In-silico identification and characterisation of 17 polymorphic anonymous non-coding sequence markers (ANMs) for red grouse (*Lagopus lagopus scotica*)

Marius A. Wenzel^{*} and Stuart B. Piertney

December 16, 2014

Institute of Biological and Environmental Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK

* corresponding author. email address: marius.a.wenzel.08@aberdeen.ac.uk. Phone number: +44 1224 272395

Word counts: 133 (abstract), 779 (main text), 86 (legends) Keywords: anonymous nuclear markers; non-coding DNA; neutral evolution; red grouse; Lagopus

1

Abstract

Anonymous non-coding sequence markers (ANMs) are powerful neutral genetic markers with great utility in phylogeography, population genetics and population genomics. Developing ANMs has previously relied on sequencing random fragments of genomic DNA in the target species and then querying bioinformatics databases to identify unannotated, putatively neutral fragments. Here, we describe an alternative *in silico* approach that is based on identifying large unannotated genomic regions in model species to provide *a priori* neutral targets for candidate ANMs that are remote from exonic regions. We illustrate this approach by developing a set of 17 polymorphic ANMs for red grouse (*Lagopus lagopus scotica*) from c. 1 Mbp noncoding chromosome regions of chicken, turkey and zebrafinch genomes. This pipeline represents a powerful and efficient approach when appropriate model genomes are available for the target species of interest.

The ability to isolate and characterise nuclear DNA sequence polymorphisms remains a major priority for studies 11 resolving population history, estimating demographic parameters and examining the genetic basis of divergence, 12 adaptation and speciation (Thomson et al, 2010). In non-model species, one classic approach is to use exon-13 primed intron-crossing markers (EPICs) or comparative anchor-tagged sequences (CATS), which target nuclear 14 intronic sequences by anchoring primers in conserved flanking exonic regions (Backström et al, 2008). These 15 markers are considered useful for phylogenetics, gene mapping and population genetics because of high variabil-16 ity, cross-species utility and presumed neutrality (Brito and Edwards, 2009; Slate et al, 2009). However, they 17 are unlikely to be truly neutral because purifying selection on flanking exons may affect intronic polymorphism 18 through hitchhiking (Thomson et al, 2010). In contrast, nuclear anonymous non-coding markers (ANMs) that 19 are located in regions remote from exonic domains are unlikely to be under selection and are substantially more 20 polymorphic than EPICs or CATS (Thomson et al, 2010). Additionally, ANMs are more abundant and easier 21 to type than microsatellites, making them ideal tools for population genetics and phylogeography (Rosenblum 22 et al, 2007; Lee and Edwards, 2008; Thomson et al, 2010). 23 Isolating ANMs is usually based on sequencing random fragments of genomic DNA following shearing (Rosen-

Isolating ANMs is usually based on sequencing random fragments of genomic DNA following shearing (Rosenblum et al, 2007; Lee and Edwards, 2008) or enzymatic digestion (Barlow et al, 2012; Ren et al, 2013), or via whole-genome massive parallel sequencing (Bertozzi et al, 2012; Lewis et al, 2014). Non-coding sequences can then be identified from absence of annotations following BLAST (Altschul et al, 1997) queries against bioinformatics databases, and primers are designed accordingly (Bertozzi et al, 2012; Lewis et al, 2014). One issue ²⁹ with this strategy is that primer design on library clone sequences may be compromised because unidentified

30 polymorphism in binding sites may cause null-alleles, PCR failure and poor cross-species utility (Thomson et al,

³¹ 2010). Most crucially, however, neutrality cannot be established from mere absence of BLAST results. Con-

 $_{32}$ firming remoteness from exonic domains as a criterion for neutrality requires examining the genomic context of

the sequences in model genomes, but direct sequence mapping may be difficult if no taxonomically close model
 genome is available.

Here, we describe an alternative strategy to identifying ANMs that is purely based on available bioinformatics resources and provides *a priori* candidate targets for designing primers in non-coding regions that are remote from exonic regions and hence likely to be truly neutral. We illustrate this strategy by developing ANMs from avian model genomes for red grouse (*Lagopus lagopus scotica*), an economically important game bird endemic to upland heather moors in Scotland and northern England (Martínez-Padilla et al, 2014).

The UCSC Table Browser (Karolchik et al, 2004) provides tabulated annotations from published genomes. 40 RefSeq annotations were downloaded for the chicken genome (Gallus gallus galGal4 assembly) and analysed 41 using custom scripts in R 3.0.3 (R Core Team, 2014). The table fields txStart and txEnd were used to calculate 42 genomic distances (bp) between consecutive transcription blocks across each autosome. The maximum region 43 size per autosome ranged from 0.1 Mbp to 5.1 Mbp (median 1 Mbp) and a total of 113, 19 and 7 regions of at least 44 1 Mbp, 2 Mbp and 3 Mbp, respectively, were available across all autosomes (Figure 1). Nine c. 1 Mbp regions 45 in nine autosomes were arbitrarily selected as candidate target regions (Figure 1). The central 10 kbp portion 46 of these regions was extracted from GENBANK chromosome sequences, and homologous sequences in turkey 47 (Meleagris gallopavo melGall assembly) and zebrafinch (Taeniopygia guttata taeGut1 assembly) genomes were 48 identified using the BLAST-like alignment tool BLAT (Kent, 2002). Alignments of all three species and also 49 chicken and turkey alone were generated in GENEIOUS v5.6.3 (Drummond et al, 2012). Non-degenerate primers 50 (200–800 bp amplicon size, 18–27 bp primer length, 20–80 % GC content, 50–64 °C melting temperature) 51 were then designed opportunistically on small conserved regions using PRIMER3 (Rozen and Skaletsky, 2000) 52 as implemented in GENEIOUS. Primer specificity was tested using UCSC IN-SILICO PCR amplicon prediction 53 (Hinrichs et al, 2006) on the chicken, turkey and zebrafinch genomes. 54

Sequence polymorphism was ascertained in three red grouse individuals from locations that maximise ge-55 ographic variation across a network of grouse moors in north-east Scotland (Glenlivet 57.29 °N 3.18 °W, Mar 56 Lodge 56.95 °N 3.66 °W and Invermark 56.89 °N 2.88 °W). PCR conditions followed Wenzel et al (2014), with 57 annealing temperatures as detailed in Table 1. Amplicons were Sanger sequenced in both directions, sequences 58 were aligned in GENEIOUS and heterozygote sites were coded as IUPAC degenerate bases. Absence of exonic 59 annotations was re-confirmed using BLASTN against the GENBANK NT database (Altschul et al, 1997). Polymor-60 phic sites, numbers of haplotypes, nucleotide diversity, haplotype diversity and Tajima's D were then computed 61 on reconstructed haplotypes derived from the PHASE algorithm in DNASP v5 (Librado and Rozas, 2009). 62

⁶³ Twenty-two out of thirty primer pairs (73 %) amplified in red grouse, demonstrating a high success rate of

Figure 1: Numbers of unannotated genomic regions of particular minimum sizes in chicken autosomes, based on distances between consecutive transcription blocks. Black dots represent candidate regions selected for ANM design (Table 1).

our development strategy. Polymorphic sequence alignments were obtained for seventeen loci (57 %), containing

- ⁶⁵ 1–18 SNPs that define 2–6 haplotypes with no evidence of deviation from neutral sequence evolution (Table 1).
- ⁶⁶ Insertions/deletions of 1–10 bp were present in five loci. These polymorphic ANMs provide a valuable resource
- ⁶⁷ for a range of population genetics or genomics applications in red grouse. The zebrafinch genome impeded
- ⁶⁸ primer design in many cases due to its taxonomic distance (Table 1), but considering the taxonomic distance
- ⁶⁹ between red grouse, chicken and turkey, these markers should be conserved and hence useful across a range of
- ⁷⁰ closely related galliform species.

71 Acknowledgements

⁷² This study was funded by a BBSRC studentship (MA Wenzel) and NERC grants NE/H00775X/1 and NE/D000602/1

73 (SB Piertney). We are grateful to Mario Röder, Keliya Bai and Marianne James for help with fieldwork, and all

⁷⁴ grouse estate factors, owners and keepers, most particularly Alistair Mitchell, Shaila Rao, Christopher Murphy,

75 Richard Cooke and Fred Taylor, for providing access to estate game larders.

76 References

77 Altschul S, Madden T, Schäffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-

BLAST: A new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

Backström N, Fagerberg S, Ellegren H (2008) Genomics of natural bird populations: a gene-based set of reference
 markers evenly spread across the avian genome. Mol Ecol 17(4):964–980

Barlow A, Grail W, de Bruyn M, Wüster W (2012) Anonymous nuclear markers for the African adders (Serpentes: Viperidae: *Bitis*). Conserv Gen Res 4(4):967–969

Bertozzi T, Sanders KL, Sistrom MJ, Gardner MG (2012) Anonymous nuclear loci in non-model organisms:
making the most of high-throughput genome surveys. Method Biochem Anal 28(14):1807–1810

Brito PH, Edwards SV (2009) Multilocus phylogeography and phylogenetics using sequence-based markers.
 Genetica 135(3):439-455

⁸⁷ Drummond A, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, ⁸⁸ Markowitz S, Moir R, Stones-Havas S, S S, Thierer T, Wilson A (2012) Geneious v5.6.3. Available from

⁸⁹ http://www.geneious.com

90 Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Clawson H, Diekhans M, Furey TS, Harte

- RA, Hsu F, et al (2006) The UCSC genome browser database: update 2006. Nucleic Acids Res 34(suppl
- 92 1):D590–D598
- Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, Kent WJ (2004) The UCSC Table
 Browser data retrieval tool. Nucleic Acids Res 32(suppl 1):D493–D496
- ⁹⁵ Kent WJ (2002) BLAT–The BLAST-Like Alignment Tool. Genome Res 12:656–664

Lee JY, Edwards S (2008) Divergence Across Australia's Carpentarian Barrier: Statistical Phylogeography of the Red-Backed Fairy Wren (*Malurus melanocephalus*). Mem New York Botan G 62(12):3117–3134

- ⁹⁸ Lewis CJ, Maddock ST, Day JJ, Nussbaum RA, Morel C, Wilkinson M, Foster PG, Gower DJ (2014) De-
- velopment of anonymous nuclear markers from Illumina paired-end data for Seychelles caecilian amphibians
 (Gymnophiona: Indotyphlidae). Conserv Gen Res 6(2):289–291
- Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.
 Method Biochem Anal 25(11):1451-1452

ous non-coding sequence markers $(ANMs)$ for red grouse. Primer GC content, melting temperature T_m and annealing temperature	longside genomic locations in three bird genomes and sequence diversity statistics derived from three red grouse individuals	y π , haplotypes H, haplotype diversity H _d , Tajima's D).
mous non-coding sequence marke	alongside genomic locations in	ity π , haplotypes H, haplotype di
able 1: Characterisation of 17 anony	$_{\rm a}~(^{\rm TD}{=}{\rm TouchDown})$ are presented	egregating sites S, nucleotide divers

0 0 0		` -	-	· · · ·	0 (n) 0	/								1
					in silico amplification (genom	iic location and predicted amp	olicon size)	in vitro ar	nplifica'	tion				
Primer name	Primer sequence $(5' \rightarrow 3')$	GC	$\mathbf{T}_{\mathbf{m}}$	$T_{a} (^{\circ}C)$	Chicken	${ m Turkey}$	$\mathbf{Zebrafinch}$	Size	ŝ	Е	н	d b ^E	5	ENBANK
		(%)	(0°C)										8	ccession
Lls_ANM_6_1F	ACCCTTGTGAGCTGAGAGCTT	52	59.7	$60-50\mathrm{TD}$	m chr6:5360100+5360504	chr8:2879375+2879779	1	406	6	0.011	4 0	.800 0.	793 K	M379116
Lls_ANM_6_1R	TCACACCTATGGCAAACAAACAC	41	56.7		405 bp	405 bp	I							
Lls_ANM_8_1F	TGGCCAGGGTTATCTGGAGTGC	59	63.3	68	chr8:9422697 + 9423060	chr10:1058050-1058413	I	$_{287^{\mathrm{ab}}}$		0.005	4	.867 0.	600 K	CM379117
$Lls_ANM_8_1R$	TGCCCTCTGAAGAAGCCATTTGA	47	59.8		364 bp	364 bp	I							
$Lls_ANM_8_2F$	TCTGTCACTGTTCTCACATTTT	36	52.1	60-50 TD	m chr8:9424802+9425186	chr10:1055959-1056338	I	388^{b}	5	0.002	5	.333 -1	.132 K	CM379118
$Lls_ANM_8_2R$	CACTCAATTTGATTTTCTCAGTAACC	34	52.5		385 bp	380 bp	I							
$Lls_ANM_9_1F$	AGTCTGAGACATTTTCCCCCATCC	47	57.6	65	${ m chr9:20994525+20994916}$	chr11:21699903+21700290	I	390 p	ъ	0.007	4 (.867 0.	708 K	CM379119
$Lls_ANM_9_1R$	AGAACTCATTCTGCTTTGCAGC	45	56.8		392 bp	388 bp	I							
$Lls_ANM_9_2F$	TGAAATGTACTTCCTAACACATGC	37	53.4	60-50 TD	${ m chr9:20992310+20992689}$	$ m chr11:21697593{+}21697976$	I	385	0	0.004	4 0	.867 1.	386 K	M379120
Lls_ANM_9_2R	TGTTTTTTTTTGTGATTTATGTGGA	26	50.8		380 bp	384 bp	I							
$Lls_ANM_9_3F$	CTCCAGGATACTCAAGCCACA	52	57.5	65	${ m chr9:20999542+2099958}$	m chr11:21704861+21705255	I	407	5	0.002	с С	.733 -0	.050 K	M379121
$Lls_ANM_9_3R$	TCCTTGCAGTTTTTAGACTTGGA	39	54.6		417 bp	395 bp	I							
Lls_ANM_10_1F	CACTCAGCCCTCTGTGTAAGTGC	56	61.4	$65-55\mathrm{TD}$	chr10:15610965-15611270	chr12:16100168-16100473	chr10:16580442-16580734	305		0.001	5	0.333 -0	.933 K	M379122
Lls_ANM_10_1R	TGAGTTGTTAGACCACGCGA	50	59.6		306 bp	306 bp	292 bp							
$Lls_ANM_10_2F$	ACTCGCGTGTGGTCTAACAACTC	52	60.4	65-55 TD	chr10:15610580-15610988	m chr 12:16099786-16100191	${ m chr10:}16580040{ m -}16580466$	393	61	0.002	3	0.733 0.	311 K	(M379123
$Lls_ANM_10_2R$	ACTGCATGGTGGGGGAATGCCA	57	63.7		409 bp	406 bp	426 bp							
$Lls_ANM_10_3F$	TTGCTGCCTGCCACTGCTTA	55	61.3	$65-55\mathrm{TD}$	$chr10:15611228\!+\!15611646$	$ m chr12:16100431{+}16100850$	I	$_{278^{\mathrm{ab}}}$	18	0.034	9	1.000 0.	723 K	CM379124
$Lls_ANM_10_3R$	AGCCACACCTCCCCCCATTCA	60	63.1		419 bp	420 bp	1							
$Lls_ANM_11_1F$	AGTTGACATCAAAGTGGAGACA	40	54.3	$65-55\mathrm{TD}$	m chr11:5087733+5088037	chr13:5398213+5398522	m chr11:9467370+9467669	304	4	0.004	5	.333 -1	.295 K	(M379125
$Lls_ANM_11_1R$	GTGTCTGGTTTCACATCTGGC	52	57.5		305 bp	310 bp	299 bp							
Lls_ANM_13_1F	GGACATTTAGCAACAAGGTCACA	43	56.1	65-55 TD	m chr13:5734379+5734751	m chr15:5954643+5955002	1	373	e e	0.004	3	0.800 1.	124 K	(M379126
Lls_ANM_13_1R	GGATGATTAGGCTGTGTGAAAACCC	45	56.6		373 bp	360 bp	I							
$Lls_ANM_13_3F$	TGTGGATGTATACTACCTGGCA	45	55.8	60-50 TD	m chr13:5741550+5741896	chr15:5961829+5962181	1	$_{244^{\mathrm{ab}}}$	0	0.006		0.733 0.	338 K	CM379127
Lls_ANM_13_3R	GCTGATACCTTTATAAACTTTGGTGT	34	53.3		347 bp	353 bp	I							
$Lls_ANM_18_1F$	TGGAAGCCATGAGGAAGGGGA	57	62.2	67	$chr18:8776322 \pm 8776692$	chr20:6558242-6558622	I	379	1-	0.009	4 0	.867 0.	508 K	M379128
Lls_ANM_18_1R	AGGAAGGAAGAATGCAAGGCA	47	57.8		371 bp	381 bp	1							
$Lls_ANM_18_2F$	TCAGCCAATATTGCTTCAAAGG	40	54	60-50 TD	$chr18:8779401 \pm 8779815$	chr20:6555203-6555600	1	322^{a}	2	0.008	4 (.867 -0	631 K	CM379129
$Lls_ANM_18_2R$	TCCAATGAAATGAAGCTGTATGC	39	53.9		415 bp	398 bp	1							
$Lls_ANM_20_2F$	ATTCCTCGCTGGTTGCTGGC	60	62.6	68	m chr20:4665027+4665427	m chr22:4275127+4275522	I	403	6	0.008	3	.600 -0	818 K	(M379130
$Lls_ANM_20_2R$	CTGCACTTGTGGGGCAGACCC	65	63.5		401 bp	396 bp	1							
$Lls_ANM_22_2F$	GCGATGCTACACCCTCCAAG	60	59.9	60-50 TD	chr22:3864116 + 3864470	chr24:3873443+3873798	I	357	61	0.002	5	.333 -1	.132 K	M379131
Lls_ANM_22_2R	ACAAATGCTACTGACAAATCTGA	33	52.6		355 bp	356 bp	I							
$Lls_ANM_22_3F$	GCTTTCCCTCCTCTATTTCCTTC	47	56	66	chr22:3862528 + 3862926	chr24:3871853+3872244	I	397	9	0.008	3	.733 1.	392 K	.M379132
$Lls_ANM_22_3R$	AGAATCCCAAAGCCTTTCCCT	47	57.4		399 bp	392 bp	1							
^a : partial alignment	due to unresolvable electropherogram peaks	(multipl	le heterozy	/gote INDEL n	autations)									I

^a: partial alignment due to unresolvable e. b: alignment contains INDEL mutations

- Martínez-Padilla J, Redpath SM, Zeineddine M, Mougeot F (2014) Insights into population ecology from long term studies of red grouse Lagopus lagopus scoticus. J Anim Ecol 83(1):85–98
- ¹⁰⁵ R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical
- ¹⁰⁶ Computing, Vienna, Austria, URL http://www.R-project.org
- Ren QP, Fan Z, Zhou XM, Jiang GF, Wang YT, Liu YX (2013) Identification and characterization of anonymous
 nuclear markers for the double-striped cockroach, *Blattella bisignata*. B Entomol Res 103(01):29–35
- Rosenblum E, Belfiore N, Moritz C (2007) Anonymous nuclear markers for the eastern fence lizard, Sceloporus
 undulatus. Mol Ecol Notes 7(1):113–116
- Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. Meth
 Mol Biol 132:365–386
- Slate J, Gratten J, Beraldi D, Stapley J, Hale M, Pemberton JM (2009) Gene mapping in the wild with SNPs:
 guidelines and future directions. Genetica 136(1):97–107
- Thomson RC, Wang IJ, Johnson JR (2010) Genome-enabled development of DNA markers for ecology, evolution
 and conservation. Mol Ecol 19(11):2184–2195
- ¹¹⁷ Wenzel MA, Webster LMI, Paterson S, Piertney SB (2014) Identification and characterisation of 17 polymorphic
- candidate genes for response to parasitic nematode (*Trichostrongylus tenuis*) infection in red grouse (*Lagopus*

¹¹⁹ *lagopus scotica*). Conserv Gen Res