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Abstract
The major fungal pathogen of humans, Candida albicans, is exposed to reactive nitrogen

and oxygen species following phagocytosis by host immune cells. In response to these tox-

ins, this fungus activates potent anti-stress responses that include scavenging of reactive

nitrosative and oxidative species via the glutathione system. Here we examine the differen-

tial roles of two glutathione recycling enzymes in redox homeostasis, stress adaptation and

virulence in C. albicans: glutathione reductase (Glr1) and the S-nitrosoglutathione reduc-

tase (GSNOR), Fdh3. We show that the NADPH-dependent Glr1 recycles GSSG to GSH, is

induced in response to oxidative stress and is required for resistance to macrophage killing.

GLR1 deletion increases the sensitivity of C. albicans cells to H2O2, but not to formaldehyde

or NO. In contrast, Fdh3 detoxifies GSNO to GSSG and NH3, and FDH3 inactivation delays

NO adaptation and increases NO sensitivity. C. albicans fdh3Δ cells are also sensitive to

formaldehyde, suggesting that Fdh3 also contributes to formaldehyde detoxification. FDH3
is induced in response to nitrosative, oxidative and formaldehyde stress, and fdh3Δ cells

are more sensitive to killing by macrophages. Both Glr1 and Fdh3 contribute to virulence in

theGalleria mellonella and mouse models of systemic infection. We conclude that Glr1 and

Fdh3 play differential roles during the adaptation of C. albicans cells to oxidative, nitrosative

and formaldehyde stress, and hence during the colonisation of the host. Our findings em-

phasise the importance of the glutathione system and the maintenance of intracellular

redox homeostasis in this major pathogen.
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Introduction
The major fungal pathogen, Candida albicans, has the capacity to colonise diverse niches in its
human host. This fungus is part of the microflora of the skin, mouth, gut and urogenital tracts
of humans. C. albicans is a frequent cause of mucosal infections (thrush) in otherwise healthy
individuals, with most women suffering at least one episode of vaginitis in their lifetime. C.
albicans is also the most common fungal species responsible for life-threatening hospital-ac-
quired bloodstream infections in immunocompromised patients [1–3].

The ability of C. albicans to thrive in diverse niches is dependent upon its robust adaptive
responses to the local environmental stresses encountered in these niches. For example, im-
mune cells such as macrophages combat microbial infection by exposing invading microbes to
a battery of insults that include reactive nitrogen species (RNS), reactive oxygen species (ROS)
and cationic fluxes [4–6]. Macrophages have been reported to generate up to 57 μM nitric
oxide [7] and up to 14 mM hydrogen peroxide (H2O2) [8,9], although estimating the levels of
specific ROS species during the oxidative burst is challenging [10,11]. Cation concentrations
are around 150 mM in human blood, have been reported reach 0.2–0.3 M in phagocytes [5]
and can increase to 600 mM in the kidney [12]. Therefore, C. albicans cells are exposed to
significant oxidative, nitrosative and cationic stresses during host colonization and invasion
[13–15].

Glutathione (L-γ-glutamylcysteinylglycine; GSH), the most abundant non-protein thiol in
eukaryotic cells, plays a major role in protective responses to oxidative and nitrosative stress.
Glutathione reacts with reactive oxygen and nitrogen species to generate glutathione adducts,
such as glutathione disulphide (GSSG) and S-nitrosoglutathione (GSNO). In addition to detox-
ifying xenobiotics and free radicals, glutathione functions as a co-factor in many enzymatic re-
actions and is involved in amino acid transport and signalling [16,17]. S-glutathionylation
protects protein thiols from irreversible over-oxidation [18]. Glutathione maintains intracellu-
lar redox homeostasis through the oxidation of its cysteine sulphydryl moiety and disulphide
bond formation [19]. The low redox potential of glutathione (E = -240 mV), combined with its
high intracellular concentration (1–10 mM), contribute to its large redox buffering capacity
[20,21]. Fungal genes involved in both glutathione synthesis and the recycling of GSSG and
GSNO are tightly regulated in response to stress exposure [21,22].

Glutathione is synthesised in two ATP-dependent steps. In the first rate-limiting step, γ-glu-
tamylcysteine synthetase (Gsh1 in S. cerevisiae) ligates glutamate and cysteine to form the di-
peptide γ-glutamylcysteine [23]. In the second enzymatic step glutathione synthetase (Gsh2 in
S. cerevisiae) converts γ-glutamylcysteine and glycine into glutathione [24]. In S. cerevisiae,
Gsh1 catalyses the rate-limiting step in GSH synthesis and GSH1 deletion significantly in-
creases the intracellular redox potential to -178 mV, compared with -235 mV in wild type cells
[25]. Consequently, S. cerevisiae gsh1 cells are sensitive to oxidative stress. This mutant also dis-
plays growth defects on minimal medium in the absence of stress [23], a phenotype that can be
suppressed by the addition of exogenous GSH [26]. These results indicate that GSH is an essen-
tial metabolite for the growth of S. cerevisiae. Exogenous GSH also confers protection against
oxidative stresses mediated by disulfiram [27], hypochlorite, chlorite [28] and heavy metals
[29]. In C. albicans, the deletion of GCS1 (the homologue of S. cerevisiae GSH1) causes cells to
upregulate typical apoptotic markers, reduces their resistance to killing by human macrophages
and decreases their virulence in a murine model of disseminated candidiasis [30], [31]. These
observations highlight the importance of glutathione in general and for C. albicans pathogenic-
ity in particular.

Following the formation of glutathione adducts, such as GSSG and GSNO, these molecules
are recycled to reform glutathione via glutathione reductase and S-nitrosoglutathione reductase
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(GSNOR). In S. cerevisiae, glutathione reductase (Glr1), a member of the FAD-containing pyri-
dine disuphide oxidoreductase family, is required for protection against oxidative stress [32]. It
reduces GSSG in an NADPH-dependent manner following the reaction: GSSG + NADPH
+ H+ ! 2GSH + NADP+. Thus while detoxifying GSSG, Glr1 concomitantly lowers the intra-
cellular NADPH/NADP+ ratio [33]. Glr1 is not essential in S. cerevisiae since thioredoxins,
Trx1 and Trx2, can detoxify GSSG to GSH in the absence of Glr1 [34]. Indeed, Drosophila and
trypanosomes do not encode glutathione reductases, but detoxify GSSG via the thioredoxin or
trypanothione systems, respectively [35,36].

Glutathione-dependent formaldehyde reductases (GSNORs) are conserved from bacteria
to humans [21,37], suggesting that GSNORs perform important functions in all living organ-
isms. These enzymes not only regulate GSNO levels, but are also involved in the repair of S-
nitrosylated proteins [37]. Consequently, S. cerevisiae cells lacking GSNOR (the sfa1mutant)
display slow adaptation to nitrosative stress, but are not sensitive to oxidative stress [37].
GSNORs are GSH-dependent bi-functional enzymes that are able to reduce GSNO to form
GSSG plus NH3, as well as detoxifying formaldehyde [37]. In plants, GSNOR modulates the
extent of cellular S-nitrosothiol (SNO) formation following nitrosative stress and is required
for disease resistance [38].

Despite the importance of glutathione and redox homeostasis for oxidative stress resistance
and virulence in C. albicans, the relative contributions of Glr1 and GSNOR in glutathione recy-
cling have not been examined in this fungus. Indeed, a GSNOR has not previously been identi-
fied in C. albicans. Therefore, we have examined the roles of Glr1 and GSNOR in C. albicans.
We show that these enzymes are crucial for the maintainance of redox homeostasis in C. albi-
cans and that they contribute to the virulence of this major fungal pathogen.

Results

The C. albicans genome encodes a putative glutathione reductase and
an S-nitrosoglutathione reductase
A single glutathione reductase gene has been annotated in the C. albicans genome on the basis
of its sequence similarity to glutathione reductases (GRs) from other species [39]. C. albicans
GLR1 (C5_01520C) encodes a highly conserved NADPH-dependent glutathione reductase (S1
Fig) [40] that carries the classical NADH and FAD binding domains and dimerization domain
of GRs (Fig 1A). Phylogenetically, C. albicans Glr1 is most closely related to GRs from other
fungi, displaying 66% amino acid sequence identity to S. cerevisiae Glr1 (Fig 1B). Fungal GRs
cluster with human, mouse and Caenorhabditis elegans GRs, clearly separable from GSNORs
from the same organisms (Fig 1B).

C. albicans also contains a single GSNOR gene, FDH3 (CR_10250C_A) [39]. Based on its
sequence similarity to GSNORs from other organisms (S2 Fig), FDH3 appears to encode a
GSH-dependent formaldehyde dehydrogenase class III that contains alcohol dehydrogenase-
like, NADH binding and dimerization domains (Fig 1A). GSNORs are highly conserved from
bacteria to man [21]. Indeed, the sequence of C. albicans Fdh3 is 65% identical to human liver
ChiChi alcohol dehydrogenase (Hs Adh5) (Fig 1B), which is a GSH-dependent formaldehyde
dehydrogenase.

C. albicans Fdh3 and Glr1 play differential roles in conferring
formaldehyde, nitrosative and oxidative stress resistance
GSNOR is the only enzyme so far characterised that enzymatically detoxifies GSNO [21], and
both GSNOR and GR are critical for the maintenance of the glutathione redox balance under

Fdh3 and Glr1 Contribute to Candida Stress Adaptation and Virulence

PLOS ONE | DOI:10.1371/journal.pone.0126940 June 3, 2015 3 / 24



nitrosative and oxidative stress [21]. In C. albicans, Glr1 is presumed to act as a GR [39], and
we reasoned that Fdh3 might act as the GSNOR, detoxifying GSNO and catalysing the detoxifi-
cation of formaldehyde (CH2O) to formate (CHOO-) (Fig 2).

To test these predictions we constructed C. albicans glr1Δ and fdh3Δ null mutants, and then
reintegrated wild type GLR1 and FDH3 genes to generate isogenic control strains. As predicted,
the glr1Δmutant was sensitive to hydrogen peroxide (7.5 mM), a phenotype that was sup-
pressed by reintegration of GLR1. The glr1Δmutant was resistant to formaldehyde (5 mM)
(Fig 3A). In contrast, the fdh3Δmutant was resistant to hydrogen peroxide, but sensitive to
formaldehyde (Fig 3A and 3B). Reintegration of FDH3 suppressed this sensitivity, confirming
that Fdh3 is critical for formaldehyde resistance. These observations were consistent with the
predicted differential roles for Fdh3 and Glr1 in the detoxification of formaldehyde and perox-
ide-induced GSSG, respectively.

We also investigated the impact of inactivating Fdh3 or Glr1 on the resistance of C. albicans
cells to nitrosative stress (2.5 mM DPTA NONOate). As predicted (Fig 2), fdh3Δ cells were rel-
atively sensitive to nitrosative stress, taking significantly longer than wild type cells to adapt to
this stress (Fig 3C). Taken together, our data are consistent with the idea that the Fdh3 is a bi-
functional enzyme involved in the detoxification of both formaldehyde and GSNO.

Fig 1. C. albicansGlr1 and Fdh3 belong to evolutionary conserved families of glutathione reductases
(GRs) and S-nitroso-glutathione reductases (GSNORs), respectively. (A) The functional domains of
GSH-dependent formaldehyde dehydrogenases class III (GSNORs) and NADPH-dependent glutathione
reductases (GRs). GSNORs harbour a catalytic domain (ADH), an NAD(H) binding domain, and a
dimerization domain. GRs have an NADH- and FAD-binding domains and a dimerization domain. (B)
Phylogenetic tree of GSNOR- and GR-related proteins generated using ClustalW: homologs are presented
from Candida albicans (CaFdh3, CaGlr1), Saccharomyces cerevisiae (ScSfa1, ScGlr1),
Schizosaccharomyces pombe (SpSPCC13B11.04c, SpPgr1),Mus musculus (MsAdh5; MsGsr1),Homo
sapiens (HsAdh5; HsGsr), Drosophila melanogaster (DmFdh) andCaenorhabditis elegans (CeH24K24.3;
CeGsr-1). Structures are presented for human liver ChiChi alcohol dehydrogenase (protein data bank (pdb)
accession code 1TEH; a GSNOR that has 65% sequence identity to CaFdh3p), and S. cerevisiaeGlr1 (pdb
accession code 2HQM; a GR with 66% sequence identity to CaGlr1p). Structure representations were made
with PyMOL (http://www.pymol.org).

doi:10.1371/journal.pone.0126940.g001
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Surprisingly, glr1Δ cells were relatively resistant to nitrosative stress, adapting more quickly
to DPTA NONOate than the wild type and GLR1 reintegrant control strains (Fig 3C). To ex-
amine the basis for this we tested the impact of GLR1 or FDH3 deletion upon the expression of
each mRNA by qRT-PCR (Fig 4). As expected, the GLR1 and FDH3mRNAs were not detect-
able in their respective mutant strains. GLR1mRNA levels were reduced about 4-fold in fdh3Δ
cells, relative to the wild type control. However, FDH3mRNA levels were elevated about
2.5-fold in glr1Δ cells (Fig 4). This increased FDH3 expression could account for the increased
nitrosative stress resistance of the glr1Δ strain (Fig 3C).

Impact of Fdh3 and Glr1 deletion upon gene expression
The deletion of either FDH3 or GLR1 affects the expression of the other gene under basal con-
ditions in the absence of stress (Fig 4). Therefore, we reasoned that the expression of these
genes might also be perturbed in glr1Δ and fdh3Δ cells following exposure to oxidative, and
nitrosative or formaldehyde stress. To test this we measured the expression levels of selected
genes involved in stress defence by qRT-PCR, relative to the ACT1mRNA internal control, fol-
lowing a 10 min exposure to 5 mMH2O2, 2.5 mM CySNO or 5 mM formaldehyde. GLR1 is
known to be induced in response to oxidative stress [41], and therefore we examined its expres-
sion in response to these stresses in wild type and fdh3Δ cells (Fig 5A). The GLR1mRNA was
up-regulated in response to oxidative and nitrosative stress, but was down-regulated following
formaldehyde stress. Deletion of FDH3 had a minimal effect upon this expression profile, ex-
cept that GLR1 expression was no longer reduced in response to formaldehyde stress. FDH3
displayed a similar expression profile to GLR1 in wild type cells (Fig 5B). FDH3 was up-regulat-
ed following exposure to both oxidative and nitrosative stress, and down-regulated following
formaldehyde stress. This regulation was perturbed in glr1Δ cells, primarily because basal
FDH3mRNA levels were increased in the absence of stress, which was consistent with our pre-
vious observations (Fig 4).

We also examined the mRNA levels for TRX1 (thioredoxin) under equivalent conditions
(Fig 5C). As reported previously [41–43], TRX1 was induced in response to oxidative and

Fig 2. Predicted roles for Fdh3 and Glr1 inC. albicans. (A) Predicted roles for Fdh3 and Glr1 in GSNO
and GSSG detoxification. A shows the working hypothesis of the major enzymes involved in the
detoxification of GSSG (glutathione disulphide) and GSNO (S-nitrosoglutathione). When glutathione (GSH) is
oxidised via H2O2 to GSSG, GSSG can be reduced with the help of the NADPH-dependent glutathione
reductase (GR). We predict that the glutathione reductase of Candida albicans isGLR1. When GSH is
exposed to NO, GSH is S-nitrosylated to GSNO.We predict that the S-nitrosoglutathione reductase
(GSNOR) ofCandida albicans is FDH3. (B) Predicted role for Fdh3 in formaldehyde detoxification.B shows
the second enzymatic function of GSNOR the detoxification of formaldehyde. Formaldehyde reacts with
glutathione (GSH) to form S-(hydroxmethyl)glutathione which then gets converted by Fdh3 and NAD+ to S-
(formyl)glutathione.

doi:10.1371/journal.pone.0126940.g002
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nitrosative stress. Interestingly, the response to oxidative stress was unaffected in fdh3Δ cells,
but the response to nitrosative stress was attenuated. This is consistent with the idea that in the
absence of Fdh3, GSSG generation might be reduced following nitrosative stress (Fig 2). In
glr1Δ cells, but not in fdh3Δ cells, TRX1 was strongly induced in response to formaldehyde
stress (Fig 5C). This supports the hypothesis that intracellular GSSG levels might accumulate
following formaldehyde stress in cells that lack Glr1, but contain Fdh3 (Fig 2).

Protein disulphide-isomerase is involved in redox-dependent protein folding, and therefore
we also investigated PDI1mRNA levels under conditions where GSSG levels probably rise sig-
nificantly (Fig 5D). Consistent with results found for TRX1, PDI1 expression was strongly in-
duced in glr1Δ cells, but not in fdh3Δ cells, after formaldehyde exposure.

Fig 3. Differential sensitivities ofC. albicans fdh3Δ and glr1Δ cells to hydrogen peroxide, nitric oxide
and formaldehyde. (A) Sensitivity to hydrogen peroxide (7.5 mM H2O2) and formaldehyde (5 mMCH2O):
wild type (CPK05); glr1Δ (CKS10), glr1Δ+GLR1 (CKS31), fdh3Δ (ATT1); fdh3Δ+FDH3 (ATT4) (Table 1). (B)
Dose-dependent sensitivity to formaldehyde: wild type (CPK05); fdh3Δ (ATT1); fdh3Δ+FDH3 (ATT4). (C)
Differences in adaptation (inflection) time after nitrosative stress (2.5 mM DPTA NONOate): wild type
(CPK05); glr1Δ (CKS10); glr1Δ+GLR1 (CKS31); fdh3Δ (ATT1); fdh3Δ+FDH3 (ATT4).

doi:10.1371/journal.pone.0126940.g003
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Effect of Glr1 and Fdh3 inactivation upon GSSG and GSNO
detoxification
The data obtained are consistent with the predicted roles for Glr1 and Fdh3 in GSSG and
GSNO detoxification (Fig 2). We then tested these predictions directly by examining the im-
pact of deleting GLR1 or FDH3 upon GSSG and GSNO detoxification rates.

GSSG detoxification was assayed by LC-MS/MS. GSSG detoxification rates were minimal in
the absence of protein extract (buffer alone), but the majority of GSSG was detoxified within 10
min by wild type protein extracts (Fig 6A). Deletion of GLR1 completely blocked GSSG detoxi-
fication rates, and these rates were restored by reintegration of the wild type GLR1 gene. GSSG

Fig 4. Effect of FDH3 andGLR1 deletion on basal gene expression.Quantification of FDH3 andGLR1
mRNA levels by qRT-PCR, relative to the internal ACT1mRNA control and normalised to wild type cells: wild
type (BWP17); fdh3Δ (ATT1); glr1Δ (CKS10).

doi:10.1371/journal.pone.0126940.g004
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detoxification rates were also reduced in fdh3Δ cells, which could be due to the 4-fold reduction
in GLR1 expression in these cells (Fig 4). We conclude that GLR1 is essential for rapid GSSG
detoxification in C. albicans, which is consistent with the view that this gene does indeed en-
code a glutathione reductase.

GSNO detoxification was also assayed in wild-type and mutant cells (Fig 6B). As expected
(Fig 2), GLR1 inactivation had no major effect upon GSNO detoxification, whereas rates of
GSNO detoxification were reduced in fdh3Δ cells (Fig 6B). However, GSNO detoxification was
not completely blocked following Fdh3 deletion, suggesting that other C. albicans enzymes, in
addition to Fdh3, must have denitrosylation or trans-nitrosylation activity. The identity of
these enzymes remains to be determined.

Given the impact of Glr1 inactivation upon GSSG detoxification in particular, the glr1Δmu-
tation is likely to perturb redox homeostasis in C. albicans cells. The GSSG/GSH redox poten-
tial (ΔE), which essentially reflects the relative amounts of reduced versus oxidized glutathione,
was measured in mutant and wild type cells (Fig 6C). The GSSG/GSH redox potential of C.
albicans fdh3Δ cells displayed no significant difference from wild type or FDH3 reintegrant
controls, despite the reduced ability of this mutant to detoxify GSSG (Fig 6A). However, the
GSSG/GSH redox potential of glr1Δ cells was significantly elevated, which correlated with their
inability to detoxify GSSG (Fig 6A and 6C). Indeed, the redox potential of glr1Δ cells was close
to the value of -180 mV, which has been associated with cell death in other systems [20,44].
This was consistent with the relatively slow growth of glr1Δ colonies (Fig 1A).

Fig 5. Impact of FDH3 andGLR1 deletion on transcript levels in respose to formaldehyde, oxidative or
nitrosative stress. Transcript levels were quantified by qRT-PCR, relative to the internal ACT1mRNA
control after 10 min of stress treatment and normalised to untreated wild type cells: wild type (CPK05); fdh3Δ
(ATT1); glr1Δ (CKS10). Stresses were 2.5 mM CySNO (NS), 5 mM CH2O or 5 mMH2O2 (XS). Gene
expression was assayed for the following genes: (A)GLR1, (B) FDH3, (C) TRX1, (D) PDI1.

doi:10.1371/journal.pone.0126940.g005
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Both FDH3 andGLR1 influence C. albicans virulence
The above data support the hypothesis that Glr1 is a glutathione reductase playing a critical
role in the detoxification of GSSG and maintenance of redox homeostasis in C. albicans, and
that Fdh3 is a bi-functional enzyme playing critical roles in detoxification of GSNO and form-
aldehyde (Fig 2). Given the importance of oxidative and nitrosative stress in C. albicans-phago-
cyte interactions during infection [45,46], we reasoned that changes in GLR1 and FDH3
functionality might affect the ability of C. albicans cells to kill phagocytes. To test this, we mea-
sured the percentage of cultured murine macrophages (RAW264.7 cells) that were killed by

Fig 6. Lack of Fdh3 or Glr1 affects GSSG and GSNO detoxification and the glutathione redox
potential. (A)GSSG detoxification by protein extracts from wild type (CPK05), glr1Δ (CKS10), glr1Δ+GLR1
(CKS31), fdh3Δ (ATT1) and fdh3Δ+FDH3 (ATT4) cells. (B)GSNO detoxification by protein extracts from wild
type (CPK05), glr1Δ (CKS10), glr1Δ+GLR1 (CKS31), fdh3Δ (ATT1) and fdh3Δ+FDH3 (ATT4) cells. (C)
Glutathione redox potential for wild type (CPK05), glr1Δ (CKS10), glr1Δ+GLR1 (CKS31), fdh3Δ (ATT1) and
fdh3Δ+FDH3 (ATT4) strains.

doi:10.1371/journal.pone.0126940.g006
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wild type and mutant C. albicans cells. The glr1Δ and fdh3Δmutants displayed significantly re-
duced ability to kill macrophages when compared to the wild type and reintegrant controls
(Fig 7). Furthermore, doxycycline-dependent overexpression of GLR1 or FDH3 from the tetON
promoter [47,48] increased the ability of C. albicans to kill macrophages (Fig 7), when com-
pared to the parental strain. We conclude that the functions of Glr1 and Fdh3, and their contri-
bution to the maintenance of redox homeostasis, are integral to C. albicans viability and
potency during fungus-phagocyte interactions.

Based on their effects during fungus-phagocyte interactions, it was conceivable that GLR1
and FDH3might influence the virulence of C. albicans during systemic infection. This was first
tested in the invertebrate wax moth (Galleria mellonella) larval infection model, which has
been established as a suitable proxy for systemic infection of the mammalian host [49]. Wild
type C. albicans cells killed more than 90% of larvae within two days (Fig 8A). The fdh3Δ cells
displayed a small, but reproducible, statistically significant reduction in virulence, whilst dele-
tion of GLR1 resulted in a much greater effect on virulence (Fig 8A). Doxycycline-induced
overexpression of GLR1 and FDH3 dramatically increased the virulence of C. albicans (Fig 8B).
Experiments utilising the overexpression mutants was performed with a reduced C. albicans in-
oculum to permit resolution of the increased virulence (1 x 104 cells versus 2.5 x 105 cells).
These infection data are consistent with the macrophage killing assays (Fig 7) and show that
both Glr1 and Fdh3 contribute to the virulence of C. albicans.

Having established the impact of GLR1 and FDH3 on C. albicans virulence in the G.mello-
nella infection model, we then progressed to a mammalian model of systemic candidiasis. The
virulence of the mutants was assayed using a three-day murine intravenous challenge model
[50], which allows calculation of an outcome score. In this model, fdh3Δ cells displayed no sig-
nificant difference in outcome score compared to the wild type and reintegrant controls (Fig
9A). However, the glr1Δmutant showed a significant reduction in virulence. It is worth noting
that Fdh3 inactivation had less of an impact than Glr1 inactivation upon virulence in the G.

Fig 7. Deletion or overexpression ofGLR1 or FDH3 alters the ability of C. albicans to kill
macrophages. C. albicans deletion (Δ) and overexpression (O/E) mutants (1x106 cells) were co-incubated
with RAW264.7 macrophages (2x105) for 3 h. The proportion of killed macrophages was determined
following trypan blue staining: wild type (CPK05), glr1Δ (CKS10), glr1Δ+GLR1 (CKS31), fdh3Δ (ATT1);
fdh3Δ+FDH3 (ATT4); WT+DOX, tetON-empty (CAMY203); GLR1+DOX, tetON-GLR1 (ATT6); FDH3+DOX,
tetON-FDH3 (ATT7).

doi:10.1371/journal.pone.0126940.g007
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mellonellamodel (Fig 8A). This subtle effect might not have been detectable in the mouse ex-
periments (Fig 9A).

We then examined the virulence of the GLR1 and FDH3 overexpression strains. We noted
that the treatment of animals with doxycycline, which was required to induce GLR1 and FDH3
overexpression, resulted in increased outcome score for infection with the wild type C. albicans
strain. Therefore, the virulence of the test strains was compared to this control (WT + DOX:
Fig 9B). Once again, GLR1 overexpression resulted in increased virulence of C. albicans. How-
ever, for reasons that are not clear, FDH3 overexpression attenuated fungal virulence in this
murine model of systemic infection. Whatever the molecular basis for this observation, it is
clear that GLR1 and FDH3 functionality influences the virulence of C. albicans during systemic
infection.

Discussion
Numerous studies support the view that robust oxidative stress responses contribute to the
pathogenicity of the major fungal pathogen, C. albicans. For example, inactivation of certain
regulators that contribute to oxidative stress adaptation, such as the AP-1-like transcription
factor Cap1 and the stress activated protein kinase Hog1, affect C. albicans virulence, albeit

Fig 8. Virulence ofC. albicans GLR1 and FDH3mutants in theG.mellonella infection model. Kaplan-
Meier plots ofG.mellonella survival after injection with C. albicans. (A) Analysis of deletion mutants using a
dose of 2.5x105 C. albicans cells/larva: wild type (CPK05); glr1Δ (CKS10); glr1Δ+GLR1 (CKS31); fdh3Δ
(ATT1); fdh3Δ+FDH3 (ATT4) (Table 1). (B) Analysis of overexpression mutants using a lower dose of 1x104

C. albicans cells/larva: WT+DOX, tetON-empty (CAMY203); GLR1+DOX, tetON-GLR1 (ATT6); FDH3+DOX,
tetON-FDH3 (ATT7).

doi:10.1371/journal.pone.0126940.g008
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only slightly in the case of Cap1 [51–53]. Key enzymes involved in ROS detoxification, such as
catalase (Cat1) and superoxide dismutase (Sod1, Sod5), are also essential for full virulence
[13,54–56]. In addition, C. albicansmutants lacking certain components of the glutaredoxin
(Gcs1, Grx2) and thioredoxin systems (Trx1) or mitochondrial-associated stress functions
(Goa1) display attenuated virulence [31,57–59]. Therefore, we reasoned that key enzymes in-
volved in the detoxification and recycling of glutathione adducts formed during oxidative stress
are likely to be important for the maintenance of redox homeostasis in C. albicans and its

Fig 9. Virulence ofC. albicans GLR1 and FDH3mutants in the murine model of systemic candidiasis.
Mice were infected with C. albicans strains by lateral tail vein injection, and infection outcome scores
calculated after 72 h (Materials and Methods: means ± SEM; n = 6). (A) Analysis of deletion mutants: wild
type (CPK05); glr1Δ (CKS10); glr1Δ+GLR1 (CKS31); fdh3Δ (ATT1); fdh3Δ+FDH3 (ATT4). (B) Analysis of
overexpression mutants in mice +/- doxycycline (DOX) in their drinking water: WT, tetON-empty (CAMY203);
GLR1, tetON-GLR1 (ATT6); FDH3, tetON-FDH3 (ATT7).

doi:10.1371/journal.pone.0126940.g009
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virulence. When this work was initiated, we predicted that two annotated C. albicans genes
might play key roles in GSSG and GSNO recycling. The first was Fdh3, a putative glutathione-
dependent S-nitrosoglutathione reductase (GSNOR), which catalyses the generation of GSSG
during the recycling of GSNO adducts. The second was a putative glutathione reductase (GR),
Glr1, which was predicted to regenerate GSH from GSSG in an NADPH-dependent manner.
Our bioinformatics analyses of C. albicans Glr1 and Fdh3 indicated that they are members of
phylogenetically distinct GR and GSNOR families (Fig 1, and S1 and S2 Figs). We also noted
that Fdh3 is related to bi-functional enzymes that also have formaldehyde dehydrogenase activ-
ity. Therefore we predicted that these highly conserved enzymes play differential but key roles
in GSSG and GSNO recycling and formaldehyde detoxification (Fig 2), and in the maintenance
of the redox homeostasis. Hence we reasoned that Glr1 and Fdh3 are probably crucial for C.
albicans survival during host-pathogen interaction.

To test this, we generated C. albicans glr1Δ and fdh3Δ null mutants and compared their phe-
notypes to those of wild type and reintegrant control strains. Three key observations have con-
firmed our predictions. Firstly, glr1Δ cells are sensitive to oxidative stress, but not to nitrosative
or formaldehyde stress. Fdh3Δ cells on the other hand display sensitivity to nitrosative or form-
aldehyde stress, but not to oxidative stress (Fig 3). Secondly, deletion of Glr1 completely blocks
GSSG detoxification, and Fdh3 deletion slows GSNO detoxification (Fig 6). Thirdly, the gluta-
thione redox potential is significantly perturbed in glr1Δ cells (Fig 6C).

The functions of Glr1 and Fdh3 are intimately linked, for example through their recycling
of glutathione adducts, and in particular by the generation of GSSG by Fdh3-mediated recy-
cling of GSNO (Fig 2). This linkage is reflected in several observations. For example, compen-
satory changes in GLR1 and FDH3 gene expression occur in fdh3Δ and glr1Δ cells, respectively
(Figs 3 and 4). The increased FDH3 expression in glr1Δ cells appears to result in elevated resis-
tance to nitrosative stress (Fig 3C). Also, deletion of Glr1 leads to the induction of oxidative
stress genes (TRX1) and redox-dependent protein folding functions (PDI1) in response to
formaldehyde stress (Fig 5), presumably due to the excessive accumulation of GSSG under
these conditions. Furthermore, deletion of Fdh3 slows GSSG detoxification (Fig 6A), presum-
ably because GLR1 expression is reduced approximately 4-fold in fdh3Δ cells (Fig 4).

Fdh3 does not appear to be the only enzyme in C. albicans that has denitrosylation or trans-
nitrosylation activity because GSNO detoxification is only partially inhibited in fdh3Δ cells (Fig
6B). Nitric oxide (NO) release and NO signalling are under tight regulatory control in eukary-
otic cells [60]. GSNO can act as a cellular NO “reservoir” as it can release NO or act as a sub-
strate for the transfer of NO to target cysteine residues via trans-nitrosylation [61]. Moreover,
several types of eukaryotic enzymes in addition to GSNORs [62–64] have trans-nitrosylase or
denitrosylase activity, including thioredoxin [65], thioredoxin reductase [66–68], superoxide
dismutase 1 [69,70], haemoglobin [71] and protein-disulphide isomerase [72,73]. However, the
potential roles of these systems in GSNO detoxification have not yet been defined in C. albi-
cans. In contrast, the identity of the key NO detoxification enzyme in C. albicans has been de-
termined. This role has been assigned to the haem oxygenase, Yhb1 [43,74,75].

Given their key roles in the maintenance of glutathione redox homeostasis, it was to be ex-
pected that Glr1 and Fdh3 influence fungus-phagocyte interactions and contribute to the viru-
lence of C. albicans. The deletion of Glr1 or Fdh3 reduced the ability of C. albicans cells to kill
macrophages, and overexpression of GLR1 or FDH3 increased the potency of C. albicans (Fig
7). Also, glr1Δ and fdh3Δ cells displayed reduced virulence in the invertebrate G.mellonella in-
fection model, whilst GLR1 and FDH3 overexpressing cells were more virulent (Fig 8). Further-
more, in a mammalian model of systemic candidiasis, glr1Δ cells displayed attenuated
virulence, and GLR1 overexpressing strain showed increased virulence (Fig 9). However, the
behaviour of FDH3mutants differed between the invertebrate and mammalian models, fdh3Δ
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cells displaying no significant reduction in virulence and FDH3 overexpressing cells having
reduced virulence.

Why might fdh3Δ and FDH3 over-expressing cells display differences in their virulence phe-
notypes between the G.mellonella and murine infection models? A number of studies have
shown that there is a good correlation between the outcome of insect and mouse infection
models [76–78]. However, this might not always be the case. Possible differences in the NO
concentrations experienced by C. albicans cells in these infection models might account for the
differential impact of FDH3mutations. However, Bergin et al. (2005) have reported that the G.
mellonella haemocytes act in a similar fashion to human neutrophils in that they are able to
phagocytose bacteria and fungi and generate superoxide [79–81]. Alternatively, the differential
virulence phenotypes for FDH3mutants might relate to the impact of FDH3 upon GLR1 ex-
pression (Figs 4 and 5). This might be significant in the context of the strong oxidising poten-
tial of mouse immune cells, and the complexity of mammalian niches [46].

Why might fdh3Δ cells, but not glr1Δ cells display contrasting phenotypes in the inverte-
brate and mammalian infection models? The basis for this probably lies in the observation that
glr1Δ cells have a lower glutathione redox buffering capacity than fdh3Δ cells (Fig 6C). There-
fore, glr1Δ cells are more vulnerable to ROS or RNS than fdh3Δ cells. Nevertheless, despite the
complexities of FDH3 virulence phenotypes, it is clear that FHD3 and GLR1 functionality
strongly influences C. albicans pathogenicity.

To conclude, this study has demonstrated that Glr1 and Fdh3 play important roles in oxida-
tive, nitrosative and formaldehyde stress response in C. albicans, and that this contributes to C.
albicans pathogenicity. Our findings emphasise the importance of the glutathione system and
the key role of enzymes involved in the maintenance of intracellular redox homeostasis during
host infection.

Materials and Methods

Strains and growth conditions
C. albicans strains (Table 1) were grown at 30°C in YPDT (2% glucose, 2%Mycological pep-
tone, 1% yeast extract, 100 mM Tris-HCl, pH 7.4) [82], or SD [83] supplemented with Com-
plete Supplement (CSM) Drop-out mixture lacking uracil/uridine or arginine (Formedium).
Nourseothricin was added to a final concentration of 200 μg/mL.

Stress conditions
To examine stress responses, C. albicans cells were grown overnight at 30°C and 200 rpm in
YPDT. Cells were then re-inoculated into YPDT to an OD600 of 0.2 and grown to an OD600 of
0.8 at 30°C and 200 rpm. Cultures were then diluted four-fold in fresh YPDT, mixed with the
appropriate stressors, and incubated at 30°C and 200 rpm. Stress was imposed using 1 M NaCl,
5 mM formaldehyde, 5 mMH2O2, 2.5 mMDPTA NONOate, or 2.5 mM freshly generated
CysNO [82].

To examine oxidative and formaldehyde stress resistance, serial two-fold dilutions of C.
albicans cells were plated onto YPD plates supplemented with 7.5 mMH2O2 or 5 mM formal-
dehyde. Plates were incubated for 48 h at 30°C. Results shown are representative of data from
at least three independent experiments. Formaldehyde sensitivity was also tested by growth at
30°C in YPD containing a range of formaldehyde concentrations using 96 well microtiter
plates. Plates were incubated with shaking at 30°C, and growth assessed relative to untreated
controls by measuring the OD620 after 48 h. Experiments were performed in triplicate and one
representative experiment was shown.
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Nitrosative stress resistance was assessed by measuring adaptation times. Strains were
grown overnight in 10 mL YPDT at 30°C, and diluted to an OD600 of 0.1 in fresh YPDT. Ali-
quots (100 μL) were added to 96 well microtiter plates (Costar) containing 100 μL YPDT con-
taining 5 mMDPTA NONOate or CysNO (final concentration 2.5 mM). Plates were
incubated with shaking at 30°C and the OD620 measured every 20 min for 48–72 h in a FluroS-
tar Optima plate reader (BMG Labtech). Stress adaptation times were determined by measur-
ing the inflection times for each growth curve, as described previously [84]. Data represent the
means and standard deviations from at least three independent experiments.

To prepare CysNO, 4 mL of 0.34 mM L-cysteine, 0.75 M HCl was added to 5 mL of 0.5 mM
NaNO2. After the solution turned deep red, 2.5 mL 1 M NaOH was added and the concentra-
tion of CysNO measured at 335 nm (ε335nm 503 M-1cm-1) [85].

Plasmid and strain construction
To generate fdh3Δ null mutants, the two FDH3 alleles in C. albicans BWP17 (Table 1) were se-
quentially disrupted using fdh3Δ::loxP-ARG4-loxP and fdh3Δ::loxP-URA3-loxPmarkers [86]
that were PCR amplified using the primers described in S1 Table. This generated the heterozy-
gous mutant fdh3Δ::LAL/FDH3 (ATT0) and then the homozygous fdh3Δ::LAL/fdh3Δ::LUL
null mutant (ATT1) (Table 1). To construct the reintegrant control, the FDH3 gene was PCR
amplified (S1 Table), cloned into CIp30 [86,87], and the resulting CIp30-FDH3 plasmid di-
gested with StuI and integrated at the RPS1 locus of C. albicans ATT1 to generate the fdh3Δ/

Table 1. C. albicans strains.

Name Description Genotype Source

CAI4 ura3Δ::imm434/Δura3Δ::imm434 [[97–99]

CA372 CAI4 + CIp10 ura3Δ::imm434/Δura3Δ::imm434, RPS1-Clp10 (URA3) [97,98]

RM1000 ura3Δ::imm434/ura3Δ::imm434, his1Δ::hisG/his1Δ::hisG [100]

CA674 RM1000 + CIp20 ura3Δ::imm434/Δura3Δ::imm434, his1Δ::hisG/his1Δ::hisG, RPS1-CIp20 (URA3, HIS1) [101]

BWP17 ura3Δ::imm434/Δura3Δ::imm434, his1Δ::hisG/his1Δ::hisG, arg4Δ::hisG/arg4Δ::hisG [102]

CA1206 BWP17 + CIp30 ura3Δ::imm434/Δura3Δ::imm434, his1Δ::hisG/his1Δ::hisG, arg4Δ::hisG/arg4Δ::hisG, RPS1- CIp30 (URA3,
HIS1, ARG4)

[59]

CPK05 prototroph ura3Δ::imm434/Δura3Δ::URA3, his1Δ::hisG/his1Δ::HIS1, arg4Δ::hisG/arg4Δ::ARG4 [40]

CKS10 GLR1/glr1Δ ura3Δ::imm434/Δura3Δ::imm434::URA3, his1Δ::hisG/his1Δ::hisG, arg4Δ::hisG/arg4Δ::hisG, glr1Δ::HIS1/
glr1Δ::ARG4

[40]

CKS31 glr1Δ/glr1Δ +GLR1 ura3Δ::imm434/Δura3Δ::imm434::URA3-GLR1, his1Δ::hisG/his1Δ::hisG, arg4Δ::hisG/arg4Δ::hisG, glr1Δ::
ARG4/glr11Δ::HIS1

[40]

ATT0 FDH3/fdh3Δ ura3Δ::imm434/Δura3Δ::imm434, his1Δ::hisG/his1Δ::hisG, arg4Δ::hisG/arg4Δ::hisG, FDH3/fdh3Δ::
loxP-ARG4-loxP

This
study

ATT1 fdh3Δ/fdh3Δ ura3Δ::imm434/Δura3Δ::imm434, his1Δ::hisG/his1Δ::hisG, arg4Δ::hisG/arg4Δ::hisG, fdh3Δ::
loxP-URA3-loxP/fdh3Δ::loxP-ARG4-loxP

This
study

ATT4 fdh3Δ/fdh3Δ+FDH3 ura3Δ::imm434/Δura3Δ::imm434, his1Δ::hisG/his1Δ::hisG, arg4Δ::hisG/arg4Δ::hisG, fdh3Δ::
loxP-URA3-loxP/fdh3Δ::loxP-ARG4-loxP, RPS1- CIp30-FDH3 (URA3, HIS1, ARG4)

This
study

CEC2175 ura3Δ::imm434/Δura3Δ::imm434, his1Δ::hisG/his1Δ::hisG, arg4Δ::hisG/arg4Δ::hisG, ADH1/adh1::ADH1p-
cartTA::SAT1

[48]

CAMY203 CEC2175 tetON-
empty

ura3Δ::imm434/Δura3Δ::imm434, his1Δ::hisG/his1Δ::hisG, arg4Δ::hisG/arg4Δ::hisG, ADH1/adh1::ADH1p-
cartTA::SAT1, RPS1/RPS1::CIp10-PTET-GTW

This
study

ATT6 CEC2175
tetON-GLR1

ura3Δ::imm434/Δura3Δ::imm434, his1Δ::hisG/his1Δ::hisG, arg4Δ::hisG/arg4Δ::hisG, ADH1/adh1::ADH1p-
cartTA::SAT1, RPS1/RPS1::CIp10-PTET-GLR1

This
study

ATT7 CEC2175
tetON-FDH3

ura3Δ::imm434/Δura3Δ::imm434, his1Δ::hisG/his1Δ::hisG, arg4Δ::hisG/arg4Δ::hisG, ADH1/adh1::ADH1p-
cartTA::SAT1, RPS1/RPS1::CIp10-PTET-FDH3

This
study

doi:10.1371/journal.pone.0126940.t001
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fdh3Δ/FDH3 reintegrant strain, ATT4 (Table 1). The genotype of these strains was confirmed
by diagnostic PCR using primers described in S1 Table.

To construct glr1Δ null strains, glr1Δ::ARG4 and glr1Δ::HIS1 disruption cassettes were gen-
erated by PCR amplification (S1 Table) from plasmids pFA-HIS1 and pFA-ARG4 [11]. The
disruption cassettes were transformed into BWP17 to generate a glr1Δ::ARG4/glr1Δ::HIS1
strain. To generate the reintegrant control, the GLR1 gene was PCR amplified (S1 Table) and
cloned into pLUBP [88] to make pLUBP-GLR1 (URA3). The empty pLUBP and pLUBP-GLR1
plasmids were linearized with XhoI/PacI and transformed into the glr1Δ::ARG4/glr1Δ::HIS1 to
create the glr1Δ::ARG4/glr10Δ::HIS1 URA3 (CKS10) and glr1Δ::ARG4/glr1Δ::HIS1 URA3-GLR1
strains (CKS31) (Table 1).

The doxycycline-conditional over-expression strains tetON-GLR1 (ATT6) and tetON-FDH3
(ATT7) were generated as described previously [48,89]. The CIp10-based tetON expression
plasmids were linearized with StuI, and transformed into C. albicans CEC2175 (Table 1). The
genotypes of these strains were confirmed by diagnostic PCR using the primers described in S1
Table.

Transcript analyses
C. albicans cells were harvested, flash-frozen in liquid N2, and RNA extracted as described pre-
viously [90,91]. RNA integrity was confirmed using Bioanalyzer RNA 6000 Nano Assay Proto-
col according to the manufacturer’s instructions (Agilent; Stockport, UK) [92]. cDNA was
prepared using Superscript II as per the manufacturer’s protocols (Invitrogen Ltd.; Paisley,
UK). Transcript levels were measured by qRT-PCR relative to the internal ACT1mRNA con-
trol using the primers listed in S1 Table with a LightCycler480 system (Roche Applied Science)
using the Roche Universal Probe library [15]. Data represent the means and standard devia-
tions from at least three independent experiments.

GSH, GSSG and GSNO assays
C. albicans cells were harvested [82] and protein extracts prepared in 0.5 M citrate, pH 5.0) as
GSNO was found to be unstable at pH 8.0. For GSNO assays, 5 μL of 1 mMNADH and 10 μL
of 250 μMGSNO were added to 10 μL of protein extract, and samples were derivatized at 0, 2,
5, 10, 20 and 30 min. For GSSG assays, 5 μL of 1 mM NADPH and 10 μL of 250 μMGSSG
were added to 10 μL of protein extract, and samples were derivatized at 0, 2, 5, 10, 20 and 30
min. The derivatization and analysis were performed as previously described [93] using a
Thermo Surveyor LC system coupled to a TSQ Quantum, triple quadrupole mass spectrometer
(Thermo Scientific, UK). The following SRM transitions were used for quantification; Glu-Glu
(internal standard)m/z 277–241, GSNOm/z 337–307, GSNEMm/z 433–304 and GSSGm/z
613–355. Peak integration and quantification was performed using Xcalibur software (Version
2.0.7.SP2). GSH, GSSG and GSNO concentrations were then calculated relative to authentic
standards. Data were normalised against total protein. Data represent the means and standard
deviations from at least three independent experiments.

The redox potential was calculated using the GSH and GSSG concentrations calculated
using the following equation based on the Nernst equation [20].

DE ¼ �264mV� 60:2
2

log
GSH½ �2
GSSG½ �mV

(30°C, pH 7.4)
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Macrophage killing assay
RAW264.7 murine macrophages were cultured in Dulbecco’s modified Eagle’s medium sup-
plemented with 10% fetal calf serum. C. albicans cells (1x106) were co-incubated with
RAW264.7 macrophages (2x105) for 3 h at 37°C. For doxycycline-induced over-expression, C.
albicans cells were prepared by growing overnight in YPDT containing 100 μg/mL doxycycline.
Wells were washed with PBS and stained with trypan blue. Macrophages were fixed in 3%
formaldehyde for 3 min and images were recorded with an Zeiss Axio Observer Z1 inverted
microscope and Zeiss Hrm camera. Images were analysed using Axiovision 4.8.2 software, and
the percentage of killed macrophages calculated by analysing at least 200 macrophages per well
[94]. All data were generated in triplicate for at least three independent experiments and one
representative experiment was represented.

Galleria mellonella virulence assay
The virulence of C. albicans strains was assessed using groups of 20 G.mellonella larvae (Live-
foods, UK) in the sixth instar as described previously [95]. C. albicans inocula were grown in
YPDT at 30°C overnight with agitation. For doxycycline-induced over-expression, 100 μg/mL
doxycycline was added to the medium. C. albicans cells were washed three times in PBS, re-sus-
pended in PBS at 2.5 x 105 cells/mL and 10 μL of suspension injected via the last proleg [95]. Un-
touched larvae and larvae injected with PBS +/- doxycycline served as controls. After injection
larvae were incubated at 37°C and the number of dead larvae scored every 12 h. Statistical analy-
ses were performed using the Kaplan-Meier log rank test. Differences with a P value< 0.05 were
considered significant. Three independent experiments were performed, and data from one rep-
resentative experiment are presented.

Murine virulence assay
The three-day murine intravenous challenge model of C. albicans infection [50] was used to de-
termine the impact of GLR1 and FDH3 upon virulence. Female BALB/c mice (6–8 weeks old;
Harlan, UK) were randomly assigned into groups of six mice, were housed in individually ven-
tilated cages (IVCs) and were provided with food and drinking fluid ad libitum. Each group of
mice was inoculated via the lateral tail vein with C. albicans cells (3 x 104 CFU g-1 mouse body
weight) grown at 30°C in NGY +/- 50 μg/mL doxycycline [96]. The fungal inoculum used for
each mouse group was also randomised. For doxycycline treated mice, mice were either provid-
ed with 5% sucrose or 5% sucrose containing 2 mg/mL doxycycline as their drinking fluid.
Mice were monitored and weighed daily. After 72 h, mice were weighed, terminated by cervical
dislocation, and renal fungal burdens determined. The outcome score [50] was calculated
based on the fungal kidney burdens and percentage weight change at 72 h. Statistical differ-
ences between body weight changes, kidney burdens and outcome scores were determined by
Kruskall-Wallis and Mann-Whitney U tests using IBM SPSS (version 20).

Ethics statement
All animal experimentation was performed under UK Home Office Project license 60/4135
and was approved by the UK Home Office and by the Animal Welfare and Ethical Review
Body of the University of Aberdeen. All work conformed to European Directive 2010/63/EU.

Animals were carefully monitored for signs of distress during the infection studies. Distress
was minimised by expert handling. Animals were weighed once daily, and monitored for
changes in condition at least twice daily. Animals were euthanized humanely by cervical dislo-
cation when they showed signs of severe illness, i.e. they had a ruffled coat, displayed a hunched
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posture, were unwilling to move around the cage and had lost 20% of their initial body weight.
There were no unexpected incidents of mortality during this study. Analgesia and anaesthetics
were not required.

Statistical analyses
Unless otherwise stated, data are expressed as means plus standard deviations from at least
three independent experiments: � p< 0.05; �� p<0.001; and ��� p<0.0001. Statistical signifi-
cance was determined by one-way ANOVA with post hoc analysis using Dunnett's t-tests with
a 95% confidence level. Analyses were carried out using Prism 5.0 (Graphpad). Data are repre-
sented in means ± SD.

Supporting Information
S1 Fig. Candida albicans GLR1 encodes a NADPH-dependent glutathione reductase. The
sequence alignment of homologs of the NADPH-dependent glutathione reductase GLR1
(C5_01520C) was generated using ClustalW. The homologs from Saccharomyces cerevisiae,
Schizosaccharomyces pombe,Mus musculus, Homo sapiens and Caenorhabditis elegans used for
the multiple sequence alignments were obtained from NCBI/ BLAST are shown. The conserved
NADH binding domain within a larger FAD bindingdomain and the C-terminal dimerisation
domain are illustrated in red and green, respectively.
(TIF)

S2 Fig. Candida albicans FDH3 encodes a GSH-dependent formaldehyde dehydrogenase
class III. The sequence alignment of homologs of the Candida albicans GSH-dependent form-
aldehyde dehydrogenase FDH3 (CR_10250C_A) was generated using ClustalW. The homologs
from Saccharomyces cerevisiae, Schizosaccharomyces pombe,Mus musculus,Homo sapiens,
Drosophila melanogaster and Caenorhabditis elegans used for the multiple sequence alignments
were obtained from NCBI/ BLAST are shown. The conserved catalytic domain of the alcohol
dehydrogenases class III and the C-terminal cofactor-binding domain that reversibly binds
NAD(H) are illustrated in red and green, respectively.
(TIF)

S1 Table. PCR Primers.
(DOCX)
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