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ABSTRACT  

 
This paper reviews use of organic resources in rural Sub-Saharan Africa (SSA), impacts on 
household energy, and interactions with provision of food and water. Wood, charcoal and dung supply 
over 70% of household energy in SSA, but with improvements in energy technologies, crop-residues 
and human excreta could also contribute. Improving cookstoves is not enough to make woodfuel use 
sustainable, reducing deforestation due to woodfuel demand by only 41-50%. Further reductions of 
21% are achieved by using crop-residues and 23% by anaerobic digestion of cattle manure. Taken 
together, these measures could reduce deforestation due to woodfuel demand by 70-100%. Burning 
crop-residues loses a large proportion of nitrogen needed for crop production, which could be partially 
counteracted by applying biochar from pyrolysis cookstoves to improve retention of soil nitrogen. 
Better nutrient recycling would be achieved by composting, but this precludes energy provision. Both 
energy and efficient nutrient recycling are provided by anaerobic digestion, but carbon sequestration 
is reduced compared to composting or pyrolysis. Nevertheless, a wider range of waste materials may 
be recycled in the closed digester system, so pyrolysis of dry crop-residues together with anaerobic 
digestion of wet wastes is likely to provide the best solution for both food and energy. However, 
anaerobic digestion may demand more water than pyrolysis and, if soil carbon is reduced, may also 
increase the need for irrigation. Therefore, in water limited areas, biogas digesters should only be 
installed if integrated with water harvesting systems. Governments can encourage adoption of 
sustainable technologies by providing subsidies to cover fixed costs, facilitating credit and 
complementary infrastructure investments, and improving standardization and quality control in 
cookstove and digester markets. Implementation work should involve communities and households, 
giving women a role in decision-making to ensure community investment in water access. 
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1. Introduction 
 
1.1. Problem statement 
 
This paper considers the use of organic resources in rural areas of Sub-Saharan Africa (SSA), their 
impact on basic human requirements for energy, food and water, and how organic resource use can 
be made more sustainable. Organic “wastes”, include crop-residues, food waste and excreta, and are 
of such value that many authors refer to them as organic “resources”. Here we refer to residues from 
other processes as “organic wastes”, and distinguish them from organic resources that have been 
grown or collected specifically for their primary use. This distinction is important, as it means that 
organic wastes represent a pool of resources that might not otherwise be used. Finding new ways of 
using them can help deliver the Millennium Development goals relating to poverty alleviation and 
environmental sustainability by extending access to clean energy and water and increasing 
sustainable agricultural production. 
 
Globally, over 2.8 billion people still rely on unsustainable solid biomass for cooking and heating fuel, 
of which ~2.2 billion (78%) live in rural areas. Communities in isolated rural areas often represent the 
poorest segment of the population in developing countries [1]. In countries without access to fossil 
fuels, organic resources provide a key source of energy. Wood, charcoal and dung are traditional 
biomass fuels that supply over 70% of the household energy in SSA [2]. Organic wastes provide 
alternative energy sources for cooking and lighting, either by direct burning of dried materials, or by 
anaerobic digestion to provide biogas [3].  
 
The use of organic resources for energy directly impacts food production. Woodfuel use can cause 
localised deforestation, making more land available for agricultural production, but can also result in 
long-term loss of soil fertility and reduction in local rainfall [4]. Burning organic wastes removes carbon 
and nutrients from the agronomic system, whereas the residues from anaerobic digestion are rich in 
available nutrients, so providing farmers with a valuable organic fertiliser that can be used to improve 
yields [5,6].   
 
Organic resource use also affects water availability. Water quality can be improved by using organic 
wastes in energy production, so removing pathogens from the wider environment [7]. Burning of 
organic resources requires no extra water, whereas anaerobic digestion requires extra water to mix 
wastes into a slurry, and so impacts the quantity of water required by a household each day [3]. 
 
The best technical use of organic wastes depends on the availability of resources and requirements 
for food, energy and water, but there are also economic, social and cultural factors affecting adoption. 
At household level, organic waste practices, such as the purchase and use of a biogas digester, 
implies a range of changes; new capital expenditure may increase credit demand and change the 
household exposure to risk, but reduced expenditure on fuel may reduce weekly outgoings [8]. Social 
and gender relations within households and communities can also be affected; adoption of new 
technologies changes labour requirements for water and wood collection and for livestock 
management, so affecting both the total amount of labour and its allocation across family members 
[9]. 
 
In this paper, we consider the best technical use of organic wastes and how economic, social and 
cultural factors and social norms influence uptake. We examine the impact of adoption on agricultural 
productivity, energy provision and water use in poor rural households of SSA, and the role of social 
and economic forces. We review current policy issues and governance arrangements and consider 
what further changes are required to achieve sustainable solutions. Finally, we identify areas where 
evidence and understanding is lacking and prioritize future research goals. 
 

1.2. What are sustainable organic waste practices?  
 
Sustainability has been interpreted in different ways across and within disciplines. Within environment 
and development studies, sustainable development looks at the interaction between the economic, 
environmental and social spheres and how these impact on human development [10]. Within 
economics, definitions range from strong sustainability [11], where the need to conserve individual 
elements of natural capital are emphasised, to weak sustainability [12] where substitution of natural 
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and other capital is emphasised and a sustainable environment merely maintains overall productive 
capacity. By this definition, strong sustainable organic waste practices require all dimensions of 
natural capital stock (forests, water and soil) to be conserved to provide a sustainable yield of wood, 
water and food for future users. By contrast, weak sustainable organic waste practices would allow 
degradation of individual resources if overall future production is maintained.  
 

1.3. International and national support for sustainable organic waste practices 
 
The potential environmental, health and economic benefits associated with sustainable organic 
resource use has led to a significant effort by governments in SSA, supported by national and 
international development agencies, to encourage rural households to adopt technologies that make 
better use of organic wastes. 
 
At the international level there are several initiatives to improve energy use and introduce 
technologies to reduce deforestation and indoor air pollution. Two examples are the UN Sustainable 
Energy for All (SE4All) initiative [13] and the Global Alliance for Clean Cookstoves [14].  
 
National Development Plans indicate the level of commitment by governments to introduce new 
technologies. Of the current National Development Plans in 46 countries in SSA, 16 make specific 
reference to “organic” fertilizers. The importance of safe disposal of household waste is mentioned in 
36 national plans, with emphasis on hygiene and sanitation; some plans making specific reference to 
the absence of household toilet facilities. All plans (except for Equatorial Guinea) mention “water” and 
problems encountered in securing access to potable drinking water and, in some cases, the long 
distances women have to travel to obtain household water.                                             
 
Many National Development Plans refer to the need to focus on renewable energy, with nine making 
specific reference to biogas production. For example, the Botswana National Development Plan 9 
refers to the installation of household and commercial biogas digesters for cooking and electricity 
generation. A number of plans also place emphasis on decreasing wood use as an energy source 
e.g. Burkina Faso and Ethiopia. 
 
The Africa Biogas Partnership Programme [15] aims to facilitate the construction of 100 thousand 
biogas plants in six countries in SSA by 2017.  As a result, the number of biogas installations has 
grown significantly over the last few years; as of 21 September 2014, the number of digesters in 
Kenya was 12,837, and in Ethiopia and Tanzania was approaching 10,000 [15]. However, the overall 
success and uptake rate of the technology is significantly less in SSA than in Asia; for instance China 
had over 14 million small-scale digesters installed by the mid 2000s [16]. Furthermore, a number of 
biogas programmes have failed to achieve their potential, despite favourable physical and technical 
conditions. For example, support by SNV Netherlands Development Organisation for Senegal’s 
programme to encourage small-scale biogas digester adoption has been withdrawn [17]. 
 

2. Household energy provision 
 
Sustainable provision of household energy in SSA requires a sufficient supply of energy to remain 
available at a cost that is within the economic means of the household, and to be delivered in a way 
that does not have adverse health consequences. Wood, charcoal and dung are traditional fuels that 
supply over 70% of the household energy in SSA [2], but with improvements in energy technologies, 
crop-residues and human excreta also have potential to provide household energy (Table 1). 
 
 

INSERT TABLE 1 

 
 

2.1. Option 1 - Cook on an open fire or unimproved cookstove 
 
Cooking with wood is widely done on an open or shielded fire [18], the most common forms of 
shielded fire being a three-stone fire or U-shaped mud cook-stove [19]. Cooking equipment and 
recipes have been adapted over generations to make use of energy provided in this way. Foods 
requiring long cooking times, such as the two hour steaming of matoke in Uganda, are particularly 
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suited to cooking on a wood fire, and food cooked on wood has a distinctive flavour that is preferred 
by many people [20]. Therefore, people continue to use wood as a source of household energy, 
despite its many disadvantages. 
 
Cooking on an open fire is very inefficient; Omer and Fadalla [21] reported cooking with firewood on 
an unimproved stove in Sudan had a thermal efficiency of only 17%. Collection of firewood requires a 
significant input of time and energy. Firewood is usually collected by women and children [22], and 
this reduces time available for other important activities, such as childcare, education or paid work 
[23]. Cooking on a wood fire releases carbon monoxide and particulates at levels detrimental to 
human health [24], poor indoor air quality being linked to over 3.5 million premature deaths annually 
[25] and contributing to a wide range of child and adult diseases [26].  
 
Despite these health risks, in areas of low population density and where forest regeneration is more 
rapid than collection of wood, woodfuel can be burnt as a sustainable source of household energy [4]. 
However, as the population increases, increased woodfuel collection and clearing of land for 
agriculture results in increased rates of deforestation, so increasing the burden of firewood collection 
on the household [27,28], and woodfuel use becomes non-sustainable. 
 
Globally, there is a very weak link between woodfuel demand and deforestation [29] because fire 
wood is often obtained from fallen wood or sources already felled for construction or land clearance 
[30]. By excluding these confounding factors, Subedi et al. [4] derived a relationship between 
deforestation and the amount of wood extracted from forests that could be applied in SSA with an 

uncertainty of 60%. Of the deforestation observed in 2010, they estimated that 70(42)% can be 

attributed to woodfuel demand, rising to  83(50)% by 2030, largely due to increases in charcoal 
consumption. 
 
Charcoal is an excellent cooking fuel; it has a higher energy density than wood, can be stored without 
insect problems, burns evenly and is easily extinguished and reheated [31]. Burning charcoal has a 
thermal efficiency of 28%, compared to only 17% for woodfuel [22]. Charcoal is particularly favoured 
in urban applications, as the weight and volume needed for cooking is lower than woodfuel, allowing 
easier transport into towns [32]. However, when charcoal is burnt on a traditional cookstove, 

emissions of particulates of diameter less than 2.5 m, which have greatest impact on respiratory 
health [33], are not significantly lower than for woodfuel, and carbon monoxide emissions are more 
than doubled [34]. The loss of energy during charcoal production means that 4-6 times more wood is 
needed to release the same amount of energy by burning charcoal than by direct burning of wood 
[31]. Therefore, increased charcoal use further increases the rate of deforestation; charcoal is less 
sustainable as a source of household energy than woodfuel. 
 
Dried dung is also burnt to provide household energy in some countries [35]. It burns with a 
smouldering flame that is particularly suited to types of cooking such as injera baking in Ethiopia [36]. 
However, burning dung has a thermal efficiency of only 11%, compared to 17% and 28% for wood 
and charcoal respectively [22]. Particulate emissions from burning dung are particularly toxic [37], and 
the preparation and drying of dung cakes requires significant labour input, usually by women [35]. 
Burning dung prevents carbon and nutrients from being returned to the soil, thereby reducing 
productivity of the land [5,6]. This reduces the number of animals a household can sustain, either due 
to pastures becoming nutrient depleted or due to less crops being grown to feed housed animals. 
Therefore, burning dung in itself reduces the amount of dung available for energy. In sparsely 
populated rural areas, animal production can be maintained by increasing the range of pastoral 
grazing, but with increasing population, the range of grazing becomes restricted, animal production 
per capita falls, and so the sources of dung for energy become more limited, and dung burning is no 
longer a sustainable energy source. 
 

2.2. Option 2 – Cook on an improved cookstove  
 
Improved cookstoves have been developed to reduce demand for wood and improve indoor air 
quality [38]. The first improved cookstoves allowed simultaneous cooking with multiple pots, included 
a chimney to remove smoke from the cooking area and a closed combustion chamber with adjustable 
metal dampers to regulate the air-fuel control system [19]. These cookstoves were easily cracked with 
repeated heating and cooling [39], or were made of non-locally available materials, requiring extra 
expenditure for maintenance and resulting in discontinuation of cookstove use over the long-term. 
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Therefore, more recent developments have focussed on construction from locally available materials 
and easy maintenance to provide efficient, affordable and durable cookstoves [19].  
 
Increasing efficiency of combustion requires improved mixing of oxygen and combustible gases, and 
better heat transfer. If air is supplied by natural draft, stove geometry and insulation dictates 
combustion efficiency, but this can also be improved in forced air stoves using a fan to increase 
mixing of combustible gases with oxygen. Forced air stoves decrease fuel consumption by 40% and 
emissions by 90% [40], but the introduction of a fan increases cost and maintenance issues. 
 
A very successful natural draft stove, the Rocket stove [41], includes an insulated space around the 
fire using lightweight, heat resistant materials to reduce heat loss; an insulated short chimney above 
the fire to increase draft; a side flue and grate to maintain a fast draft through the burning fuel; and 
gaps between the flame and pot to maximise heat transfer. These Rocket-type stoves reduce fuel 
consumption compared to a three-stone fire by 33%, carbon monoxide emissions by 75% and 
particulate emissions by 46% [40]. Further modifications include pot skirts [42], which reduce fuel 
consumption and carbon monoxide emissions by 25-30% [41].  
 
Improved efficiency and emission reductions can also be achieved by micro-gasification, the basis of 
pyrolysis cookstoves [43]. This separates combustible gases from biomass through gasification and 
then burns these gases as the fuel. Laboratory measurements show this decreases average 
emissions of particulate matter by 90% [41]. Pyrolysis cookstoves allow use of dried crop-residues to 
supplement woodfuel, so reducing use of wood or dung for energy [44,45]. The thermal efficiency of 
pyrolysis is 38-50%, depending on the quality of feedstock and reaction conditions [46]; this compares 
well to traditional burning of wood (17%) charcoal (28%) or dung (11%) [21]. In a study of institutional 
kitchens in schools in Uganda, pyrolysis gasifier stoves saved over two thirds of the wood used in a 
traditional three-stone fire [47]. 
 
Pyrolysis cookstoves produce a hot flame, so new cooking methods and equipment may be needed 
to prepare traditional foods [48]. As a new technology that is not yet widely adopted, the cost of 
stoves can be elevated in some regions [48] and knowledge about usage may be limited [49]. Using 
crop-residues for fuel might prevent them being used for other purposes, such as animal feeds or for 
compost [50], but in a study in Vihiga, western Kenya, Torres-Rojas et al. [45] determined that only 
25% of maize crop-residues were used for animal feed, the remaining 75% being available for 
pyrolysis. This provided more energy than the average per-capita energy consumption, and reduced 
wood energy consumption by 27%. 
 
Pyrolysis leaves a carbon-rich charred residue, known as biochar, which can either be incorporated 
into the soil as a soil improver [51,52,53] or further burnt as charcoal [49]. If crop production is 
improved by incorporating biochar, this could increase the availability of crop-residues for pyrolysis, 
making a pyrolysis cookstove a highly sustainable source of energy. However, the impact on crop 
production of incorporating biochar compared to other uses of organic wastes is highly soil 
dependent; long-term sustainability of using pyrolysis of crop-residues requires further study [5,6].  
 
Subedi et al. [4] estimated average woodfuel demand in countries of SSA when using unimproved 
cookstoves to be 21 Mt y

-1
. If the thermal efficiency of cookstoves is improved from 17% of a three-

stone fire [21] to 38-50% of a pyrolysis cookstove [43], the average demand for woodfuel would be 
reduced to 7-9 Mt y

-1 
(Fig.1). According to Subedi’s equation for deforestation, this would equate to a 

reduction in deforestation of an average of 41(25)% to 50(30)%. Assuming a 27% reduction in 
woodfuel demand from using crop-residues as an alternative fuel source [45], this could reduce the 

average deforestation by 21(12)%.  
 

 
INSERT FIGURE 1  
 
 

2.3. Option 3 – Cook using biogas 
 
Dung, human excreta, crop-residues and food waste can be used to provide household energy 
through anaerobic digestion to release biogas. The energy yield from anaerobic digestion is highly 
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variable, depending on the conditions and composition of the feedstock [54], but the calorific value is 
typically 21-24 MJ m

-3
 [55], and thermal efficiency can be as high as 75% [56] compared to 38-50% 

for pyrolysis [47] and only 11% for burning dung [21]. The biogas produced is composed of 50-70% 
(by volume) methane, 25-40% (by volume) carbon dioxide and traces of hydrogen sulphide, water 
vapour and ammonia [57]. Emission of particulates and carbon monoxide are low, potentially reducing 
health risks from respiratory and cardiovascular diseases by 20-25% [58].  
 
Subedi et al. (2014) [4] estimated that producing biogas from cattle dung alone could reduce national 
woodfuel demand by, on average, 21%; this would be equivalent to a reduction in current 

deforestation due to woodfuel demand of 23(14)% (Fig.2). Organic wastes are decomposed wet, 
which allows feedstocks to be used without drying, but requires approximately 20 dm

3
 additional water 

for each kg of dry matter decomposed [3,59,60], so in some parts of Africa, anaerobic digestion may 
not be viable without further investment in water harvesting equipment. 
 
 

INSERT FIGURE 2 

 
 
If biogas is produced from organic wastes that would otherwise be burnt or left to decompose, and the 
digester is maintained effectively over the long-term, it can provide a sustainable source of household 
energy. The residue from the digestion process, bioslurry, provides a valuable, nutrient rich organic 
fertiliser that can be applied directly to crops [61,62], so increasing availability of organic wastes for 
energy production and sustainably improving household energy production. However, long-term 
maintenance of digesters in SSA has been poor, with up to 50% no longer functioning after ten years 
due to inadequate maintenance and repair [63]. So, although biogas is, in theory, a sustainable 
source of household energy, unless support is provided for maintenance, it will not be sustained in the 
long-term.  

 
3. Impact on food provision 
 
Sustainable provision of food in SSA faces challenges of increasing population and changing climate. 
Agricultural soils are vulnerable to degradation because of rapid carbon turnover (3-5 times faster 
than temperate regions) and poor nutrient retention, so recycling of organic resources is essential to 
replenish carbon and plant nutrients [64,65,66] and avoid adverse impacts on yield, water storage and 
erosion resistance [67]. Inorganic fertiliser use is beyond the reach of many households [68]. Whilst 
organic resource use for food or energy provision can present some conflicts, there are opportunities 
to produce secondary resources after fuel use that have lasting impacts on food production [69,70] 
(Table 2).  
 
 

INSERT TABLE 2 

 
 

3.1. Option 1 – Use residues for food production only 
 
In some areas of SSA, a tradition of incorporating fresh wastes into soils already exists [71]. However, 
fresh wastes, such as farmyard manure, can be highly heterogeneous, containing some carbon rich 
materials that tend to immobilise nutrients as well as other nutrient rich materials that tend to release 
nutrients too quickly for plant uptake, leaving them susceptible to loss [72]. Application of untreated 
organic wastes to agricultural land can also spread any pathogens present in the waste [73,74]

 

causing health problems from food contamination and pollution of water courses from runoff [75,76]. 
 
Composting farmyard manure, slurry, food wastes and crop-residues homogenises organic wastes so 
that nutrients are released at a rate that can be efficiently used by crops [65]. Pathogen levels are 
also decreased, making wastes more suitable for direct application to agricultural land [77,78]. 
Composting results in loss of carbon and nutrients; Bernal et al. [79] reported losses of carbon during 
composting between 52 and 74%, while Kirchmann and Widén [80] observed losses of nitrogen 
between 26 to 62%, these losses being highly dependent on composting conditions [81].  
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Smith et al. [5] estimated the susceptibility of nutrients to loss when wastes are applied to soil. When 
applied as an untreated waste, 66% of the nitrogen available for crop growth was estimated to be 
susceptible to loss, whereas from matured compost, this was reduced to 22%. By factoring in nitrogen 
losses during composting, maximum potential loss was 43-61%, still significantly lower than from 
untreated waste (66%). Whether this increased nitrogen loss occurs is dependent on rainfall and 
water holding capacity at the particular site. Composted wastes also contain more stabilised carbon 
than fresh waste, so are predicted to increase long-term carbon sequestration, even after losses 
during composting [6]. The impact of increasing carbon content on soil water and subsequent crop 
production is dependent on weather and soil conditions at each site. Further work is needed to 
identify regions where risk of nutrient and carbon loss is high if wastes are applied without pre-
treatment.  
 

3.2. Option 2 – Produce biogas for cooking and use the digestate to improve soils 
 
Composting prevents wastes from being used in energy provision as there is currently no easy way of 
capturing the heat energy released for use in cooking. Anaerobic digestion has the advantage of 
allowing organic wastes to be used to provide energy, while also producing an effective organic 
fertiliser, rich in available nutrients [61]. It converts nitrogen into an immediately available form, 
providing a quick response fertiliser that can be applied when crops show signs of deficiency [82]. 
Carbon losses during anaerobic digestion 69-80% [83] compared to the slightly lower losses during 
composting of 52-74% [79]. However, the carbon compounds in bioslurry are less stable than in 
composts, so this results in lower carbon sequestration rates, more comparable to incorporation of 
fresh wastes [6]. Because the treatment process is not open to the environment, additional organic 
wastes, such as human excreta, can be added to the digester, potentially compensating for this lower 
rate of carbon sequestration [84]. Losses of nutrients tend to be significantly lower during anaerobic 
digestion (5-10%) [83] than during composting (26-62%) [80]. Therefore, with the same starting 
material, anaerobic digestion will retain 1.2 to 2.5 times more nitrogen in bioslurry than is retained in 
compost.  
 
Significant reductions in pathogens during anaerobic digestion are predicted [7], but some organisms 
are likely to withstand treatment temperatures. These include pathogenic species of Clostridia, which 
can cause wound and gastrointestinal infections, and neurological illness. Soil itself can be used as a 
biologically active filter to remove pathogens from poorly treated organic residues [85]. More work is 
needed to determine the safety of materials following anaerobic digestion for use in food production. 
This is timely, as a survey across SSA has found treated human excreta to be the most commonly 
used soil conditioner [86]. 
 

3.3. Option 3 – Burn organic wastes and use residues to improve soils 
 
Application of the ash produced by burning organic wastes can benefit food production, primarily by 
neutralising the acid soils [87,88] commonly found in SSA [89]. In Cote d’Ivoire, ash from burning 
secondary vegetation was 59% as effective as lime at raising soil pH [90]; on a different soil in South 
Africa, leaf litter derived ash was only 12% as effective [91]. Ash contains a range of nutrients, 
particularly phosphorus, potassium and magnesium. The nutrient content is dependent on feedstock, 
animal manures producing ash with greater nutrient content than crop-residues [92]. People in SSA 
commonly mix ash with fresh residues as a soil amendment [93]. Local knowledge, modern chemistry 
and recently released soil property maps [94] provide great potential to optimise mixtures for 
particular localities, soils and crops. 
 
When organic wastes are burnt in the absence of oxygen, high temperature carbonization (pyrolysis) 
produces biochar, the quality depending on the feedstock and pyrolysis temperature. Biochar 
surfaces provide charged sites that adsorb nutrients and reduce leaching losses [95]. A high 
proportion of the nutrients in the organic waste can be volatilised during pyrolysis; Rovira et al. [96] 
report 70 to 90% of nitrogen is lost during pyrolysis. This means that pyrolysis retains 0.1 to 0.8 times 
as much nitrogen in biochar as is in composts, and only 0.1 to 0.3 times as much as is in bioslurry. 
However, the surface exchange sites of biochar might partially counteract this by reducing nutrient 
losses directly from the soil; in a soil that is deficient in surface exchange sites, this can significantly 
improve crop production by retaining more nutrients for uptake by crops [97].  
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A proportion of the carbon in biochar may be highly stabilised [98,99], resulting in a long-term 
increase in the carbon content of soils [6]. This has been demonstrated to have an impact on 
productivity in some soils [100], although in severely nutrient limited soils, nutrient loss during 
treatment can produce lower yields compared to treatments that retain nutrients, such as anaerobic 
digestion or composting. Biochar may present risks from contaminants such as naphthalene that can 
be produced during pyrolysis [95]. However, this usually occurs at much higher temperatures than are 
present in the pyrolysis cookstoves adopted in SSA.  
 

4. Impact on water provision 
 
Use of organic wastes for household energy provision can impact the sustainable provision of water 
both in the quality of available water and the quantity of water required. With population growth and 
erratic rainfall patterns, provision of clean water becomes increasingly challenging. In a review of over 
60 studies, Esrey et al. [101] found the largest impacts on morbidity-related diarrhoea come from 
increased water availability (25%), better disposal of excreta (22%) and improved water quality (16%). 
Untreated organic wastes represent a significant source of pathogens and nutrient pollutants in 
drinking water [102]. By treating organic wastes, either by burning, composting or anaerobic digestion, 
these risks are significantly decreased, and by incorporating the resulting processed material into 
soils, drought resistance of crops can be improved (Table 3).  
 
 

INSERT TABLE 3 

 
 

4.1. Option 1 – Burn organic wastes 
 
Burning or pyrolysis of organic wastes is an easy way to reduce pathogens in the environment and 
reduce the volume of waste materials. However, feedstocks for burning need to be dry [40], so at 
household level, dry crop-residues that have an inherently low pathogen risk tend to be the main 
feedstock. Dried animal manure can also provide a viable feedstock [34], and when the ash is used 
as a soil amendment it offers greater nutrient inputs than ash produced from crop-residues [92]. 
Burning other household wastes is widely practiced outside the home to reduce volume of waste 
materials. Burning of human sewage is mainly restricted to larger scale municipal applications.  
 

4.2. Option 2 – Bury organic wastes 
 
In rural areas, human faeces are often disposed of using pit latrines which are regularly back-filled 
and moved or emptied [103]. As the population increases, runoff from pit latrines increases and can 
reduce the quality of water used for drinking and washing. Nyenje et al. [104] observed groundwater 
below an urban slum area in Kampala, Uganda, to be anoxic with high concentrations of chloride, 
bicarbonate and ammonium ions, indicating wastewater leachates from pit latrines. Using data from 
eight different countries, Esrey [105] concluded that the health benefits of improved water quality and 
quantity would be realised only with improved access to sanitation. This could be achieved by 
attaching latrines to an anaerobic digester or by lining and regular emptying of pit latrines with further 
treatment of wastes to ensure safe disposal. 
 

4.3. Option 3 – Apply untreated wastes to soil 
 
Untreated wastes that are still abundant in pathogens are often applied directly to soils to improve 
fertility. Wastewater may also be applied for irrigation [106]. This increases the spread of pathogens, 
but does not always present a significant risk. Pathogenic organisms can decay rapidly in soil due to 
ultraviolet radiation and heat of sunlight. Keraita et al. [107] found that if irrigation ceases a few days 
before harvest and rainfall is minimal, the risk of faecal contamination in leafy vegetables in Ghana 
decreased to safe levels for human consumption. Although the effectiveness will vary between soils 
and climates, pathogens carried from waste materials by rainfall or irrigation may also degrade in soil, 
further reducing risk of groundwater and surface soil contamination [85]. The risks presented by 
application of untreated wastes to soils is dependent on the pathogen content and rate of application, 
so as the density of the population increases, pre-treatment of wastes before application to soils 
becomes more important. 
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4.4. Option 4 – Treat wastes to reduce pathogen content, leaving a residue that can 
be safely applied to the soil 
 
Treatment of organic wastes by composting or anaerobic digestion can be used to reduce pathogens 
and provide a valuable soil amendment, but is less effective at reducing pathogens than burning or 
pyrolysis [7,77]. Anaerobic digestion can be used to treat human excreta [108], although some 
anaerobic pathogens may withstand the digestion process, so sequential digestion and composting 
may be needed when bioslurry is applied to food crops.  
 
Additional water is needed for the digestion process [59,60], so it may be unsuitable in areas where 
water is limited, but the actual impact on water use is also dependent on soil water storage and 
changes in the need to irrigate crops. Incorporated organic wastes interact with soil surfaces to create 
a structure that captures and stores water more readily [109,110]. Applying biochar is the most 
effective way of increasing the carbon content of SSA soils, where the turnover of more labile carbon 
results in rapid depletion [6]. Improved water retention in biochar treated soils may result from greater 
root and earthworm activity as well as the direct impact of biochar porosity on retaining water [111]. 
However, even at application rates of 40 t ha

-1
, a study in a relatively fertile soil found no impact of 

biochar on the storage of accessible water for plants [111]. The impacts are dependent on biochar 
feedstock and soil properties, so local research is needed to explore the potential effectiveness of 
biochar in improving soil water storage. 
 
When comparing the impact of differently treated wastes on water provision, complex factors interact 
to determine the demand for water. The much higher nitrogen levels in compost and bioslurry provide 
valuable crop nutrients that also improve root vigour and depth, so crops may be able to access water 
stored deeper in the soil profile [112]. With any soil amendment that improves soil carbon, the water 
use efficiency of the crop may also improve due to changes in soil structure. Crops in SSA have very 
low water use efficiency, with only 15% of rainwater being used by plants [113]. The rest is lost due to 
leaching through physically degraded soils. There is a surprising lack of data, however, to aid 
prediction of improved water infiltration and storage caused by the incorporation of organic wastes 
[114]. In a glasshouse study in Ghana, Adamtey et al. [115] found four times better water use 
efficiency for maize grown in soil treated with ammonia fertiliser and composted waste than in 
untreated soil. A field based study in Niger found similar improvements due to incorporation of a 
mulch [112].  
 

5. Encouraging sustainable organic waste practices 
 

5.1. Why do households adopt sustainable organic waste practices?  
 
The benefits associated with sustainable use of organic wastes have led governments in SSA to 
encourage rural households to adopt technologies, such as small scale biogas digesters that are 
consistent with sustainable practices [116]. Despite some success, the rate of uptake of this 
technology is significantly lower in SSA than in Asia [8,117]. In this section we explore which factors 
appear important in the uptake of small scale biogas digesters, a key sustainable organic waste 
technology. 
 
The simple economic approach to determine whether households adopt new technologies considers 
whether benefits outweigh costs [118]. A biogas digester generates a range of potential benefits, 
including improved health due to reduced smoke levels in cooking areas, savings on purchases of 
firewood for cooking and kerosene for lighting, a reduction in the time required to collect firewood and 
savings on purchases of inorganic fertilizer [119]. Costs include the capital cost of the digester, its 
installation and maintenance, costs of associated increases in water demand and labour tasks 
associated with digester operation [120].  
 
If alternative employment opportunities are limited, adoption of biogas should be attractive to rural 
households. In a study covering Ethiopia, Rwanda and Uganda, Renwick et al. [121] suggested 
financial rates of return of 8-10%. In Ugandan households with digesters, payback time based on 
reduced woodfuel, compost and fertilizer expenditures was estimated to be less than four years [122]; 
Walekhwa et al. [120] suggested simple payment periods as low as just over one year, with internal 
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rates of return over 35%. By comparison, studies on the financial returns to households who adopt 
biogas digesters in China suggest simple payback periods under two years [123]. This suggests that, 
if markets for biogas are operating effectively, the pace of adoption in SSA should be comparable to 
that in China and south-east (SE) Asian countries.  
 
A number of factors may explain why this has not been the case. The financial benefits of adoption 
have been over-estimated in some cases. For example, in their ex-ante financial evaluation of the 
potential benefits to Rwandan households, Hubb and Paul [124] suggested financial payback periods 
of 1-2 years, while in the ex-post evaluation, based on actual expenditure in adopting households, 
reported payback was just under nine years [119].  
 
Studies that have considered the economics of small scale biogas digesters have typically 
concentrated on changes in revenues and explicit costs, with the valuation of health benefits and 
extra labour costs relatively ignored. Freeing time associated with firewood collection is often 
identified as one of the major benefits to households [125]. For many traditional households across 
SSA, time spent collecting wood each day can be considerable [125,126]. The evidence for actual 
use of time when the household adopts a biogas digester is mixed. In their Ugandan study, Smith et 
al. [122] identified an average saving of 22 minutes a day for wood collection, but an increase of 34 
minutes to collect water, while cooking and time required for collecting, preparing and loading the 
organic material in the digester meant that the overall time requirements within the household 
increased by 78 minutes per day.  By contrast, Bedi et al. [119] identified a significant fall in time 
spent cooking per day, although water collection time, and time needed to process the organic 
material, increased. 
 
Studies which value all household benefits and costs provide mixed evidence. Renwick et al. [121] 
include time costs and health benefits in their evaluations, and show that the overall economic returns 
associated with adoption can be large. However, if health benefits are excluded, for some households 
the overall return can be negative.  Smith et al. [122] also show that, once implicit labour costs are 
accounted for, they dominate the financial benefits to the household. 
 
Even within this simple economic framework, when benefits outweigh costs, households may not 
adopt the technology due to various market failures. Capital costs for biogas digesters have tended to 
be higher in SSA than in many SE Asian countries [8,122,119, 127]. The installation costs are also 
high relative to median incomes in SSA. For the smallest size of fixed dome digester in the Rwandan 
Biogas Programme, the initial cost was around 1.4 times the average annual per-adult equivalent 
expenditure for the average household [128]. The high relative cost reflects the less well established 
biogas industry in countries of SSA. As new industries develop, costs tend to fall because the supply 
chain develops through “learning by doing” and existing technologies are adapted to use locally 
available resources; there is some evidence that costs may have already fallen in this way in SSA 
[129,130,131]. 
 
As in all developing countries, access to credit is restricted for a large number of individuals. This has 
been identified as a barrier to adoption of sustainable energy technologies [132]. In many SE Asian 
countries, credit is widely used to finance biogas schemes [125]. By contrast, in Rwanda, less than 
30% of successful applicants used credit to finance digester purchase [119]. Micro-credit and 
revolving saving schemes to enable poor households to cover the initial costs of digesters have been 
suggested as methods to address credit access issues for biogas adoption [119,128,133].   
 
The size of subsidy granted by national governments determines the initial cost of biogas systems to 
households, and is therefore important in encouraging uptake of the technology. In China, widespread 
and rapid adoption was supported by a relatively high level of subsidy [134], although evidence of the 
importance is mixed [135]. Risk can also play a key role in household decisions. As new markets 
develop, consumers also tend to be uncertain about the costs and benefits of new products. There is 
evidence that both uncertainty in the benefits and failures in the reliability of systems have played a 
part in impeding adoption rates in SSA [68]. 
 

5.2. Who decides and who benefits?  
 
In rural households, women’s traditional roles of cooking, childcare, water and fuel collection mean 
that they are seen as the immediate beneficiaries from adoption of clean cooking and biogas digester 
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systems. Women are primarily responsible for cooking in traditional households, so would be 
expected to benefit most from the reduction in smoke from wood burning within the home [136]. 
Women tend to work longer hours and have a wider range of tasks than men, so reductions in 
cooking time or wood collection (but increases in water collection) should have more impact on 
women [9,35]. By contrast, the new tasks needed for digester operation are often associated with 
livestock management, traditionally seen as the male domain [137]. 
 
The economic theory of the household, which considers within-household decision making, shows 
that women’s bargaining power is a key factor in determining outcomes [138]. The extent that women 
influence biogas digester adoption decisions and benefit from them is likely to be complicated and 
context specific. Men typically remain the principal decision makers both within the household and in 
broader communities [9]. Within the household, men often have the most important role in purchasing 
decisions and this may inhibit adoption [139]. Nyoni [140] provides evidence from Zimbawe of men 
refusing to adopt solar cookers because of the impact on women’s traditional roles.  Clancy et al. [9] 
also argue that, even where women play a role in decision-making, they may undervalue their own 
welfare.   
 
Even where a new technology is adopted, how the benefits are distributed in the household is not pre-
determined. In India, the adoption of clean cooking did not reduce time spent on wood collection by 
women, although there was a reduction for men [137]. Clancy et al. [9] argue that impacts of adoption 
on women depend on the wider economic context and the gender relations within the household. 
They cite evidence from rural China where the time savings for women associated with electrification 
were associated with migration of men to cities, increasing the burden on women due to increased 
responsibility for agricultural tasks [141]. Elsewhere, time saving for women was used either for new 
income generating activities, or to allow them to fulfil other traditional tasks [142]. 
 
Clancy et al.

 
[9] also emphasise the need to consider the wider potential impact of modern energy 

services both within the household on gender relations and for wider norms and values within the 
communities in which individuals live. For example, concern has been expressed that a lack of 
women’s involvement at village and higher level decision making may undervalue their time [143,144],

 

and that infrastructure investments, such as improving and maintaining access to water, may have a 
lower priority as a result.   
 

5.3. Does local governance matter? 
 

In-depth empirical insights into the role of governance on the success of technologies are scarce. The 
studies that do exist, however, suggest the way schemes are implemented is important for their 
success. Troncoso et al. [145] studied the success of efficient cookstoves, introduced using very 
different approaches. They distinguished a “technology-centred” from a “people-centred” approach, 
and suggested that approaches differed in effectiveness, depending on stage of introduction of 
cookstoves. In their analysis of factors affecting adoption of improved biomass stoves, Barnes et al. 
[146] identified several relevant attributes of local governance of the implementation scheme. These 
included the role of local governments, of local artisans in the design of the stoves, and the influence 
of subsidies on adoption. In other, related areas, for example in research on the effectiveness of 
nature conservation interventions, local community involvement in decision-making has been shown 
to be important for project success [147]. 
 

5.4. Encouraging local sustainable organic waste practices – different perspectives  
 
Alternative ways to investigate uptake of sustainable organic waste technologies can be found outside 
the bioenergy debate, for example, in development studies, where a body of literature exists about the 
need to involve communities and households in identifying acceptability, affordability, 
appropriateness, effectiveness and utility of new technologies to daily needs [148]. A strand of 
research in rural sociology and political ecology interprets trends in international development and 
environmental management in their discursive contexts. Discourses are understood as shared 
“ensembles of ideas, concepts and categories through which meaning is given to social and physical 
phenomena” [149]. We suggest here that it is useful to examine such shared ways of interpreting 
phenomena, as they can help explain why and how members of social groups react to the 
introduction of new technologies and ways of behaving (see examples in Fischer and Marshall [150]; 
Fischer et al. [151]). 
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Adger et al. [152] and Svarstad et al. [153] distinguish between (a) managerial types of environmental 
discourse, expressing a faith in science and institutional solutions, in particular, in “win-win” 
approaches that are beneficial both economically and ecologically and (b) populist types of counter-
discourses that defend the rights of local people, and fend off interventions by external ‘managerial’ 
actors. Adger et al. [152] suggest that for most environmental issues, discourses of both types can be 
found, with the populist discourse often constituting a counter-narrative to the dominant managerial 
paradigm [154]. However, Adger et al.

 
[152] also observe that both large-scale managerial and 

populist discourses influence policies that often do not correspond to the experiences of 
environmental change at the local level, due to their power as “knowledge regimes” or “shared myths 
and blueprints”. 
 
Elsewhere, researchers have explored elements of discourses implicit to the introduction of ‘better’ 
technologies and ‘empowering’ policies, such as in the context of community-based conservation 
programmes [155] or the provision of clean drinking water [156]. Instead of examining barriers to 
uptake from the intervening organisation’s perspective, these authors take the viewpoint of the local 
residents who are the targets of the development intervention. In this way, Benjaminsen and Svarstad 
[155] show how modern discourses on community-based conservation, which are supposed to 
involve local residents in management and benefit sharing from natural resources, and thus create 
win-win situations for both conservation and the local economy, are often just a façade behind which 
the old ‘fortress conservation’ continues to exclude local populations from conservation areas. 
 
Applied to sustainable organic waste use, such an approach can contribute to an understanding of the 
role and impacts of an intervention in its local context. If interventions to introduce sustainable organic 
waste practices are locally seen as a manifestation of a hegemonic managerial discourse that posits 
that environmental and economic challenges can be addressed simultaneously, it is of great 
importance to understand local reactions to such a discourse. The interpretation of environmental 
challenges as problems that need to be addressed within the context of energy, food and water 
provision could also be analysed from a discourse theoretical perspective, adding a strong reflexive 
component to the study that simultaneously examines the situation as well as the researchers’ role in 
it. 
 

6. Conclusions 
 
Better use of organic wastes can make an important contribution to sustainable provision of energy, 
food and water to some of the poorest people in SSA. This paper emphasises that, for this potential to 
be realized, we need better recognition of three key points: 

1. what is “best” is different in different locations and will use different combinations of technical 
solutions, 

2. implied trade-offs between energy, food and water provision can also be very different,  
3. “success”, and who benefits, relies on complex interactions between what science makes 

possible and how decisions are made by individuals, communities and policy-makers.      
 
Because the primary source of household energy in rural SSA is wood, deforestation due to wood fuel 
demand provides a useful measure of the sustainability of energy supply. Burning wood and charcoal 
increases deforestation, and burning dung decreases soil productivity, so a method that avoids 
burning, such as anaerobic digestion, would appear be a more sustainable way of providing 
household energy. However, anaerobic digestion is insufficient, on its own, to provide sustainable 
energy in rural SSA. A sustainable energy supply would require a combination of solutions, including 
improved cookstoves and digesters that use a much wider range of organic wastes. Anaerobic 
digestion of cattle manure would reduce average national deforestation due to woodfuel demand by 
8-36%, whereas improving cookstoves reduces deforestation by 41-50%, with potential further 
reductions of 21% by burning crop-residues (Fig.3). Taken together, these measures could reduce 
deforestation due to woodfuel demand by an average of 70% to over 100%, so go a long way towards 
providing sustainable household energy in rural SSA. 
 
 

INSERT FIGURE 3 

 
 



13 
 

The main factors limiting crop production in SSA are the supply of nutrients and water. The quality 
and quantity of soil organic matter control these factors, and so provide a useful measure of the 
sustainability of food production. The different uses of organic waste have different impacts on soil 
organic matter. They also embody quite different trade-offs between sustainable energy and crop 
production. Burning crop-residues removes from the system a large proportion of the nitrogen needed 
for crop production. Applying the biochar residue from pyrolysis cookstoves may partially counteract 
this by improving retention of the nitrogen that is already in the soil, but better recycling would be 
achieved by composting crop-residues. However, this precludes the use of organic wastes as an 
energy source. Anaerobic digestion provides both energy and efficient nutrient recycling, but carbon 
sequestration is reduced compared to composting and pyrolysis. Nevertheless, if a wider range of 
waste materials can be recycled due to the digester being a closed system, the carbon content of the 
soil may be comparable or even higher than with composted wastes. The additional plant inputs 
resulting from improved crop nutrition may further increase the carbon content of the soil following 
application of bioslurry. Therefore, pyrolysis of dry crop-residues together with anaerobic digestion of 
wet wastes is likely to provide the best improvements in food production while also improving energy 
provision.  
 
Organic waste practices also impact differently on the quality and quantity of water available. In some 
cases there are difficult trade-offs to resolve between energy, food and water provision. Water quality 
is determined by the pathogen and nutrient content. Anaerobic digestion facilitates recycling of 
nutrients to the crops, but may not provide sufficient treatment of pathogens on its own. Sequential 
anaerobic digestion and composting may be needed to provide a more complete treatment of 
pathogens. The quantity of water used by a household is determined by water required for drinking, 
washing, cooking, cleaning and irrigation. Increasing the carbon content of the soil increases the 
water holding capacity, so decreasing the need for irrigation. Given the same initial amount of organic 
waste, treating it by anaerobic digestion will require more water for processing and, if the carbon 
content of the soil is reduced compared to composting or pyrolysis, may also increase the need for 
irrigation. Such effects could be mitigated if water used in anaerobic digestion is used to replace 
irrigation water. Nevertheless, in some areas, access to water will be prohibitive and so a biogas 
digester should only be installed as part of a system that is integrated with water harvesting 
equipment (Fig. 4).  
 
 

INSERT FIGURE 4 

 
 
A combination of anaerobic digestion with sequential composting and pyrolysis using improved 
cookstoves would appear to be the best use of organic wastes to improve energy, food and water 
provision in rural households in SSA. But is this a good option economically? How do these uses of 
organic wastes compare to other ways of generating household energy, providing nutrients to crops 
and improving water quality by waste treatment? The re-use of organic wastes is particularly attractive 
in under-resourced communities as it appears to make use of resources that are freely available, 
even in excess, to provide free energy, organic fertilizer and clean water. However, there are costs 
associated with the purchase of improved cookstoves and biogas digesters, especially if water 
harvesting equipment is also required. How do these costs compare to other ways of generating 
energy in rural areas of SSA? How do they compare to the costs of fertiliser? How do they compare 
with more centralised methods of water treatment? At the household level, payback times suggest 
that improved cookstoves and biogas digesters are economically viable, but at national level, policies 
to encourage investment in biogas are only viable if communities continue to make use of digesters 
over the long-term. 
 
Simple cost versus benefit analyses suggest that successful uptake of more sustainable organic 
waste practices should be much higher than observed in practice. Why is this not the case? Are there 
key complementary inputs such as credit and water that are missing?  Do the perceived risks 
associated with the technologies deter adoption? If so, government has an important role in facilitating 
(micro) credit and infrastructure investments, and encouraging greater standardization and quality 
control in the cookstove and digester market to reduce consumer uncertainty.   
 
A broader perspective also suggests other important forces at play. At first glance, women are likely 
to benefit even more than men if sustainable organic waste practices are adopted. However, gender 
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relations within households and the broader community play an important role in determining adoption 
decisions and deciding who ultimately benefits. Policy interventions need, therefore, to consider how 
they impact the distribution of labour and women’s bargaining power within the household.  For 
example should access to micro-credit for improving use of organic wastes focus on women, as in the 
original Grameen scheme [157]? How can the role of women in local decision-making be 
strengthened to ensure communities invest in complementary inputs such as water access?   
 
Analysing the debate over sustainable organic waste practices from a discourse-theoretical 
perspective might also be helpful. From the perspective of rural people, interventions that aim to 
introduce novel practices for organic waste use can be perceived as manifestations of powerful, but 
alien, worldviews that impose new and potentially threatening ways of interpreting current practices, 
including key aspects of daily lives, such as food preparation and gender relations. Examining 
perceptions of these discourses, and the counter-discourses that arise during attempts to introduce 
new practices could help policy-makers design interventions that are more people-centred and 
therefore likely to be better adapted to the local context. 
 
In future work, we need a better scientific understanding of the spatial distributions of forest, water 
and soil resources in SSA and their implications for wood, food and water availability as this provides 
the basic environment in which individuals, households and communities make their decisions. 
Likewise, better insights from social science are needed to explain the rate of adoption of more 
sustainable organic waste practices, as these will help determine what future technical research is 
likely to be productive. Time spent collecting woodfuel across SSA should be quantified to determine 
impact of reduced woodfuel demand on daily household labour. The impact of switching fuels on 
indoor air pollution and human health requires further analysis. Simulations and regional scale data 
should be used to derive maps of the potential for loss of nutrients, carbon sequestration and changes 
in water holding capacity when applying differently treated organic wastes. Simulations of access to 
water should be used to identify areas in SSA where water availability is likely to limit use of biogas. 
More work is needed to determine the safety for use in food production of differently treated materials. 
Finally, the impact of local and national governance and social organisation on adoption of 
sustainable organic waste practices requires further investigation. 
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Figures 
 
Figure 1. Potential reduction in woodfuel demand by introduction of pyrolysis cookstoves to replace 
unimproved cookstoves or open fires. Error bars represent the range of reduction depending on the 
efficiency of the cookstove (38-50% [46]). Efficiency of unimproved cookstove assumed to be 17% 
[21]. Reduction in woodfuel demand due to replacement of wood by crop-residues assumed to be 
27% [45]. Woodfuel demand for unimproved cookstoves derived by Subedi et al.

 
[4] from data 

supplied by FAOSTAT [28]. 
 
Figure 2. Potential reduction in woodfuel demand by introduction of biogas stoves to replace 
unimproved cookstoves or open fires. Error bars represent the range of reduction depending on 
production of manure. A further 60% uncertainty is attributed to the prediction of deforestation [4]. 
Efficiency of a biogas cookstove assumed to be 75% [56]. Efficiency of unimproved cookstove 
assumed to be 17% [21]. Woodfuel demand for unimproved cookstoves derived by Subedi et al. [4]  
from data supplied by FAOSTAT [28]. 
 
Figure 3. Potential of available organic wastes to reduce deforestation due to woodfuel demand using 
anaerobic digestion and pyrolysis cookstoves. Error bars represent the range of reduction depending 
on the efficiency of the cookstove (38-50% [46]) and production of manure [4]. A further 60% 
uncertainty is attributed to the prediction of deforestation [4]. Reduction in woodfuel demand due to 
replacement of wood by crop-residues assumed to be 27% [45]. Efficiency of a biogas cookstove 
assumed to be 75% [56]. Efficiency of unimproved cookstove assumed to be 17% [21]. Woodfuel 
demand for unimproved cookstoves derived by Subedi et al.

 
[4]  from data supplied by FAOSTAT [28]. 

 
Figure 4. Schematic for idealised design for latrine / biogas digester / water harvesting system 
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Figure 2 
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Figure 3 
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Figure 4 
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Tables  
 

Table 1. Use of organic wastes for energy provision  

Table 2. Use of organic wastes for food provision 

Table 3. Use of organic wastes for water provision 
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Table 1. Use of organic wastes for energy provision 
 

Practice   Burning Pyrolysis Anaerobic digestion 

Fuel source   Charcoal Wood Dung Wood 
Dry crop-
residues 

Animal dung 
Human 
excreta 

Food and 
crop-residues 

Advantages Equipment 
Traditional method uses existing recipes & 

equipment 
          

  Energy source       

Efficient use of 
energy - 
reduces 

deforestation? 

Additional 
energy source 

  

Allows use of 
additional 
organic 

materials  

  

  
Cooking Preferred flavour of food 

Low emission of particulates Low emission of particulates 

  Rapid cooking method Rapid cooking method 

  Lighting         Provides lighting 

Disadvantages 

Cost Cost of fuel purchase 
New method - needs new 

equipment - not widely available - 
elevated cost 

High cost of digester and additional equipment 

Labour 
Deforestation - increased time 

for wood collection 
Labour to dry 

dung 

Deforestation - 
increased time 

for wood 
collection 

  Requires additional labour to feed digester 

Water       Requires additional water 

Cooking   
High particulate and CO 

emissions 
Very hot flame - requires different 

cooking approach 
Best suited to quick cooking – may require change 

of techniques, recipes or equipment 
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Table 2. Use of organic wastes for food provision 
 

Practice   Apply fresh wastes Apply compost Apply bioslurry Apply biochar 

Source of 
material   

  
Farmyard manure & 

slurry 

Farmyard manure, food 
wastes and crop-

residues 

Farmyard manure, slurry, food 
wastes & crop-residues 

Human 
excreta 

Wood 
Dry crop-
residues 

Advantages 

Nutrients 
and 

Carbon 

No loss of nutrients 
during treatment 

Homogeneous material 
that will release nutrients 
as needed by the crop 

Good source of nutrients for crop -  nutrients in 
available form and losses during treatment are low 

Contains recalcitrant carbon so 
increases carbon sequestration 

in soil 

      
Additional 

carbon and 
nutrients 

High surface area and cation 
exchange capacity can reduce 

nutrient loss and increase 
carbon in micro-organisms 

Pathogens     Some reduction Reduction of aerobic pathogens Reduction of most pathogens 

Disadvantages 

Nutrients 
and carbon 

Heterogeneous  
material - locking up 

and loss of nutrients in 
soil 

Carbon and nutrients are 
lost during treatment 

Carbon is lost during treatment 

High proportion of nutrients are 
lost during treatment 

Increased 
wood use 

Crop-residues 
could be fed to 

animals 

Pathogens Spread of pathogens Some pathogens remain Anaerobic pathogens remain   

Cost         High cost of equipment 
Equipment not widely available - 

higher cost 

Labour   Labour to make compost Labour to feed the digester   

Resource 
use 

                
Increased 
wood use 

Crop-residues 
could be fed to 

animals 

Water         Requires additional water to mix into a slurry Cannot use wet wastes 
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Table 3. Use of organic wastes for water provision 

Practice   
Treat organic wastes to reduce pathogens before releasing to 

the environment 
Apply organic waste to the soil to increase water holding 

capacity and reduce need for irrigation 

Type   Burning Pyrolysis Composting 
Anaerobic 
digestion 

Fresh waste Compost Bioslurry Biochar 

Advantages 

Spread of 
disease 

Complete treatment of 
pathogens 

Treatment of 
some 

pathogens 

Treatment of 
aerobic 

pathogens 

Quick disposal 
(reduces flies) 

Reduces some 
pathogens 

Reduces 
aerobic 

pathogens 

Reduces most 
pathogens 

Labour 
Easy treatment process. 

Reduces volume  
        

Reduced volume of waste 
materials 

Cost 
No additional 

equipment  
  

No additional 
equipment 

          

Water use Dry materials No extra water   Increases water holding capacity 

Disadvantages 

Spread of 
disease 

    
Some pathogens may remain in 

treated waste 
High pathogen 

content 

Some 
pathogens 
remain in 

waste 

Anaerobic 
pathogens 
may remain 

  

Labour     
Requires additional labour for 

treatment process 
Transport of high volume 

materials to the fields 
    

Cost   
Additional 
equipment 

needed 
  

Additional 
expensive 
equipment  

        

Water use       
Requires 
additional 

water 
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