W (Yn;M)}n is essentially bounded.

The inclusions An ⊆ Un are W -equivalences and, from (1) it follows that

HN−k
W (Un;M) = 0 for all n ≫ 0. For every n ≥ 1 we have Yn = Bn ∪Dn

Un,
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so provided n ≫ 0, the Mayer–Vietoris sequence yield the exact sequence

· · · → HN−k
W (Yn;M) → HN−k

W (Bn;M)
λN−k

−−−−−→ HN−k
W (Dn;M) →

→ HN−k+1
W (Yn;M) → . . .

If M = Z then point (D) now follows from the first part of point (C) which
we have proven above. It remains to prove the second part of point (C).

We have shown above that if M is finite then {HN−i
W (Yn;M) is essentially

bounded for any i ≥ 0. By Proposition 4.2, for every n ≥ 0 there are
isomorphisms

HN−k
W (Bn;M) ∼= HW

k (Bn, Dn;M) ∼= HW
k (Yn, Un;M) ∼= HW

k (Yn, An;M).

Also, {HW
k (Yn, An;M)}n is essentially bounded by point (B) and the long

exact sequence in W -equivariant homology. Hence {HN−k
W (Bn;M)}n is es-

sentially bounded. The Mayer–Vietoris sequence above shows that also
{HN−k

W (Dn;M)}n is essentially bounded. �

Lemma 5.2. Let C be a finite category and k ≥ 0 an integer. Let α be the
number of sequences of k composable morphisms in C. Let F : Cop → Ab

be a functor such that rk(F (C)) ≤ r for any C ∈ C. Let G : C → Ab be a
functor.

(a) If there is some M > 0 such that |G(C)| ≤ M for all C ∈ C then
|TorC -mod(F,G)| ≤ M rα.

(b) If rk(G(C)) ≤ m for all C ∈ C, then rkTorC -mod(F,G) ≤ αmr.

Proof. The groups TorC -mod(F,G) are the homology groups of a chain com-
plex (the cobar construction) whose nth group has the form

⊕

C0→···→Cn

G(C0)⊗ F (Cn).

Point (a) follows since |G(C0) ⊗ F (Ck)| ≤ M r and (b) since rk(G(C0) ⊗
F (Ck)) ≤ rm. �

Remark 5.3. As a consequence we see that if G is a finite group and M
is an abelian group of rank r then rkHk(G;M) ≤ r|G|k. It follows that

|Hk(G;Z)| ≤ |G|(|G|k) for any k ≥ 1 since |G| annihilates Hk(G;Z). Also, if

M is a finite group then |Hk(G;M)| ≤ |M |(|G|k).

6. The Barrat-Federer spectral sequence

The purpose of this section is to prove Theorem 6.1 below. It is a special
case of the Barrat-Federer spectral sequence tailored to our purposes.

Recall that a space Y is called simple if it is path connected and for any
choice of basepoint, π1Y acts trivially on π∗Y . In this case basepoints can
be ignored in the sense that the basepoint-change isomorphisms for πqY are
canonical. Put differently, if q ≥ 1 then πqY can be identified with the set
of (unpointed) homotopy classes of (unpointed) maps Sq → Y , which in this
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case has a natural group structure. Hence, if a group G acts on Y then πqY
has a natural structure of a G-module.

For G-spacesX and Y let mapG(X,Y ) denote the space of G-maps. Write
mapG(X,Y )f for the path component of f : X → Y with f as a basepoint.

Theorem 6.1 (cf. [11, Theorem 1.1], [8, Theorem 5.3]). Let X be a finite
dimensional polytope on which a finite group G acts freely and simplicially.
Let Y be a simple G-space and fix a G-map f : X → Y . Then there exists a
second quadrant homological spectral sequence

E2
−p,q = Hp

G(X;πqY ) ⇒ πq−pmapG(X,Y )f , (0 ≤ p ≤ q).

The differential in the Er-page has degree (−r, r − 1) and the E∞
−p,q-terms,

where q − p = k, are the quotients of a finite filtration of πk mapG(X,Y )f .

Proof. By possibly passing to the barycentric subdivision, we may assume
that if Σ ⊆ X is a simplex then gΣ∩Σ = ∅ for any 1 6= g ∈ G. Thus, if σ is
the orbit of a k-simplex in X then σ ∼= G ×∆k. Let D be the subposet of
the poset of all the G-invariant compact subspaces of X whose objects are
the orbits of the simplices of X. We obtain a functor

X : D → G -Spaces, X : σ 7→ σ.

If σ, σ′ ∈ D and σ ∩ σ′ 6= ∅ then σ ∩ σ′ is the orbit of a simplex which
is the intersection of some simplices Σ ⊆ σ and Σ′ ⊆ σ′. It follows that
X = colim

D
X and that X is Reedy cofibrant, [4, Section 22]. Therefore, the

following natural map is a homotopy equivalence.

(2) hocolim
D

X
≃
−→ X

Since G acts freely on both space, this is, in fact, a G-homotopy equivalence.
Therefore, for any G-moduleM we obtain a Bousfield-Kan spectral sequence

Ei,j
2 = lim

Dop

iHj
G(X ;M) ⇒ H i+j

G (X;M).

Every σ ∈ D has the form G×∆k so the natural transformation of functors
X → π0X has the property that X (σ) → π0X (σ) are G-equivalences. By
the properties of H∗

G(−;M) we obtain an isomorphism

Hj
G(X ;M) ∼= Hj

G(π0X ;M) ∼=

{
HomZG(Z[π0X ],M) if j = 0
0 if j > 0

where Z[π0X ] : D → Ab is the functor σ 7→ Z[π0X (σ)]. The Bousfield-Kan
spectral sequence collapses and we obtain the isomorphism

(3) Hp
G(X;M) = lim p

Dop -modHomZG(Z[π0X ],M), (p ≥ 0)

By applying the functor mapG(−, Y ) to X we obtain a functor

mapG(X , Y ) : Dop → Spaces.

The inclusions X (σ) ⊆ X give rise to mapG(X,Y ) → mapG(X (σ), Y ) which
carry f to f |σ. Thus, the map f gives rise to a consistent choice of basepoints
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in the functor mapG(X , Y ). In other words, this functor can be viewed as a
functor of pointed spaces. Also, (2) implies the homotopy equivalence

mapG(X,Y ) ≃ mapG(hocolim
D

X , Y ) = holim
Dop

mapG(X , Y )

The category Dop is a poset of dimension d = dimX, hence lim
Dop

p(−) vanishes

if p > d. Also π0Y = 0 and π1Y is abelian by assumption. We can now apply
[2, XI.7.1 and IX.5.4 and X.7.1] to obtain a second quadrant homological
spectral sequence

E2
−p,q = lim p

Dop -mod πq mapG(X , Y ) ⇒ π−p+q mapG(X,Y )f , (0 ≤ p ≤ q)

with differentials of degree (−r, r − 1) in the Er-page. Since E2
−p,q = 0 for

p > d the E∞
−p,q-terms where q − p = k are the filtration quotients of a

filtration F−d,d+k ⊆ F−d+1,d+k−1 ⊆ · · · ⊆ F0,k of πk mapG(X,Y )f . It only
remains to identify the E2-page with the Bredon cohomology groups in the
statement of the theorem.

Since X (σ) = G × ∆k ≃ G it follows that mapG(X (σ), Y ) ≃ Y is path
connected and simple. Therefore πq mapG(X (σ), Y ) vanishes if q = 0, and
for q > 0 the basepoint f |σ is immaterial. For any G-set Ω and any G-
module M there is a natural isomorphism of abelian groups mapG(Ω,M) ∼=
HomZG(Z[Ω],M). We therefore obtain natural isomorphisms for all q ≥ 1

πq
(
mapG(X (σ), Y )f |σ

)
∼= [Sq,mapG(X (σ), Y )] ∼= [X (σ),map(Sq, Y )]G

∼= mapG(π0X (σ), [Sq, Y ]) ∼= HomG(Z[π0X (σ)], πqY ),

and for q = 0 this isomorphism is trivial. The proof is now complete since
we have shown in (3) that lim

Dop

pHomG(Z[π0X ], πqY ) ∼= Hp
G(X;πqY ). �

Remark 6.2. The spectral sequence is natural in the following sense. If
X ′ ⊆ X is a sub-polytope we obtain inclusion of posets DX′ ⊆ DX and X ′ =
X|DX′

. The naturality of the Bousfield-Kan spectral sequence used in the
proof, shows that there is an induced morphism on the spectral sequences.

Remark. It is possible to deduce Theorem 6.1 from [11, Theorem 1.1] by
observing that mapG(X,Y ) is homeomorphic to the space of sections of the
fibration X ×G Y → X/G and that π1(X/G) acts on the fibre Y via the
action of G (note that X → X/G is a covering projection since the action of
G is free). One then identifies the cohomology groups with local coefficients
in Schultz’s result with the Bredon cohomology groups.

7. The main result

Let X be a compact polytope on which a finite group G acts simplicially.
For every n ≥ 1 let Xn denote the n-fold join of X with itself. The main
result of this section is the following theorem.

Theorem 7.1. Let X and {Xn}n be as above. Assume that for any H ≤ G

(a) either XH is empty or it is homeomorphic to a sphere, and
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(b) the action of NGH on H∗(X
H ;Z) is trivial.

Then for any k ≥ 1 the sequence {πk autG(Xn)}n is essentially bounded.

Theorem 1.2 follows from Theorem 7.1 and Proposition 7.2.

Proposition 7.2. Let X be a linear sphere S(V ) in a complex representation
V of G. Then X satisfies the hypothesis of Theorem 7.1.

Proof. The action of G on S(V ) factors through the action of U(n) where
n = dimV . Hence, X is a sphere of dimension 2n − 1 on which G acts
smoothly. By [6], there is a triangulation ofX which renders it aG-simplicial
complex. For any H ≤ G it is clear that S(V )H = S(V H), so XH is either
empty (if V H = 0) or it is a linear sphere, hence (a) holds. Also, NGH
acts via isometries on V H , namely the action factors through the unitary
group U(V H) which is path connected, and therefore it acts on S(V H) via
self-maps homotopic to the identity. This proves (b). �

The next corollary to Theorem 7.1 is a slight generalization of [15, Lemma
2.6]. For any n ≥ 1 there is a map δn : autG(X) → autG(X

∗n) given by
ϕ 7→ ϕ∗n.

Corollary 7.3. Fix k ≥ 1. Under the hypotheses of Theorem 7.1, for any

N there is n ≥ N such that πk autG(X)
(δn)∗
−−−→ πk autG(X

∗n) is the trivial
homomorphism.

Proof. Recall that Xn = X∗n. By Theorem 7.1 there exists M ≥ 1 such that
|πk autG(Xn)| ≤ M for all n ≫ 0. We choose such an n such that n ≥ N
and (M !)2|n and show that δn satisfies the conclusion of the corollary.

The n-fold join X∗n is the quotient space of Xn × ∆n−1 where ∆n−1 ⊆
Rn is the standard (n − 1)-simplex with the barycentric coordinates, by
the equivalence relation (x1, . . . , xn, t1, . . . , tn) ∼ (x′1, . . . , x

′
n, t

′
1, . . . , t

′
n) if

ti = t′i for every i and xi = x′i unless ti = t′i = 0. The symmetric group
Σn acts G-equivariantly on Xn = X∗n by permuting the factors of Xn.
The assignment ϕ 7→ σ ◦ ϕ where σ ∈ Σn and ϕ ∈ autG(Xn) defines an
action of Σn on autG(Xn). Since the component of idXn

in autG(Xn) is an
associative unital connected monoid, it is a simple space [16, Corollary 3.6, p.
166] and hence πk autG(Xn) (with the identity as basepoint) becomes a Σn-
module. We will write • for the monoidal operation in autG(Xn) and note
that it is simply the composition of self-equivalences. The group structure on
πk autG(Xn) coincides with the group structure on [Sk, autG(Xn)id] induced
by the monoidal structure [16, Theorem 5.21, p. 124].

Consider the map ι : autG(X) → autG(Xn) defined by ϕ 7→ ϕ∗1X∗· · ·∗1X .
If θ : Sk → autG(X) represents an element in πk autG(X), then by inspection
δn ◦ θ is equal to (τ1 ◦ ι ◦ θ) • · · · • (τn ◦ ι ◦ θ), where τ1, . . . τn are the elements
of the cyclic group Cn ≤ Σn. Therefore

(δn)∗([θ]) = [ •
τ∈Cn

(τ ◦ ι ◦ θ)] =
∑

τ∈Cn

τ∗(ι∗([θ])
︸ ︷︷ ︸

ω

) =
∑

τ∈Cn

τ∗(ω).
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Set Π = πk autG(Xn). By hypothesis |Π| ≤ M and since it is a Cn-module,
we have a homomorphism ρ : Cn → Aut(Π) ≤ ΣM . The order of the kernel
of ρ must be divisible by (M !)2/M ! = M ! which annihilates Π. Therefore

(δn)∗([θ]) =
∑

τ∈Cn/ ker ρ

| ker ρ| · τ∗(ω) = 0.

This completes the proof. �

Proposition 7.4. Assume that the sequence {Xn}n of G-spaces defined in
the beginning of the section satisfies the conditions of Theorem 7.1. Then it
satisfies the conditions (I)–(III) of section 5. Moreover, for any H ≤ G and

any n ≥ 1, (Xn)
H = (XH)∗n and, if H ′ ≤ H then either (Xn)

H = (Xn)
H′

for all n if XH = XH′

or dim(Xn)
H′

− dim(Xn)
H ≥ n if XH 6= XH′

.

Proof. By construction of the join, (Xn)
H = (X∗n)H = (XH)∗n. By hy-

pothesis (a) it is either empty if XH = ∅ or it is homeomorphic to a sphere
of dimension nr + n − 1 if XH ∼= Sr. By hypothesis (b) NGH acts on
the sphere XH via maps of degree 1, hence maps which are homotopic to
the identity. Therefore NGH acts on (Xn)

H via self-equivalences which are
homotopic to the identity. Conditions (II) and (I) follow.

Suppose that H ′ ≤ H. If XH ⊆ XH′

are spheres of different dimensions,
then dim(Xn)

H′

−dim(Xn)
H = n(dimXH′

−dimXH) ≥ n. If they have the
same dimension then they must be equal by the invariance of domain. �

Proof of Theorem 7.1. The groups π1 autG(Xn) are abelian since autG(Xn)

are associative unital monoids. For any subgroup H ≤ G let X
(H)
n denote

the subspace of Xn which consists of the points x ∈ Xn whose isotropy group
Gx is conjugate to H. Arrange the conjugacy classes of the subgroups of
G in decreasing order (H1), (H2), . . . , (Hm) = (e), namely if i > j then
|Hi| ≤ |Hj |. We will now define filtrations F0(Xn) ⊆ · · · ⊆ Fm(Xn) of the
spaces Xn. For every s ≥ 0 set

Fs(Xn) =
s⋃

i=1

X(Hi)
n .

We will prove by induction on s that for any k ≥ 1 the sequence of groups

(4) {πk mapG(Fs(Xn), Xn)incl}
∞
n=1 is essentially bounded.

This will complete the proof since Fm(Xn) = Xn. If s = 0 then Fs(Xn)
are empty and (4) is trivial. We now fix some 1 ≤ s ≤ m and prove the
induction step.

Set K := Hs and W = NG(K)/K. Set Yn = XK
n and An = X>K

n both
viewed as W -spaces. By possibly passing to the barycentric subdivision of
Xn we may assume that Yn and An are sub-polytopes ofXn on whichW acts
simplicially. Remark 2.2 implies that (Yn)

>e ⊆ An. Also, An = Fs−1(Xn)
K

and Yn = Fs(Xn)
K because for any x ∈ Xn we must have x ∈ Yn (resp.

x ∈ An) if and only if (Gx) = (Hi) for some i ≤ s (resp. i < s).
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Since G×NGK (G/K)K = G/K and since Fs(Xn)\Fs−1(Xn) consists only
of orbits isomorphic to G/K, we obtain the following pushout square in
which the vertical maps are inclusion of G-CW complexes, in fact inclusions
of G-simplicial complexes, hence G-cofibrations:

G×NGK Fs−1(Xn)
K

ev : (g,x) 7→gx
//

� _

��

Fs−1(Xn)� _

��

G×NGK Fs(Xn)
K

ev : (g,x) 7→gx
// Fs(Xn).

Suppose first thatXK = XH for someH > K. By Proposition 7.4, (Xn)
K =

(Xn)
H for all n and therefore An = Yn for all n. It follows from the pushout

diagram that Fs(Xn) = Fs−1(Xn) for all n and the induction step for (4)
follows from the induction hypothesis on s− 1.

Hence we will assume from now on that XK 6= XH for all H > K, so
by Proposition 7.4 dimYn − dimAn ≥ n and in particular An ( Yn for all
n. By applying mapG(−, Xn) to the pushout diagram above, we obtain the
following pullback diagram in which the horizontal arrows are fibrations

(5) mapG(Fs(Xn), Xn) // //

��

mapG(Fs−1(Xn), Xn)

��

mapNGK(Yn, Xn) // // mapNGK(An, Xn).

This is therefore a homotopy pullback square so the fibres of the rows are
weakly homotopy equivalent (in fact, they are homeomorphic). Let F ′

n de-

note the fibre of the bottom row over the inclusion iXn

An
and with the inclusion

iXn

Yn
as a basepoint. By induction hypothesis {πk mapG(Fs−1(Xn), Xn)incl}n

is essentially bounded for any k ≥ 1, and from the long exact sequence
in homotopy of the fibration in the first row, it suffices to prove that the
sequence {πkF

′
n}n is essentially bounded for any k ≥ 1.

By possibly passing to the barycentric subdivision of each Yn, we can
choose, by Lemma 2.3, for any n a W -invariant neighbourhood Un of An

in Yn such that Un and Bn := Yn\Un are sub-polytopes of Yn, and the
inclusions An ⊆ Un ⊆ Un and Yn\Un ⊆ Bn ⊆ Yn\An are W -equivalences.
Set Dn = Un ∩Bn.

Since An and Yn = XK
n are fixed by K, the bottom row of (5) is the

same as the fibration mapW (Yn, Yn) → mapW (An, Yn). Also, An ⊆ Un is
a W -homotopy equivalence and therefore F ′

n is homotopy equivalent to the
fibre Fn of the following fibration over incl ∈ mapW (Un, Yn)

Fn → mapW (Yn, Yn) → mapW (Un, Yn).

We will complete the proof by showing that {πkFn}n is essentially bounded
for any k ≥ 1.
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By construction, Yn is the pushout of the sub-complexes Bn and Un along
Dn. By applying mapW (−, Yn) we obtain a pullback diagram in which all
the arrows are fibrations.

mapW (Yn, Yn) // //

��

mapW (Un, Yn)

��

mapW (Bn, Yn) // // mapW (Dn, Yn)

It is therefore a homotopy pullback square, hence Fn is weakly equivalent
to the fibre of the bottom row over the inclusion iYn

Dn
(in fact the fibres are

homeomorphic). We obtain exact sequences of groups (one for each n)

πk+1mapW (Bn, Yn)incl
λk+1
−−−→ πk+1mapW (Dn, Yn)incl → πk(Fn) →

→ πk mapW (Bn, Yn)incl
λk−→ πk mapW (Dn, Yn)incl.

We see that to complete the proof it is enough to show that for any k ≥ 1
the sequences {ker(λk)}n and {coker(λk+1)}n are essentially bounded. This
will be the goal of the remainder of the proof.

Since An ⊇ Y >e
n , it follows that W acts freely on Bn and Dn. By Propo-

sition 7.4 and hypothesis (a) of the theorem, Yn = XK
n are spheres of di-

mension N = n dim(XK) + n − 1. In particular, Yn are simple spaces. By
appealing to Theorem 6.1 we obtain Barrat–Federer spectral sequences of
the form

E2
−p,q(Bn) = Hp

W (Bn;πqY ) ⇒ πq−pmapW (Bn, Yn)incl

E2
−p,q(Dn) = Hp

W (Dn;πqYn) ⇒ πq−pmapW (Dn, Yn)incl

By Remark 6.2 the inclusions Dn ⊆ Bn induce morphisms of spectral se-
quences

θr : Er
∗,∗(Bn) → Er

∗,∗(Dn).

For dimensional reasons E2
−p,∗(Bn) = 0 and E2

−p,∗(Dn) = 0 if p > N . Also

E2
∗,q(Bn) = 0 and E2

∗,q(Dn) = 0 if q < N because Yn is (N − 1)-connected.
By Proposition 7.4, W acts trivially on π∗Yn since condition (I) of Section

5 holds. Therefore the coefficient systems in the E2-terms of these spectral
sequences are trivial. In addition, once k is fixed then for every 0 ≤ j ≤ k
the groups πN+jYn = πN+jS

N enter the stable range provided n ≫ 0 so we
may assume that πN+jYn ∼= πS

j , which are finite if j ≥ 1. By Proposition 7.4

we may apply Lemma 5.1(C) which implies that for any N +1 ≤ q ≤ N + k
and any N − k ≤ p ≤ N , the sequences {E2

−p,q(Bn)}n and {E2
−p,q(Dn)}n

are essentially bounded. It follows that {E∞
−p,q(Bn)}n and {E∞

−p,q(Dn)}n are
essentially bounded for p, q in this range. The spectral sequences Er

∗,∗(Bn)
and Er

p,q(Dn) are depicted in Figure 1. We deduce that πk mapW (Bn, Yn)incl
has a filtration of length k + 1 with filtration quotients

E∞
−(N−k),N (Bn), E∞

−(N−k+1),N+1(Bn), . . . , E∞
−N,N+k(Bn)
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−N −(N−k)

p

q

N+k

0

00

0

0

0

000

k

0

N+1

N

p+q=0

p+q=k

BOUNDED

ESSENTIALLY

dr

Figure 1. The spectral sequences Er
p,q(Bn) and Er

p,q(Dn).
Differentials have degree (−r, r − 1).

all except the first are essentially bounded (as sequences of groups indexed
by n). A similar statement holds for πk mapW (Dn, Y )incl. We obtain the
following diagram of short exact sequences (indexed by n)
(6)

0 // ess. bounded //

��

πk mapW (Bn, Yn)

λk

��

// E∞
−(N−k),N (Bn)

θ∞
−(N−k),N

��

// 0

0 // ess. bounded // πk mapW (Dn, Yn) // E∞
−(N−k),N (Dn) // 0

So we only need to show that {ker(θ∞−(N−k),N )}n is essentially bounded if

k ≥ 1 and that {coker(θ∞−(N−k),N )}n is essentially bounded if k ≥ 2. Since

the spectral sequences vanish for q < N and all the differentials dr−(N−k),N

have their target in essentially bounded groups, we obtain the following
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diagram of short exact sequences.

0 // E∞
−(N−k),N (Bn)

θ∞
−(N−k),N

��

// E2
−(N−k),N (Bn)

θ2
−(N−k),N

��

// ess. bounded

��

// 0

0 // E∞
−(N−k),N (Dn) // E2

−(N−k),N (Dn) // ess. bounded // 0

Lemma 5.1(D) implies that if k ≥ 1 then {ker(θ2−(N−k),N )}n is essentially

bounded and therefore so is {ker(θ∞−(N−k),N )}n. By the same lemma, if k ≥ 2

then the sequence of groups {coker(θ2−(N−k−1),N )}n is essentially bounded

and therefore so is {coker(θ∞−(N−k),N )}n. This completes the proof. �
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