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Air cushioning in droplet impacts with liquid layers and other droplets

Peter D. Hicksa) and Richard Purvisb)
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Air cushioning of a high-speed liquid droplet impact with a finite-depth liquid layer sitting upon a

rigid impermeable base is investigated. The evolution of the droplet and liquid-layer free-surfaces

is studied alongside the pressure in the gas film dividing the two. The model predicts gas bubbles

are trapped between the liquid free-surfaces as the droplet approaches impact. The key balance in

the model occurs when the depth of the liquid layer equals the horizontal extent of interactions

between the droplet and the gas film. For liquid layer depths significantly less than this a shallow

liquid limit is investigated, which ultimately tends towards the air-cushioning behavior seen in

droplet impact with a solid surface. Conversely, for liquid layer depths much deeper than this, the

rigid base does not affect the air-cushioning of the droplet. The influence of compressibility is

discussed and the relevant parameter regime for an incompressible model is identified. The size of

the trapped gas bubble as a function of the liquid layer depth is investigated. The deep water model

is extended to consider binary droplet collisions. Again, the model predicts gas bubbles will be

trapped as the result of air cushioning in high-speed binary droplet impacts. VC 2011 American
Institute of Physics. [doi:10.1063/1.3602505]

I. INTRODUCTION

In many physical situations droplets impinge on a layer

of liquid covering a rigid surface. Practical examples include

raindrops landing in puddles or during industrial coating

processes. As touchdown is approached during a violent,

high-speed droplet impact, air-cushioning slows the droplet

descent and deforms both the droplet and liquid layer free-

surfaces. This allows a pocket of gas to become trapped at

the site of the droplet impact. Experiments have shown that

this pocket of gas can subsequently evolve into a bubble,1

entraining gas within the liquid phase. In spray coating these

bubbles may be detrimental to the quality of finish of the

final surface, while air bubbles trapped by raindrops landing

on water provide a mechanism through which gases (includ-

ing airborne contaminants and pollutants) can be transferred

to the water.2

In addition to bubbles trapped by air cushioning between

a droplet and a liquid layer, experimental studies have also

shown that gas bubbles can be created as the result of air

cushioning during droplet impact with a rigid surface.3,4 In

air-cushioned droplet impact experiments, in addition to the

large central bubble, much smaller bubbles have also been

seen at a greater radius from the center of the impact in a

phenomena called Mesler entrainment.5,6 This is inferred to

be the result of capillary interactions between the droplet and

liquid layer free-surfaces. In addition to air cushioning, a gas

bubble may become entrained during a droplet impact due to

the collapse of an impact crater.7

The result of a droplet impact depends on many physical

parameters including the properties of the fluid forming the

droplet, the speed of approach to impact, and the droplet

radius. When a droplet impacts a liquid layer, the depth of

liquid has a significant effect on the resulting air cushioning

and the splash dynamics. We seek to investigate how the

depth of the receptor fluid affects the evolution of the free-

surfaces and the resulting volume of the trapped bubble,

when both the droplet and the liquid layer consist of the

same fluid. For a sufficiently deep liquid layer the air cush-

ioning of the droplet is not affected by the bottom of the liq-

uid layer. However, for a shallower liquid layer the presence

of the impermeable base has an increasing effect on the free-

surface evolution. A limiting case is reached in which the

liquid layer thickness tends to zero and the droplet impacts a

solid surface. The evolution of the droplet and layer free-

surfaces, and the resulting bubble volume as the depth of the

receptor fluid varies, forms the focus of the present study.

The evolution of the gas pressure in the region separat-

ing a liquid and a solid body approaching impact was first

described by Verhagen,8 who considered the evolution of a

slowly varying one-dimensional gas channel between a liq-

uid and a solid body, in the context of ship slamming and

wave impacts. In this parameter regime Wilson9 formally

derived a model in which both the liquid and gas phases are

inviscid. This model was later shown to be unstable to small

perturbations in the initial conditions.10,11 However, interest

remains into traveling wave solutions in this system.12,13

The length scales associated with droplet impacts are

much smaller than those associated with ship slamming,

although the liquid velocities may be equally large. For high

momentum droplets with Reynolds numbers greater than

O(107), Smith et al.14 showed that the inviscid model of

Wilson9 is appropriate for describing air cushioning. How-

ever, for lower Reynolds numbers a viscous description of

the gas was shown to be appropriate, giving a model for the

gas based upon lubrication theory. This was coupled to an

inviscid description of the droplet and used to study air cush-

ioning phenomena. In normal impacts, the narrowing of the

gas film as the droplet approaches impact is a canonical
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squeeze film problem in which the evolution of free surface

and pressure are determined through coupling with the invis-

cid droplet behavior. As one would expect, high pressures in

the gas film are initially generated where the separation dis-

tance between the droplet and the solid is least. Subsequently

these high pressures act to decelerate the droplet and locally

deflect the free-surface away from the point of impact. Air

cushioning, therefore, acts to slow the droplet immediately

prior to impact, while the deformed free-surface touches

down at some horizontal distance away from the bottom of

the droplet, thus trapping a gas bubble. Similar behavior is to

be expected in the case of a liquid layer, when an equivalent

lubrication equation governs the gas pressure in a film

trapped between the two free-surfaces.

The model of Smith et al.14 was initially proposed to

describe the idealized two-dimensional normal impact prob-

lem with incompressible liquid and gas phases, in the ab-

sence of surface tension effects. Subsequent extensions to

the basic model have incorporated surface tension,11,15

oblique impacts,16–18 compressibility,15 and three-dimen-

sional effects,18 extending the range of validity.

If the air phase is neglected completely, then two-dimen-

sional impact problems typically lead to co-dimension two

free-boundary problems. Asymptotic analyses for solid-deep

water impacts,10,19,20 solid-shallow water impact,21 and drop-

let-liquid layer impact22,23 show liquid jet initiation close to

the point of impact which has the potential to evolve into the

characteristic splash seen in many impacts. However, in mod-

els which neglect the air phase, the liquid remains completely

stationary or in uniform motion, right until the point of initial

touchdown, in contradiction to the air-cushioning experiments

and analysis. Therefore, a greater understanding of air-cush-

ioning pre-impact phenomena is a key to generating more re-

alistic initial conditions for studying post impact behavior.

At lower approach speeds, viscous and surface tension

effects become significant, leading to many other styles of

impact behavior including more gradual coalescence and drop-

let spreading rather than splashing. This regime has been con-

sidered for droplet impact with a solid24 and for droplet impact

with a liquid layer.25 With even stronger surface tension effects

the entire droplets can bounce off the liquid body they come

into contact, with no mass transfer between the two.26

In addition to droplet impact with a liquid layer, the cur-

rent study extends the model to consider high-speed impact

between a pair of droplets. At slower approach speeds, drop-

let coalescence is a widely studied problem.27 In this slower

regime the draining of the film separating the droplets is a

direct analogue of the air cushioning we see in higher speed

impacts. The film draining behavior can be modeled by a vis-

cous lubrication approximation, albeit this time coupled to

viscous (rather than inviscid) liquid droplet behavior. The

free-surface profiles generated by these models are markedly

similar to those seen in air cushioning, with the minimum

separation distance again occurring some horizontal distance

away from the centerline of the two droplets.28,29

In Sec. II, a model is derived governing the behavior of

a two-dimensional liquid droplet approaching a finite depth

layer of the same liquid, which itself is resting upon a rigid

surface. The role gas plays in the narrowing gap that results

as the droplet approaches impact is investigated. Section III

includes profiles for a range of liquid layer depths, along two

distinguished limits corresponding to the cases in which the

depth of the receptor liquid is much greater and much

smaller than the horizontal extent of the interactions between

gas film and the free surfaces. The effect of the liquid layer

depth on the volume of the trapped air pocket is considered

in Sec. IV, while Sec. V extends the model to look at air

cushioning in binary droplet collisions. Conclusions and fur-

ther discussions are given in Sec. VI.

II. MODEL FORMULATION

The role gas cushioning plays as a liquid droplet

approaches impact with a thin layer of the same liquid is

investigated by considering an initially undisturbed droplet

with radius R and approaching impact with a liquid layer of

depth H, from a direction perpendicular to the layer with an

approach speed U0. The liquid layer rests upon a rigid imper-

meable base. Our primary interest is in the period immedi-

ately prior to impact when the two liquid bodies are separated

by a narrow gas film.

In the experiments of Thoroddsen et al.,1 droplets of radius

2 mm impact into a liquid layer at speeds between 0.49 and

3.84 m s�1. This gives a Reynolds number, Re¼ qlRU0=ll, of

between 1000 and 8000, a range significantly below the invis-

cid-inviscid regime described by Smith et al.14 Here the fluid

density is denoted by q and viscosity by l, while the subscript l
denotes a property of the liquid phase. These experiments are

conducted with a water layer whose depth is much greater than

the horizontal extent of the pre-impact interactions between the

droplet and the water. A second set of experiments by Thorodd-

sen et al.3 also shows bubble capturing droplet impacts, albeit

this time during impact with a solid surface. These experiments

were also conducted within a similar range of Reynolds num-

bers. The impact experiments for droplet impact with deep

water and for droplet impact with a solid provide two limiting

cases in which the typical size of a trapped bubble can be meas-

ured. We wish to investigate air cushioning as the layer depth

varies between these two limiting cases.

The idealized problem of a two-dimensional normal

impact in which a circular droplet approaches an initially sta-

tionary liquid layer is investigated. A coordinate system with

its origin located on the undisturbed layer free-surface

directly below the center of the droplet is used. The x̂ coordi-

nate lies parallel to the layer, and the ŷ-coordinate is positive

in the direction of the droplet (see Figure 1). The upper

boundary between the droplet and the gas filled gap is

denoted ŷ ¼ f̂þ x̂; t̂ð Þ, and the lower boundary between the

gap and the liquid layer is denoted ŷ ¼ f̂� x̂; t̂ð Þ.
It is assumed that both fluid flows are governed by the

Navier-Stokes equations. Additionally, the liquid phase is

assumed to be incompressible. The model equations are non-

dimensionalized using R and R=U0 as the length and time

scales, respectively. The dimensionless liquid pressure p̂l is

assumed to be related to the dimensional liquid pressure �pl

through �pl ¼ p0 þ qlU
2
0 p̂l, where p0 is the surrounding ambi-

ent pressure. These scalings result in non-dimensional Nav-

ier-Stokes equations for the liquid phase with the form

062104-2 P. D. Hicks and R. Purvis Phys. Fluids 23, 062104 (2011)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

139.133.148.5 On: Wed, 05 Aug 2015 14:46:52



r̂ � ûl ¼ 0; (1a)

@ûl

@ t̂
þ ûl � r̂ûl ¼ �r̂p̂l þ

1

Re
r̂2ûl: (1b)

In the gas, compressibility effects are initially retained, and

their importance investigated. In addition to the scales in the

liquid, the dimensional gas density �qg and pressure �pg are

related to their dimensionless counterparts q̂g and p̂g through

�qg ¼ ½qg�q̂g and �pg ¼ p0 þ qlU
2
0 p̂g, respectively. Here the

subscript g denotes a property of the gas phase, and the scaling

for the gas pressure is chosen to match with the liquid phase.

Together with the scalings for the liquid phase this implies

@q̂g

@t
þ r̂ � q̂gûg

� �
¼ 0; (2a)

½qg�q̂g

ql

@ûg

@ t̂
þ ûg � r̂ûg

� �
¼ �r̂p̂g þ

lg

ll

1

Re
r̂2ûg þ

lg

ll

C
Re
r̂ r̂ � ûg

� �
; (2b)

where the viscosity ratio C¼ (kgþlg)=lg, and kg is the dila-

tational viscosity in the gas. Here it is assumed that the vis-

cosity of the gas is constant.

To complete this system an equation of state and an

energy conservation equation are required to determine the

gas temperature. In dimensional variables, if the gas is gov-

erned by the ideal gas law, the equation of state is given by

�pg ¼ �qgRg
�Tg; (3)

where the absolute dimensional gas temperature and the spe-

cific gas constant of the gas film are denoted �Tg and Rg,

respectively. The dimensional energy conservation equation

may be written as

�qgcv;g
D �Tg

D�t
þ �pgr � ug ¼ kgr

2 �Tg þ �U; (4)

where cv;g is the specific heat of the gas at constant volume,

kg is the thermal diffusivity of the gas, and �U is the dissipa-

tion.30 The terms in this equation correspond to the rate of

change of thermal energy, the work done by pressure, the

diffusion of heat, and the heat generated by viscous effects.

The dissipation is given by

�U ¼ kg r � ug

� �2þ
lg

2

@�ui

@�xj
þ @�uj

@�xi

� �2

; (5)

with the usual summation convention. In a viscous gas flow,

the dissipation and the thermal diffusion terms on the right-

hand side of Eq. (4) may be comparable in size to the terms

on the left-hand side of that equation and cannot be immedi-

ately neglected.

Following the approach of Howell,31 further details of

how thermal diffusion and viscous dissipation affect the

model presented here are discussed in Sec. II D and the scaled,

non-dimensional version of Eq. (4) is given in Appendix. The

main implication of these terms for the incompressible model

studied here is an additional restriction on the parameter val-

ues for which effects due to compressibility can be neglected.

However, at this stage, for simplicity and to allow comparison

with recent literature15,32 we assume the effects of thermal dif-

fusion and dissipation in Eq. (4) are small and can be

neglected. In this case the equation of state simplifies to

�pg

p0

¼
�qg

q0

� �c

; (6)

where c is the ratio of specific heats. Here q0 is a reference

gas density based on the ambient gas pressure. Therefore, in

this case the equation of state is given by Eq. (6), and an

explicit equation governing the temperature evolution is no

longer required to close the model.

If the gas density scale [qg]¼ q0, then the equivalent

dimensionless relationship to Eq. (6) is given by

q̂g ¼ 1þ Kp̂g

� �1=c
; (7)

where

K ¼ qlU
2
0

p0

(8)

measures the importance of gas compressibility in the model.

For large K, the variations in the gas film pressure are large

compared to the ambient gas pressure, and therefore gas

compressibility is significant.

On the interfaces between the liquid and gas, kinematic

boundary conditions imply

v̂a ¼
@ f̂ 6

@ t̂
þ ûa

@ f̂

@x̂
; on ŷ ¼ f̂ 6 x̂; t̂ð Þ; (9)

where a¼ l in the liquid or g in the gas, while the normal stress

balance across the interface implies that the difference in the

normal stresses between the liquid and the gas equals the curva-

ture of the interface multiplied by the coefficient of surface ten-

sion r. On the solid boundary ŷ ¼ �H, the no-slip and no-

penetration boundary conditions imply ûljŷ¼�H¼ v̂ljŷ¼�H¼ 0.

A time origin is chosen so that touchdown of the droplet

onto the liquid layer would occur at t̂ ¼ 0 in the absence of

gas cushioning. For large negative time, the non-dimensional

undeformed droplet and liquid layer are assumed to satisfy

f̂þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x̂2
p

� t̂þ 1; (10a)

f̂� ¼ 0; (10b)

while the non-dimensional pressure in the gap is initially

taken to be zero. Throughout the evolution, the droplet and

FIG. 1. Schematic of a liquid droplet with free surface y¼ fþ(x,t), approach-

ing impact with a shallow liquid layer whose free surface is given by

y¼ f�(x,t).
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liquid layer free-surfaces are assumed to approach their

undeformed profiles, a long way from the region of interac-

tion. Also, in the far field the pressure disturbance decays to

zero. For the following analysis it is expedient to define the

difference and sum of a property h on the droplet and layer

free-surfaces to be

h½ � ¼ hþ � h�; and hh i ¼ hþ þ h�; (11)

respectively.

A. Gas film

The gas occupying the narrow gap between the droplet

and the liquid layer can be considered to be the fluid in a ca-

nonical squeeze film problem, albeit one in which both upper

and lower boundaries are allowed to deform in response to

the gas pressure in the gap. These boundaries form interfaces

within the flow whose position is to be determined.

In addition to the droplet radius R, there exists a length

scale L in the problem, corresponding to the horizontal

extent of the interactions between the droplet and the liquid

layer free-surfaces. The size of L is yet to be determined.

However, we assume the aspect ratio

e ¼ L

R
(12)

is small, and like L the value of e is to be determined. We are

interested in the very short time behavior just prior to impact,

which motivates a rescaling of time with t̂ ¼ e2t. At this

stage the typical vertical separation between the free-surfa-

ces is a factor e smaller than the horizontal extent of the

interactions. Therefore, in order to focus on the region close

to the point of impact we take,

x̂; ŷð Þ ¼ e x; eyð Þ: (13a)

The difference in scaling the vertical height of the gas filled

gap relative to its horizontal extent immediately forces the

usual scaling on the velocity components in order to con-

serve mass. Therefore,

ðûg; v̂g; f̂ 6; p̂g; q̂gÞ ¼ e�1U; V; e2f 6; e�1P; q
� �

þ � � � ;
(13b)

where variations in the free-surface heights are of the same

size as the gap thickness, while the pressure and density are

scaled to maintain their presence in the problem at leading

order.

Following the earlier study by Hicks and Purvis,18 we

shall investigate the case in which there is a balance in the

leading-order horizontal momentum conservation equation

between the pressure gradient and the viscous terms, leading

to the definition

e ¼
lg

ll Re

� �1=3

(14)

for the ratio of L to R. Further details of the choice of e are

given below, including the key assumptions on the sizes of

the terms neglected. If substituted into the Navier-Stokes

equations for the gas (Eq. (2)), then

qt þ qUð Þxþ qVð Þy¼ 0; (15a)

0 ¼ �Px þ Uyy; (15b)

0 ¼ �Py: (15c)

Here the acceleration and inertia terms (of size qgU2
0

.
qle

3R)

are assumed to be small compared to the terms involving the

pressure gradient (of size U2
0

	
e2R). This scaling also

removes all the terms involving the dilatational viscosity

providing, e�C�1=2. Further restrictions on e are given in

the next section.

In the scaled coordinate system

fþ ¼ x2

2
� t; f� ¼ 0; and P ¼ 0; (16)

for large negative t. Far-field conditions on the free-surfaces

and pressure throughout the droplet approach are given by

fþ � x2

2
� t; f� ! 0; and P! 0; as xj j ! 1: (17)

To leading order, the kinematic boundary conditions (9)

imply

U ¼ 0; V ¼ f 6
t ; on y ¼ f 6 x; tð Þ: (18)

Momentum conservation in the vertical direction (Eq.

(15c)) immediately implies P¼P6¼P(x,t), with the conse-

quence that

P½ � ¼ Pþ � P� ¼ 0: (19)

Upon integrating between the two interfaces f� and fþ, a

lubrication equation is recovered, relating the pressure in the

gap to the free-surface positions. This has the form

12 q f½ �ð Þt¼ ðq f½ �3PxÞx; (20)

where [f]¼ fþ� f� is the difference in height between the

two fluid surfaces.

B. Droplet and layer deformation

In the liquid phase, we again wish to focus on the region

close to impact and accordingly scale time with t̂ ¼ e2t, and

the spatial coordinates with x̂; ŷð Þ ¼ e x; yð Þ. Notice, in the

droplet and the layer the typical vertical length scale is

assumed to be comparable to the horizontal length scale. Liq-

uid mass conservation now dictates the velocity components

are scaled with ûl; v̂lð Þ ¼ u; vð Þ, while p̂l ¼ e�1p to match

the pressure in the gas and f̂ 6 ¼ e2f 6 on the free-surfaces. If

the non-dimensional Navier-Stokes equations for the liquid

(Eq. (1)) are scaled in this way, then the leading order behav-

ior in the droplet and the layer is governed by

ux þ vy ¼ 0; (21a)

ut ¼ �px; (21b)

vt ¼ �py; (21c)
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where the inertial and viscous terms (of size U0=e
2 and U0,

respectively) are assumed to be much smaller than the pres-

sure gradient and acceleration terms (of size llU0=qle
2R2).

With e defined by Eq. (14), together with the assumptions in-

herent in Eq. (15), this means

qg

ql

� e�
lg

ll

� �1=3

; (22)

providing an applicable range for e. In the case of droplets

impacting a water layer separated by air, the ratios of gas to

liquid viscosity and density are approximately 1=100 and

1=772, respectively. If we differentiate Eq. (21) we find

vtx x; y; tð Þ ¼ �pxy x; y; tð Þ; and vty x; y; tð Þ ¼ pxx x; y; tð Þ;
(23)

the Cauchy-Riemann equations for the functions vt(x,y,t) and

�px(x,y,t).
The kinematic boundary conditions on the free surfaces

reduce to

v x; y; tð Þ � f 6
t x; tð Þ; as y! 06; (24a)

while

p x; y; tð Þ � p6 x; tð Þ; as y! 06: (24b)

Here, the plus (minus) on the free-surface position and the

pressure refers to a property evaluated on the upper droplet

(lower layer) free-surface. The presence of the rigid body at

the base of the liquid layer results in a scaled no-penetration

boundary condition of the form

v x; y; tð Þ ¼ 0; on y ¼ �h: (25)

Here the scaled layer depth is related to the original dimen-

sional layer depth through h¼H=eR. For a droplet with ra-

dius R¼ 2 mm and approach speed U0¼ 1 m s�1, we find

e¼ 0.0207; so, a layer with non-dimensional depth h¼ 1 cor-

responds to a dimensional layer depth H¼ 41.5 lm. In com-

parison to this, the experiments of Thoroddsen et al.1 are

conducted with much deeper liquid layers.

To satisfy Eq. (25) directly, an image system in which

there is an identical second free-surface whose undisturbed

position is y¼�2h is introduced. The analytic complex

function

w xþ iy; tð Þ ¼ px x; y; tð Þ þ ivt x; y; tð Þ; (26)

is constructed, which is bounded in the far field and has the

properties

w x60i; tð Þ ¼ p6
x x; tð Þ þ if 6

tt x; tð Þ; (27a)

w x� 2hi� 0i; tð Þ ¼ p6
x x; tð Þ � if 6

tt x; tð Þ; (27b)

when the boundary conditions (24) are applied. We next

integrate around the contour shown in Figure 2 using

Cauchy’s integral formula evaluated at x 6 0i. If the radius

of the semi-circles in the contours is large, then,22,33

pxh i x; tð Þ ¼ 1

p

ð
�
1

�1

ftt½ � n; tð Þdn
n� x

þ 1

p

ð1
�1

n� xð Þ ftt½ � n; tð Þdn

n� xð Þ2þ4h2

� 1

p

ð1
�1

2h pn½ � n; tð Þdn

n� xð Þ2þ4h2
; (28a)

ftth i x; tð Þ ¼ � 1

p

ð
�
1

�1

pn½ � n; tð Þdn
n� x

þ 1

p

ð1
�1

n� xð Þ pn½ � n; tð Þdn

n� xð Þ2þ4h2

þ 1

p

ð1
�1

2h ftt½ � n; tð Þdn

n� xð Þ2þ4h2
; (28b)

where the square and angled brackets are defined by Eq. (11).

C. The normal stress balance and model
simplification

When the above scalings are applied to the normal stress

balance on the interface, we recover the linearized, non-

dimensional Young-Laplace equation across each interface.

This relates the liquid pressures p6 to the gas pressure P and

has the form

p6 � P ¼ � e
We

f 6
xx ; (29)

where the Weber number We ¼ qlU
2
0R=r measures the im-

portance of surface tension, and the change in sign on the

right-hand side is due to a normal vector pointing out of each

liquid phase. Notice, for each x -station the gas pressure

close to the droplet free-surface equals the gas pressure close

to the layer free-surface as the result of Eq. (15c).

For the experiments of Thoroddsen et al.,1 the Weber

number lies between 6 and 360. For e small, this means sur-

face tension effects are initially small and only really

become significant in the final moments before impact when

the surface curvature is very large and appears to tend

towards a cusp. For the remainder of this paper, we shall

FIG. 2. Contour and image system used to solve the potential flow resulting

from a droplet impact with a shallow liquid layer.
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investigate the problem in the absence of surface tension

(cWe� 1). In this case the simplified normal stress balance

across the liquid-gas interface requires P¼ p6, where we

now take P to be the common pressure in the gas and at the

droplet and liquid layer interfaces. With this simplification,

the lubrication Equation (20) is unchanged and the integral

equation (28b) reduces to

ftth i x; tð Þ ¼ 1

p

ð1
�1

2h ftt½ � n; tð Þdn

n� xð Þ2þ4h2
: (30)

Using properties of singular integral equations,34 Eq. (28a)

can be inverted to give

ftt½ � x; tð Þ ¼ � 1

p

ð
�
1

�1

2Pn n; tð Þ � I n; tð Þf gdn
n� x

; (31a)

where

I x; tð Þ ¼ 1

p

ð1
�1

n� xð Þ ftt½ � n; tð Þdn

n� xð Þ2þ4h2
: (31b)

In conjunction with the far-field conditions (17), the

Eqs. (20) and (31) form a system of two equations relating

the pressure P to the difference in height between the two

free surfaces [ f ]. Having determined [f], Eq. (30) then allows

us to determine the sum of the free-surface heights h f i and

subsequently find the position of each interface.

D. Compressibility effects in the gas

The lubrication scalings (Eq. (13)), applied to the equa-

tion of state (7), imply

q ¼ 1þ e�1KP
� �1=c

; or P ¼ 1

e�1K
qc � 1ð Þ: (32)

When substituted into the lubrication Equation (20),

12 1þ e�1KP
� �1=c

f½ �
� �

t
¼ 1þ e�1KP

� �1=c
f½ �3Px

� �
x
: (33)

For K� e, this gives a simplified lubrication equation

12 ft½ � ¼ ð f½ �3PxÞx; (34)

which corresponds to an incompressible gas flow and is valid

for impact velocities

U0 �
p

3=7
0 l1=7

g

q4=7
l R1=7

; (35)

above which compressibility effects start to become signifi-

cant in the gas film. The range of impact velocities for which

the air film can be considered incompressible are shown in

Figure 3 (and bounded above by the solid line), for p0¼ 105

Pa. The compressible limit of the problem (assuming the

effects of viscous dissipation and thermal diffusion are

small) is given by Eq. (33) with e�1K¼O(1) and is described

by Mandre et al.15,32 for droplet impacts with a rigid wall.

If viscous dissipation and thermal diffusion are retained,

then the gas density depends upon temperature and the

scaled ideal gas law (Eq. (3)) can be written as

q ¼ 1þ e�1KP

1þ e�1HT
; (36)

where the non-dimensional temperature T is related to its

dimensional counterpart and a reference temperature T0

through

�Tg ¼ T0 þ
qlU

2
0

e½qg�cv;g
T: (37)

Here the ratio of the temperature increase induced by pres-

sure changes generated by the droplet impact to the ambient

temperature,

H ¼ qlU
2
0

½qg�cv;gT0

: (38)

In this more general case, if e�1H� 1, the gas density is in-

dependent of temperature and the mass and momentum con-

servation equations can be solved independently of the

energy conservation equation. Written as a restriction on the

approach velocity, this means the incompressible theory

holds if

U0 � min
T

3=7
0 c

3=7
v;g ½qg�3=7l1=7

g

q4=7
l R1=7

;
p

3=7
0 l1=7

g

q4=7
l R1=7

 !
; (39)

when combined with the restriction (Eq. (35)). The addi-

tional upper bound to the incompressible regime given by

this restriction is shown by the dotted line in Figure 3 for

T0¼ 300 K. For experiments conducted close to standard

atmospheric conditions with common pairs of fluids, it is the

former limit arising from considering changes in pressure

that provides the most stringent restriction on the applicabil-

ity of the incompressible theory. The compressible regimes

in the small thermal diffusion and dissipation limit and also

FIG. 3. Regime diagram indicating the different types of compressible

behavior for droplet radius and approach speed for an air-water impact at an

ambient pressure p0¼ 105 Pa. The solid curve corresponds to K¼ e and

divides the incompressible regime (below the line) from the compressible re-

gime. The dashed line results from the second inequality in Eq. (22), and we

must be above this line to have a lubrication equation governing the air flow.

The dotted curve corresponds to H¼ e, below which the gas density is inde-

pendent of temperature.
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in the more general case are discussed briefly in Appendix.

However, our focus here is on the lower velocity range

where compressibility is negligible. All the results that fol-

low in the main text relate to the incompressible regime.

III. DROPLET IMPACTS WITH LIQUID LAYERS

The evolution of the upper and lower free-surfaces to-

gether with the corresponding pressure profiles are shown in

Figure 4, for h¼ 0, 0.2, 1, 5, and h large. In all cases, the de-

formation of the two free surfaces act to delay the moment

of touchdown beyond t¼ 0, the point at which touchdown

would occur in the absence of cushioning. This process can

be understood by considering the similarities between a

lubricating squeeze film and the lubrication behavior given

by Eq. (34) or its compressible counterpart. Like a traditional

squeeze film, as the droplet approaches the liquid layer, the

pressure in the narrowing air gap rises. However, unlike a

traditional squeeze film, the droplet and layer interfaces are

able to respond in reaction to increased pressures, with the

higher pressure in the air gap acting to deflect the free-surfa-

ces, widening the gap between the drop and the layer. Ini-

tially the droplet has a single free-surface minimum directly

below the center of the droplet. However, as the gap between

the droplet and layer narrows, the free-surfaces deform and

the fluid in the droplet closest to the gas is decelerated. Mass

conservation and the higher speed of the bulk droplet mate-

rial forces liquid in the droplet out sideways. This material

interacts with the pressure profile and leads to the formation

of a pair of symmetric minima moving away from this point.

Corresponding free-surface maxima exist at the same hori-

zontal position in the layer and the pressure maxima now

occur where the separation between free-surfaces is least.

In Figure 4, the rigid impermeable base of the liquid

layer is located at�h=e on the vertical axis of the free-surface

plots. The degree of deformation occurring in the lower free-

surface rises (falls) as the thickness of the layer increases

(decreases), and, conversely, the deformation of the upper

free-surface decreases (increases). The compliance of the liq-

uid layer decreases with thickness as the presence of the base

becomes ever more prominent. This is because liquid in the

layer can be more readily displaced by the oncoming droplet

when the base is a long way from the free surface. If the layer

is shallow, then liquid mass conservation requires that the

vertical motion induced in the liquid layer is transferred into

horizontal motion, which makes it harder to move the liquid

layer out of the path of the droplet and leads to a reduction in

the liquid layer free-surface deformation. The initial response

of liquid in the layer to an increased gas pressure is to attempt

to move vertically way from the high pressure. However, if

the liquid layer is shallow, then the rigid base prevents the

downward motion of the fluid. This trend is also seen in the

pressure profile, where the maximum pressure reduces as h
increases. This is because the pressure required to move the

layer out of the path of the incoming droplet falls as the space

available for the layer to be displaced into rises.

A liquid layer height above the initial undisturbed level

corresponds to a transfer of momentum to the liquid layer.

Mass conservation indicates the liquid in the layer is moved

from below the center of the droplet, sideways, and out-

wards. This can be seen most readily in a deep liquid layer

and may be thought of as the initial stages of the sideways

liquid jetting which ultimately leads to splashing. In a shal-

low liquid layer, the free-surface deformations are larger in

the droplet than the liquid layer. However, in conjunction

with the reduction in vertical velocity associated with air

cushioning, horizontal momentum is also given to the drop-

let, which again may be a precursor to the splash. If the hori-

zontal momentum gained from air cushioning is ultimately

carried into the splashing phase of the impact, then we would

expect the ejecta from a droplet impact with a deep liquid

layer to initially consist predominantly of layer material as

this has the greatest horizontal momentum. Conversely, in a

droplet impact with a shallow liquid layer we would expect

the splash ejecta to consist primarily of droplet material: the

greatest source of horizontal momentum in this case.

To quantify the relationship between the horizontal mo-

mentum in the droplet and the layer depth, it is helpful to

consider the horizontal component of the liquid acceleration

in the droplet, ut as given by Eq. (21b). By differentiating the

scaled droplet mass and momentum equations (21), one can

show ut(x,y,t) and py(x,y,t) also satisfy the Cauchy-Riemann

equations. Therefore, proceeding as in Sec. II B, a complex

function

W xþ iy; tð Þ ¼ py x; y; tð Þ þ iut x; y; tð Þ; (40)
FIG. 4. Air cushioning in two-dimensional droplet impacts with a liquid

layer with depth (a) h¼ 0, (b) h¼ 0.2, (c) h¼ 1, (d) h¼ 5, and (e) h!1.
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is constructed. If we consider a contour integral around just

the droplet free-surface, then the horizontal acceleration in

the droplet interior

ut x; y; tð Þ ¼ � 1

2p

ð1
�1

n� xð Þpþy n; tð Þdn

n� xð Þ2þy2
; (41)

as the horizontal acceleration of the droplet free-surface is

zero to leading order. From our results, it is clear that a drop-

let hitting a dry rigid surface is decelerated more rapidly

than a droplet of equivalent size and impact velocity hitting

a water layer (see Figure 4, where at t¼ 0 the downward pro-

gress of the free-surface of a drop impacting a liquid layer is

greater than in the dry case). The vertical deceleration of the

droplet is related to the vertical pressure gradient through the

momentum equation (21c). Therefore from Eq. (41), the hor-

izontal acceleration and momentum of liquid going into the

jet is largest when the deceleration of the droplet occurs

most rapidly.

Further insight can be gained by considering the limiting

cases of a very deep liquid layer h � 1 and a very shallow

liquid layer h � 1. These cases are now considered in the

next sections.

A. The large h limit

For h � 1, the depth of the liquid layer is large com-

pared to the horizontal extent of the gas filled gap, so that

eR� H; (42)

where H is the dimensional, undisturbed liquid layer depth.

In this limit, as h!1, the integral I! 0. Therefore,

ftt½ � ¼ �
2

p

ð
�
1

�1

Pn n; tð Þdn
n� x

: (43)

In this limit the integral on the right-hand side of Eq. (30)

also is negligible, resulting in hftti¼ 0. This, together with

Eq. (43), allows us to explicitly determine the location of

each interface.

Equivalently, the same result can be derived by consid-

ering each fluid domain separately. In a liquid layer whose

depth is much greater than the droplet radius, we can inte-

grate round a semi-circle contour in both the droplet and the

liquid layer. As the radius of the semi-circle gets large, the

contribution from the arc of the semi-circle is negligible and

f 6
tt ¼ �

1

p

ð
�
1

�1

Pn n; tð Þdn
n� x

: (44)

Equation (43) now follows immediately as [f]¼ fþ� f-�.

The results for a deep liquid layer depth are shown in

Figure 4(e). The deep liquid layer depth shows the maximum

deflection of the liquid layer free-surface and the least defor-

mation of the droplet free-surface.

B. The small h limit

Less trivial is the small h case, where the depth of the

liquid layer is much smaller than the horizontal extent of the

gas filled gap. In this limit

eR� H; (45)

where H is the dimensional, undisturbed liquid layer depth.

Fourier Transforms of the integral equations (30) can be

written as

2 bPx k; tð Þ ¼ �i sgn kð Þ 1þ e�b kj j� �cftt½ � k; tð Þ; (46a)

dftth i k; tð Þ ¼ e�b kj jcftt½ � k; tð Þ; (46b)

where b¼ 2h is defined to expedite the analysis.

For b� 1, expansions of the form

dftth i ¼dftth i0 þ bdftth i1 þ b2dftth i2 þ � � � ; (47a)cftt½ � ¼ cftt½ �0 þ bcftt½ �1 þ b2cftt½ �2 þ � � � ; (47b)bPx ¼ bPx0 þ b bPx1 þ b2 bPx2 þ � � � ; (47c)

are substituted into the Fourier transformed integral equa-

tions (46). Equating the terms of the resulting expansion at

leading order implies,

2 bPx0 ¼ �2i sgn kð Þcftt½ �0; (48a)dftth i0 ¼ cftt½ �0: (48b)

The application of an inverse Fourier transform to Eq.

(48b) gives f�tt0 ¼ 0. Together with the far-field condition

f�! 0, as jxj!1, this implies f�0 ¼ 0. Subsequently, an

inverse Fourier transform, applied to Eq. (48a), implies

fþtt0 ¼ �
1

p

ð
�
1

�1

Pn0dn
n� x

; (49)

indicating the leading order behavior for small b is the same

as droplet impact with a solid wall.

After some simplification, the next order correction

(given by equating terms at order b) implies

2 bPx1 ¼ �2i sgn kð Þcftt½ �1 þ ikcfþtt 0; (50a)

2cf�tt 1 ¼ � kj jcfþtt 0: (50b)

If we take an inverse Fourier transform of Eq. (50b), then we

find

f�tt 1 ¼
1

p
@

@x

ð
�
1

�1

fþtt 0dn
n� x

: (51)

From Eq. (49) and properties of singular integral equations,34

it follows immediately that

f�tt 1 ¼ Pxx0; (52)

which gives the first correction to the lower free-surface in

this case. A similar relationship between the free-surface

height and the pressure holds for the air cushioning of solid

bodies coated by shallow liquid layers.35

The leading order behavior for small h is shown in Fig-

ure 5(a) and is identical to the case of droplet impact with a

solid wall. This figure shows the maximum deformation of
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the droplet free-surface and the largest pressures at each inte-

ger time-step of the five layer depths considered. The correc-

tion to the lower free-surface at next order is shown in Figure

5(b), alongside the droplet free-surface and the air layer pres-

sure. The deformation of the liquid layer free-surface is O(e)
times smaller than the deformations experienced by the droplet

free-surface. However, like the droplet free-surface, the liquid

layer free-surface initially deflects away from the incoming

droplet, before forming a pair of peaks some horizontal dis-

tance away from the point below the center of the droplet. The

position of these peaks matches the minima belonging to the

droplet free-surface, and it is at these points (where the pres-

sure is greatest) that initial touchdown will most likely occur,

again leading to the trapping of a gas bubble.

IV. TRAPPED BUBBLE SIZE

The amount of gas trapped between the droplet and layer

as impact occurs depend upon the approach speed U0, the

droplet radius R, and the depth of the liquid layer H. In a

model using two spatial dimensions quantitative comparisons

cannot be made with droplet impacts, which are inherently

three-dimensional. However, we can determine a qualitative

relationship between the layer depth and the amount of trapped

gas. In their investigation of three-dimensional droplet impacts

with a solid wall using a similar scaling regime as employed

here and again assuming the gas to be incompressible, Hicks

and Purvis18 find that the three-dimensional bubble volume V
depends on the droplet radius and approach speed through

V ¼ l4=3
g R5=3

q4=3
l U

4=3
0

~V; (53)

where the numerically computed prefactor, ~V ¼ 94:48. The

layer depth H is absent in this scaling as only droplet impacts

with solid surfaces were considered.

Gas flow in the lubrication layer is driven by the pres-

sure gradient with the result that the gas trapped between the

pressure peaks is restricted from escaping. Therefore, we can

estimate the two-dimensional bubble area by integrating the

amount of gas trapped between the upper and lower free-

surfaces and the horizontal location of the maxima of the

pressure field. Symmetry in the profiles about x¼ 0 implies

the area of the two-dimensional bubble trapped is

~V tð Þ ¼ 2

ðxp

0

f½ � n; tð Þdn; (54)

where xp is the horizontal station corresponding to the maximum

pressure. Clearly, as the free-surface evolves over time the value

of ~V tð Þ changes, starting from zero early in the droplet approach

when only one pressure maximum exists and approaching a

maximum as the distance between the two free-surfaces tend to

zero. During the numerical solution of the model equations

touchdown is never reached, but we approximate this by evalu-

ating Eq. (54) when the separation [f]¼ 0.185. The free-surface

position becomes more computationally expensive to calculate

for h small, and this value of the separation is the smallest

achievable across the range of values of h shown in Figure 6.

Figure 4 shows the profiles of the upper and lower free-

surfaces for a range of values of layer depth h. This shows

that the free surface profiles have a clear dependence upon h;

therefore with a liquid layer present different values of h
would generate different values of the prefactor ~V. The de-

pendence of ~V on h is shown in Figure 6, and we see an

increase in the layer depth h corresponds monotonically to

an increase in bubble volume. This is because the liquid

layer free-surface is most compliant and able to deform

when interactions between it and the rigid base of the liquid

layer are least. This occurs when the base of the liquid layer

is a long way from the liquid layer free-surface as a result of

the mechanism described in Sec. III.

FIG. 5. Air cushioning in two-dimen-

sional droplet impacts with a shallow

liquid layer. (a) shows the upper free-

surface, (b) the lower free-surface, and

(c) the pressure. The upper free-surface

and the pressure evolution are the same

as those shown in Figure 4(a) for droplet

impact with a solid wall.
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Equation (53) shows good agreement with the trends

shown and the limited measured bubble volumes in the

experiments for droplet impact with a solid,3,4 with the vol-

ume of the gas bubble trapped increasing with bubble radius

and decreasing with impact speed.18 Very limited experi-

mental results exist which allow comparison of the bubble

volume with the liquid layer depth. A comparison of droplet

impact experiments into deep water and a solid surface3 indi-

cates that the average thickness of the gas film of 1–2.5 lm

in impacts with a liquid, compared to 2–5 lm for impact

with a solid. For this comparison the average gas film thick-

ness was found by dividing the final bubble volume by the

area of the trapped gas film. Thoroddsen et al.3 suggest the

reason for the difference in average gas film heights is due to

the increased compliance of the liquid layer free-surface

(compared to a rigid body), which allows more time for gas

to drain from the film. In contrast, in our two-dimensional

numerical study, the bubble volume divided by the air film

radius gives an average non-dimensional film thickness of

5.37 in impacts with a deep liquid-layer and 3.81 in impacts

with a solid surface. Therefore, we find that the increased

compliance of both the droplet and layer free-surfaces allows

a larger bubble to be trapped. Several factors may contribute

to this difference in behavior; the numerical results presented

are for an idealized two-dimensional impact problem. Addi-

tionally, in the experiments with greatest droplet approach

speeds, K=e¼O(1), indicating compressibility effects may

be significant in the gas film. These compressibility effects

are not included in the comparison for simplicity and may

account for part of the discrepancy. However, if compressi-

ble effects are included, then the scaling of the bubble vol-

ume (Eq. (53)) is unchanged, although the calculated value

of ~V may change significantly. Other factors such as surface

tension may affect the bubble volume, and further experi-

mental results for a range of layer depths would be useful to

enable better comparison between theory and experiments.

V. DROPLET-DROPLET IMPACTS

The model of Sec. III A, in which the liquid layer is

very deep, can easily be generalized to consider the problem

of air cushioning in impacts between two droplets. In a frame

of reference in which an upper droplet of radius R and veloc-

ity U0 approaches a second, lower stationary droplet of ra-

dius R0, the evolution of the two free-surfaces is governed by

Eq. (44), coupled to the lubrication Equation (34). Here gas

compressibility effects are again assumed to be negligible.

A. Head on collisions

If the moving droplet is traveling along the line joining

the centers of mass of the two droplets, then a head on collision

will result. In this case the far-field conditions are given by

fþ � x2

2
� t; f� � � x2

2a2
; and P! 0; as xj j ! 1;

(55)

with initial conditions given by equality at some large nega-

tive t. Here the constant a¼R0=R. Results are shown in Fig-

ure 7 for the cases in which the stationary droplet is four

times the size, twice the size, and the same size as the mov-

ing droplet, corresponding to a¼ 4, 2 and 1, respectively.

The behavior associated with a large moving droplet impact-

ing with a stationary small droplet can be seen by changing

the frame of reference to one in which the small droplet

appears stationary.

FIG. 6. Bubble volume as a function of layer depth h, when [f]¼ 0.185. The

horizontal lines indicate the bubble volume at the same point for impact

with a solid and impact with deep liquid.

FIG. 7. Air cushioning in two-dimensional droplet-droplet impacts. (a)

shows the free-surface profiles and (b) the pressure, for (i) a¼ 1 (the same

sized droplets), (ii) a¼ 2, and (iii) a¼ 4.
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The resulting free-surface and pressure profiles have

many features in common with droplet impacts with liquid

layers (see Sec. III) and solids.14 Again we see the highest

initial pressures at the point where the separation between

the two droplets is least. The build up of pressure acts to

decelerate the moving droplet and deflect the free surfaces of

both droplets away from impact. As the liquid in the droplet

closest to the point of impact is decelerated the remaining

fluid in the droplet is forced out sideways to preserve mass

conservation and again this leads to new free-surface minima

some distance away from the common axis. These new loca-

tions with smallest separation again correspond to maxima in

the pressure profiles. Through this mechanism, air-cushion-

ing acts to delay the instant of initial impact.

The free-surface profiles generated are also strongly

reminiscent of those generated in the slower speed droplet

coalescence problem with viscous film drainage.28,29 In this

problem the viscous fluid in the gap separating the two drop-

lets must be drained prior to touchdown. Surface tension

effects are more prominent at lower speeds due to smaller

corresponding Weber number. However, the description of

the mechanism governing the evolution of the droplet free-

surfaces is largely the same, with the proviso that viscous

effects dominate in the droplet bulk at lower speeds.

In the air cushioning context the free-surface profiles

again strongly suggest gas bubble entrapment during impact.

To our knowledge, gas bubbles have not been observed

experimentally in violent droplet collisions. However, given

the necessary difficulties with high-speed photography and

the motion of a pair of droplets, such experiments would be

dramatically more difficult to accomplish than either droplet

impact with a solid or a stationary liquid layer.

Figure 7 shows droplet collisions for two equal droplets

and for collisions in which a¼ 2 and 4. These show that as one

of the droplets is increased in size, both the time to initial touch-

down and the size of the gas bubble trapped are increased. This

is because the lower curvature of the free surface of the larger

droplet is more compliant to the increases in pressure and is

therefore able to deform faster and further, mimicking the

behavior seen in droplet impacts with layers of increasing depth.

B. Glancing collisions

In many cases, rather than a head on collision between

two droplets, the droplets will be involved in a glancing

impact. In this case, we shall restrict our attention to collisions

between droplets that initially have the same radius R. How-

ever, the model can be generalized as in the previous section

to describe glancing impacts between different sized droplets.

For clarity we adopt a frame of reference in which the

droplets would impact at x¼ y¼ t¼ 0 if they did not deform

and in which both droplets move towards impact with a non-

dimensional speed of one half. We consider a horizontal

droplet separation between the centers of the two droplets

given by d. In this case the far-field conditions are given by

fþ � x

2
xþ d

2

� �
� t

2
; f� � � x

2
x� d

2

� �
þ t

2
;

and P! 0; as xj j ! 1: (56)

For large negative times we assume the droplets are unde-

formed with P¼ 0 for all x.

Figure 8 shows the free-surface and pressure evolution

for the cases (i) d¼ 1.5, (ii) d¼ 3.0, and (iii) d¼ 4.5. Even

with glancing impacts we still predict a gas bubble will be

trapped as impact is approached, although we must note that

the model used to calculate these impacts describe a region

O(e) away from head-on collisions between droplets. There-

fore, other behavior may be possible for larger horizontal

separations. However, for these small horizontal offsets we

note that the pressure profiles are remarkable similar in all

cases. This can be explained by the fact that in the far-field,

the gap width [f] is independent of d. Therefore, as the lubri-

cation equation is written in terms of [f] rather than each

explicit free-surface position, we should expect the same

pressure profile at each integer time-step. The corresponding

bubble volume is also the same size in all cases, with the

skewed gas pocket becoming longer and narrower as d
increases.

VI. CONCLUSIONS

A model has been developed to describe the air cushion-

ing of liquid droplets during an impact with a finite depth liq-

uid layer. Central to this model is the coupling of a

relationship governing the free-surface evolution of an

FIG. 8. Air cushioning in two-dimensional droplet-droplet impacts. (a)

shows the free-surface profiles and (b) the pressure, for a horizontal offset

(i) d¼ 1.5, (ii) d¼ 3.0, and (iii) d¼ 4.5.
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inviscid droplet to a thin film lubrication model of the gas.

The contour integration described, while previously used in

the study of ground effects33,36 and post impact droplet free-

surface evolution in the absence of air,22 has now been

coupled to an interactive description of the air, allowing gas

pressure induced free-surface deformation and air cushion-

ing. The behavior of the gas film is governed by a canonical

squeeze film problem, albeit one in which the free surfaces

of the gas film are able to deform when the pressure in the

film increases.

For a droplet with dimensional radius R, the horizontal

interaction distance between the droplet and the gas film is

of size eR, where e is defined by Eq. (14). This length scale

is used to identify a key parameter in the modeling,

h¼H=eR, which is the ratio of the liquid layer depth to the

horizontal interaction distance. For h� 1, the liquid layer is

shallow and ultimately the droplet free-surface and pressure

profiles tend towards those seen in droplet impacts with solid

surfaces. In this limit the liquid layer is flat to leading order.

However, the first order correction is calculated and this

allows higher-order deformations of the liquid layer free-sur-

face. For h� 1, the liquid layer is deep and the free-surface

and pressure profiles tend towards those found in an infinite

liquid layer. The free-surface deformations are largest in the

droplet in the former case and are largest in the liquid layer

in the latter. This is because the presence of the rigid imper-

meable base below the liquid layer restricts the ability of the

liquid layer to be pushed out of the path of the droplet. In

impacts with a shallow liquid layer the majority of the hori-

zontal momentum given to the liquid occurs in the droplet,

while, conversely, in impacts with a deep water layer the ma-

jority of the horizontal momentum arises in the liquid layer.

If this horizontal momentum is carried through into the liq-

uid jetting and splashing phases of the impact, then this sug-

gests the ejecta initially comes primarily from the droplet in

an impact with shallow water and from the liquid layer in an

impact with deep water.

It is interesting to compare these predictions to the

splash jet composition which results from existing theories

of droplet impact, available when air effects are neglected.

Asymptotic theories of droplet impact predict that the contri-

butions to the splash jet from the layer and the droplet are

equal due to symmetry for non-dimensional times t �
(H=R)2=3 after impact,23 with the jet exactly dividing the gap

between droplet and layer due to symmetry. In this regime

the small droplet penetration depth means the effect of the

bottom of the liquid layer is not felt. When air cushioning is

neglected, the liquid layer is at rest and the droplet has uni-

form velocity until impact. Impact then occurs at a single

point directly below the center of the droplet. With air cush-

ioning included, horizontal momentum is imparted to both

the layer and the droplet prior to touchdown. It is reasonable

to expect that the fluid with the greater initial horizontal mo-

mentum upon impact will provide a greater proportion of the

jet material as it is able to initially carry more material into

the jet. Therefore with air effects included, we would expect

a greater proportion of the initial splash jet to come from the

layer as the layer depth increases. In a droplet impact with a

rigid solid, clearly all the material in the splash jet must

come from the droplet as there is no liquid layer. In this case,

the asymptotic theory for small times after impact produces

a mixed-boundary value problem, which predicts that the jet

runs along the solid surface,19,20 as seen in experiments con-

ducted at low ambient gas pressures.37 At higher ambient

gas pressures, the subsequent interactions with air then

causes the liquid jet to detach from the solid surface and lift

up into the air, ultimately leading to the formation the char-

acteristic splash corona.

Also of interest are recent experiments of droplet

impacts with a spinning disk.38,39 For a range of horizontal

substrate translation speeds, the liquid jet moving in the

direction of the disk spreads along the surface, while in the

opposite direction the liquid jet lifts off the disk to form a

partial splash corona. However, the small-time asymptotic

solution of the corresponding mixed-boundary value prob-

lem for oblique impacts again predicts liquid jets running

along the solid surface in all directions.40 The subsequent

post-impact lift off of the liquid jet moving in the opposite

direction to the substrate is seemingly due to interactions

between the liquid jet and the viscous boundary layer in the

gas induced by the substrate motion. The higher relative ve-

locity resulting from the liquid jet moving against the vis-

cous gas boundary layer produces a higher local pressure

forcing the jet upwards to create the splash. Conversely,

where the liquid jet and the viscous gas boundary layer are

moving in parallel, there is a much lower relative velocity

and resultant pressure, which allows the jet to spread over

the surface. This is consistent with the splashing (spreading)

behaviour seen in normal droplet impacts at high (low)

pressure.37

Open questions remain regarding key features of air

cushioning in droplet impact. It is still unclear whether

touchdown occurs in finite time within the current modeling

regime. We have found no numerical evidence of touchdown

here, in common with studies of droplet impacts with a rigid

body in both the incompressible14 and compressible15

regimes. For impact with a dry wall, models in the compress-

ible regime predict that the droplet spreads on an air cush-

ion,15 while in the incompressible regime there is a local

similarity solution to the model equations found by assuming

touchdown occurs. However, it is unclear if this similarity

solution is ever obtained in calculations. Most likely, addi-

tional physics is required to allow the model to reach touch-

down in both cases. Recent studies32 have shown some of

that terms neglected in the horizontal momentum equation

(15b), can also become significant just prior to impact when

the gas film thickness is less than 100 nm. Additionally, in

this regime, intermolecular forces, heat transfer, capillary

waves, or interfacial instabilities may generate other second-

ary phenomena such as Mesler entrainment,5,6 which are not

explained by the existing theory. It is expected that including

these additional physical effects will improve comparison

with experiments1,3 and may in addition provide new insight

into the actual initial touchdown and coalescence phase of

the impact. Further work is also required to assess the stabil-

ity of the free surfaces as impact is approached, particularly

when the surface curvature becomes very large. For higher

momentum droplet and other liquid impacts in which the
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Reynolds number is greater than O(107), gas compressibility

has not previously been incorporated into the inviscid gas

film which results in that case. Incorporating this effect will

further understanding in a range of physical problems: not

just only very high momentum droplet impacts, but also ship

slamming and wave impacts.
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APPENDIX: COMPRESSIBLE GAS FILM REGIMES

With compressibility effects retained and the effects of

thermal diffusion and dissipation in Eq. (4) neglected, the

behavior of the gas film is governed by Eq. (33). Depending

on the size of K ¼ qlU
2
0

	
p0, there are three cases to consider.

These correspond to K� e (the incompressible problem dis-

cussed in the main text), as well as e�1K¼O(1), and e� K.

For e defined by Eq. (14), Figure 3 shows the regime diagram

covering the different types of compressible gas film for a

droplet impact in air of ambient pressure p0¼ 105 Pa. The

solid curve shown corresponds to K¼ e and indicates the di-

vision between the different regimes. Also shown by the

dashed line in Figure 3 is the condition given by the right-

hand inequality of Eq. (22). Above this line, viscous terms in

the droplet are not present to leading order. The correspond-

ing condition given by the left-hand inequality results in a

condition on the droplet momentum at velocities greater than

those shown in Figure 3. Therefore, the viscous gas and

inviscid droplet regime is the leading order balance for the

early stages of droplet impacts with parameters in the range

covered by Figure 3 that lie above the dashed line.

If the approach speed U0 and ambient pressure p0 are

such that �K ¼ e�1K ¼ Oð1Þ, then the lubrication Equation

(33) simplifies to

12 1þ �KPð Þ1=c f½ �
� �

t
¼ 1þ �KPð Þ1=c f½ �3Px

� �
x
: (A1)

The air-cushioning behavior in this moderately compressible

regime is then governed by this compressible lubrication

equation in conjunction with the droplet and layer free-sur-

face equations (31) and far-field conditions (16). If the drop-

let approaches impact with the layer with a higher approach

speed and the ambient pressure is such that e � K, then (to

leading order) the equation of state (32) can be used to elimi-

nate the pressure gradient in (33) to leave

q f½ �ð Þt¼ 0: (A2)

Again this equation can be solved in conjunction with the

free-surface Equation (31) and far-field conditions (16) to

give the air-cushioning behavior in this case. Results in both

regimes of compressible air-cushioned droplet impacts with

a rigid solid have been presented,15,32 with both cases pre-

dicting that a trapped gas bubble is formed.

If the thermal diffusion and viscous dissipation terms

are retained in the energy conservation Equation (4), then af-

ter scaling

1

c� 1

@P

@t
þU

@P

@x

� �
� c

c� 1

eK�1 þ P

q
@q
@t
þU

@q
@x
þ V

@q
@y

� �
¼ 1

Pe

@2T

@y2
þ @U

@y

� �2

: (A3)

Here Eq. (37) has been used to rescale the temperature, while

the reduced Péclet number is defined to be

Pe ¼
e2½qg�cv;gU0R

kg
: (A4)

The terms in the scaled energy equation (A3) are presented

in the same order as the terms of its dimensional counterpart

Eq. (4), and, consequently, we see immediately that the final

term (the leading order contribution from the dissipation

term) is of the same size as the terms on the left-hand side

and should not be neglected. However, if the conditions

e�1K � 1 and e�1H � 1 are met, then the solution of the

energy conservation equation uncouples from the lubrication

problem, which can be solved independently for the incom-

pressible case.
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