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Abstract10

The extent to which genotypic variation at a priori identified candidate genes can ex-11

plain variation in complex phenotypes is a major debate in evolutionary biology. Whilst some12

high-profile genes such as the MHC or MC1R clearly do account for variation in ecologically13

relevant characters, many complex phenotypes such as response to parasite infection may14

well be underpinned by a large number of genes, each of small and effectively undetectable15

effect. Here, we characterise a suite of novel candidate genes for variation in gastrointestinal16

nematode (Trichostrongylus tenuis) burden among red grouse (Lagopus lagopus scotica) in-17

dividuals across a network of moors in north-east Scotland. We test for associations between18

parasite load and genotypic variation in twelve genes previously identified to be differen-19

tially expressed in experimentally infected red grouse or genetically differentiated among red20

grouse populations with naturally different parasite loads. These genes are associated with a21

broad physiological response including immune system processes. Based on individual-level22

generalized linear models, genotypic variants in nine genes were significantly associated with23

parasite load, with effect sizes accounting for differences of 514–666 worms per bird. All24

but one of these variants were synonymous or untranslated, suggesting that these may be25

linked to protein-coding variants or affect regulatory processes. In contrast, population-level26

analyses revealed few and inconsistent associations with parasite load, and little evidence of27
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signatures of natural selection. We discuss the broader significance of these contrasting re-28

sults in the context of the utility of population genomics and landscape genomics approaches29

in detecting adaptive genomic signatures.30

Keywords: complex phenotypes, genetic architecture, infinitesimal theory, candidate genes, par-31

asite susceptibility, large-effect polymorphisms32

Running title: Novel candidate genes for parasite load in red grouse33

Introduction34

A fundamental goal in molecular ecology and evolutionary biology is to identify how different35

eco-evolutionary processes influence the genetic variation that underpins adaptation in natural36

populations (Mitchell-Olds et al., 2007; Ellegren & Sheldon, 2008; Andrew et al., 2013). Such37

efforts, however, have been hampered because only rarely is the genetic architecture of phe-38

notypic characters of ecological and adaptive importance properly known, which precludes the39

identification of appropriate genomic targets through which gene dynamics in relation to adap-40

tation can be followed (Ellegren & Sheldon, 2008; Allendorf et al., 2010). This problem can be41

obviated, and the genetic basis of ecologically relevant characters resolved, in two conceptually42

different ways. One strategy is to use approaches such as genome-wide association (GWAS) or43

quantitative-trait loci (QTL) mapping, where the genetic architecture of a phenotypic charac-44

ter is explored and derived de novo from statistical association between phenotypic states and45

marker alleles in the study system (Ellegren & Sheldon, 2008). The alternative strategy focuses46

on exploiting a set of candidate genes with a priori evidence for a functional link to the ecological47

character of interest (Hoffmann & Willi, 2008; Piertney & Webster, 2010).48

Candidate genes in the strict sense are typically derived from functional assays in model49

systems and are usually also applicable to non-model systems (Fitzpatrick et al., 2005; Piertney50

& Webster, 2010). Classic examples for such “bottom-up” candidate genes (sensu Piertney51

& Webster, 2010) are the MC1R and MHC genes, which have proven to be extremely useful52

paradigms for molecular selection and phenotypic adaptation (Hoekstra, 2006; Piertney & Oliver,53

2006). In contrast, candidate genes in the broad sense are novel genes that are discovered directly54

from transcriptomic or genomic assays in the target species (“top-down” candidate genes, sensu55

Piertney & Webster, 2010) and thus provide a more comprehensive perspective than classic56

bottom-up candidate genes (Hoffmann & Willi, 2008; Piertney & Webster, 2010). Differential57
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gene expression between individuals or populations that either differ naturally in the character58

of interest or are subject to experimental intervention can highlight functionally relevant loci59

that then become targets to be screened for SNPs (e.g., Orsini et al., 2011; Webster et al., 2011a;60

Wang et al., 2012; De Wit & Palumbi, 2013; Gossner et al., 2013). Further, genome-wide scans61

for locus-specific signatures of selection without a priori assumptions of phenotypic links or62

causal environmental factors can reveal outlier loci that are then examined for associations with63

environmental factors or phenotypic characters (e.g., Manel et al., 2009; Hess & Narum, 2011;64

Matala et al., 2011; Pespeni & Palumbi, 2013; Milano et al., 2014). Similarly, locus-specific65

genetic differentiation among samples of individuals that differ in the character of interest may66

indicate adaptive significance with respect to character divergence, irrespective of the magnitude67

of differentiation relative to the whole genome (e.g., Brown et al., 2013).68

Notwithstanding whether genome-wide or candidate gene approaches are used, a perceived69

problem is that the genetic architecture of the character of interest may involve a multitude70

of genotypic variants with minute, possibly undetectable, effect sizes consistent with Fisher’s71

infinitesimal theory (Fisher, 1919; Rockman, 2012). Clearly, the broad literature that has linked72

specific genotypic variants to key phenotypic traits using genome-wide or candidate gene ap-73

proaches indicates that large-effect “gold nuggets” (sensu Rockman, 2012) do exist, particularly74

for simple, Mendelian phenotypes (Stern & Orgogozo, 2008; Rockman, 2012). Recent studies75

using bottom-up candidate gene approaches have revealed such causal variants for phenotypes of76

varying complexity, for example, body colouration and colour perception (Lehtonen et al., 2011;77

Walsh et al., 2012; Poelstra et al., 2013), thermal responses (Shimada et al., 2011; Bedulina78

et al., 2013), osmoregulation (Bedulina et al., 2013), growth and reproduction (Hemmer-Hansen79

et al., 2011; Bedulina et al., 2013), immune function (Turner et al., 2012), and response to air80

pollution (Bashalkhanov et al., 2013). Nevertheless, there remains substantial concern over the81

generality of large-effect causal variants and in particular whether they exist for more complex82

phenotypes (Rockman, 2012).83

Here, we inform this debate by characterising a suite of novel candidate genes that were84

developed using a top-down strategy to examine the genetic basis of an exemplary complex85

phenotype, namely host response to chronic parasite burden. As a model, we use the interaction86

between red grouse (Lagopus lagopus scotica Latham) and its primary parasite, the gastroin-87

testinal nematode Trichostrongylus tenuis Mehlis. L. l. scotica is an economically important88

subspecies of the willow ptarmigan (Lagopus lagopus) endemic to the heather moorlands of89
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upland Scotland and northern England (Martínez-Padilla et al., 2014). T. tenuis is highly90

prevalent in red grouse where it maintains a direct life cycle and imposes major fitness costs91

(Wilson, 1983). Infective larvae are ingested with heather shoots (Saunders et al., 1999) and92

establish in the caecum where adult parasites cause haemorrhaging that results in poor physi-93

ological condition and compromised survival and fecundity (Watson et al., 1987; Hudson et al.,94

1992; Delahay et al., 1995; Delahay & Moss, 1996). More than 90 % of birds in a population are95

typically infected (Wilson, 1983) and, although some parasite-directed responses are mounted96

(Webster et al., 2011a), grouse typically cannot purge the infection such that they continue to97

bear parasite burdens for life (Shaw & Moss, 1989).98

Long-term defence against chronic parasite insult has been demonstrated in several species to99

result in multifactorial effects on host behaviour and physiology (Sadd & Schmid-Hempel, 2009;100

Thomas et al., 2010; Biron & Loxdale, 2013; Poulin, 2013). These effects may be underpinned101

by substantial numbers of genes with small individual effect sizes (Wilfert & Schmid-Hempel,102

2008; Rockman, 2012). Although heritability of parasite susceptibility and tolerance is well103

documented (Gauly & Erhardt, 2001; Stear et al., 2007; Mazé-Guilmo et al., 2014) and a range104

of bottom-up candidate immune system genes, such as the MHC (Oliver et al., 2009; Oppelt105

et al., 2010; Sin et al., 2014), interferon gamma (Coltman et al., 2001; Stear et al., 2007), Toll-like106

receptors (Downing et al., 2010) and cytokines (Luikart et al., 2008; Downing et al., 2010; Turner107

et al., 2012), have provided some insight, identification of novel top-down candidate genes for108

parasite infection in animals beyond immune system genes has proven to be a major challenge.109

For example, no conclusive associations between allele frequencies and parasite prevalence were110

found in Daphnia (Orsini et al., 2012) and Soay sheep populations (Brown et al., 2013), despite111

employing transcriptomic assays for candidate gene discovery (Orsini et al., 2011; Pemberton112

et al., 2011). These case studies cast doubt onto the existence of novel large-effect genotypic113

variants for parasite infection.114

However, for red grouse there is the smoking gun of tell-tale signs that the response to115

parasite infection may indeed be influenced by some large effect genes. First, assays of ex-116

onic polymorphisms among two geographically distant grouse populations that differ in para-117

site load have indicated heterogeneity among locus-specific estimates of genetic differentiation118

(Wenzel et al., 2014). This suggests that significantly differentiated genes may be associated119

with parasite-driven selection processes rather than demographic isolation. Second, comparative120

transcriptomic analysis following experimental manipulation of parasite load has highlighted a121
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number of differentially expressed genes, some of which are involved in immune system pro-122

cesses and unspecific tissue damage responses (Webster et al., 2011a,b). Third, an exploratory123

genome-wide epigenomics study has highlighted an epigenetic signature of parasite load at spe-124

cific genomic regions across a network of wild grouse populations (Wenzel & Piertney, 2014).125

In concert, these studies demonstrate detectable functional and genetic effects associated with126

parasite infection and parasite burden in the red grouse system. However, the key question127

remaining to be answered is whether genotypic variation at such genes explains variance in128

parasite load in natural red grouse populations.129

Here, we examine this issue directly in red grouse individuals from a network of grouse moors130

in north-east Scotland with parasite loads ranging nearly across five orders of magnitude (Wen-131

zel & Piertney, 2014). We genotype these grouse at a previously developed suite of candidate132

genes for parasite response and at a set of anonymous non-coding control markers that will133

facilitate interpretation of adaptive patterns (Wenzel et al., 2014; Wenzel & Piertney, 2015).134

Capitalising on extensive insight from previous ecological, physiological and molecular studies135

on red grouse, we test for associations between genotypic variation and parasite load and explore136

signatures of selection while accounting for confounding factors conferred by heterogeneity in137

physiological condition, grouse moor management and shared environments due to social struc-138

turing. Our analysis strategy combines population genomics and landscape genomics approaches139

that together allow for investigating these patterns at the population and individual scale. We140

hypothesize that grouse carrying different genotypic variants across these candidate genes will141

differ significantly in parasite load.142

Materials and Methods143

Study system144

Our study system consists of 21 sampling sites (hereafter: populations) in a well-studied land-145

scape of grouse moors in north-east Scotland near Deeside, Aberdeenshire (Fig. 1; Wenzel &146

Piertney, 2014). One common management action on these grouse moors is parasite control to147

improve grouse fitness and population growth (Martínez-Padilla et al., 2014). This is achieved148

by dispensing quartz grit coated with an anthelmintic drug across the moors and allowing grouse149

to self-medicate by ingesting this medicated grit alongside natural grit during normal feeding150

behaviour (Newborn & Foster, 2002; Webster et al., 2008; Cox et al., 2010). Among the sites151
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sampled for the present study, medicated grit had been used for at least two years at fifteen152

sites, and not been used for at least 10 years at six sites (Table 1). As such, the presence or153

absence of medicated grit is an important confounding factor expected to impact parasite load.154

Morphological measurements and tissue biopsies were taken from shot grouse following driven155

or walked-up sporting shoots in autumn 2012. As grouse populations on these moors typically156

display a degree of social and genetic structure in space and time, conferred by philopatry and157

territoriality by males (Watson et al., 1994; MacColl et al., 2000; Piertney et al., 1998, 1999,158

2000, 2008), individuals were aged (“young”: < 1 year; “old”: > 1 year) and, where possible,159

old birds were preferentially sampled to minimise sampling bias through over-representation of160

kin groups (Wenzel & Piertney, 2014). As measures of physiological condition, body weight161

was measured to the nearest 10 g with a spring balance and supra-orbital comb size (width and162

length) was measured to the nearest mm. Carotenoid-based supra-orbital combs in both males163

and female grouse act as testosterone-dependent signals that are modulated by parasite load164

through impact on immune function (Mougeot & Redpath, 2004; Mougeot et al., 2004; Mougeot,165

2008), oxidative status (Mougeot et al., 2009, 2010a) or physiological stress (Bortolotti et al.,166

2009; Mougeot et al., 2010b). As a result, comb size reflects an interaction between condition,167

age, sex and, to some extent, parasite load (Mougeot et al., 2004, 2005, 2009; Martínez-Padilla168

et al., 2010; Martinez-Padilla et al., 2011; Vergara et al., 2012a,b; Wenzel & Piertney, 2014).169

Liver samples were taken for DNA extraction and caecum samples were taken for parasite170

load estimation from faecal parasite egg counts using the standard McMaster chamber slide171

method (Seivwright et al., 2004). DNA was extracted from 2–3 c. 2 mm3 shreds of liver tissue172

following the method of Hogan et al. (2008). Each bird was sexed genetically by amplification173

and electrophoresis of the gonosome-linked CHD genes (Griffiths et al., 1998) as described in174

Wenzel et al. (2012).175

DNA sequencing and assembly176

We selected 12 candidate genes for response to parasite infection from a suite of genes that177

were previously developed for red grouse from transcriptomic and genomic data (Lls_CG01–178

Lls_CG12; Wenzel et al., 2014). These genes are located in seven chromosomes in the chicken179

genome (Wenzel et al., 2014) and capture a broad physiological response, including immune180

system, xenobiotic detoxification, oxidative stress and metabolism processes (Table 2). Ge-181

netic differentiation among grouse populations with different parasite loads suggested that these182
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genes may be under natural selection, and genes Lls_CG01–Lls_CG07 also changed levels of183

gene transcription in infected birds compared to control birds (Wenzel et al., 2014). To facilitate184

interpretation of genotypic patterns and association with parasite load in these putatively adap-185

tive candidate genes, we also selected four anonymous non-coding sequence markers (ANMs) as186

control loci, located in four other chicken chromosomes to minimise likelihood of linkage dise-187

quilibrium (Wenzel & Piertney, 2015). These control loci were designed in large unannotated188

genomic regions remote from exonic annotations, and are therefore expected to be selectively189

neutral and not functionally linked to parasite load (Wenzel & Piertney, 2015).190

Candidate genes and control loci were amplified following the PCR conditions detailed in191

Wenzel et al. (2014) and (Wenzel & Piertney, 2015), respectively. PCR amplicons were purified192

by adding 1 U each of Exonuclease I (ExoI) and Antarctic phosphatase in a final concentration193

of 1X CutSmart reaction buffer and 1X Antarctic phosphatase reaction buffer (all New England194

Biolabs), and incubating at 37 ºC for 45 min followed by enzyme heat deactivation at 80 ºC for 20195

min. Amplicon sequences were obtained from single-end Sanger sequencing on an ABI 3070XL196

automatic capillary sequencer (The GenePool, University of Edinburgh, UK) and supplemented197

with sequences from a 454 amplicon sequencing run on Roche 454 GS FLX+ (Eurofins Genomics,198

Ebersberg, Germany) (details in supplementary materials S1).199

Sequences were quality-controlled, assembled and aligned in geneious R7 (Drummond et al.,200

2014). Heterozygous nucleotide sites in Sanger sequences and in individual-specific consensus se-201

quences of 454 read contigs were coded as IUPAC degenerate bases and mapped to locus-specific202

Sanger reference sequences (Wenzel et al., 2014; Wenzel & Piertney, 2015). Polymorphic sites203

in these alignments were identified by eye and constant sites were removed. All sequences were204

then subjected to haplotype reconstruction and imputation of missing data using the software205

phase 2.1.1 (Stephens et al., 2001; Stephens & Scheet, 2005) with 1000 iterations, a thinning206

interval of 10 and a burn-in of 1000. To optimise the reconstruction process, known haplotypes207

were extracted from high-coverage 454 contigs of 14–62 (median: 32) individuals and included208

as anonymous reference haplotype panels (dataDryad doi: TBC).209

Statistical analysis210

Summary statistics for sequence diversity (polymorphic sites, nucleotide diversity, haplotype211

diversity) and test statistics for the neutral equilibrium population model (Tajima’s D, Fu & Li’s212

D and F) were obtained from reconstructed haplotype alignments using dnasp v5 (Librado &213
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Rozas, 2009). Global population differentiation was estimated with GST and N ST statistics using214

the software spads (Dellicour & Mardulyn, 2014) with 1,000 permutations to obtain estimates215

of statistical significance. To examine signatures of natural selection, loci with disproportionate216

population differentiation (FST-outliers) were identified using bayescan2 (Foll & Gaggiotti,217

2008) with haplotype data as input. Additionally, to test whether haplotype reconstruction218

introduced bias, bayescan was then run on 500 dataset replicates that were created by drawing219

one random SNP from each locus, thus retaining independence among loci. All runs consisted220

of 105 iterations with a thinning interval of 20 after 20 pilot runs (104 iterations each) and a221

burn-in of 5 · 105. Outliers were selected at a significance threshold of q ≤ 0.05.222

Population-level analysis223

Population-level associations between genotypic variation at each locus and parasite load were224

examined using genetic differentiation statistics based on population haplotype frequencies and225

medians of parasite load. To ascertain whether the loci can be treated as independent for multi-226

locus analyses, haplotypes were converted to diploid multi-locus allele frequencies using spads227

and pgdspider (Lischer & Excoffier, 2012), and linkage disequilibrium among combinations of228

all 16 loci within each population was tested for in genepop 4.2.1 (Raymond & Rousset, 1995;229

Rousset, 2008) with 10,000 MCMC dememorisations, 100 batches of 5000 MCMC iterations and230

a significance threshold of α = 0.05.231

Locus-by-locus hierarchical analysis of molecular variance (AMOVA; Excoffier et al., 1992)232

was used to test whether groups of populations with similar median parasite loads are signifi-233

cantly genetically differentiated. The AMOVA method partitions total genetic variance across234

three hierarchical components: among groups of populations (φCT), among populations within235

groups (φSC) and within populations (φST). The 21 populations (sampling sites) were divided236

into three groups of seven populations with broadly similar median parasite loads (4, 100–800,237

>800 worms per bird; Figure 1). Point estimates and statistical significance for φCT, φSC and238

φST were obtained using spads with 1,000 permutations.239

Relationships between population genetic differentiation and median parasite load, corrected240

for isolation by distance and anthelmintic medication regime at sampling locations, were exam-241

ined using isolation-by-stressor analysis based on non-parametric partial Mantel tests (Smouse242

et al., 1986) and a Bayesian parametric regression method that allows for testing the effect of243

multiple combinations of predictors on genetic differentiation (Foll & Gaggiotti, 2006). Pairwise244
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differentiation statistics among populations (GST, G’ST, Dest) were computed for each locus in-245

dividually and also combining all candidate genes or all control loci, using the package diveRsity246

(Keenan et al., 2013) in r 3.0.3 (R Core Team, 2014). Relationships between patterns of popu-247

lation differentiation between candidate genes and control loci were examined using scatter plots248

and linear models. Locus-by-locus Mantel tests with 9,999 permutations were then carried out to249

estimate the correlation between pairwise population matrices of linearized genetic differentia-250

tion and either logarithmic geographic distance (= isolation by distance) or median parasite load251

conditioned by binary differences in medication regime (0: same regime, 1: different regime) and252

logarithmic geographic distance (= isolation by stressor), using the r package ecodist (Goslee253

& Urban, 2007). Finally, Bayesian locus-by-locus models that regress population-specific local254

FST estimates (Gaggiotti & Foll, 2010) on all possible combinations of median parasite load and255

three covariates (longitude, latitude and presence/absence of medicated grit) were fitted using256

the software geste (Foll & Gaggiotti, 2006). The posterior likelihoods of all model were then257

used to identify those predictor combinations that best explain variation in genetic differentia-258

tion. All models comprised a run length of 105 with a thinning interval of 20, following 20 pilot259

runs of 104 iterations each and a burn-in of 5 · 105.260

Individual-level analysis261

Given the substantial heterogeneity of parasite load within populations, we then focussed on262

individual-based generalized linear model analysis of parasite load and genotypic variants while263

accounting for additional factors that confound this relationship (e.g., Manel et al., 2009; Oliver264

et al., 2009; Sin et al., 2014; Wenzel & Piertney, 2014). In red grouse, three confounding265

factors are important to address. First, parasite load may be correlated within sampling sites266

(epidemiological neighbourhood effect; Hubbard et al., 2010), due to transmission dynamics267

conferred by a shared environment and social structuring of kin groups (Piertney et al., 1998,268

1999; Martinez-Padilla et al., 2012). Second, parasite control through medicated grit reduces269

typical parasite load compared to sites where parasites are not controlled (Newborn & Foster,270

2002). Third, individual parasite loads are expected to vary with sex, age and environment-271

dependent physiological condition (Mougeot et al., 2004, 2005, 2009; Martínez-Padilla et al.,272

2010; Martinez-Padilla et al., 2011; Vergara et al., 2012a,b).273

To address these factors, parasite load was modelled as an over-dispersed Poisson-distributed274

variable in a generalised estimating equations framework (GEE) using the r package geepack275

9



(Halekoh et al., 2006). Observations were clustered by populations (21 clusters) and an ex-276

changeable within-cluster correlation structure was applied to account for spatial correlation of277

parasite load caused by neighbourhood effects. This model choice provides easily interpretable278

population-average effect sizes and robust standard errors to facilitate significance testing of pre-279

dictors (Hubbard et al., 2010). Individuals from medicated sites had significantly lower parasite280

loads than those from non-medicated sites (medians: 79 and 980 worms per bird; Wilcoxon’s281

W = 4802; P � 0.001), so the presence or absence of medicated grit at a sampling site was282

included as a binary covariate. Relationships among morphological variables were examined283

using linear models to ascertain which covariates to include without causing collinearity or over-284

fitting the model (Graham, 2003; Oliver et al., 2009). As expected, comb area was strongly285

associated with sex (F1,166 = 101.1; P � 0.001), age (F1,166 = 28.1; P � 0.001) and weight286

(F1,166 = 11.4; P < 0.001), and was therefore included as a proxy variable for sex-, age- and287

condition-specific covariance in parasite load. More complex models did not yield substantially288

different results, indicating that the simpler model with comb area is both biologically and289

statistically appropriate.290

Rather than relying on reconstructed haplotypes, original SNP genotypes were extracted291

from unphased sequence alignments and coded as categorical factors with up to three levels292

(homozygote for allele 1, homozygote for allele 2, heterozygote). Factor levels with a frequency293

below 0.05 were removed and the model was fitted on the reduced dataset if two levels remained.294

Further, each SNP was re-coded as up to three binary variables that represent the presence of295

allele 1, allele 2 or heterozygosity, respectively, and models were then re-run for alleles and296

heterozygosity independently. This approach is robust because it examines consistency across297

three different ways of subdividing observations during model fitting and also allows for intuitive298

separation of allele-specific effects and heterozygote advantage (Oliver et al., 2009; Oppelt et al.,299

2010). To aid the identification of such heterozygote effects, each SNP was tested for global300

deviation from Hardy-Weinberg equilibrium by calculating Wright’s inbreeding coefficient FIS =301

1−HO
HE

and testing significance with the χ2 test. Finally, for comparison with SNP-based analysis,302

the same models were re-run with each haplotype coded as a binary variable.303

GEE model P-values were corrected for multiple testing within each type of genotypic vari-304

ant (genotypes, alleles, heterozygosity, haplotypes) using the false discovery-rate approach (Ben-305

jamini & Hochberg, 1995). Significant (q ≤ 0.1) model coefficient estimates (β1) were linearised306

(eβ1) and expressed as a percentage change in parasite load. Absolute effect sizes were calculated307
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from differences in predicted least-square population mean estimates between genotypic variants308

when keeping all other variables constant at mean values, using the r package doBy (Højsgaard309

& Halekoh, 2013). To provide an indication of how well genotypic variation explains parasite310

load, the difference between the quasi-likelihood based information criterion (QICu; Pan, 2001)311

estimates was calculated between the full model and an equivalent model omitting the genetic312

term.313

Finally, to identify population-genomics signatures of parasite load in those SNP alleles314

identified through individual-based GEE models, we examined whether population-level allele315

frequencies were associated with median parasite load when accounting for the presence or316

absence of anthelmintic medication in populations. Allele frequencies were calculated from SNP317

genotype data and used as a predictor of median parasite load in a generalised linear model with318

negative binomial error structure and including a binary covariate representing anthelmintic319

medication, using the r package MASS (Venables & Ripley, 2002).320

Results321

Estimated parasite loads among the 173 individuals ranged from 4 to 9283 worms per bird and322

population medians ranged from 4 to 2236 worms per bird (Table 1). Across all loci, between323

98 and 173 individuals were sequenced at more than 50 % of all polymorphic sites. The twelve324

candidate genes were sequenced in 125–173 individuals and contained 2–17 polymorphic sites325

that defined between 4–63 reconstructed haplotypes (Table 3). Sequencing failure was higher for326

control loci, where 98–171 individuals were successfully sequenced. Those sequences contained327

6–15 polymorphic sites and defined 8–51 reconstructed haplotypes (Table 3). Estimated haplo-328

type reconstruction fidelity based on small reference haplotype panels was 80±18 %, indicating329

some uncertainty for some loci caused by few SNPs with disproportionate amounts of miss-330

ing genotypes. Consensus sequences for all loci with genic annotations and SNP locations are331

available from genbank accessions KM236217–KM236228 (candidate genes) and KP210037–332

KP210040 (control loci). Significant deviation from the neutral equilibrium population model333

was detected in four candidate genes and three control loci, coinciding with significant genetic334

differentiation among populations (Table 3). No evidence for linkage disequilibrium among the335

16 loci was detected based on reconstructed haplotypes, indicating that the loci can be treated336

as independent.337
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Population genetics analyses provided weak and inconsistent evidence for association be-338

tween genetic differentiation and parasite load. Following hierarchical AMOVA, population339

groups with similar median parasite loads were marginally significantly differentiated at locus340

Lls_CG11 (φCT = 0.015; P = 0.053), but not at any other locus (Table 3). Pairwise genetic341

differentiation estimates were typically higher for control loci (GST=-0.032–0.123) compared to342

candidate genes (GST=-0.015–0.027), even within population groups with similar parasite loads343

(Fig. 2), highlighting a discrepancy between neutral and adaptive genetic structure. When ac-344

counting for isolation by distance and differences in anthelmintic medication regime, differences345

in parasite load were consistently associated with three measures of genetic differentiation for346

two loci (Table 4), though only locus Lls_CG05 remained significant after correction for multiple347

testing using the false-discovery-rate method. Finally, Bayesian regression of population-specific348

local FST estimates highlighted parasite load as a significant predictor (alongside latitude) for lo-349

cus Lls_CG06 only. For most loci, no combination of predictors was more likely than a constant350

model, though medicated grit was a significant predictor for two loci (Table 4).351

In contrast, individual-level GEE models provided consistent evidence for several positive352

and negative associations between genotypic variants and parasite load in nine candidate genes,353

including those highlighted by population genomics analyses. Of 131 SNPs in total, 19 were354

excluded because they were monomorphic after removing factor levels with frequencies below355

0.05. All loci were represented by at least two SNPs after exclusion (supplementary materials356

S2). Parasite load was significantly (q ≤ 0.1) associated with eight genotypes, seven alleles and357

five heterozygosity states in candidate gene SNPs, and with four genotypes, two alleles and four358

heterozygosity states in control locus SNPs (Fig. 3). Taken together, these associations cover359

eight SNPs in seven out of twelve candidate genes and six SNPs in three out of four control loci360

(Table 5). Of all SNPs, 70 (53 %) did not significantly deviate from Hardy-Weinberg equilib-361

rium, 55 (42 %) displayed significant heterozygote deficiency and 6 (5 %) displayed significant362

heterozygote excess (supplementary materials S2). Haplotype-based analysis was impeded by363

low sample sizes for most haplotypes (only 86 out of 386 haplotypes were tested), but highlighted364

significant negative associations for four haplotypes in four candidate genes, of which two genes365

were not identified in SNP-based analysis (Lls_CG04 and Lls_CG09; supplementary materials366

S2). Significant models consistently provided a substantially better fit than equivalent models367

omitting the genetic term (ΔQICu = 4 − 108), with the exception of one control locus SNP368

(Table 5). The relative predicted effect sizes of candidate gene SNP variants on parasite load369
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ranged from a reduction by 59 % to an increase by 196 % (Table 5) and the absolute predicted370

effect on population means of the present study system ranged from –514 to +666 worms per371

bird (Fig. 4). The highlighted candidate gene SNPs represent three mutation types, though372

only a single SNP was non-synonymous, two SNPs were synonymous and all other SNPs were373

in untranslated mRNA regions (Table 5).374

The observed associations in candidate genes were predominantly driven by the presence of375

particular alleles rather than heterozygosity. Although congruent associations across genotypic376

variants within SNPs did not always allow for separating allele effects from heterozygosity effects377

(particularly when not all genotypes were sampled; supplementary materials S3), there was no378

evidence of deviation from Hardy-Weinberg equilibrium in these cases (Table 5). The single379

exception is Lls_CG05 SNP 15, which displayed heterozygote deficiency and a positive associ-380

ation between heterozygosity and parasite load, consistent with heterozygote disadvantage. In381

all cases where an individual allele had a significant effect, the complementary allele either had382

the opposite but non-significant effect or the model was not run because of low allele frequency383

(<0.05) (supplementary materials S2). In spite of these highlighted, well supported individual-384

based associations between alleles and parasite load, these same alleles were not associated with385

parasite load on a population level. The population-level frequencies of the seven identified386

candidate gene alleles ranged from 0.00 to 0.44, and no allele was significantly associated with387

population median parasite load (Fig. 5), though allele C at Lls_CG06 SNP 1 displayed a388

marginally significant negative association (β1 = −7.01; P = 0.10), consistent with its negative389

effect in individual-level GEE models (Table 5).390

FST outlier tests suggested that a subset of candidate genes that contained genotypic variants391

significantly associated with parasite load may be under natural selection (Table 6). In contrast,392

loci Lls_CG07, Lls_CG10 and Lls_CG11 were identified as outliers, but there was no association393

with parasite load. However, the identified outliers all displayed disproportionately small genetic394

differentiation and those loci with the greatest genetic differentiation were not identified as395

outliers (Table 6). These patterns remained when candidate genes were analysed alone and396

were therefore not driven by the control loci, whose simulated and observed FST values were397

overall considerably higher than those of the candidate genes (Table 6, Figure 2). Patterns398

were similar between haplotypes and SNPs, but only a subset of significant outliers when using399

haplotypes remained significant when using SNPs (Table 6). Results from FST outlier tests and400

tests for deviation from the neutral equilibrium population model were only weakly congruent401
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(Table 3).402

Discussion403

We examined whether genotypic variation in a set of candidate genes that are associated with404

functionally diverse responses to parasitic gastrointestinal nematode infection in red grouse ex-405

plains variation in actual nematode burden among individuals in natural grouse populations.406

Our findings highlight significant associations of parasite load with genotypic variants of sub-407

stantial effect sizes in most candidate genes on an individual, but not population level. These408

results validate these genes as candidates for nematode infection among individuals of a wild409

bird species and suggest that this complex phenotype may, to some extent, be underpinned by410

large-effect genes.411

Across all analyses, significant associations between parasite load and genotypic variants in412

at least one SNP or haplotype were detected in nine out of twelve candidate genes. These nine413

genes are involved in a range of physiological functions that effectively represent a multi-factorial414

response to long-term parasite insult (Thomas et al., 2010; Poulin, 2013). CYP2K4, GSTK1 and415

UGT1A1 represent key modification and conjugation enzymes involved in the two main stages416

of xenobiotics metabolism and detoxification (Guillemette, 2003; Tew & Townsend, 2012; Bock,417

2014). In infected red grouse, such xenobiotics may originate from primary T. tenuis infection418

or from secondary pathogen infection facilitated through caecal damage and haemorrhaging419

(Watson et al., 1987). Moreover, CYP2K4 and GSTK1 enzymes are involved in producing420

and regulating reactive oxygen species, respectively (Lewis, 2002; Symons & King, 2003; Hellou421

et al., 2012), and may therefore be involved in parasite defence during an immune response or422

response to oxidative stress caused by other parasite defence mechanisms (Mougeot et al., 2009,423

2010a). GAL9 is a chicken homologue of β-defensin 9 involved in innate antimicrobial immune424

responses and interactions with adaptive immune system processes (Mukhopadhyaya et al.,425

2010; Semple & Dorin, 2012). Further adaptive immune system components are represented426

by TCB and MFI2, a chicken homologue of the EOS47 eosinophil surface antigen (McNagny427

et al., 1996; Rahmanto et al., 2012). SUMO3 may be involved in regulation of cell cycle and428

gene expression, possibly as a response to physiological stress (Yang & Paschen, 2009; Sang429

et al., 2011). Similarly, CAPRIN1 and CCNL1 are principally involved in cell-cyle control430

(Wang et al., 2005; Lim & Kaldis, 2013) and epigenetic regulation of gene transcription and431
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RNA processing (Lim & Kaldis, 2013).432

Genotypic variants in these genes may affect the efficacy of these diverse parasite defence433

mechanisms in a number of ways, all of which may translate into compromised physiologi-434

cal condition and ability to resist parasite infection (Sheldon & Verhulst, 1996; Lochmiller &435

Deerenberg, 2000; Wilfert & Schmid-Hempel, 2008; Sadd & Schmid-Hempel, 2009). The func-436

tional effects of most genotypic variants are cryptic in most cases, because all but one genotypic437

variant were either a synonymous mutation in a coding region or a mutation located in an un-438

translated mRNA region. As such, these variants will not directly affect the translated amino439

acid sequence of the gene product, but may instead be involved in regulating gene expression440

or epigenetic mechanisms or be linked to a variant with any such effect. Synonymous muta-441

tions and non-coding mutations may affect gene transcription through cis-regulatory elements,442

such as splicing sites or binding sites for epigenetic mechanisms such as miRNAs or transcrip-443

tion factors, whereas translation can be affected by altered mRNA stability, impeded ribosome444

binding efficiency and codon bias (Chamary et al., 2006; Sauna & Kimchi-Sarfaty, 2011; Hunt445

et al., 2014). Such cryptic effects could also explain the few inconsistent associations between446

parasite load and genotypic variants in neutral, non-coding control loci, which may otherwise447

be fortuitous statistical artefacts. Intriguingly, we previously identified genome-wide cytosine448

methylation states that may be under selection and were also associated with parasite load in449

this same study system (Wenzel & Piertney, 2014). Although none of these identified methyla-450

tion states were linked to any of the candidate genes of the present study, the presence of an451

epigenetic signature of parasite load in concert with a genetic signature in epigenetic factors452

such as CAPRIN1, CCNL1 and SUMO3 suggest that epigenetic processes may indeed play an453

important role in the host-parasite interactions of this study system (Poulin & Thomas, 2008;454

Gómez-Díaz et al., 2012).455

These findings provide novel evidence for both beneficial and detrimental effects of geno-456

typic variation in top-down candidate genes for gastrointestinal nematode abundance among457

individuals in natural populations. However, there was no evidence for heterozygote advantage,458

though heterozygote disadvantage may be operating at one gene, contrary to previous reports459

for nematodes (Luikart et al., 2008) and other parasites (Oliver et al., 2009; Oppelt et al., 2010).460

The genetic basis of parasite susceptibility has been notoriously difficult to uncover (Wilfert &461

Schmid-Hempel, 2008), although some insight has been gained through bottom-up candidate462

gene approaches involving MHC (e.g., Oliver et al., 2009; Oppelt et al., 2010; Sin et al., 2014),463
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interferon gamma (Coltman et al., 2001; Stear et al., 2007), Toll-like receptors (Downing et al.,464

2010; Gavan et al., in press) and cytokines (Luikart et al., 2008; Downing et al., 2010; Turner465

et al., 2012). Landscape-scale application of novel top-down candidate genes for parasite suscep-466

tibility in Daphnia revealed differential patterns of selection at these genes among populations467

in different stress environments, but no conclusive associations between allele frequencies and468

parasite prevalence were found (Orsini et al., 2011, 2012). Susceptibility to nematode infection469

in sheep species has previously been found to be associated with alleles in the MHC and inter-470

feron gamma genes (Stear et al., 2007), and also with heterozygosity in a T-cell receptor gene471

(TCRG4) and a cytokine regulator (ADCYAP1) (Luikart et al., 2008), but none of these genes472

explained nematode abundance in a large-scale study on 960 Soay sheep (Brown et al., 2013).473

The same study also tested a panel of 123 candidate SNPs derived from genomic and top-down474

transcriptomic studies on various sheep species, but revealed no more significant associations475

with nematode abundance than expected by chance (Brown et al., 2013).476

Identifying novel candidate genes for the genetic basis of complex phenotypes can be ham-477

pered by relying on transcriptomic assays among different phenotypes to establish functional478

relevance (e.g., Orsini et al., 2011; Pemberton et al., 2011; Wang et al., 2012; De Wit & Palumbi,479

2013; Gossner et al., 2013). This is because phenotypic diversity may be mediated by trans-480

regulated variation in gene transcript number rather than sequence polymorphisms in transcripts481

or tightly linked cis-regulatory elements (Stern & Orgogozo, 2008; Duncan et al., 2014). Inte-482

grating transcriptomic data with genomic assays, as we did for identifying the candidate genes483

for red grouse (Wenzel et al., 2014), or focussing on genome scans alone (e.g., Manel et al., 2009;484

Hess & Narum, 2011; Matala et al., 2011; Pespeni & Palumbi, 2013; Milano et al., 2014) is likely485

to reduce the risk of false positive identification. Great potential also lies in shifting focus from486

targeting sequence polymorphisms to gene dynamics and epigenetics. For example, Schneider487

et al. (2014) recently demonstrated a purely transcriptomic application of the candidate gene488

approach to reveal a transcriptomic basis for diet-induced morphological plasticity in cichlids.489

The candidate genes were previously discovered using large-scale comparative transcriptomics490

of divergent phenotypes following diet manipulation (Gunter et al., 2013). This approach avoids491

the conceptual disjoint between the genome and the transcriptome and is likely to become an492

important complement to whole-genome population transcriptomics approaches (Ouborg et al.,493

2010; Debes et al., 2012; Matzkin, 2012). In the same vein, genome scans for epigenetic patterns494

such as cytosine methylation may well facilitate identification of candidate regulatory regions495
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that are associated with phenotypic responses to environmental factors (Duncan et al., 2014;496

Wenzel & Piertney, 2014).497

In spite of our ability to detect a genetic signature of individual-level parasite susceptibility in498

red grouse, such a signature was not manifest at a population level, irrespective of whether SNP499

or haplotype data were used. This discrepancy highlights that population genomics approaches500

may fail to identify adaptive differences among individuals, unless the examined populations are501

both genetically and phenotypically differentiated to substantial degrees. The red grouse popu-502

lations examined here were only subtly genetically differentiated with substantial variability of503

parasite load within populations, which is likely to impede statistical inference when reducing504

this variation to population-level statistics. Moreover, selection on parasite defence mechanisms505

may be weakened when an anthelmintic is administered through medicated grit (Newborn &506

Foster, 2002), which may further dampen parasite-associated adaptive population-level signa-507

tures. Classic tests for the neutral equilibrium model highlighted all loci with strong population508

structure (particularly the control loci), indicating that demographic history may confound de-509

tection of selection in this system (Nielsen, 2001). Indeed, tests for signatures of natural selection510

highlighted almost all genes to be under balancing selection, which is likely to be a statistical511

artefact caused by low population differentiation or an inappropriate population model (Lotter-512

hos & Whitlock, 2014), illustrating a key issue with current outlier detection software applied513

on landscape scale systems. Not least, signatures of selection may well be due to unknown514

environmental factors other than parasites, because three genes were identified as FST outliers515

but were not associated with parasite load.516

In consequence, population genomics signatures may be difficult to detect for complex poly-517

genic phenotypes unless the phenotype is underpinned by at least some large-effect polymor-518

phisms under strong selection pressure. Classic systems such as MC1R alleles that are perfectly519

associated with melanism in mouse populations (Hoekstra et al., 2004; Mullen & Hoekstra, 2008)520

are unlikely to be the norm for most population genomics scenarios given Fisher’s infinitesimal521

model (Fisher, 1919). Nevertheless, our results show that this does not preclude the detection522

of fine-scale patterns among individuals. As such, an individual-based landscape genomics ap-523

proach to link alleles with environmental or phenotypic variables is likely to be more powerful in524

detecting adaptive genetic discontinuities on continuous landscapes than population genomics525

approaches (Joost et al., 2007, 2013). Landscape genomics remains a challenging field for the526

multitude of confounding factors that can conspire to mask overall signatures of adaptive pro-527
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cesses (Manel et al., 2010; Joost et al., 2013), but its concepts may be paramount to examining528

spatio-temporal dynamics of novel polymorphisms in the field.529

In summary, our results provide evidence for substantial effects of genotypic variants on530

gastrointestinal parasite load in a wild bird species. This demonstrates that carefully chosen531

candidate genes have the potential to link specific mutations of large effect to complex phe-532

notypes, which contrasts with the prevailing view that no such “gold nuggets” generally exist533

(Rockman, 2012). The key advantages of the candidate gene approach are its statistical power534

compared to genome-wide approaches (Amos et al., 2011) and its a priori assembly of theoretical535

and empirical evidence for a phenotypic link. Motivated by an enhanced ability to amalgamate536

genomic, transcriptomic, epigenomic and proteomic data, the candidate gene approach is likely537

to remain a mainstay in the toolbox of molecular ecologists endeavouring to uncover the ’omics538

of phenotypic variation.539
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Figure 1: Sites in Aberdeenshire, Angus and Moray that were sampled following grouse sporting
shoots in autumn 2012. Median parasite load for each site is indicated by three categories.
Detailed locations, sample sizes and parasite loads are presented in table 1.
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Figure 2: Relationships between genetic differentiation (GST) among population pairs estimated
across candidate genes or control loci. Each data point represents one population pair. Solid
lines indicate linear relationships for all data points (grey line) and three subsets representing
population pairs within three parasite load categories (coloured symbols and lines). The dotted
line represents a hypothetical 1:1 relationship. Patterns were similar for G’ST and Dest (not
shown).
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Figure 3: Graphical summary of regression model coefficients and statistical significance of
generalised estimating equations (GEE) predicting parasite load by genotypic variation (diploid
SNP genotype or presence or absence of an individual allele or heterozygosity) at 131 SNPs in
twelve candidate genes and four neutral control loci. Each vertical line represents one genotypic
variant comparison within a SNP (up to two comparisons for SNP genotype and alleles; single
comparison for heterozygosity). Line height represents single-test statistical significance (–log10
P-value). Line colours indicates statistical significance levels before and after correction for
multiple testing using the false-discovery-rate approach (red: q 5 0.05, orange: q 5 0.1 and
black: P 5 0.05). Line symbols indicate the sign of the regression coefficient (“up”: positive,
“down”: negative).
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Figure 4: Predicted effect sizes (mean ± SE) of genotypic variants in candidate gene SNPs
significantly associated with parasite load. Estimates were derived from differences in GEE-
predicted least-square population means between genotypic variants when keeping all other
variables constant at mean values. When two genotype effects were significant, only the largest
effect is plotted.
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Table 1: Locations, sample sizes (M=male, F=female, Y=young) and parasite loads (median
number of worms per bird with 25 % and 75 % quantiles) of 21 sampling sites.
Sampling locations Sample sizes Worms per bird

Site Estate Long. Lat. Anthelmintic grit Total M F Y 25 % Median 75 %

1 Glenlivet 57.29 −3.18 Yes 8 4 4 0 4 4 981
2 Glenlivet 57.25 −3.28 Yes 8 7 1 0 4 4 36
3 Edinglassie 57.24 −3.20 Yes 8 6 2 0 4 4 4
4 Edinglassie 57.21 −3.19 Yes 8 7 1 0 4 4 4
5 Allargue 57.19 −3.29 Yes 7 4 3 0 4 4 41
6 Allargue 57.19 −3.23 Yes 8 6 2 8 4 4 4
7 Delnadamph 57.16 −3.26 No 8 5 3 0 348 930 1616
8 Delnadamph 57.14 −3.30 No 10 9 1 0 937 1237 1837
9 Invercauld 57.10 −3.29 Yes 8 3 5 3 4 608 1826
10 Invercauld 57.08 −3.35 Yes 8 5 3 3 99 422 2856
11 Dinnet 57.12 −3.11 Yes 8 8 0 0 4 4 78
12 Dinnet 57.11 −3.06 Yes 8 6 2 0 100 282 682
13 Tillypronie 57.18 −2.94 Yes 8 3 5 7 4 103 380
14 Mar Lodge 56.95 −3.66 No 11 6 5 4 264 525 1244
15 Invercauld 56.87 −3.40 Yes 8 8 0 0 146 541 1006
16 Airlie 56.81 −3.08 No 13 13 0 0 786 2120 2977
17 Glen Muick 56.99 −3.01 Yes 8 8 0 0 908 2236 3812
18 Invermark 56.94 −2.89 Yes 8 6 2 0 552 1084 1386
19 Invermark 56.89 −2.89 Yes 8 4 4 0 429 603 650
20 Glen Dye 56.95 −2.72 No 6 6 0 3 448 916 1448
21 Glen Dye 56.96 −2.69 No 6 6 0 2 358 841 1509

173 130 43 30

Table 2: Characterisation of candidate genes for response to parasitic nematode infection in red
grouse. Gene names and descriptors are given alongside an indication of physiological function.
Full characterisation is detailed in Wenzel et al. (2014).
ID Name Descriptor Putative function

Lls_CG01 TCB T-cell receptor beta chain T17T-22 Innate immune response
Lls_CG02 CYP2K4 Cytochrome P450 2K4 Detoxification; oxidative balance
Lls_CG03 GAL9 Gallinacin-9 Innate immune response
Lls_CG04 GSTK1 Glutathione S-transferase kappa 1 Detoxification; oxidative balance
Lls_CG05 CAPRIN1 Caprin-1 Cell cycle; gene expression
Lls_CG06 UGT1A1 UDP-glucuronosyltransferase 1-1 Detoxification
Lls_CG07 ATP1A1 Sodium/potassium-transporting

ATPase subunit alpha-1
Signal transduction

Lls_CG08 MFI2 Melanotransferrin Immune system
Lls_CG09 CCNL1 Cyclin-L1 Cell cycle; gene expression
Lls_CG10 SPCS2 Signal peptidase complex subunit 2 Peptide translocation
Lls_CG11 MIOS WD repeat-containing protein mio Protein modification
Lls_CG12 SUMO3 Small ubiquitin-related modifier 3 Cell cycle; gene expression
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Table 4: Population-level association tests between genetic differentiation and parasite load,
accounting for geography and anthelmintic medication regime. Mantel test correlation coeffi-
cients (r) are presented for three differentiation statistics (GST, G’ST, Dest) versus logarithmic
geographic distance (isolation by distance) and versus logarithmic differences in median parasite
load conditioned by logarithmic geographic distance and differences in anthelmintic medication
regime (isolation by stressor). Alongside, posterior likelihoods are presented for latitude, longi-
tude, medicated grit and parasite load predictors in Bayesian regression of local FST estimates
(geste software) and for the most likely model containing a constant factor and any combi-
nation of these four predictors. Emboldened values represent statistically significant regression
coefficients and variables included in the most likely geste models.

Isolation by distance (r) Isolation by stressor (r) geste (P)

Locus GST G’ST D GST G’ST D Lat. Long. Grit Parasite load Model

Lls_CG01 0.038 0.042 0.041 -0.065 -0.074 -0.074 0.297 0.394 0.331 0.321 0.205

Lls_CG02 0.001 0.008 0.011 -0.123 -0.120 -0.117 0.457 0.466 0.467 0.472 0.082

Lls_CG03 0.071 0.065 0.067 0.205* 0.195* 0.194* 0.322 0.341 0.449 0.333 0.173

Lls_CG04 0.152 0.107 0.094 -0.002 0.012 0.014 0.113 0.071 0.997 0.171 0.684

Lls_CG05 -0.001 -0.037 -0.038 0.251** 0.305** 0.311** 0.256 0.315 0.343 0.191 0.314

Lls_CG06 0.173* 0.237* 0.249* -0.016 -0.097 -0.092 0.629 0.147 0.198 0.771 0.395

Lls_CG07 0.095 0.112 0.113 -0.144 -0.159 -0.160 0.361 0.348 0.382 0.389 0.167

Lls_CG08 -0.147 -0.159 -0.160 0.152 0.131 0.130 0.362 0.388 0.355 0.326 0.171

Lls_CG09 0.092 0.102 0.107 -0.043 -0.011 -0.001 0.394 0.378 0.394 0.409 0.136

Lls_CG10 0.092 0.070 0.068 0.046 0.042 0.040 0.279 0.274 0.302 0.330 0.259

Lls_CG11 0.256** 0.260** 0.260** -0.041 -0.033 -0.030 0.280 0.364 0.488 0.268 0.186

Lls_CG12 0.077 0.069 0.068 0.083 0.116 0.131 0.327 0.221 0.249 0.257 0.345

Lls_ANM_18_1 0.016 0.028 0.031 0.172* 0.099 0.091 0.472 0.249 0.321 0.215 0.247

Lls_ANM_20_2 0.055 0.015 0.008 -0.121 -0.026 -0.052 0.158 0.180 0.305 0.225 0.398

Lls_ANM_22_2 -0.103 -0.064 -0.050 -0.082 -0.060 -0.051 0.447 0.460 0.457 0.465 0.087

Lls_ANM_6_1 0.104 0.088 0.087 -0.096 -0.060 -0.061 0.320 0.218 0.255 0.249 0.348

*: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001
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Table 5: SNPs significantly associated with parasite load based on individual-level generalised
estimating equations (GEE). SNP mutation type and Wright’s inbreeding coefficient (F IS with
significance indicated by asterisks) are presented alongside model coefficients and P-values for
significant genotype comparisons, the presence of a particular allele and the presence of het-
erozygosity. Mean predicted effect size is expressed as relative change in parasite load. ΔQICu
indicates the changes of QICu compared to a model without the genetic term (positive ΔQICu
indicates improvement).
Locus SNP Type FIS Comparison Coefficient ± SE P-value Effect DQICu

Lls_CG01 SNP 9 non-synonymous -0.065 C/T vs. C/C -0.894 ± 0.216 <0.001 -59% 103

Allele T -0.894 ± 0.216 <0.001 -59% 103

Heterozygosity -0.894 ± 0.216 <0.001 -59% 103

Lls_CG02 SNP 2 untranslated -0.157 C/C vs. A/A 1.087 ± 0.301 <0.001 +196% 52

A/C vs. A/A 0.784 ± 0.259 0.002 +119% 52

Allele C 0.947 ± 0.283 0.001 +158% 39

Lls_CG03 SNP 5 untranslated -0.064 A/G vs. A/A 0.354 ± 0.115 0.002 +42% 6

Allele G 0.382 ± 0.113 0.001 +47% 11

Heterozygosity 0.331 ± 0.118 0.005 +39% 4

Lls_CG05 SNP 10 untranslated 0.344*** Allele G 0.472 ± 0.165 0.004 +60% 108

SNP 15 untranslated 0.372*** Heterozygosity 0.532 ± 0.166 0.001 +70% 29

Lls_CG06 SNP 1 synonymous -0.095 C/T vs. T/T -0.497 ± 0.166 0.003 -39% 42

Allele C -0.497 ± 0.166 0.003 -39% 42

Heterozygosity -0.497 ± 0.166 0.003 -39% 42

Lls_CG08 SNP 10 untranslated 0.088 G/G vs. A/A 1.078 ± 0.337 0.001 +194% 64

A/G vs. A/A 1.022 ± 0.325 0.002 +178% 64

Allele G 1.048 ± 0.318 0.001 +185% 68

Lls_CG12 SNP 3 synonymous 0.162 C/T vs. C/C -0.711 ± 0.181 <0.001 -51% 15

Allele T -0.586 ± 0.155 <0.001 -44% 16

Heterozygosity -0.703 ± 0.180 <0.001 -50% 15

Lls_ANM_18_1 SNP1 untranslated 0.230* C/G vs. C/C -0.586 ± 0.190 0.002 -44% 116

Heterozygosity -0.669 ± 0.155 <0.001 -49% 102

SNP7 untranslated 0.575*** Allele G -0.617 ± 0.188 0.001 -46% -33

Lls_ANM_20_2 SNP5 untranslated 0.653*** Heterozygosity -0.786 ± 0.246 0.001 -54% 9

SNP6 untranslated 0.653*** C/T vs. C/C -0.836 ± 0.286 0.004 -57% 12

Heterozygosity -0.786 ± 0.246 0.001 -54% 9

SNP7 untranslated 0.653*** A/G vs. A/A -0.836 ± 0.286 0.004 -57% 12

Heterozygosity -0.786 ± 0.246 0.001 -54% 9

Lls_ANM_6_1 SNP1 untranslated 0.214 T/T vs. C/C -0.588 ± 0.197 0.003 -44% 43

Allele C 0.505 ± 0.169 0.003 +66% 43

*: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001
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Table 6: FST-outlier test results using bayescan2 with either multi-locus haplotype data or
500 replicates generated by drawing one random SNP from each locus. Haplotype-based FST
estimates are presented with an indication of statistical significance after false-discovery-rate cor-
rection for multiple testing (q-values). SNP-based FST estimates and q-values are summarised as
quantiles and proportions of replicates below two significance thresholds. Statistically significant
FST estimates and q-values are emboldened and annotated with asterisks.

SNPs

FST q

Locus Haplotypes 25 % Median 75 % Median q ≤ 0.1 q ≤ 0.05

Lls_CG01 0.008*** 0.035 0.048 0.112 0.032 62.4% 57.4%
Lls_CG02 0.011*** 0.033 0.035 0.039 0.004 99.8% 98.6%
Lls_CG03 0.023*** 0.066 0.109 0.123 0.196 29.2% 9.4%
Lls_CG04 0.019*** 0.040 0.042 0.044 0.012 99.8% 98.8%
Lls_CG05 0.016*** 0.079 0.105 0.136 0.219 21.2% 4.4%
Lls_CG06 0.060 0.121 0.135 0.147 0.411 8.2% 6.2%
Lls_CG07 0.020*** 0.035 0.045 0.132 0.022 60.0% 59.0%
Lls_CG08 0.013*** 0.057 0.077 0.114 0.119 44.8% 27.4%
Lls_CG09 0.063 0.113 0.127 0.136 0.328 2.4% 0.0%
Lls_CG10 0.015*** 0.033 0.104 0.128 0.184 42.6% 39.4%
Lls_CG11 0.039* 0.050 0.052 0.057 0.043 96.0% 61.8%
Lls_CG12 0.032** 0.043 0.119 0.131 0.278 34.4% 33.8%
Lls_ANM_18_1 0.078 0.121 0.129 0.142 0.405 0.2% 0.0%
Lls_ANM_20_2 0.094 0.137 0.143 0.150 0.495 0.0% 0.0%
Lls_ANM_22_2 0.067 0.120 0.129 0.138 0.365 1.4% 0.0%
Lls_ANM_6_1 0.014*** 0.068 0.113 0.127 0.206 29.8% 22.0%
*: q ≤ 0.05; **: q ≤ 0.01; ***: q ≤ 0.001
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Supplementary data554

• Document S1: Description of 454 amplicon sequencing run used to supplement Sanger555

sequence data556

• Document S2: Complete GEE and Hardy-Weinberg equilibrium test results557

• Document S3: Summary plots of parasite load in genotypic variants of all SNPs signifi-558

cantly associated with parasite load559

Data Accessibility560

• Alignment consensus sequences: genbank accessions KM236217–KM236228561

• Full alignments: DataDryad doi:TBC562

• Haplotype reference panel for phase: DataDryad doi:TBC563

• Phenotypic data: DataDryad doi:TBC564
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