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Abstract. Local cohomology functors are constructed for the category of co-
homological functors on an essentially small triangulated category T equipped

with an action of a commutative noetherian ring. This is used to establish

a local-global principle and to develop a notion of stratification, for T and
the cohomological functors on it, analogous to such concepts for compactly

generated triangulated categories.
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1. Introduction

In this paper we establish an analogue of the local-global principle from com-
mutative algebra [8, Chap. II, §3] for an essentially small triangulated category,
using the central action of a graded commutative ring. This has applications to the
theory of support varieties in representation theory and in commutative algebra,
that started with the work of Quillen [23] and Carlson [9].

Our paradigms for the local-global principle are the ones from [5] and from
Stevenson’s work [24] for compactly generated (so “big”) triangulated categories.
These play a crucial role in the classification of localising subcategories of the stable
module category of the group algebra of a finite group [5] and of the singularity
category of a locally complete intersection ring [25]. The local-global principle from
[5] does yield an analogue (see Proposition 8.3) for the “small” category of compact
objects, which is useful in studying its thick subcategories, for example. The work
presented here arose from a search for a more direct proof of this result. Our reason
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for doing so, besides the obvious aesthetic one, is that there are small categories for
which there is no canonical choice of a big category. And even if there were one, it
is not clear that an action of a ring of operators on the small category extends to
an action on the big one.

Following an idea of Grothendieck–Verdier [13], in this work we propose a differ-
ent model for such constructions. Namely, given an essentially small triangulated
category T, we consider the category CohT of cohomological functors Top → Ab
into the category of abelian groups. Up to an equivalence, this is the category of
ind-objects of T in the sense of [13]. The functor category contains a copy of T,
because Yoneda’s lemma allows to identify an object X ∈ T with the representable
functor HomT(−, X). While CohT is no longer triangulated, it does carry an exact
structure that is sufficient for our purposes; moreover, it admits filtered colimits.
These are the basic ingredients we use for setting up our machinery.

Let us explain the main results in this work. Fix a noetherian graded commuta-
tive ring R acting centrally on T; the principal examples are listed in Example 3.1.
This gives for each pair of objects X,Y in T an R-action on the graded abelian
group

Hom∗T(X,Y ) =
⊕
n∈Z

HomT(X,ΣnY ).

Let SpecR denote the set of homogeneous prime ideals. For each p ∈ SpecR there
is a localisation functor T → Tp taking an object X to Xp. The category Tp has
the same objects as T and there is a natural isomorphism

Hom∗T(X,Y )p
∼−→ Hom∗Tp

(Xp, Yp).

The formulation of the following local-global principle involves Koszul objects.
Given an object X ∈ T and a homogeneous ideal a of R, an iterated cone construc-
tion yields an object X//a. While this object depends on a choice of a sequence
of generators of a, the thick subcategory generated by it does not; see Lemma 3.9.
For p ∈ SpecR set X(p) = Xp//p.

Theorem 5.10 (Local-global principle). Let S be a thick subcategory of T. Then
the following conditions are equivalent for an object X in T:

(1) X belongs to S.
(2) Xp belongs to Thick(Sp) for each p ∈ SpecR.
(3) X(p) belongs to Thick(Sp) for each p ∈ SpecR.

Motivated by this result, we define the support of an object X ∈ T to be the set

suppRX = {p ∈ SpecR | X(p) 6= 0}.

When the R-module End∗T(X) is finitely generated, this coincides with the sup-
port, in the usual sense in commutative algebra, of the R-module End∗T(X); see
Proposition 4.2. For each p in SpecR, set

ΓpT = {X ∈ Tp | End∗Tp
(X)q = 0 for all q 6⊇ p}.

This is a thick subcategory of Tp. We say that T is stratified by the action of R if
for each p in SpecR, the category ΓpT admits no proper thick subcategory.

Theorem 7.4. Suppose that T is stratified by the action of R. For any pair of
objects X,Y in T one has

X ∈ Thick(Y ) ⇐⇒ suppRX ⊆ suppR Y,

Hom∗T(X,Y ) = 0 ⇐⇒ (suppRX) ∩ (suppR Y ) = ∅.
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There is a partial converse when the endomorphism rings of objects in T are
finitely generated R-modules: If T is not stratified, then there are objects in T
having the same support but generating different thick subcategories; see Proposi-
tion 7.5.

The proofs of Theorems 5.10 and 7.4 involve the category of cohomological func-
tors. Indeed, the R-action on T has an obvious extension to CohT, and based on
this we develop a theory of local cohomology and support for objects in CohT,
analogous to the one in [4] for compactly generated triangulated categories. This
forms the foundation for much of this work.

In order to illustrate these results and techniques, it is shown that the category of
perfect complexes over a commutative noetherian ring is stratified; this amounts to
a classical theorem of Hopkins [14] and Neeman [20]. Applications of the local-global
principle, Theorem 5.10, to the study of modules over locally complete intersections
and over integral group rings, will appear elsewhere.

Most ideas in this paper are taken from our previous work [4, 5, 6]; see also the
references given there for inspiration by other authors. However, the categorical
setting in this work is fundamentally different and the systematic use of the category
of cohomological functors in this context seems to be new. We do not work with a
compactly generated triangulated category having arbitrary coproducts, but instead
with an essentially small triangulated category. A brief comparison between these
two approaches can be found in the final section. Otherwise, references to previous
work are kept to a minimum.

2. Cohomological functors

In this section we introduce the category of cohomological functors on a triangu-
lated category and study its basic properties. For instance, we discuss base change
and a long exact sequence corresponding to a Verdier quotient.

Cohomological functors. Let T be an essentially small triangulated category
with suspension Σ: T

∼−→ T. Recall that a functor Top → Ab into the category of
abelian groups is cohomological if it takes exact triangles to exact sequences. We
denote by CohT the category of cohomological functors. Morphisms in CohT are
natural transformation and the Yoneda functor T→ CohT sending X ∈ T to

HX = HomT(−, X)

is fully faithful. The suspension Σ extends to a functor CohT
∼−→ CohT by taking

F in CohT to F ◦Σ−1; we denote this again by Σ.
It is convenient to view CohT as a full subcategory of the category ModT of all

additive functors Top → Ab. Note that (co)limits in ModT are computed pointwise.
For E and F in ModT we write Hom(E,F ) for the set of morphisms from E to F .
Thus Hom(HX , F ) ∼= F (X) for X in T, by Yoneda’s lemma.

Any additive functor F : Top → Ab can be written canonically as a colimit of
representable functors

(2.1) (colimHX→F HX)
∼−→ F

where the colimit is taken over the slice category T/F ; see [13, Proposition 3.4].
Objects in T/F are morphisms HX → F where X runs through the objects of T.

A morphism in T/F from HX
φ−→ F to HX′

φ′−→ F is a morphism α : X → X ′ in T
such that φ′Hα = φ.

A theorem of Lazard says that a module is flat if and only if it is a filtered colimit
of finitely generated free modules; this has been generalised to functor categories
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by Oberst and Röhrl [22]. The following lemma shows that cohomological and flat
functors agree; this is well-known, for instance from [19, Lemma 2.1].

Lemma 2.2. The cohomological functors Top → Ab are precisely the filtered col-
imits of representable functors (in the category of additive functors Top → Ab). In
particular, the category CohT has filtered colimits.

Sketch of proof. A filtered colimit of exact sequences is again exact. Thus a filtered
colimit of representable functors is cohomological. Conversely, given a cohomolog-
ical functor F , one easily checks that the slice category T/F is filtered. Thus (2.1)
gives a presentation of F as a filtered colimit of representable functors. �

We say that a sequence of morphisms in CohT is exact provided that evaluation
at each object in T yields an exact sequence in Ab.

Lemma 2.3. The category CohT is an exact category in the sense of Quillen; it
admits enough projective and enough injective objects.

Proof. The cohomological functors form an extension closed subcategory of ModT
containing all projective objects and all injective objects. This is clear for the
projective objects and follows easily from Yoneda’s lemma for the injectives. �

Exact functors. Let T and U be essentially small triangulated categories. A
functor P : CohT → CohU is said to be exact if it takes exact sequences to exact
sequences and if there is a natural isomorphism P ◦Σ

∼−→ Σ ◦P .
An exact functor f : T→ U induces a pair of functors

f∗ : CohT −→ CohU and f∗ : CohU −→ CohT

where f∗(F ) = colimHX→F Hf(X) and f∗(G) = G ◦ f . The next lemma collects
some of their basic properties. Recall that a triangulated subcategory is a full
additive subcategory closed under forming cones and suspensions. The functor f
is a quotient functor when it is equivalent to the canonical functor T→ T/S given
by a triangulated subcategory S ⊆ T.

Lemma 2.4. Let f : T→ U be an exact functor between essentially small triangu-
lated categories.

(1) The functor f∗ is a left adjoint of f∗.
(2) The functors f∗ and f∗ are exact and preserve filtered colimits.

(3) If f is fully faithful, then f∗ is fully faithful and Id
∼−→ f∗ ◦ f∗.

(4) If f is a quotient functor, then f∗ is fully faithful and f∗ ◦ f∗
∼−→ Id.

Proof. (1) Given F ∈ CohT and G ∈ CohU, we claim that

Hom(f∗F,G) ∼= Hom(F, f∗G).

When F is representable this is immediate from Yoneda’s lemma. The general case
then follows since F can be written as a colimit of representable functors.

(2) Clearly, f∗ is exact and preserves filtered colimits. A left adjoint, in particu-
lar, f∗, automatically preserves colimits. The exactness of f∗ follows from the fact
that f is exact; see [16, Lemma 2.2].

(3) We use the fact that for any pair (S, T ) of adjoint functors, the left adjoint
S is fully faithful iff the unit Id → T ◦S is invertible; see [12, Proposition 1.3]. If
f is fully faithful, then F ∼= (f∗ ◦ f∗)(F ) for any representable functor F , and the
general case follows by taking filtered colimits.

(4) If f is a quotient functor, then f∗ is fully faithful; see [12, Lemma 1.2]. Thus
the counit f∗ ◦ f∗ → Id is invertible, by the argument dual to the one in (3). �
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Remark 2.5. Observe that when f∗ is fully faithful so is f , since the Yoneda em-
bedding of T into CohT is fully faithful. However, there are examples where f∗ is
fully faithful but f is not a quotient functor; see [17, Example 7.4].

Triangulated subcategories. Let S ⊆ T be a triangulated subcategory. We write
i : S→ T for the inclusion and q : T→ T/S for the corresponding quotient functor.
Henceforth we view Coh S and CohT/S as full subcategories of CohT, via i∗ and q∗
respectively. More specifically, there are identifications

Coh S = {F ∈ CohT | F = colimαHXα with all Xα ∈ S},
CohT/S = {F ∈ CohT | F |S = 0}.

The second identification follows from the universal property of the quotient T/S
[26, Chap. II, Cor. 2.2.11]. Here is a useful recognition criterion for objects in Coh S.

Lemma 2.6. Let S ⊆ T be a triangulated subcategory. Then F ∈ CohT belongs to
Coh S iff each morphism HX → F with X ∈ T factors through HY for some Y ∈ S.

Proof. As in (2.1), we write F as a filtered colimit

F = colimHX→F HX .

Then the assertion is an immediate consequence of the following lemma, applied
with C′ and C the slice categories S/F and T/F , respectively. �

Lemma 2.7. Let i : C′ → C be a fully faithful functor with C a small filtered
category. Suppose that for any X ∈ C there is an object Y ∈ C′ and a morphism
X → iY . Then C′ is a small filtered category, and for any functor F : C→ D into
a category which admits filtered colimits, the natural morphism

colimY ∈C′ F (iY ) −→ colimX∈C F (X)

is an isomorphism.

Proof. See [13, Proposition 8.1.3]. �

Localisation. Let S ⊆ T be a triangulated subcategory. With i : S → T and
q : T→ T/S the canonical functors, set

(2.8) Γ = i∗ ◦ i∗ and L = q∗ ◦ q∗.

These are exact functors on CohT. By definition, for any F ∈ CohT one has

(2.9) ΓF = colimHS→F HomT(−, S)

where the colimit is taken over the slice category S/F , which is filtered because S
is a triangulated subcategory.

Proposition 2.10. In CohT each object F fits into a functorial exact sequence

(2.11) · · · −→ Σ−1(LF ) −→ ΓF −→ F −→ LF −→ Σ(ΓF ) −→ ΣF −→ · · ·

Moreover, any exact sequence

(2.12) · · · −→ Σ−1F ′′ −→ F ′ −→ F −→ F ′′ −→ ΣF ′ −→ ΣF −→ · · ·

in CohT with F ′ ∈ Coh S and F ′′ ∈ CohT/S is isomorphic to (2.11).
For F = HomT(−, X), the sequence (2.11) specialises to

(2.13) · · · −→ HomT/S(−,Σ−1X) −→ colimS→X HomT(−, S) −→
−→ HomT(−, X) −→ HomT/S(−, X) −→ · · ·
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Proof. Fix an object X in T. Specialising (2.9) one gets that

Γ HomT(−, X) = colimS→X HomT(−, S)

This functor fits into an exact sequence of cohomological functors of the form (2.13)
since one has by definition

HomT/S(−, X) = colimX→Y HomT(−, Y )

whereX → Y runs through all morphisms with cone in S. The sequence is functorial
and hence yields an exact sequence for each filtered colimit of representable functors.
This justifies (2.11).

Given another sequence (2.12), we apply the exact functor L and obtain the
following commuting diagram.

· · · // F ′ //

��

F //

��

F ′′ //

��

ΣF ′ //

��

· · ·

· · · // LF ′ // LF // LF ′′ // L(ΣF ′) // · · ·

The morphism F → F ′′ is isomorphic to F → LF , since LF ′ = 0 = Σ(LF ′) and

F ′′
∼−→ LF ′′. Analogously, an application of Γ shows that F ′ → F is isomorphic to

ΓF → F . This yields an isomorphism between (2.11) and (2.12). �

The functor L from (2.8) is a localisation functor1, while Γ is a colocalisation
functor2, and the functorial exact sequence (2.11) is called the localisation sequence
for S ⊆ T. In the following we consider the case that one of the natural morphisms
ΓF → F and F → LF is an isomorphism.

Corollary 2.14. Let S ⊆ T be a triangulated subcategory and F ∈ CohT. Then

F ∈ Coh S ⇐⇒ ΓF ∼= F ⇐⇒ LF = 0,

F ∈ CohT/S ⇐⇒ F ∼= LF ⇐⇒ ΓF = 0. �

A pair (U,V) of full subcategories of an additive category forms a torsion pair
provided that the inclusion of U admits a right adjoint, the inclusion of V admits a
left adjoint, U = {X | Hom(X,Y ) = 0 for all Y ∈ V}, and V = {Y | Hom(X,Y ) =
0 for all X ∈ U}.

Corollary 2.15. Let S ⊆ T be a triangulated subcategory. Then Coh S and CohT/S
form a torsion pair in CohT. Thus

CohT/S = {F ∈ CohT | Hom(E,F ) = 0 for all E ∈ Coh S},
Coh S = {F ∈ CohT | Hom(F,G) = 0 for all G ∈ CohT/S}.

Proof. We have already seen in Lemma 2.4 that the inclusion of Coh S admits a
right adjoint while the inclusion of CohT/S admits a left adjoint. For the first
equality, observe that Hom(E,F ) = 0 for all E ∈ Coh S means that F (X) = 0 for
all X ∈ S. This is equivalent to ΓF = 0, and therefore to F ∈ CohT/S. For the
second equality, it remains to show that Hom(F,G) = 0 for all G ∈ CohT/S implies
F ∈ Coh S. The assumption on F implies LF = 0 since L = q∗ ◦ q∗ and

Hom(q∗F, q∗F ) ∼= Hom(F, (q∗ ◦ q∗)F ) = 0.

Thus F belongs to Coh S. �

1The natural morphism η : Id → L has the property that Lη is invertible and Lη = ηL.
2The natural morphism θ : Γ → Id has the property that Γθ is invertible and Γθ = θΓ .
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In general, (co)localisation functors do note commute; see [4, Example 3.5]. The
following lemma identifies some conditions under which they do.

Lemma 2.16. Let S1 ⊆ S2 ⊆ T be triangulated subcategories and let (Γ1, L1)
and (Γ2, L2) be the corresponding pairs of (co)localisation functors on CohT. The
morphisms in (2.11) induce isomorphisms

Γ1Γ2
∼= Γ1

∼= Γ2Γ1, L1L2
∼= L2

∼= L2L1, Γ1L2 = 0 = L2Γ1, Γ2L1
∼= L1Γ2.

Proof. Apply the localisation sequence (2.11). �

This has the following useful consequence.

Corollary 2.17. Given thick subcategories S1 and S2 of T, one has

S1 ⊆ S2 ⇐⇒ Coh S1 ⊆ Coh S2. �

3. Cohomological localisation

In this section we introduce cohomological localisation functors for categories
of cohomological functors and explain how to compute these functors in terms of
Koszul objects. These are analogues of results in [4, §§4–6].

Let T be an essentially small triangulated category. For objects X,Y in T set

Hom∗T(X,Y ) =
⊕
n∈Z

HomT(Σ−nX,Y ).

More generally, each F in ModT induces a functor F ∗ : Top → Ab∗ into the category
of graded abelian groups, with

Fn(X) = F (Σ−nX) for each n ∈ Z.

Central ring actions. Let R be a graded commutative ring; thus R is Z-graded
and satisfies rs = (−1)|r||s|sr for each pair of homogeneous elements r, s in R. We
say that T is R-linear, or that R acts on T, if there is a homomorphism φ : R →
Z∗(T) of graded rings, where

Z∗(T) =
⊕
n∈Z
{η : IdT → Σn | ηΣ = (−1)nΣη}

is the graded centre of T. For each object X in T this yields a homomorphism
φX : R→ End∗T(X) of graded rings such that for all objects X,Y ∈ T the R-module
structures on Hom∗T(X,Y ) induced by φX and φY agree up to a sign. Namely, for
any homogeneous elements r ∈ R and α ∈ Hom∗T(X,Y ), one has

φY (r)α = (−1)|r||α|αφX(r).

Here are some examples.

Example 3.1. (1) Any triangulated category admits a canonical action of Z.
(2) The derived category of a ring A has a canonical action of the centre of A.
(3) If A is an algebra over a field k, the derived category of A has a canonical

action of the Hochschild cohomology of A over k.
(4) Given a finite dimensional Hopf algebra H over a field k (for example, the

group algebra of a finite group), the derived category of H (and hence also the
stable module category) has a canonical action of the k-algebra Ext∗H(k, k).

We fix an action of R on T. The following observations will be used repeatedly.

Remark 3.2. The R-action on T induces an action on any triangulated subcategory
S ⊆ T and on the quotient T/S, compatible with the inclusion and quotient functors,
respectively. It also extends to an action on ModT.
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Torsion objects. The set of homogeneous prime ideals of R is denoted SpecR.
For a homogeneous ideal a of R we set

V(a) = {p ∈ SpecR | a ⊆ p}.
Let V be a specialisation closed subset of SpecR; this condition means that if V
contains a prime p, then it contains everything in V(p). An R-module M is V-
torsion if Mp = 0 for each p ∈ SpecR \ V. Note that M is V(a)-torsion if and only
if each r ∈ a and x ∈M satisfy rnx = 0 for n� 0.

A functor F ∈ CohT is V-torsion if F ∗(X) is V-torsion for all X ∈ T. The full
subcategory of all V-torsion functors is denoted by (CohT)V . Analogously, an object
Y ∈ T is V-torsion if End∗T(Y ) is V-torsion. This means the functor HomT(−, Y )
is V-torsion, since for each X ∈ T the R-action on Hom∗T(X,Y ) factors through
End∗T(Y ). Set

TV = {X ∈ T | End∗T(X)p = 0 for all p ∈ SpecR \ V}.
Note that TV is a thick subcategory of T. Recall that we view Coh(TV) as a full
subcategory of CohT. It follows from the definitions that there is an inclusion

(3.3) Coh(TV) ⊆ (CohT)V .

Equality holds when R is noetherian; see Corollary 4.4, and also Propositions 3.6
and 3.10. Following the definition in (2.8), the inclusion TV ⊆ T induces functors

ΓV , LV : CohT −→ CohT,

where ΓV is a colocalisation functor and LV is a localisation functor. Note that
these functors are exact and preserve filtered colimits.

Inverting central elements. Given a homogeneous element r ∈ R of degree d

and X ∈ T, we write X//r for the cone of the morphisms X
r−→ ΣdX. This definition

yields the following exact sequence.

(3.4) · · · −→ HX
±r−−−→ HΣdX −→ HX//r −→ HΣX

±r−−−→ HΣd+1X −→ · · ·
In particular, inverting r in T is equivalent to annihilating X//r for all X ∈ T.

Let Φ be a multiplicatively closed set of homogeneous elements in R. The fol-
lowing lemma describes the quotient functor for T that inverts the elements of Φ.
We consider the specialisation closed set

Z(Φ) = {p ∈ SpecR | p ∩ Φ 6= ∅}.
Given an R-module M , we write M [Φ−1] for the localisation of M with respect to
Φ. Note that M is Z(Φ)-torsion iff M [Φ−1] = 0.

The following lemma is a variation of known results; see for instance [2, Theo-
rem 3.6] or [15, Theorem 3.3.7].

Lemma 3.5. Let Φ be a multiplicatively closed set of homogeneous elements in R
and T′ ⊆ T a subcategory satisfying Thick(T′) = T. Then there is an equality

TZ(Φ) = Thick({X//r | X ∈ T′, r ∈ Φ}),
and the quotient functor T→ T/TZ(Φ) induces a natural isomorphism

Hom∗T(X,Y )[Φ−1]
∼−→ Hom∗T/TZ(Φ)

(X,Y )

for all objects X,Y in T.

Proof. Set S = Thick({X//r | X ∈ T′, r ∈ Φ}) and U = T/S. We claim:

(1) If X or Y is in S, then Hom∗T(X,Y )[Φ−1] = 0.
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(2) For any X,Y in T, the natural morphism Hom∗T(X,Y ) → Hom∗U(X,Y )
induces an isomorphism

Hom∗T(X,Y )[Φ−1]
∼−→ Hom∗U(X,Y ).

Indeed, (1) follows from (3.4). Given this, it follows from the exact sequence (2.13)
that the morphism in (2) induces an isomorphism

Hom∗T(X,Y )[Φ−1]
∼−→ Hom∗U(X,Y )[Φ−1].

On the other hand, Φ acts invertibly on Hom∗U(X,Y ), that is to say,

Hom∗U(X,Y )
∼−→ Hom∗U(X,Y )[Φ−1].

It suffices to check this claim for all Y ∈ T′, and then it is clear from (3.4). Com-
bining both isomorphisms yields (2), and completes the proof of the claims.

It remains to observe that X ∈ T is Z(Φ)-torsion iff End∗T(X)[Φ−1] = 0; given
(2) above, the latter condition translates to X = 0 in U. Thus TZ(Φ) = S. �

Let Φ be a multiplicatively closed set. We define a functor

LΦ : CohT −→ CohT

by taking F in CohT to F [Φ−1] given by F [Φ−1]∗(X) = F ∗(X)[Φ−1] for X ∈ T.
It is easy to verify that this is an exact localisation functor; the corresponding
colocalisation functor is denoted ΓΦ.

Proposition 3.6. There is a natural isomorphism LΦ
∼−→ LZ(Φ) and hence

Coh(TZ(Φ)) = (CohT)Z(Φ).

Proof. Lemma 3.5 yields the isomorphism for representable functors, and the gen-
eral case follows since LΦ and LZ(Φ) preserve filtered colimits. �

Localisation at a prime ideal. Let p be a homogeneous prime ideal of R. Thus
R \ p is a multiplicatively closed subset and

Z(R \ p) = {q ∈ SpecR | q 6⊆ p}.

Set

Tp = T/TZ(R\p)

and let Xp denote the image of an object X in T under the natural functor T→ Tp.
This quotient category is described in Lemma 3.5. Thus for all X,Y ∈ T there is a
natural isomorphism

Hom∗T(X,Y )p ∼= Hom∗Tp
(Xp, Yp).

It follows from Proposition 3.6 that the localisation functor

CohT −→ CohT, F 7→ Fp,

defined by (Fp)∗(X) = F ∗(X)p is isomorphic to LZ(R\p). A functor F ∈ CohT is
called p-local if F ∼= Fp, and (CohT)p denotes the full subcategory formed by all
p-local functors. Proposition 3.6 yields an identification

(3.7) Coh(Tp) = (CohT)p.
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Koszul objects. Fix a homogeneous element r ∈ R of degree d. For each X in T
and each integer n set Xn = ΣndX and consider the commuting diagram

X

r

��

X

r2

��

X

r3

��

· · ·

X1

��

r // X2

��

r // X3

��

r // · · ·

X//r // X//r2 // X//r3 // · · ·

where each vertical sequence is given by the exact triangle defining X//rn, and the
morphisms in the last row are the (non-canonical) ones induced by the commuta-
tivity of the upper squares.

Lemma 3.8. Let r ∈ R be a homogeneous element of degree d.

(1) For F ∈ CohT, the colimit of the sequence

F
r−→ ΣdF

r−→ Σ2dF
r−→ Σ3dF

r−→ · · ·

is naturally isomorphic to LV(r)F .
(2) For X ∈ T, the colimit of the sequence

HΣ−1X//r1 −→ HΣ−1X//r2 −→ HΣ−1X//r3 −→ · · ·

is naturally isomorphic to ΓV(r)HX .

Proof. The colimit construction in (1) yields a functor CohT → CohT; we claim
that it is isomorphic to LV(r). It suffices to prove this for representable functors as
both functors preserve filtered colimits. When F = HX one has an exact sequence

· · · −→ colimHΣ−1X//rn −→ HX −→ colimHXn −→ colimHX//rn −→ · · ·

where r acts invertibly on colimHXn while colimHX//rn is V(r)-torsion. Thus the
sequence is isomorphic to the localisation sequence for TV(r) ⊆ T, by Proposi-
tions 2.10 and 3.6. �

Let a be a finitely generated homogeneous ideal of R and X ∈ T. Pick a sequence
of elements r1, . . . , rn in R that generate the ideal a and define inductively

X0 = X and Xi = Xi−1//ri for 1 ≤ i ≤ n.

We call Xn a Koszul object of X with respect to a, and denote it X//a. This
depends on a choice of a sequence of generators for a, so our notation is ambiguous.
However, there is the following uniqueness result.

Lemma 3.9. There is an equality

Thick(X//a) = {Y ∈ Thick(X) | End∗T(Y )p = 0 for all p 6⊇ a}.

Proof. When a is generated by a single element the desired statement follows from
Lemma 3.5, applied to T = Thick(X). An iteration settles the general case. �

Proposition 3.10. Let a be a finitely generated homogeneous ideal of R. Then

TV(a) = Thick({X//a | X ∈ T}) and Coh(TV(a)) = (CohT)V(a).

Moreover, the objects of TV(a) are precisely the direct summands of Koszul objects

X//b with X ∈ T and b an ideal of R satisfying
√
b =
√
a.
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Proof. Set S = Thick({X//a | X ∈ T}). It suffices to show that

Coh(TV(a)) ⊆ (CohT)V(a) ⊆ Coh S ⊆ Coh(TV(a)).

From this the first part of the assertion follows. The fact that all objects in TV(a)

are direct summands of Koszul objects follows from the proof.
The first inclusion is by definition and the last follows from Lemma 3.9. To verify

the inclusion in the middle, it suffices to show that for any F ∈ (CohT)V(a) each
morphism φ : HX → F with X in T factors through a morphism HX → HY with
Y in S; see Lemma 2.6. To this end, let r1, . . . , rn be a sequence of elements that
generate the ideal a. Starting with X0 = X and φ0 = φ, we construct factorisations

φi−1 : HXi−1
−→ HXi

φi−→ F

for i = 1, 2, . . . , n. The assumption on F implies that each φi−1 is annihilated by
rαii , for some αi ≥ 1. Thus we set

Xi = Σ−αi|ri|Xi−1//r
αi
i .

The object Y = Xn is the desired object; it belongs to S by Lemma 3.9. �

Composition laws. We show that cohomological localisation and colocalisation
functors commute; see Lemma 2.16 for related commutation rules.

Lemma 3.11. Let Φ and Ψ be multiplicatively closed sets of homogeneous elements
in R. Then

LΦ ◦LΨ
∼= LΨ ◦LΦ, LΦ ◦ΓΨ

∼= ΓΨ ◦LΦ, ΓΦ ◦ΓΨ
∼= ΓΨ ◦ΓΦ.

Proof. The first isomorphism is clear since localising R-modules with respect to Φ
and Ψ commutes. We consider the exact localisation sequence

EΨ : · · · // ΓΨ
// Id // LΨ

// · · ·

and the pair of morphisms

(LΦEΨ) −→ (LΦEΨ)LΦ = LΦ(EΨLΦ)←− (EΨLΦ).

This yields the following commutative diagram with exact rows.

· · · // LΦΓΨ
//

��

LΦ
//

��

LΦLΨ
//

��

· · ·

· · · // LΦΓΨLΦ
// LΦLΦ

// LΦLΨLΦ
// · · ·

· · · // ΓΨLΦ
//

OO

LΦ
//

OO

LΨLΦ
//

OO

· · ·

In two of three columns the vertical morphisms are isomorphisms. Thus the five
lemma implies that LΦΓΨ

∼= ΓΨLΦ. A similar argument based on the pair of
morphisms EΨΓΦ ← ΓΦEΨΓΦ → ΓΦEΨ is used to deduce the third isomorphism
ΓΦΓΨ

∼= ΓΨΓΦ from the second. �

Next observe for a multiplicatively closed set Φ = {ri | i ∈ N} that Z(Φ) = V(r)
and so ΓΦ

∼= ΓV(r) by Proposition 3.6.

Lemma 3.12. Let a and b be finitely generated homogeneous ideals of R. Then

ΓV(a) ◦ΓV(b)
∼= ΓV(a)∩V(b).
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Proof. It suffices to show for a generated by homogeneous elements r1, . . . , rn that

ΓV(a) = ΓV(rn) ◦ . . . ◦ΓV(r1).

We prove this assertion by induction on n. Let a′ = (r1, . . . , rn−1). We know
from Lemma 3.11 that the ΓV(ri) commute. Thus ΓV(a′)ΓV(rn)

∼= ΓV(rn)ΓV(a′) by
the induction hypothesis. Using Proposition 3.10, it follows that the image of
ΓV(rn)ΓV(a′) belongs to

Coh(TV(rn)) ∩ Coh(TV(a′)) = (CohT)V(rn) ∩ (CohT)V(a′)

= (CohT)V(a)

= Coh(TV(a)).

Therefore LV(a)(ΓV(rn)ΓV(a′)) = 0. On the other hand, ΓV(a)(ΓV(rn)ΓV(a′)) = ΓV(a).
The exact localisation sequence (2.11) yields the following exact sequence

· · · → ΓV(a)(ΓV(rn)ΓV(a′))→ ΓV(rn)ΓV(a′) → LV(a)(ΓV(rn)ΓV(a′))→ · · ·
and therefore ΓV(a)

∼= ΓV(rn)ΓV(a′). �

Corollary 3.13. Let a be a finitely generated homogeneous ideal, and p a homoge-
neous prime ideal, of R. For each F ∈ CohT, there is a natural isomorphism

(ΓV(a)F )p ∼= ΓV(a)(Fp).

Proof. Apply Lemmas 3.11 and 3.12. �

4. Support

In this section, we define the support of a cohomological functor and establish
some useful rules for computing it; the development parallels the one in [4, §5].

Let R be a graded commutative ring and T be an essentially small R-linear
triangulated category. From now on we assume R to be noetherian.

Support. For each F in CohT and p in SpecR set

ΓpF = ΓV(p)(Fp).

Then Γp is an exact functor on CohT that preserves filtered colimits. The subset

suppR F = {p ∈ SpecR | ΓpF 6= 0}
is called the support of F .

Proposition 4.1. Let F ∈ CohT. Then suppR F = ∅ if and only if F = 0.

Proof. Clearly, suppR F = ∅ when F = 0. Suppose F is non-zero. Recall that if an
R-module M is non-zero, then there exists a p ∈ SpecR such that Mp 6= 0. Choose
a prime p that is minimal subject to the condition that Fp 6= 0. Then for all primes
q properly contained in p and all X ∈ T, one has

Fp(X)q ∼= F (X)q = 0.

Hence Fp(X) is V(p)-torsion, by [18, Theorem 6.5]; that is to say, Fp is V(p)-torsion.
It then follows from Proposition 3.10 that Fp is in Coh(TV(p)), so the natural map
ΓpF → Fp is an isomorphism. As Fp 6= 0, one gets that p is in suppR F . �

We can compute the support of the representable functors as follows.

Proposition 4.2. Let X be an object in T. Then

suppRHX ⊆ {p ∈ SpecR | End∗T(X)p 6= 0},
and equality holds when End∗T(X) is finitely generated over R.
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Proof. The inclusion holds because (HX)p = 0 iff End∗T(X)p = 0. Now suppose
that End∗T(X)p 6= 0 and that End∗T(X) is finitely generated. Then Xp 6= 0, and
an application of Nakayama’s lemma gives Xp//p 6= 0; see [4, Lemma 5.11]. The
functor HXp//p is V(p)-torsion by Lemma 3.9. It is also p-local, so one gets

ΓpHX//p = ΓV(p)HXp//p = HXp//p 6= 0.

Hence p is in suppRHX . �

Composition laws. Computing support is compatible with cohomological locali-
sation and colocalisation.

Proposition 4.3. Let V ⊆ SpecR be a specialisation closed subset. For each
F ∈ CohT the following equalities hold

suppR ΓVF = V ∩ suppR F,

suppR LVF = (SpecR \ V) ∩ suppR F.

Proof. If p 6∈ V then (ΓVF )p = 0, since ΓVF is V-torsion. Thus suppR ΓVF ⊆ V.
If p ∈ V then TV(p) ⊆ TV , hence ΓV(p)ΓV = ΓV(p); see Lemma 2.16. This gives the
second equality below:

Γp(ΓVF ) = (ΓV(p)ΓVF )p = (ΓV(p)F )p = ΓpF,

while the other two are by Corollary 3.13. Thus

suppR ΓVF = V ∩ suppR ΓVF = V ∩ suppR F.

This proves the first equality; the proof of the second is similar. �

The following result says that a V-torsion functor is a colimit of representable
functors defined by V-torsion objects.

Corollary 4.4. Let V ⊆ SpecR be specialisation closed. Then Coh(TV) = Coh(T)V .

Proof. It suffices to prove that Coh(T)V ⊆ Coh(TV); confer (3.3). Fix F ∈ (CohT)V .
For any p 6∈ V, one has Fp = 0, and hence ΓpF = 0, that is to say, suppR F ⊆ V.
Proposition 4.3 then implies that LVF = 0 and it follows from (2.11) that the
natural map ΓVF → F is an isomorphism. This is the desired result. �

Corollary 4.5. Let V and W be specialisation closed subsets of SpecR. Then

ΓVΓW ∼= ΓV∩W ∼= ΓWΓV , LVLW ∼= LV∪W ∼= LWLV , ΓVLW ∼= LWΓV .

Proof. Given Proposition 4.3, one can argue as for [4, Proposition 6.1]. �

Corollary 4.6. Let p ∈ SpecR, and let V and W be specialisation closed subsets
of SpecR such that V \W = {p}. Then

LWΓV ∼= Γp
∼= ΓVLW .

Proof. Given Proposition 4.3, one can argue as in the proof of [4, Theorem 6.2]. �

Corollary 4.7. Let p ∈ SpecR and F ∈ CohT. Then suppR ΓpF ⊆ {p}.

Proof. Combine Proposition 4.3 and Corollary 4.6. �
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Colimits. The following result can be used to reduce computations involving spe-
cialisation closed subsets to those involving closed sets; it is an analogue of [24,
Lemma 6.6] in the compactly generated context.

Lemma 4.8. Let V =
⋃
α Vα be a directed union of specialisation closed subsets of

SpecR. Then

colimΓVα
∼−→ ΓV and colimLVα

∼−→ LV .

Proof. We make repeated use of Proposition 4.1. Since ΓVαΓV = ΓVα , it follows
from the localisation sequence (2.11) that the natural morphism colimΓVα → ΓV
fits into an exact sequence

· · · −→ colimΓVα −→ ΓV −→ colimLVαΓV −→ · · ·
We claim that colimLVαΓV = 0. Indeed, Γp commutes with filtered colimits so the
claim is that colim(ΓpLVαΓV) = 0 for each p in SpecR. Proposition 4.3 and its
corollaries yield

suppR(ΓpLVαΓVF ) ⊆ {p} ∩ (SpecR \ Vα) ∩ V
for each F in CohT. Thus, if p 6∈ V, then evidently ΓpLVαΓV = 0. Assume p ∈ V.
When p ∈ Vα as well, it again follows from the equality above that ΓpLVαΓV = 0.
Since V is directed union of the Vα, the desired vanishing follows.

This proves the claim. The exact sequence above then yields the isomorphism
involving ΓV . The assertion for LV follows, using again (2.11). �

5. The local-global principle

Let R be a noetherian graded commutative ring and T be an essentially small
R-linear triangulated category. In this section we establish a local-global principle
for CohT, analogous to the one in [5, §3]. A local-global principle for T then follows.

Localising subcategories. We call a full subcategory of CohT localising if it
is closed under forming coproducts, extensions, and suspensions. Here, F is an
extension of F ′ and F ′′ if there is an exact sequence F ′ → F → F ′′ in CohT.
Any localising subcategory is closed under subobjects and quotient objects; this
follows by specialising F ′ = 0 or F ′′ = 0. In particular, a localising subcategory
is closed under filtered colimits. The smallest localising subcategory containing a
subcategory C of T is denoted Loc(C).

The following lemma provides some basic properties of localising subcategories;
they will be used without further mention. The argument is straightforward.

Lemma 5.1. Let P : CohT→ CohU be an exact functor that preserves coproducts.

(1) If C ⊆ CohU is localising, then {F ∈ CohT | P (F ) ∈ C} is a localising
subcategory of CohT. In particular, the kernel

Ker(P ) = {F ∈ CohT | P (F ) = 0}
is a localising subcategory of CohT.

(2) Any subcategory C ⊆ CohT satisfies P (Loc(C)) ⊆ Loc(P (C)). �

We provide important examples of localising subcategories.

Lemma 5.2. Let S ⊆ T be a triangulated subcategory. Then Coh S and CohT/S
are localising when viewed as subcategories of CohT.

Proof. From Corollary 2.14 it follows that Coh S equals the kernel of the functor L,
while CohT/S equals the kernel of the functor Γ . It remains to observe that both
functors are exact and preserve coproducts, by Lemma 2.4. �
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Proposition 5.3. Let V be a specialisation closed subset of SpecR and F ∈ CohT.
Then ΓVF and LVF belong to Loc(F ).

Proof. From the localisation sequence (2.11) it follows that it suffices to prove this
for ΓV . The assertion follows from Lemmas 3.8 and 3.12 when V = V(a) for some
ideal a. The general case then follows from Lemma 4.8. �

Lemma 5.4. Let X ∈ T and a be a homogeneous ideal of R. Then

Loc(HX) = CohThick(X) and Loc(ΓV(a)HX) = Loc(HX//a).

Proof. Both assertions use the following observation:

Y ∈ Thick(X) =⇒ HY ∈ Loc(HX).

From this it follows that CohThick(X) ⊆ Loc(HX), while the reverse inclusion is
by Lemma 5.2. This settles the first of the desired equalities.

For the second one, note that ΓV(r)HX ∈ Loc(HX//r) for any homogeneous ele-
ment r ∈ R, by Lemma 3.8. Thus an induction on the number of generators of a
shows that ΓV(a)HX ∈ Loc(HX//a). Conversely, HX//a belongs to Loc(HX), by the
observation above, so ΓV(a)HX//a

∼= HX//a belongs to Loc(ΓV(a)HX). �

The local-global principle. The following result is the analogue of a local-global
principle for compactly generated triangulated categories [5, Theorem 3.1].

Theorem 5.5 (Local-global principle). Let F ∈ CohT. Then

Loc(F ) = Loc({ΓpF | p ∈ SpecR}) = Loc({Fp | p ∈ SpecR}).

Proof. The idea for this proof is taken from [20, Lemma 2.10].
It follows from Proposition 5.3 that ΓpF and Fp belong to Loc(F ).
Now we set C = Loc({ΓpF | p ∈ SpecR}) and prove that F ∈ C. Consider the

set of specialisation closed subsets W of SpecR such that ΓWF ∈ C. This set is
non-empty, for it contains the empty set, and it is closed under directed unions by
Lemma 4.8. Thus it has a maximal element, say V, by Zorn’s lemma. We claim
that V = SpecR. To this end assume V 6= SpecR and choose a prime ideal p
maximal in the subset SpecR \ V. The subset V ∪ {p} is then specialisation closed.
Consider the localisation sequence with respect to V:

· · · −→ ΓVΓV∪{p}F −→ ΓV∪{p}F −→ LVΓV∪{p}F −→ · · ·

Corollaries 4.5 and 4.6 yield that ΓV ∼= ΓVΓV∪{p} and Γp
∼= LVΓV∪{p}. Hence the

terms on the left and on the right of the localisation sequence are in C, and hence
so is the one in the middle, ΓV∪{p}F . This contradicts the maximality of V and
yields the first equality.

The second equality follows from the first since ΓpF = ΓV(p)(Fp) ∈ Loc(Fp) for
each prime p, by Proposition 5.3. �

Recall that the R-action on T induces an action on any triangulated subcategory
S ⊆ T and on T/S. It is not hard to see that the induced functor Sp → Tp is exact,
full, and faithful. For this reason, we view Sp as a triangulated subcategory of Tp.

Lemma 5.6. Let S ⊆ T be a triangulated subcategory and p ∈ SpecR. Then the
canonical functor Tp → (T/S)p induces an equivalence of triangulated categories

Tp/Sp
∼−→ (T/S)p.
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Proof. Consider the commutative diagrams below. The one on the left is clear from
the constructions and induces the one on the right.

T
f
//

p

��

T/S

q

��

Tp

fp
// (T/S)p

CohT oo
f∗

OO

p∗

CohT/S
OO

q∗

Coh(Tp) oo
(fp)∗

Coh(T/S)p

Since f and q are quotient functors, so is their composition qf . Then fpp and p are
quotient functors, and from this it is not hard to verify that so is fp. We claim that
its kernel consists precisely of direct summands of objects of Sp, and the statement
would then follow.

As to the claim: In the display above, the functors in the square on the right
are all fully faithful, since they are induced by quotient functors. Hence we view all
the categories in the diagram as subcategories of CohT. Recall from Corollary 2.14
that Ker(f∗) = Coh S. Using (3.7) it follows that Ker(f∗p ) = Coh(Sp). In particular,
for an object X ∈ Tp, one has fp(X) = 0 iff f∗p (HX) = 0 iff X is a direct summand
of an object in Sp; the second equivalence is by Lemma 2.6. This justifies the
claim. �

For p ∈ SpecR we set ΓpT = (Tp)V(p). This yields the following diagram

T // // Tp ΓpToooo

and henceforth we make the identification

CohΓpT = (CohT)p ∩ (CohT)V(p).

Corollary 5.7. Taking a localising subcategory C ⊆ CohT to the family

(C ∩ CohΓpT)p∈SpecR

induces a bijection between

– the localising subcategories of CohT, and
– the families (C(p))p∈SpecR with C(p) a localising subcategory of CohΓpT.

Proof. The inverse map takes a family (C(p))p∈SpecR to the smallest localising
subcategory of CohT containing all C(p). �

Remark 5.8. There is an analogue of Corollary 5.7 for thick subcategories of T
since each thick subcategory S ⊆ T is determined by the localising subcategory
Coh S ⊆ CohT; see Lemma 5.2.

Consequences of the local-global principle. For X ∈ T and p ∈ SpecR, we
set X(p) = (X//p)p and identify this with (Xp)//p. Note that Lemma 5.4 implies

(5.9) Loc(ΓpHX) = Loc(HX(p)).

The following is the local-global principle for T announced in the introduction.

Theorem 5.10 (Local-global principle). Let S be a thick subcategory of T. Then
the following conditions are equivalent for an object X in T:

(1) X belongs to S.
(2) Xp belongs to Thick(Sp) for each p ∈ SpecR.
(3) X(p) belongs to Thick(Sp) for each p ∈ SpecR.
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Proof. Evidently (1) ⇒ (2) and (2) ⇒ (3).
Assume (3) holds. We work in CohT. For each p ∈ SpecR, the hypothesis

implies the first inclusion below:

HX(p) ∈ Coh(Sp) = (Coh S)p ⊆ Coh S.

The equality is by Proposition 3.6. Thus ΓpHX ∈ Coh S for all p, by (5.9). It
follows from Theorem 5.5 that HX belongs to Coh S, and hence that X ∈ S. �

Theorem 5.11. For any pair of objects X,Y in T the following holds:

Hom∗T(X,Y ) = 0 ⇐⇒ Hom∗Tp
(Xp, Yp) = 0 for all p ∈ SpecR

⇐⇒ Hom∗Tp
(X(p), Y (p)) = 0 for all p ∈ SpecR.

Proof. Let S = Thick(X). Then Theorem 5.5 yields the following equivalences:

Hom∗T(X,Y ) = 0 ⇐⇒ HY ∈ CohT/S

⇐⇒ HYp
∈ (CohT/S)p for all p ∈ SpecR

⇐⇒ ΓpHY ∈ (CohT/S)p for all p ∈ SpecR.

Using the identification Coh(Tp/Sp) = Coh(T/S)p = (CohT/S)p from Lemma 5.6
and the identity (5.9), we obtain

Hom∗T(X,Y ) = 0 ⇐⇒ Hom∗Tp
(Xp, Yp) = 0 for all p ∈ SpecR

⇐⇒ Hom∗Tp
(Xp, Y (p)) = 0 for all p ∈ SpecR.

In the last condition, Xp can be replaced by X(p). This follows from the general
fact that for any homogenous ideal a of R and any pair of objects U, V in T

Hom∗T(U, V ) = 0 ⇐⇒ Hom∗T(U//a, V ) = 0

when Hom∗T(U, V ) is V(a)-torsion; for a proof use (3.4) or see [4, Lemma 5.11]. �

6. Tensor triangulated categories

Let (T,⊗,1) be a tensor triangulated category that is essentially small. The
tensor product ⊗ : T × T → T is then symmetric monoidal, exact in each vari-
able, and admits a unit 1. The tensor product on T extends to a tensor product
CohT×CohT→ CohT that we denote again by ⊗. We list the basic (and defining)
properties. For objects X,Y ∈ T and F,G ∈ CohT we have:

(1) HX ⊗HY
∼= HX⊗Y .

(2) F ⊗− and −⊗G are exact and preserve filtered colimits.
(3) F ⊗G ∼= G⊗ F .

Lemma 6.1. (CohT,⊗, H1) is a symmetric monoidal category. �

Strongly monoidal functors. A functor f between symmetric monoidal cate-
gories is called strongly monoidal if there are isomorphisms

1
∼−→ f(1) and f(X)⊗ f(Y )

∼−→ f(X ⊗ Y )

that are natural and compatible with the monoidal structures. We have the follow-
ing projection formula.

Lemma 6.2. Let f : T → U be a strongly monoidal exact functor between tensor
triangulated categories. For F ∈ CohT and G ∈ CohU, there is a natural morphism

αF,G : F ⊗ f∗(G) −→ f∗(f
∗(F )⊗G).

This is an isomorphism when T is generated as a triangulated category by 1.
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Proof. Observe that f∗ : CohT → CohU is strongly monoidal. This is clear for
representable functors; the general case follows by taking filtered colimits in one
argument and then in the other. The morphism αF,G is the adjoint of the compo-
sition

f∗(F ⊗ f∗(G))
∼−→ f∗(F )⊗ f∗f∗(G)→ f∗(F )⊗G.

Observe that the objects F such that αF,G is an isomorphism for all G form a
localising subcategory of CohT containing H1. If 1 generates T, then Loc(H1) =
CohT, by Lemma 5.4. Thus αF,G is an isomorphism for all F and G. �

Cohomological localisation. Let R be a noetherian graded commutative ring
acting on T. The cohomological (co)localisation functors arising from this action
can be expressed as tensor functors.

Proposition 6.3. Let V be a specialisation closed subset of SpecR. Then

ΓV ∼= ΓVH1 ⊗− and LV ∼= LVH1 ⊗−.

Proof. A simple calculation shows that one isomorphism implies the other. For
instance, when LV ∼= LVH1 ⊗− then LV(ΓVH1 ⊗−) = 0. This yields a morphism
ΓVH1 ⊗− → ΓV making the following diagram commutative.

· · · // ΓVH1 ⊗− //

��

Id // LVH1 ⊗− //

��

· · ·

· · · // ΓV // Id // LV // · · ·

The five lemma then shows that this is an isomorphism.
It follows from the description of LV(r) in Lemma 3.8 that the assertion holds for

a closed set V(r) given by some r ∈ R. Lemma 3.12 then implies the assertion for
a closed set V(a) given by a finitely generated ideal a of R, and Lemma 4.8 implies
the assertion for an arbitrary specialisation closed subset. �

7. Stratification

Let R be a noetherian graded commutative ring and T be an essentially small
R-linear triangulated category. In this section we study the stratification of T and
CohT; this is the analogue of stratification for compactly generated triangulated
categories introduced in [5, §4] and inspired by [15, §6].

Stratification. The triangulated category T is called minimal if T admits no
proper thick subcategory. This means if S ⊆ T is a thick subcategory then S = 0
or S = T. Analogously, CohT is said to be minimal if CohT admits no proper
localising subcategory. Clearly, T is minimal when CohT is minimal.

Definition 7.1. We say that T is stratified by the action of R if ΓpT is minimal for
each p ∈ SpecR. In the same vein, CohT is stratified by the action of R if CohΓpT
is minimal for each p ∈ SpecR.

In each case stratification yields a classification of thick or localising subcate-
gories in terms of subsets of SpecR; see Corollary 5.7.

Remark 7.2. Suppose that T is minimal. Then T is stratified by any R-action,
and in particular, by the canonical action of Z. Moreover, there is a unique prime
p ∈ SpecR such that ΓpT 6= 0. Clearly, this implies ΓqT = 0 for all q 6= p in SpecR.
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Consequences of stratification. It is convenient to set suppRX = suppRHX

for each object X ∈ T. Observe that (5.9) implies

suppRX = {p ∈ SpecR | X(p) 6= 0},

and this can be reformulated in terms of the following identity which is an immediate
consequence of Lemma 3.9

(7.3) Thick(X(p)) = Thick(Xp) ∩ ΓpT = Γp Thick(X).

Theorem 7.4. Suppose that T is stratified by the action of R. Given objects X,Y
in T, we have

X ∈ Thick(Y ) ⇐⇒ suppRX ⊆ suppR Y,

Hom∗T(X,Y ) = 0 ⇐⇒ (suppRX) ∩ (suppR Y ) = ∅.

Proof. For the first assertion set S = Thick(Y ). The local-global principle from
Theorem 5.10 gives the first equivalence:

X ∈ Thick(Y ) ⇐⇒ X(p) ∈ ΓpS for all p ∈ SpecR

⇐⇒ suppRX ⊆ suppR Y.

The second equivalence uses the minimality of ΓpT and the identity (7.3).
For the second assertion recall from Theorem 5.11 that

Hom∗T(X,Y ) = 0 ⇐⇒ Hom∗Tp
(X(p), Y (p)) = 0 for all p ∈ SpecR.

The minimality of ΓpT implies for objects U, V in ΓpT that Hom∗Tp
(U, V ) 6= 0 iff

U 6= 0 6= V . Thus Hom∗Tp
(X(p), Y (p)) = 0 iff p 6∈ (suppRX) ∩ (suppR Y ). �

Theorem 7.4 has a converse when endomorphism rings are finitely generated.

Proposition 7.5. Suppose that for each object X in T the endomorphism ring
End∗T(X) is finitely generated over R. If T is not stratified by R, then there are
objects X,Y ∈ T such that suppRX = suppR Y but Thick(X) 6= Thick(Y ).

Proof. Assume ΓpT is not minimal. Thus there are non-zero objects Xp, Yp in
ΓpT such that Thick(Xp) 6= Thick(Yp). In T consider the objects X ′ = X//p and
Y ′ = Y//p. Then suppRX

′ = V(p) = suppR Y
′ by Proposition 4.2. On the other

hand, Lemma 3.9 gives the equalities below:

Thick(X ′p) = Thick(Xp) 6= Thick(Yp) = Thick(Y ′p),

so that Thick(X ′) 6= Thick(Y ′). �

The Hom vanishing statement in Theorem 7.4 can be strengthened when mor-
phism spaces are finitely generated over R. For an R-module M , we write

SuppRM = {p ∈ SpecR |Mp 6= 0}.

The following theorem can be used to explain results on the symmetry of Hom
vanishing, as studied in [1, 7].

Theorem 7.6. Let X and Y be objects in T.

(1) If Hom∗T(X,Y ) is finitely generated over R, then

SuppR Hom∗T(X,Y ) ⊆ (suppRX) ∩ (suppR Y ).

(2) If T is stratified by the action of R, then

SuppR Hom∗T(X,Y ) ⊇ (suppRX) ∩ (suppR Y ).
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Proof. (1) Let p ∈ SuppR Hom∗T(X,Y ). Thus Hom∗Tp
(Xp, Yp) 6= 0. The assumption

implies that this is finitely generated, and an application of Nakayama’s lemma gives

Hom∗Tp
(X(p), Y (p)) 6= 0;

use (3.4) or see [4, Lemma 5.11] for a proof. Thus p ∈ (suppRX) ∩ (suppR Y ).
(2) Let p ∈ (suppRX) ∩ (suppR Y ). Then stratification implies

Hom∗Tp
(X(p), Y (p)) 6= 0,

and therefore

Hom∗T(X,Y )p ∼= Hom∗Tp
(Xp, Yp) 6= 0.

Thus p ∈ SuppR Hom∗T(X,Y ). �

Perfect complexes. Let A be a noetherian commutative ring. We denote by D(A)
the derived category of the category of A-modules. An object in D(A) is called
perfect if it is isomorphic to a bounded complex of finitely generated projective
A-modules; these form a thick subcategory denoted by Dper(A). For X ∈ D(A) set

HX = HomA(−, X)|Dper(A).

The ring R = A acts canonically on T = Dper(A) and we show that CohT is
stratified by this action. The residue fields play a special role. For p ∈ SpecR let
k(p) = Ap/pp, viewed as a complex concentrated in degree zero.

Lemma 7.7. Let p ∈ SpecR. Then CohΓpT = Loc(Hk(p)).

Proof. Since Hk(p) is p-local and V(p)-torsion when evaluated at any object from T,
it belongs to CohΓpT; this justfies one inclusion. For the other one, it is convenient
to identify Tp and Dper(Ap). Thus an object X in ΓpT is a perfect complex over
Ap such that its cohomology is of finite length over Ap. It follows that

X ∈ Thick(k(p)) ⊆ D(Ap).

This is easily shown by an induction on the number of integers n such Hn(X) 6= 0;
see for example [11, Example 3.5]. Thus HX ∈ Loc(Hk(p)). �

Theorem 7.8. Let A be a commutative noetherian ring. Then CohDper(A) is
stratified by the canonical action of A.

Proof. Fix p ∈ SpecA. We need to show that CohΓpT is minimal, which is equiv-
alent to Loc(F ) = Loc(Hk(p)) for each non-zero F ∈ CohΓpT, by Lemma 7.7. This
is clear for F = ΓpHA. This gives the second of the following equalities:

Loc(F ) = Loc(F ⊗ ΓpHA) = Loc(F ⊗Hk(p)).

The first one is by Proposition 6.3. Let f denote the functor

−⊗A k(p) : Dper(A) −→ Dper(k(p)).

Then F ⊗ Hk(p)
∼= f∗f

∗(F ) by Lemma 6.2. Thus F ⊗ Hk(p) is a direct sum of
suspensions of Hk(p), since every object in Dper(k(p)) is a direct sum of suspensions
of k(p). It follows that Loc(F ) = Loc(Hk(p)). �

The following result is due to Hopkins [14] and Neeman [20].

Corollary 7.9. Let S ⊆ Dper(A) be a thick subcategory. Then

S = {X ∈ Dper(A) | suppAX ⊆ V}

for some specialisation closed subset V ⊆ SpecA.
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Proof. The assertion follows from Theorems 7.4 and 7.8, using the fact that suppAX
is specialisation closed for each X ∈ Dper(A) by Proposition 4.2. �

Remark 7.10. Theorem 7.8 generalises with same proof in two directions as follows.
(1) Let A be a commutative differential graded algebra such that the ring H∗(A)

is noetherian. If A is formal, then CohDper(A) is stratified by the canonical H∗(A)-
action. This is an analogue of Theorem 8.1 in [5] that asserts that D(A) is stratified
by H∗(A).

(2) Let A be a graded commutative noetherian ring. More precisely, we fix an
abelian grading group G endowed with a symmetric bilinear form

(−,−) : G×G −→ Z/2,
and A admits a decomposition

A =
⊕
g∈G

Ag

such that the multiplication satisfies AgAh ⊆ Ag+h for all g, h ∈ G and xy =

(−1)(g,h)yx for all homogeneous elements x ∈ Ag, y ∈ Ah. We consider G-graded
A-modules with degree zero morphisms and let D(A) denote its derived category.
Localising subcategories of CohDper(A) and D(A) are supposed to be closed under
twists, where the twist of a module or complex X by g ∈ G is given by X(g)h =
Xg+h. Suitably adapting definitions and constructions to take into account twists,
one can establish that CohDper(A) is stratified by the canonical A-action. This is
an analogue of Corollary 5.7 in [10] that asserts that D(A) is stratified by A.

8. Compactly generated triangulated categories

Let R be a noetherian graded commutative ring and T be a compactly generated
R-linear triangulated category. The subcategory of compacts, Tc, is an essentially
small triangulated category and has an induced R-action. In [4] we developed a
theory of local cohomology and support for T. In this section, we use the restricted
Yoneda functor

T −→ CohTc, X 7→ HX = HomT(−, X)|Tc ,

to compare it with the one for CohTc introduced in this article.

Remark 8.1. The morphisms annihilated by the functor T → CohTc are called
phantom maps. In the context of the stable module category T = StMod kG of
a finite group G, these were studied by Benson and Gnacadja. In particular, in
[3, §4] it is shown that there are filtered systems in Tc = stmod kG that do not
lift to mod kG. As a consequence, there are objects in CohTc that are not in the
image of T→ CohTc, namely the filtered colimit of the corresponding representable
functors. In the context of the derived category of a commutative noetherian ring,
examples of filtered systems that do not lift can be found in Neeman [21].

Cohomological localisation. Given a specialisation closed subset V of SpecR,
there is an exact localisation functor L̄V : T → T such that L̄VX = 0 iff HX is
V-torsion; see [4, §4]. The corresponding colocalisation functor is denoted by Γ̄V .
Thus each X ∈ T fits into an exact localisation triangle

Γ̄VX −→ X −→ L̄VX −→ .

The following proposition says that notions developed in [4] for compactly gener-
ated triangulated categories are determined by analogous concepts for the category
of cohomological functors which are discussed in this work. This applies, for in-
stance, to the notion of support.
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Proposition 8.2. Let V ⊆ SpecR be specialisation closed and X ∈ T. Then

HΓ̄VX
∼= ΓVHX and HL̄VX

∼= LVHX .

Proof. It follows from Proposition 2.10 that the long exact sequence

· · · −→ HΣ−1(L̄VX) −→ HΓ̄VX −→ HX −→ HL̄VX −→ HΣ(Γ̄VX) −→ · · ·

is isomorphic to the localisation sequence (2.11) for Tc
V ⊆ Tc, applied to HX . �

Localising subcategories. A full triangulated subcategory of T is localising if it
is closed under forming coproducts. Following [5, §3], we say that the local-global
principle holds for T, if for each object X ∈ T we have

Loc(X) = Loc({Γ̄pX | p ∈ SpecR}).
This local-global principle has been established in a number of relevant cases. For
instance, it holds when R has finite Krull dimension [5, Corollary 3.5], or when T
admits a model [24, Theorem 6.9].

We obtain an alternative proof of Theorem 5.10, provided the local-global prin-
ciple holds for T.

Proposition 8.3. The local-global principle for T implies the principle for Tc.

Proof. We verify that conditions (1)–(3) of Theorem 5.10 are equivalent. Evidently
(1) ⇒ (2) and (2) ⇒ (3).

Assume (3) holds. Given p ∈ SpecR, it follows from [5, Theorem 3.1] that Sp is
contained in Loc(S). Thus

LocT(Γ̄pX) = Loc(X(p)) ⊆ Loc(Sp) ⊆ Loc(S),

where the equality holds by [5, Lemma 3.8]. Now the local-global principle for T
yields that X belongs to Loc(S). It remains to observe that this implies X ∈ S,
because X is compact and S is a subcategory of compact objects. �

Cohomological localising subcategories. Any localising subcategory of CohTc

induces one of T via the restricted Yoneda functor. However, we do not know if
this is a bijection between the corresponding localising subcategories. This changes
when one restricts to localising subcategories that are defined cohomologically.

We call a localising subcategory S ⊆ T cohomological if there is a cohomological
functor F : T→ A such that

(1) A is an abelian category with exact filtered colimits,
(2) F preserves coproducts, and
(3) S equals the full subcategory of objects in T annihilated by F .

Analogously, a localising subcategory C ⊆ CohTc is called cohomological if there is
an exact functor F : CohTc → A such that

(1) A is an abelian category with exact filtered colimits,
(2) F preserves coproducts, and
(3) C equals the full subcategory of objects in CohTc annihilated by F .

Example 8.4. An intersection of cohomological localising subcategories is coho-
mological. Given a subset U ⊆ SpecR, the localising subcategories

{X ∈ T | suppRX ⊆ U} and {X ∈ CohTc | suppRX ⊆ U}
are cohomological.

Proposition 8.5. Taking a localising subcategory C ⊆ CohTc to {X ∈ T | HX ∈ C}
induces a bijection between
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– the cohomological localising subcategories of CohTc, and
– the cohomological localising subcategories of T.

Proof. To describe the inverse map, let F : T→ A be a cohomological functor which
preserves coproducts. This extends essentially uniquely to an exact and coproduct
preserving functor F̄ : CohTc → A by sending a filtered colimit of representable
functors colimαHXα to colimα F (Xα). It remains to observe that for each X ∈ T
we have F (X) = 0 iff F̄ (HX) = 0. Thus the localising subcategories determined by
F and F̄ correspond to each other under the above assignment. �
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