## Elsevier Editorial System(tm) for Paediatric Respiratory Reviews Manuscript Draft

Manuscript Number: YPRRV-D-14-00003R1

Title: Exhaled nitric oxide and the management of childhood asthma - yet another promising

biomarker "has been" or a misunderstood gem

Article Type: Review Article

Keywords: Asthma; Control; Child; Exhaled Nitric Oxide; Randomised Clinical Trial

Corresponding Author: Dr. Stephen William Turner, MD

Corresponding Author's Institution: University of Aberdeen

First Author: Stephen William Turner, MD

Order of Authors: Stephen William Turner, MD

Abstract: Childhood asthma is a common chronic condition. Approximately five percent of all children in western countries are prescribed treatment with inhaled corticosteroids (ICS) to prevent asthma symptoms. Current guidelines advocate titrating ICS dose to symptoms but this approach is not without problem, e.g. how to discern asthmatic from non-asthmatic symptoms? And when to reduce ICS dose? This review describes the strengths and weaknesses of fractional exhaled nitric oxide (FENO) as an objective index for individualising asthma control in children. Epidemiological and mechanistic evidence suggest that FENO should be a promising biomarker for eosinophilic airway inflammation (a hall mark for asthma) but somewhat surprisingly, clinical trials in children have not consistently found benefit from adding FENO to a symptom-based approach to ICS treatment in children. There are a number of reasons why FENO has apparently failed to translate from promising biomarker to clinically useful tool, and one reason may be a lack of understanding of what merits a significant intrasubject change in FENO. This review describes the rise and apparent fall of FENO as biomarker for asthma and then focuses on more recent evidence which suggest that FENO may prove to have a role in the management of childhood asthma.

# **Conflict of Interest Statement**

The author has completed three studies where consumables were provided by Aerocrine. The author has not received any consultancy fees or financial support for attending meetings from any nitric oxide analyser manufacturer.

\*Cover Letter, incl. Statement on Approval by co-authors

Dear Professor Eber,

Thank you for the opportunity of submitting a revised version of this manuscript. I would also like to thank the reviewer for their time and very helpful comments. A point-by-point response is attached as a separate folder.

I have tried to upload the documents as requested (ie cover letter, point-by-point response, manuscript, tables, figures and supplement/marked up manuscript) but despite my best efforts, the system has declined to update the file order.

Yours sincerely

Steve Turner

Dear Professor Eber,

Thank you for the opportunity of submitting a revised version of this manuscript. I would also like to thank the reviewer for their time and very helpful comments. A point-by-point response is below (my comments are in capitals and page numbers refer to the marked up version of the revised manuscript).

Yours sincerely

Steve Turner

2.1 The study of De Jongste is missing (AJRCCM 2009), although in this study 'usual care'was not very 'usual'. Also, Peirsman published a study in pediatr pulmonol 2013 on FENO monitoring. THANK YOU FOR POINTING OUT THESE PAPER WHICH HAVE BEEN OMITTED BUT NOW INCLUDED

page 8: a meta-analysis with raw data of all studies is actually missing and might be interesting, as Petsky and all did not use original data from all studies. A meta-analysis (not on original data) that is missing (although in a low impact paper) is by Mahr et al, Asthma Allergy Proc 2013.

THANK YOU FOR DRAWING MY ATTENTION TO THIS META-ANALYSIS (MAHR) WHICH IS NOW CITED

3.1 although FeNO increases with height, this is in my opinion not a major problem, as most children with asthma are seen every 3 to 6 months, a period in which you do not expect spectacular growth. This might explain an increase of 5-10 ppb max. I feel seasonal influences, viral infections (which are not mentioned here) and intraperson variability are much more of a problem in interpreting longitudinal FeNO values. Intraindividual variability as described by the author may be much bigger than fluctuations due to severity or control of disease.

I HAVE AMMENDED THIS SECTION TO ACKNOWLEDGE THAT OVER THE SHORT TERM, CHANGE IN HEIGHT IS NOT LIKELY TO BE RELEVANT TO FENO MEASUREMENTS. I HAVE ALSO ADDED VIRAL INFECTION AS A TEMPORARY INFLUENCE ON FENO VALUES. INTRAINDIVIDUAL VARIABILITY IS DISCUSSED IN SECTION 3.6

- 3.2 As the author states, I do not think poor adherence in the dose titration studies was the case. In particular in the study by Szefler the primary outcome decrease spectacular after the run-in period, making this study even underpowered. Then even if adherence was not optimal in the referred studies, this would reflect daily practice and make the results of the studies more applicable to daily life.

  I AGREE
- 3.3 Although I can follow the arguments of the author here, I do not think that a FENO driven treatment will be possible in an era where patient reported outcomes are becoming more and more important as primary outcomes. However, the author may be right as 'the sputum eosinophil driven treatment' by Green et al in adults, led to less (severe) exacerbations in the treatment arm where treatment was adjusted to sputum eosinophils only.

AGAIN I AGREE AND I THINK A BALANCED ARGUMENT IS PRESENTED HERE AS LATER IN THIS SECTION, THE TEXT SAYS "...THE POOR CORRELATION BETWEEN ASTHMA CONTROL AND FENO .... DOES QUESTION WHETHER ASTHMA TREATMENT CAN BE GUIDED ONLY BY FENO"

3.5 Except for the discussion of cut offs, the 'reference values' could be debated. Maybe one should use 'reference values' obtained from data in an asthmatic population with well-controlled asthma instead of a healthy population. This was nicely summarized by Peter Gibson in Clin Exp Allergy 2009: 'The algorithm decision points should be based on outcomes in the population of interest rather than the range of values in healthy people, and the algorithm used needs to provide a sufficiently different result to clinical decision making in order for there to be any discernible benefit.' I would certainly cite this paper, as this very nicely summarizes how to design exhaled NO studies. However, the problem may be that the range of what is normal in well-controlled asthmatics is too broad.

THE PAPER BY PETER GIBSON IS CITED IN THIS SECTION (REF 62). I HAVE POINTED THE READER IN THE DIRECTION OF THIS PAPER AND CLARIFIED THE DIFFERENCE BETWEEN KNOWING WHAT A "HIGH" ONE-OFF

#### MEASUREMENT IS AND A HIGH MEASUREMENT RELATIVE TO PREVIOUS VALUES.

A two weeks course of prednisone will lower FENO more than the optimal dose of inhaled corticosteroids and should not be the target in my opinion (Smith JACI 2009). On the other hand, FENO immediately after prednisone may not be the optimal value that can be obtained, as was shown for FEV1 (Lex, Pediatr Pulmonol 2005).

I HAVE INCLUDED THIS GOOD POINT, IE THAT ORAL STEROIDS MAY YIELD AN UNACHIEVEABLE FENO VALUE.

Bullet 5 (page 16) Another reason why some studies did not show an effect of FENO monitoring and adjusting treatment on FENO was the fact that studies did not allow for step down if patients were symptomatic while having low FENO levels. Therefore, I would plea for stepping down if FENO is low despite symptoms. THANKS FOR THIS HELPFUL POINT WHICH I HAVE ADDED AS AN ADDITIONAL BULLET POINT

An argument that is missing is that FENO driven treatment may be useless in children with concordant phenotypes (e.g. low FENO, low symptoms, normal FEV1 or high FENO, high symptoms and low FEV1), however, if there is discordancy between symptoms, FEV1 and FENO there might be a benefit of including FENO in treatment algorithms.

I HAVE ADDED TEXT AT THE START OF SECTION 3.1 TO ADDRESS THIS POINT.

Page 17: I suggest to do a meta-analysis with all original data. I HAVE DONE THIS

Figure 1: I do not feel this adds much to the paper. I HAVE REMOVED THIS FROM THE MANUSCRIPT

Figure 2 is not complete in my opinion. I would suggest to add poor inhaler technique and ongoing allergen exposure to the left upper part. Viral infections to the right upper part. Left lower quadrant: well controlled asthma? Right lower quadrant: coffee intake, after exercise, after flow-volume curves...

I HAVE ADDED POOR INHALER TECHNIQUE, EXERCISE, SPIROMETRY AND VIRAL INFECTIONS AS SUGGESTED. I HAVE CHANGED EXPOSURE TO POLLEN AND POOR AIR QUALITY TO "ONGOING EXPOSURE TO INHALED ALLERGENS AND POOR AIR QUALITY" (TOP RIGHT). CAFFEINE INTAKE INCREASES FENO IN CHILDREN.

Table 2: References 68-72 are missing. Correlations with FEV1 are missing. There are many more papers on the correlations between asthma control (as assessed with ACT for example) and FENO, FEV1, PAQLQ etc. REFERENCES 68-72 (NOW REFERENCES 44-48) WERE CITED IN TABLE 2 BUT ARE NOW ALSO CITED IN THE TEXT (SECTION 3.1). I HAVE ADDED REFERENCES RELATING ENO TO FEV1. THE REFERENCES USED WERE NOT INTENDED TO BE EXHAUSTIVE BUT TO ILLUSTRATE THE PRESENCE AND ABSENCE OF ASSOCIATIONS SO I HAVE NOT ADDED ANY FURTHER STUDIES TO THE REVIEW BUT AGREE THAT THERE ARE MANY MORE WHICH I COULD CITE.

Table 3: add studies of De Jongste and Peirsman. One additional study was presented as an abstract at the ERS congress in 2013 by Voorend-van Bergen.

THESE TWO PUBLISHED STUDIES HAVE BEEN INCLUDED IN THE TABLE. GIVEN THE LACK OF DATA FROM THE ABSTRACT, I HAVE MENTIONED THE UNPUBLISHED STUDY IN THE TEXT AT THE END OF SECTION 2.1 BUT NOT INCLUDED THIS IN THE TABLE

Table 4: I would not say that asthma exacerbation is 'independent of asthma'. I HAVE DELETED THIS ROW FROM THE TABLE.

Figure Click here to download high resolution image

|                                   | Experim    | ental    | Contr      | ol    |        | Odds Ratio         | Odds Ratio                                                   |
|-----------------------------------|------------|----------|------------|-------|--------|--------------------|--------------------------------------------------------------|
| Study or Subgroup                 | Events     | Total    | Events     | Total | Weight | M-H, Fixed, 95% CI | M-H, Fixed, 95% CI                                           |
| de Jongste 2009                   | 9          | 77       | 12         | 74    | 8.7%   | 0.68 [0.27, 1.73]  | <del></del>                                                  |
| Fritsch 2006                      | 2          | 22       | 2          | 25    | 1.4%   | 1.15 [0.15, 8.93]  |                                                              |
| Peirsman 2014                     | 2          | 49       | 3          | 50    | 2.3%   | 0.67 [0.11, 4.17]  | <del></del>                                                  |
| Petsky 2013                       | 6          | 27       | 15         | 28    | 9.2%   | 0.25 [0.08, 0.80]  | 7. <del></del> -                                             |
| Pijnenberg 2005                   | 7          | 42       | 10         | 47    | 6.4%   | 0.74 [0.25, 2.16]  |                                                              |
| Pike 2012                         | 21         | 44       | 22         | 46    | 9.1%   | 1.00 [0.44, 2.28]  | <del>-  </del>                                               |
| Szefler 2008                      | 91         | 276      | 115        | 270   | 62.9%  | 0.66 [0.47, 0.94]  | <del></del>                                                  |
| Total (95% CI)                    |            | 537      |            | 540   | 100.0% | 0.67 [0.51, 0.88]  | •                                                            |
| Total events                      | 138        |          | 179        |       |        |                    |                                                              |
| Heterogeneity: Chi <sup>2</sup> = | 3.96, df=  | 6 (P = 0 | .68); (*=1 | 0%    |        |                    | 101 101 101                                                  |
| Test for overall effect           | Z = 2.86 ( | P = 0.00 | 14)        |       |        |                    | 0.01 0.1 1 10 100 Favours ENO+symptoms Favours symptoms only |

Figure 2 Click here to download high resolution image

|                                   | ENO plus   | s sympt  | oms     | Symp    | loms o | nly   |        | Mean Difference         | Mean Difference                                                     |
|-----------------------------------|------------|----------|---------|---------|--------|-------|--------|-------------------------|---------------------------------------------------------------------|
| Study or Subgroup                 | Mean       | SD       | Total   | Mean    | SD     | Total | Weight | IV, Fixed, 95% CI       | IV, Fixed, 95% CI                                                   |
| de Jongste 2009                   | 225        | 145      | 77      | 300     | 296    | 74    | 17.6%  | -75.00 [-149.81, -0.19] |                                                                     |
| Fritsch 2006                      | 333        | 87       | 22      | 279     | 169    | 25    | 17.2%  | 54.00 [-21.57, 129.57]  | -                                                                   |
| Peirsman 2014                     | 1,290      | 289      | 49      | 1,169   | 268    | 50    | 8.2%   | 121.00 [11.15, 230.85]  |                                                                     |
| Petsky 2013                       | 413        | 101      | 27      | 225     | 88     | 28    | 39.1%  | 188.00 [137.86, 238.14] | -                                                                   |
| Pike 2012                         | 750        | 176      | 44      | 600     | 183    | 46    | 17.9%  | 150.00 [75.83, 224.17]  |                                                                     |
| Total (95% CI)                    |            |          | 219     |         |        | 223   | 100.0% | 106.41 [75.04, 137.78]  | •                                                                   |
| Heterogeneity: Chi <sup>2</sup> = | 36.00, df= | 4 (P < 0 | .00001) | F = 899 | 6      |       |        |                         | 202 102 1 102 202                                                   |
| Test for overall effect           |            |          |         |         |        |       |        | )                       | -200 -100 0 100 200  Dose higher with symptoms Dose higher with ENO |

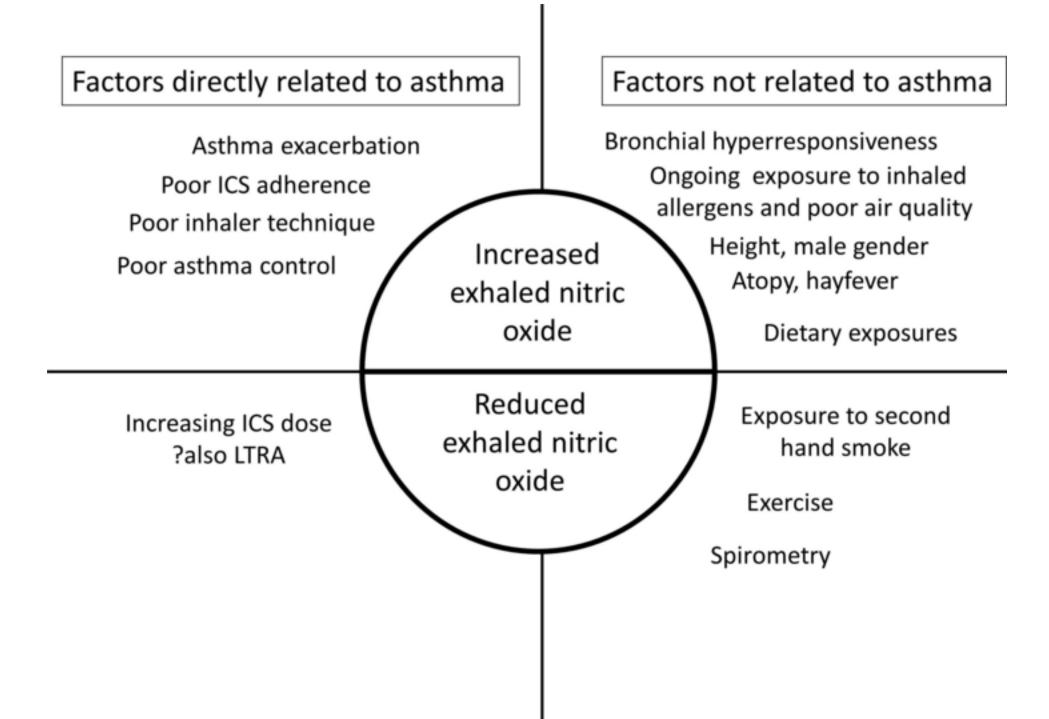



Table 1. Clinically important questions in asthma management where  $FE_{NO}$  may give insight

Are these asthmatic symptoms in this child with asthma?

Should treatment be stepped up with inhaled corticosteroids or alternative medications?

When is it appropriate to step down inhaled corticosteroid treatment?

When is it safe to stop treatment with inhaled corticosteroids?

Table 2. Summary of the literature suggesting that exhaled nitric oxide ( $FE_{NO}$ ) may or may not be a good biomarker for childhood asthma.

| Studies suggesting FE <sub>NO</sub> may be a good                     | Studies suggesting FE <sub>NO</sub> may NOT be a good                |
|-----------------------------------------------------------------------|----------------------------------------------------------------------|
| biomarker for childhood asthma                                        | biomarker for childhood asthma                                       |
| FE <sub>NO</sub> is elevated in children with asthma <sup>13</sup>    | FE <sub>NO</sub> is elevated in atopic non-asthmatic                 |
|                                                                       | children 45 79 and in adolescents whose                              |
|                                                                       | asthma has remitted <sup>80</sup>                                    |
| Exhaled nitric oxide is positively correlated                         | Exhaled NO is not related to FEV <sub>1</sub> 45 or                  |
| with three hallmarks for asthma, sputum                               | BHR <sup>48</sup>                                                    |
| eosinophils $^{44,81,82}$ (r=0.5), FEV <sub>1</sub> <sup>44</sup> and |                                                                      |
| bronchial hyperresponsiveness (BHR) <sup>45</sup> 46                  |                                                                      |
|                                                                       |                                                                      |
| Exhaled nitric oxide is positively correlated                         |                                                                      |
| with airway eosinophilia after two weeks                              |                                                                      |
| treatment with oral corticosteroids (r=0.5) 10                        |                                                                      |
| Elevated FE <sub>NO</sub> is associated with poor                     | FE <sub>NO</sub> is not correlated with asthma control <sup>47</sup> |
| asthma control (r=0.2) 41-43                                          |                                                                      |
| FE <sub>NO</sub> rises after withdrawal of ICS and                    | FE <sub>NO</sub> does not predict relapse after ICS                  |
| before symptoms relapse <sup>18</sup>                                 | withdrawal <sup>83</sup>                                             |
| Treatment with inhaled corticosteroids reduces                        | FE <sub>NO</sub> remains elevated in some individuals                |
| FE <sub>NO</sub> in children with asthma <sup>68</sup> .              | despite treatment with ICS <sup>84,85</sup> .                        |
|                                                                       |                                                                      |

Table 3. Details of the six randomised controlled trials comparing standard symptom-based asthma management against standard management plus exhaled nitric oxide ( $FE_{NO}$ ) in children with asthma.

| Study                    | Population details                                                                                                                         | FE <sub>NO</sub> Cut | Study design                                                                                                                                                                     | Primary outcome                                                                                   | Secondary outcomes                                                                                                                                                       |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                                                                                                                                            | off(s) used          |                                                                                                                                                                                  |                                                                                                   |                                                                                                                                                                          |
| de Jongste <sup>32</sup> | Aged 6-18 attending academic centres or hospitals. Atopic (by plasma IgE or skin prick test). Stable mild-moderate asthma. 151 randomised. |                      | 30 week study, intervention arm made daily FE <sub>NO</sub> measurements. Treatment reviewed each 3 weeks by telephone, physiological testing 1, 3, 5 months and at end of study | Symptom free days during last 3 months of trial; this improved equally in both arms of the trial. |                                                                                                                                                                          |
| Peirsman <sup>33</sup>   | Age range not stated. Mild to severe asthma attending hospital clinics. Atopic (by plasma IgE or skin prick testing). 99 randomised        | ≥20 ppb              | 52 week study. FE <sub>NO</sub> and symptoms reviewed every three months                                                                                                         | Symptom free days;<br>no difference<br>between groups                                             | Exacerbation; reduced in intervention arm (18/49) compared to the control arm (35/50).                                                                                   |
| Fritsch <sup>27</sup>    | Aged 6-18 years. 52 randomised. Attending hospital clinic. Skin prick positive.                                                            |                      | 6 month duration,<br>assessed each 6<br>weeks                                                                                                                                    | FEV <sub>1</sub> – no difference                                                                  | Exacerbations, mid expiratory flows, control. Mid expiratory flow 11 % higher in FE <sub>NO</sub> group. Increased ICS doses (200 microg/day) in FE <sub>NO</sub> group. |
| Petsky <sup>31</sup>     | Aged >4 years 81 children invited 63                                                                                                       |                      | 12 month study, monthly visits for                                                                                                                                               | Exacerbation – FE <sub>NO</sub> associated                                                        | Quality of life and spirometry did                                                                                                                                       |

|                          | mon domica d          | non stari-          | form months and                  | ال عاملين                    | amound a                                               |
|--------------------------|-----------------------|---------------------|----------------------------------|------------------------------|--------------------------------------------------------|
|                          | randomised.           | non atopic children | four months and alternate months | with reduced                 | groups                                                 |
|                          | Attending hospital    |                     |                                  | exacerbations (19%           |                                                        |
|                          | clinic.               | $\geq$ or less than | thereafter.                      | versus 47%)                  |                                                        |
|                          |                       | 12 ppb with         |                                  |                              |                                                        |
|                          |                       | one positive        |                                  |                              |                                                        |
|                          |                       | skin test           |                                  |                              |                                                        |
|                          |                       | $\geq$ or less than |                                  |                              |                                                        |
|                          |                       | 20 ppb with         |                                  |                              |                                                        |
|                          |                       | more than           |                                  |                              |                                                        |
|                          |                       | one positive        |                                  |                              |                                                        |
| 20                       |                       | skin test           |                                  |                              |                                                        |
| Pijnenberg <sup>30</sup> | Aged 5-18 years. 108  | Less than or        | 12 month study                   | ICS dose. No                 | FE <sub>NO</sub> group had improved PD <sub>20</sub>   |
|                          | screened 89           | ≥30ppb              | with assessments                 | difference between           | $(1.3 \text{ doubling doses}), \text{ lower } FE_{NO}$ |
|                          | randomised.           |                     | each 3 months                    | groups.                      | (geometric mean difference at end                      |
|                          | Attending hospital    |                     |                                  |                              | of study 32% lower) and trend for                      |
|                          | clinic. Atopic asthma |                     |                                  |                              | fewer exacerbations (20% versus                        |
| 20                       | treated with ICS.     |                     |                                  |                              | 39%)                                                   |
| Pike <sup>28</sup>       | Aged 6-17 years. 96   |                     | 12 month study,                  | ICS dose and                 | Spirometry, no difference between                      |
|                          | screened, 90          | 15.1-24.9ppb        | assessed each 2                  | exacerbation. No             | groups.                                                |
|                          | randomised.           | ≥25 ppb             | months                           | difference between           |                                                        |
|                          | Attending hospital    |                     |                                  | groups.                      |                                                        |
|                          | clinic with moderate- |                     |                                  |                              |                                                        |
| ~~                       | severe asthma.        |                     |                                  |                              |                                                        |
| Szeffler <sup>26</sup>   | Aged 12-20 years.     | 0-20                | 46 week duration                 | Number of days               | FE <sub>NO</sub> group had:                            |
|                          | 780 screened. 546     | 20.1-30             | assessments each                 | with symptoms. No            | Mean increased fluticasone                             |
|                          | randomised. Inner     | 30.1-40             | 6-8 weeks                        | difference between           | treatment 119 microg/day.                              |
|                          | city area where ≥20%  | >40                 |                                  | FE <sub>NO</sub> and control | 10% reduction in proportion                            |
|                          | households below      |                     |                                  | groups                       | requiring OCS                                          |
|                          | poverty level.        |                     |                                  |                              | Among obese children 0.6 fewer                         |
|                          |                       |                     |                                  |                              | days with symptoms. For those                          |
|                          |                       |                     |                                  |                              | with multiple positive skin tests (ie                  |
|                          |                       |                     |                                  |                              | >9 out of 14 tested) 0.8 fewer days                    |

|                      |                                                                  |    |                                                                       |                                  | with symptoms.             |
|----------------------|------------------------------------------------------------------|----|-----------------------------------------------------------------------|----------------------------------|----------------------------|
| Verini <sup>29</sup> | Aged 6-17 years. 64 children. Referred to hospital and admitted. | 12 | 12 month study with assessments at baseline and after 6 and 12 months | (mean reduced significantly from | Spirometry – no difference |

Table 4. Factors which are associated with changes in  $FE_{NO}$  in children independent of asthma

| Factor                               | Approximate magnitude of effect                           |
|--------------------------------------|-----------------------------------------------------------|
| Height                               | Up to 1ppb rise per cm height gained <sup>24</sup>        |
| Dietary exposures                    | Short lived rise of up to 5-10ppb <sup>53,54</sup>        |
| Allergen exposure                    | Rise of up to 50% during birch pollen                     |
|                                      | season <sup>56</sup>                                      |
| Exposure to second hand smoke        | Reduction of 100% (26ppb for exposed                      |
|                                      | children versus 56ppb) <sup>57</sup> or absolute          |
|                                      | reduction of 10ppb <sup>58</sup>                          |
| Exposure to poor outdoor air quality | Rise of approximately 1ppb 4 hours after                  |
|                                      | each increase of 10mg/m <sup>3</sup> fine particulate     |
|                                      | exposure (PM <sub>2.5</sub> ) <sup>59</sup>               |
| Genetic variations                   | Variations in genes coding for NOS2 and                   |
|                                      | NOS3 may lead to differences in FE <sub>NO</sub> in       |
|                                      | adults of 10% <sup>86</sup> or 10ppb <sup>87</sup> but no |
|                                      | association found for NOS1 variant and                    |
|                                      | FE <sub>NO</sub> in children <sup>88</sup>                |

# Exhaled nitric oxide and the management of childhood asthma – yet another promising biomarker "has been" or a misunderstood gem

# Steve Turner Child Health, University of Aberdeen, Aberdeen, UK

## Contact details:

Dr S Turner, Child Health, Royal Aberdeen Children's Hospital, Aberdeen, UK, AB25 2ZG. Tel +44 1224 438470. <a href="mailto:s.w.turner@abdn.ac.uk">s.w.turner@abdn.ac.uk</a>

Key words: Asthma, Child, Nitric oxide, Respiratory Symptoms

Conflicts of interest: Dr Turner has completed three studies where consumables were provided by Aerocrine.

ABSTRACT

Childhood asthma is a common chronic condition. Approximately five percent of all

children in western countries are prescribed treatment with inhaled corticosteroids (ICS)

to prevent asthma symptoms. Current guidelines advocate titrating ICS dose to

symptoms but this approach is not without problem, e.g. how to discern asthmatic from

non-asthmatic symptoms? And when to reduce ICS dose? This review describes the

strengths and weaknesses of fractional exhaled nitric oxide (FE<sub>NO</sub>) as an objective index

for individualising asthma control in children. Epidemiological and mechanistic evidence

suggest that FE<sub>NO</sub> should be a promising biomarker for eosinophilic airway inflammation

(a hall mark for asthma) but somewhat surprisingly, clinical trials in children have not

consistently found benefit from adding FE<sub>NO</sub> to a symptom-based approach to ICS

treatment in children. There are a number of reasons why FE<sub>NO</sub> has apparently failed to

translate from promising biomarker to clinically useful tool, and one reason may be a lack

of understanding of what merits a significant intrasubject change in FE<sub>NO</sub>. This review

describes the rise and apparent fall of FE<sub>NO</sub> as biomarker for asthma and then focuses on

more recent evidence which suggest that FE<sub>NO</sub> may prove to have a role in the

management of childhood asthma, and in particular preventing exacerbations.

Keywords: Asthma, Control, Child, Exhaled Nitric Oxide, Randomised Clinical Trial

2

# **EDUCATIONAL AIMS**

- $\bullet$  To summarise the literature from observational studies which support the role of fractional exhaled nitric oxide (FE<sub>NO</sub>) as a biomarker for asthma control.
- $\bullet$  To summarise the results from clinical trials which have used  $FE_{NO}$  to guide asthma treatment.
- ullet To explore why there was an apparent failure to translate  $FE_{NO}$  from bench to bedside.
- ullet To explore how  $FE_{NO}$  might be used in the future management of childhood asthma

#### 1. A HISTORICAL BACKDROP TO ASTHMA AND NITRIC OXIDE

1.1 The search for an asthma control biomarker. Childhood asthma is a very common condition world wide<sup>1</sup> and approximately five percent of all children in western countries are prescribed inhaled corticosteroids (ICS) to prevent asthma symptoms<sup>2</sup>. Asthma remains a challenging condition to diagnose and manage in children (and adults) since there is no definition, diagnostic test or biomarker to objectively monitor disease control. Historically, several biomarkers have been evaluated as potential biomarkers for asthma control including peak flow, spirometry, bronchial hyperresponsiveness and eosinophil cationic protein but these tests all lack sufficient sensitivity and specificity. This review will focus on the potential for fractional exhaled nitric oxide (FE<sub>NO</sub>) to be a biomarker for childhood asthma. This review will not explore the potential utility of FE<sub>NO</sub> for diagnosing asthma which has been reviewed elsewhere<sup>3,4</sup>. A as a simple rule low FE<sub>NO</sub> (<10ppb) can be considered a good screen to exclude allergic asthma in children aged  $\geq$ five years and concentrations of  $\geq 19$ ppb might have positive predictive value<sup>4</sup> but the interpretation of higher FE<sub>NO</sub> remains challenging and this is predominantly due to confounding by atopy which leads to elevated FE<sub>NO</sub> independent of asthma.

There is a pressing need for a biomarker for asthma management in children<sup>5</sup> due to a number of clinically important questions to which there are currently no answers (table 1). Currently the management of asthma is driven by symptoms and at times can be based on trial and error. One example of clinical uncertainty is the case of a child with asthma symptoms despite treatment with inhaled steroids – does the clinician increase

ICS dose or add in long acting beta agonist or leukotriene receptor antagonist? Children with asthma also get non-asthmatic respiratory symptoms<sup>6</sup> so how does the clinician deduce whether respiratory symptoms in a child with asthma are asthmatic or not? Third and fourth clinical scenarios are the decision-making behind stepping down or stopping ICS treatment in a child with no asthma symptoms on ICS treatment? Exhaled NO has the potential to give insight into these everyday clinical dilemmas.

1.2. Exhaled nitric oxide and asthma control, a brief summary of the evidence. Until the late 1980s, nitric oxide was thought to be just a pollutant generated from burning fossil fuels, but was subsequently found to be important to cellular function in many human organs and in 1992 was voted molecule of the year by Science magazine. Nitric oxide, a simple diatomic molecule, proved to be important in cellular communication and was the substance previously known as endothelial derived relaxing factor, a potent vasodilator. Nitric oxide is produced by two enzymes. Constitutive nitric oxide synthase (NOS) constantly produces NO at relatively low concentration and this activity is thought to be important to health and wellbeing; at low concentrations NO's properties in the respiratory system may include antimicrobial, immune regulation and possibly bronchodilation. The second enzymatic source of NO is inducible NOS which, on stimulation, can produce higher concentrations of NO compared to constitutive NOS which are associated with disease <sup>7-9</sup>. In the airways, higher concentrations of NO have no homeostatic role and are thought to be secondary to eosinophil inflammation 10. The presence of gaseous nitric oxide in human exhaled breath was first reported in 1993<sup>11</sup> and shortly afterwards was found to be elevated in adults with asthma<sup>12</sup>; this observation was replicated in children four years later <sup>13</sup>. A flurry of scientific activity relating exhaled nitric oxide to asthma was published during the early 2000s and this indicated both the potential <sup>14,15</sup> and the limitations <sup>16</sup> of using NO in exhaled breath as a biomarker for asthma (table 2).

With the epidemiology and cellular/molecular work pointing to  $FE_{NO}$  being a potential biomarker for asthma control in children and a standard methodology agreed, a number of studies explored where  $FE_{NO}$  might be used in asthma management. One study demonstrated how rising exhaled nitric oxide concentration (using a threshold concentration of >22ppb) and rising airway eosinophilia (using % eosinophil count as a continuous variable) were independently predictive of failure to step down inhaled corticosteroids in children with stable asthma  $^{17}$ . A second study measured  $FE_{NO}$  four weeks after cessation of ICS treatment and found that concentrations in excess of 49ppb had the best sensitivity (71%) and specificity (93%) for subsequent asthma relapse  $^{18}$ . By 2005 clinical trials were under way where  $FE_{NO}$  was applied to asthma management as an adjuvant to the standard symptom-based approach advocated by consensus guidelines.

1.3. A standard methodology for measuring NO in exhaled breath. This was agreed by the American Thoracic and European Respiratory Societies and published in 1999<sup>19</sup> and revised in 2005<sup>20</sup>. One of the challenges in measuring NO in exhaled breath is flow dependence, i.e. at higher expiratory flows, concentrations are reduced and *vice versa*. The flow dependence of exhaled NO does give insight into the origin of elevated NO in an individual (broadly from the proximal or distal airways) by deriving flow independent

parameters. Descriptions of derivation of flow independent parameters and their potential clinical relevance in children are available elsewhere  $^{21,22}$ . The agreed standard was to measure the fractional exhaled nitric oxide at 50 ml/s. Using this methodology, a child without asthma would typically have  $FE_{NO}$  of 8-10 parts per billion (ppb)  $^{23}$  but concentrations might be up to 25 ppb  $^{24}$ . Not only was there evidence to support the paradigm that  $FE_{NO}$  was a biomarker for asthma control from epidemiological, observational and mechanistic studies,  $FE_{NO}$  measurements could be made quickly, with minimal discomfort, good reproducibility  $^{25}$  and results were available within minutes.

# 2. EXHALED NO AS A BIOMARKER FOR ASTHMA MANAGEMENT IN CHILDREN

2.1. Results from clinical trials. At the time of writing there have been at least eight trials published which explored the clinical utility of FE<sub>NO</sub> in the management of asthma in children  $^{26-33}$ . These randomised clinical trials compared standard symptom-based management against standard management plus FE<sub>NO</sub> (rather than symptom based versus FE<sub>NO</sub> based management) and each study used absolute FE<sub>NO</sub> values to guide changes in treatment (rather than relative or personalised FE<sub>NO</sub> values). The clinical trials were undertaken by groups working independently and inevitably there is considerable heterogeneity between designs of the trials (table 3). The lower age limit for inclusion varied between 5 and 12 years, one recruited from the community  $^{26}$  whilst the remainder recruited from hospital clinics  $^{27-33}$ and some only included atopic children with asthma $^{27,30,32,33}$ . The absolute FE<sub>NO</sub> values used as cut offs ranged between 10 and 40ppb,

some trials had only one cut off FE<sub>NO</sub> value <sup>27,29,30,32,33</sup>, whilst others had three or four FE<sub>NO</sub> values to trigger escalation in asthma treatment <sup>26,28</sup> and one employed different single cut offs for an individual based on their atopic status<sup>31</sup>. One study also included  $FEV_1$  in the decision making algorithm in addition to  $FE_{NO}^{27}$ . The primary outcome for the studies, upon which the power calculations were based, were varied and included ICS dose<sup>28-30</sup> FEV<sub>1</sub><sup>27</sup>, exacerbations<sup>28,29,31</sup>, severity<sup>29</sup> and symptomatic <sup>32,33</sup>. None of the studies observed improved asthma control among the FE<sub>NO</sub> arms, three found reduced exacerbations <sup>26,29,31,33</sup>, two found improved physiological measurements (i.e. spirometry <sup>27</sup> and bronchial hyperresponsiveness <sup>30</sup>), two found increased doses of ICS among those randomised to FE<sub>NO</sub> guided treatment <sup>26,27</sup> and one found reduced asthma severity over the course of the trial<sup>29</sup>. One very recent study, published only in abstract form at the time of writing 34 reported symptoms free days in 280 children aged 4-18 years randomised to (i) symptom driven treatment (ii) web-based monthly monitoring and (iii) symptom based treatment plus 4 monthly FE<sub>NO</sub> measurement; here symptom free days increased marginally the FE<sub>NO</sub> arm. Systematic reviews and meta-analyses using data from some of these studies have concluded that the evidence does not support the addition of FE<sub>NO</sub> to standard symptom-based management of asthma for day-to-day control 35-37 but one finds evidence for FE<sub>NO</sub> leading to reduced exacerbations 37. In contrast, at least one expert group argues that FE<sub>NO</sub> has an important role in the management of asthma<sup>38</sup>. Between evidence synthesis<sup>35-37</sup> and expert opinion<sup>38</sup>, a recent report from the National Institute for Clinical Efficacy in the UK <sup>39</sup> has suggested that "it could be argued that the available evidence does point towards some benefit to the technology [FE<sub>NO</sub> measurement]" and cites limitations in the current literature as including "cut off values [which] are highly variable and largely based on derivation studies" and "unclear step-up/step-down protocols".

- 2.2 Meta-analysis. Although this is not a systematic review, the eight papers identified in section 2.1 are likely to represent most papers published in this area and meta-analysis was undertaken using standard software was used (Review manager 5.2). The outcomes were (i) risk for an individual requiring at least once course of oral corticosteroids. Details of individuals requiring  $\geq 1$  course of OCS were provided by the author of one study  $^{28}$  and was not available for a second  $^{29}$ . Meta-analysis of seven studies demonstrated that risk for an individual having an exacerbation requiring OCS was reduced by treatment guided by FE<sub>NO</sub> plus symptoms versus symptoms alone, odds ratio 0.67 [95% CI 0.51, 0.88] (figure 1). One study<sup>26</sup> contributed almost two thirds of data for this analysis and substantially influences the overall result from the meta analysis. (ii) risk for an individual having any exacerbation (however defined in the study design).
- (ii) risk for an individual having any exacerbation (however defined in the study design). The risk for an individual having  $\geq 1$  exacerbation of any type could not be determined two studies (one reported total number of exacerbations<sup>27</sup> and a second did not report exacerbations<sup>29</sup>); treatment with FE<sub>NO</sub> plus symptoms was associated with an identical reduction in risk compared to symptoms only as in (i) above (OR 0.67 [95% CI 0.51, 0.88].
- (iii) *ICS dose at the end of the study*. Analysis for ICS dose at end of study was complicated by data being presented as median and interquartile range whereas the software (widely regarded as the gold standard) requires mean and standard deviation values. Data were transformed to mean and standard deviation <sup>40</sup> assuming that 25<sup>th</sup> and 75<sup>th</sup> centile values were low and high end of the range; these assumptions can be easily

challenged and should be considered when interpreting the results from this metaanalysis. Data were not available for three studies of which two<sup>29, 30</sup> reported (in the text)
no increase in dose and one<sup>26</sup> which reported higher dose ICS (mean difference 119
microg budesonide equivalent [95% CI 49, 189]) associated with treatment guided by
FE<sub>NO</sub>. Among the remaining 5 studies there was an overall mean increase in ICS dose of
106 microg BUD equivalent [95% CI 75, 138], figure 2. The magnitude of this
association is consistent with the one large study which dominated the meta analysis<sup>26</sup>
and FE<sub>NO</sub> guided treatment seems to be associated with an increased in ICS dose of
approximately 100 microg BUD equivalent. In addition to the assumptions about mean
and SD values (which resulted in an apparent dose reduction for the FENO arm of the
study by de Jongste et al <sup>32</sup>where median values in the two arms were equal at 200
microg), there is an additional caveat to these results; the results are heterogeneous and
when adjusted for (using random effects) the mean increase in ICS is 88 microg BUD
equivalent [95% CI-10, 86].

#### 3. WHY MIGHT EXHALED NO NOT BE A USEFUL BIOMARKER?

3.1 Exhaled NO is poorly specific for asthma. Elevated NO is a biomarker for eosinophilic inflammation rather than for asthma per se and this indirect relationship with asthma may explain why some studies find FE<sub>NO</sub> is an index of asthma control scores<sup>41-43</sup>, FEV<sub>1</sub><sup>44</sup> and bronchial hyper responsiveness (BHR) <sup>45 46</sup>, but FE<sub>NO</sub> is not universally associated with control<sup>47</sup>, FEV<sub>1</sub><sup>45</sup> or BHR<sup>48</sup>. There is the possibility that FE<sub>NO</sub> is a more accurate index of asthma control for some individuals, eg those with atopy, or for individuals where there is discordance between symptoms and FEV<sub>1</sub>. Eosinophilic inflammation may be asymptomatic and this most likely explains the relationship

between FE<sub>NO</sub> and atopy and bronchial hyperreactivity in children without asthma  $^{45,49,46,50}$ . It has been proposed that FE<sub>NO</sub> is merely an index of atopy, i.e. a skin prick test, since concentrations are positively correlated with the number of skin tests <sup>45</sup> and age at onset of atopy <sup>51</sup> but this is probably over simplistic since FE<sub>NO</sub> does change acutely after exposure to oral corticosteroid treatment<sup>52</sup>, certain foods<sup>53,54</sup>, exercise <sup>55</sup> and pollen<sup>56</sup>. What has been recognised is that factors other than asthma may acutely and chronically influence NO production in children (table 4, figure 3). Male gender and increasing height are consistently associated with modest increase in FE<sub>NO</sub> concentrations and, although children are not likely to grow by more than a few cm between clinic visits, the association with anthropometric measurements challenges the logic behind having single FE<sub>NO</sub> values to trigger changes in ICS throughout childhood; a teenager will grow by as much as 30cm during puberty and their FE<sub>NO</sub> value will rise by approximately 5-10 ppb. As an aside, the association between height and increased FE<sub>NO</sub> is an interesting observation since a measurement of concentration should adjust for size so this is not simply bigger people producing more NO. Dietary exposures have been associated with acute changes in FE<sub>NO</sub> in children <sup>53,54</sup> but these changes are short-lived and of a small magnitude. Nitric oxide is derived from the amino acid L-arginine and ingestion of a dose of L-arginine equivalent to two chicken breasts is associated with a 5 ppb rise in FE<sub>NO</sub> which lasts one hour<sup>54</sup>. Caffeine induces nitric oxide synthase and ingestion of a large drink of cola leads to a 9ppb increase in FE<sub>NO</sub> after 30 minutes which resolves after one hour. <sup>53</sup> Inhaled exposures such as second hand tobacco smoke <sup>57 58</sup> and poor outdoor air  $quality^{59}$  are associated with increased  $FE_{NO}$  but it is not known how long these changes last for. Respiratory infection with virus temporarily affects FE<sub>NO</sub> values but the nature

of this association is not clear; FE<sub>NO</sub> values are reduced in infants with respiratory syncitial virus<sup>60</sup> or rhinitis <sup>61</sup> but in adults with experimentally induced rhinovirus infection, FE<sub>NO</sub> rises by approximately 5ppb <sup>62</sup>. There is little direct evidence of the effect of viral infection in children; indirect evidence comes from observations made during exacerbations, precipitated by rhinovirus, which are associated with elevated  $FE_{NO}^{52,63}$ . The apparently inconsistent findings between virus infection and changing FE<sub>NO</sub> might reflect differences in the host response to different virus which may be age related and also the retention of NO within secretions. Further evidence of almost continuous but small fluctuations in  $FE_{NO}$  is evidenced by the diurnal variability in concentrations  $^{64}$ ; concentrations are less than 1 ppb higher in the morning compared to the afternoon. In addition to variability over minutes and hours, FE<sub>NO</sub> is elevated in children with asthma during periods when grass pollen exposure is present 41,56 and also is elevated during the autumn (when moulds cast spores) for those exposed to indoor moulds <sup>43</sup>. Children with hayfever have elevated FE<sub>NO</sub><sup>65</sup> and concentrations become particularly elevated during the spring when compared to those without hayfever <sup>43</sup>. In addition to the factors described in table 4 and figure 3, intrasubject variability in FE<sub>NO</sub> measurements may also be introduced by the apparatus itself. As with all analytical processes, there is variability in repeated measurements using the same apparatus and this variability can be reduced by measuring two or three FE<sub>NO</sub> values and reporting the mean value <sup>20</sup> but this requires time and also costs money. Further apparatus-dependent variability arises when different methods to derive NO are used; one study found an intrasubject difference of 4ppb between devices made by the same manufacturer<sup>66</sup>. Intrasubject variability becomes considerably greater when apparatus from different manufacturers are used<sup>67</sup> where a typical difference might be 8ppb but range between -12 and +28ppb. At present it seems sensible to make repeated measurements for a given individual using the same apparatus.

3.2 Trials were confounded by poor adherence with inhaled corticosteroid treatment. Adherence to ICS treatment is crucial to the interpretation of elevated FE<sub>NO</sub>, as it currently is for standard symptom-based asthma management. Elevated FE<sub>NO</sub> is associated with poor asthma control 41-43 and poor adherence with ICS treatment 26,68, whereas increasing ICS treatment leads to reduced FE<sub>NO</sub> <sup>68</sup>. Adherence to treatment is always a challenge to measure in asthma, one paper found that typical FE<sub>NO</sub> concentrations for adolescents with adherence was >50% was 24 ppb and was 31ppb for those with <50% compliance <sup>26</sup>. A second study of 17 children found that compliance with ICS of between 75 and 100% was associated with a relative reduction in FE<sub>NO</sub> of 50-100% whereas compliance below 75% was associated with changes in FE<sub>NO</sub> of less that 50% <sup>68</sup>. Observations of heterogeneity in FE<sub>NO</sub> response to ICS <sup>69,70</sup> might reflect the presence of individuals with high FE<sub>NO</sub> but little airway eosinophilia, a phenomenon seen in adults<sup>71</sup> but not described in children, or heterogeneity in adherence to ICS treatment. Although there is most likely to be incomplete adherence to ICS in the clinical trials, asthma outcomes improved in both FE<sub>NO</sub> and standard arms of most trials suggesting that adherence was generally good.

3.3 Wrong study design. The clinical trials which have been completed in children to date all compared standard symptom-based treatment versus standard treatment plus  $FE_{NO}$  and perhaps trials should compare symptom-based treatment versus  $FE_{NO}$  only treatment. This bold study design has only been used in one trial of adult patients<sup>72</sup> and

found that  $FE_{NO}$  guided treatment was associated with reduced ICS doses and a non-significant trend for reduced symptoms compared to symptom based management. The poor correlation between asthma control and  $FE_{NO}$  reported in some studies<sup>41-43</sup> and the lack of correlation in at least one study<sup>47</sup> does question whether asthma treatment can be guided only by  $FE_{NO}$ . On the one hand,  $FE_{NO}$  and symptoms measure different outcomes and therefore an algorithm which captures both outcomes might be better than either alone. A more conservative approach might argue that there is a too much of a leap of faith involved in using  $FE_{NO}$  to guide treatment, and the symptom-based approach is patient-centred and therefore symptoms should predominate as the ultimate trigger for changing asthma treatment.

- 3.4 Insufficient power. Although studies justified their sample size by a power calculation, descriptions of the power calculations do not include a mean or median  $FE_{NO}$  value and associated variability. Pragmatically, only two published studies randomised more than 100 children<sup>26</sup> 32 so it is possible that the remaining studies may have been underpowered.
- 3.5 Wrong cut offs used. Although increased  $FE_{NO}$  is associated with adverse asthma outcomes in children, the definition of what is "increased" remains unclear. Evidence from population studies suggests that concentrations of >35ppb in children are "high" <sup>38</sup> but the question "what is a significant change in  $FE_{NO}$  for an individual?" remains poorly understood and has been explored in detail elsewhere <sup>73</sup>. One early study suggested that a change of 4 ppb might be clinically significant <sup>74</sup> but, as table 4 demonstrates, there are many factors other than asthma which can acutely change  $FE_{NO}$  by an order of at least 4ppb. Furthermore, a rise of 4ppb might be important in a child whose previous  $FE_{NO}$

was 10ppb but not for a second individual whose FE<sub>NO</sub> was 20ppb and relative change in FE<sub>NO</sub> seems a more meaningful method for interpreting repeated measurements. Recent studies in adults have suggested that a relative change of <30% is unlikely to be clinically relevant  $^{75}$  and a change from poor control to good control was associated with a  $\text{FE}_{\text{NO}}$ reduction of greater than 35% <sup>76</sup>. Having a "significant" magnitude of change in FE<sub>NO</sub> of 30-35% would be consistent with a clinically meaningful change in bronchial hyperreactivity (a hallmark for asthma and correlated with FE<sub>NO</sub>) of half a doubling dose  $^{77}$ . In children, a FE<sub>NO</sub> rise of 60% from baseline (with 95% confidence intervals of approximately 25, 140) was associated with an exacerbation <sup>63</sup> and by extrapolation, a rise in FE<sub>NO</sub> of less than 60% might be indicative of increasing symptoms. A clinical practical guideline published by the American Thoracic Society in 2011 <sup>38</sup> acknowledged a weak evidence base and cautiously recommended that a rise in FE<sub>NO</sub> of >20% or (in children) >20ppb may be significant and that a minimally important reduction in FE<sub>NO</sub> was >20% for those with a FE<sub>NO</sub> of  $\geq$ 50ppb and <10ppb for those for those with lower values. In the adult literature there has been interest in expressing FE<sub>NO</sub> as a percentage of predicted but this option is losing favour, mostly due to lack of precision and to differences between reference populations raising the question of which reference is the best for a given population? A fourth method to express FE<sub>NO</sub> is a as percentage of lowest value and is measured after a two week course of oral corticosteroids, but this has an associated morbidity, might yield a low FE<sub>NO</sub> value which cannot be achieved with ICS treatment and should be reserved for use only in special cases under expert supervision. Of the four methods described, percentage difference seems best suited for individualising treatment since this recognises the relatively wide range of values within a population of children.

3.6 Insight into intrasubject variability. One recent study has given insight into the question "what is a significant change in FE<sub>NO</sub>?" <sup>43</sup>. 178 children were recruited, of whom 47 had asthma, in a community-based observational study where FE<sub>NO</sub> was measured over six two-month intervals. The difference between paired FE<sub>NO</sub> measurements was expressed as an absolute value and limits of agreement. As might be expected, the limits of agreement for paired FE<sub>NO</sub> measurements were greater for those with higher initial concentrations. Average FE<sub>NO</sub> values were stable over eight months but did become significantly higher over a ten month interval, presumably due to the children becoming taller. Asthma was associated with *elevated* FE<sub>NO</sub> in this population (27ppb versus 10 ppb for non-asthmatic) but when both time and baseline  $FE_{NO}$  value were considered, asthma was not independently associated with change in FE<sub>NO</sub> value. As a rough rule of thumb, the authors suggested that  $FE_{NO}$  values may rise by up to 200% of the previous measurements over two to four months, independently of asthma. For example, in the 40 children with initial FE<sub>NO</sub> between 11 and 20 ppb (median value 14ppb) the upper limits of agreement for measurements taken at a two and four month interval were +22ppb and +14 ppb respectively. As might be expected over time (and regression to the mean), low initial FE<sub>NO</sub> concentrations became higher whilst higher concentrations became lower; thus the lower limits of agreement over two and four months for children whose initial  $FE_{NO}$  was 21-30 ppb were -19 and -25ppb. In keeping with the suggestion that a more permissive approach to interpretation of FE<sub>NO</sub> values, a more liberal algorithm which allowed  $FE_{NO}$  concentrations to rise by up to 100% (from

16 to 29ppb) was found to be effective in reducing exacerbations and improving quality of life among pregnant women <sup>78</sup>.

In addition to describing variability in  $FE_{NO}$  over time, this study related  $FE_{NO}$  to asthma control (both present and future) and also to environmental exposures which might affect  $FE_{NO}$  values <sup>43</sup>. There was weak correlation between  $FE_{NO}$  and current and future asthma control measured over a four month interval (correlation coefficient approximately 0.2). Compared with maintained good asthma control over two months, children who were poorly controlled but became well controlled had elevated  $FE_{NO}$ ; in contrast, neither those who had good asthma control which became poorly controlled nor those whose asthma control remained poor had elevated  $FE_{NO}$ . These observations suggested that elevated  $FE_{NO}$  is an index of poor current control but not poor control in two month's time. Additionally the findings suggested that the mechanism for persistently poorly controlled symptoms in children with asthma may not involve eosinophilic airway inflammation.

# Future research directions - so where do we go beyond 2014 with $FE_{NO}$ ?

It is too early to consign  $FE_{NO}$  to the dust bin where failed biomarkers for asthma are placed. There is still sufficient evidence to indicate that  $FE_{NO}$  may have a role in helping to address the current situation where there are too many children treated with inappropriately high doses of inhaled corticosteroids and conversely, too many children with poorly controlled asthma whose quality of life can be improved with ICS treatment. The inconsistency between the epidemiology and mechanistic studies (supportive of a role for  $FE_{NO}$  in asthma management) and the clinical trials to date (which are generally

not supportive of adding  $FE_{NO}$  to standard symptom-based management) suggests either  $FE_{NO}$  lacks precision or we have not properly understood how to interpret  $FE_{NO}$  as a clinical tool. Time will show whether  $FE_{NO}$  does have role or not in the management of childhood asthma. If  $FE_{NO}$  does prove to have a role in the management of childhood asthma then clinicians will have to place trust in  $FE_{NO}$  since guidelines will have to use  $FE_{NO}$  to step treatment down as well as up. Now that insight is being gained into what merits a significant change in  $FE_{NO}$ , clinical trials are needed which test cut offs to treatment algorithms. Future clinical trials designed to use  $FE_{NO}$  to improve asthma outcomes might consider the following:

- 1. Comparing symptom based management and  $FE_{NO}$  only based management. This might follow in the success of trials comparing symptoms versus  $FE_{NO}$  plus symptoms; the apparent failure of previous studies will understandably make clinicians very cautious in using only  $FE_{NO}$  to guide treatment.
- 2. Careful attention to treatment adherence. This needs to be integral to clinical trials since poor adherence has great potential to mask any true clinical benefit but in the long term,  $FE_{NO}$  may prove to give the clinician insight into adherence.
- 3. What is the "best" outcome. At present, the evidence would suggest that  $FE_{NO}$  may have a greater influence in reducing exacerbations rather than improving day-to-day control of symptoms. It is possible that one algorithm may lead to better control and another to fewer exacerbations for a given individual. On a practical note, having symptom control as an outcome and part of the algorithm is a potential flaw in study design.

- 4. Absolute versus relative  $FE_{NO}$  values. There is sufficient evidence to categorise individuals as having high  $FE_{NO}$  on study entry but more work is required in establishing whether cut offs for second and subsequent  $FE_{NO}$  values should be absolute or percent of previous values.
- 5. Algorithms could use  $FE_{NO}$  to guide treatment step up options for individuals with uncontrolled asthma despite compliance with ICS treatment, i.e. to further increase ICS or use alternative "add ons", as has been applied in adults<sup>78</sup>.
- 6. Algorithms could use  $FE_{NO}$  to step down ICS treatment, even when (non-asthmatic) symptoms are present.
- 7. Clinical setting. Childhood asthma is a condition which is mostly managed in the community and trial design should ideally reflect this and aspire to an ideal of easily delivered personalised treatment algorithms
- 8. Preschool children. Methodologies are required to allow  $FE_{NO}$  to be measured in younger children currently  $FE_{NO}$  can be measured in children aged 5-6 years

#### REFERENCES

- 1. Lai CK, Beasley R, Crane J, et al. Global variation in the prevalence and severity of asthma symptoms: phase three of the International Study of Asthma and Allergies in Childhood (ISAAC). *Thorax* 2009;**64:**476-83.
- 2. Turner S, Thomas M, von Ziegenweidt J, Price D. Prescribing trends in asthma: a longitudinal observational study. *Arch Dis Child* 2009;**94:**16 22.
- 3. Ludviksdottir D, Diamant Z, Alving K, Bjermer L, Malinovschi A. Clinical aspects of using exhaled NO in asthma diagnosis and management. *Clin Respir J* 2012;**6:**193-207.
- 4. Brodlie M, McKean MC. Exhaled nitric oxide in the diagnosis of childhood asthma. *Brit Med J* 2009;**339:**b5418.
- 5. Szefler SJ, Wenzel S, Brown R, et al. Asthma outcomes: biomarkers. *J Allergy Clin Immunol* 2012;**129**.
- 6. Turner S. An asthmatic child with a troublesome cough. *Brit Med J* 2011;**342:**c6846.
- 7. Guo FH, Comhair SA, Zheng S, et al. Molecular mechanisms of increased nitric oxide (NO) in asthma: evidence for transcriptional and post-translational regulation of NO synthesis. *Journal of Immunology* 2000;**164:**5970-80.
- 8. Hamid Q, Springall DR, Riveros-Moreno V, et al. Induction of nitric oxide synthase in asthma. *Lancet* 1993;**342:**1510-3.
- 9. Lane C, Knight D, Burgess S, et al. Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. *Thorax* 2004:**59:**757-60.
- 10. Payne D, Adcock I, Wilson N, Oates T, Scallan M, Bush A. Relationship between exhaled nitric oxide and mucosal eosinophilic inflammation in children with difficult asthma, after treatment with oral prednisolone. *Am J Respir Crit Care Med* 2001;**164:**1376-81.
- 11. Borland C, Cox Y, Higenbottam T. Measurement of exhaled nitric oxide in man. *Thorax* 1993;**48:**1160-2.
- 12. Alving K, Weitzberg E, Lundberg J. Increased amount of nitric oxide in exhaled air of asthmatics. *Eur Respir J* 1993;**6:**1368-70.
- 13. Nelson BV, Sears S, Woods J, et al. Expired nitric oxide as a marker for childhood asthma. *Journal of Pediatrics* 1997;**130**:423-7.
- 14. Kharitonov SA, Barnes PJ. Does exhaled nitric oxide reflect asthma control? Yes, it does! *Am J Respir Crit Care Med* 2001;**164**(5):727-8.
- 15. de Jongste JC. Yes to NO: the first studies on exhaled nitric oxide-driven asthma treatment. *Eur Respir J* 2005;**26:**379-81.
- 16. Franklin PJ, Stick SM. The value of FeNO measurement in asthma management: the motion against FeNO to help manage childhood asthma--reality bites. *Paediatric Respiratory Reviews* 2008;**9:**122-6.
- 17. Zacharasiewicz A, Wilson N, Lex C, et al. Clinical Use of Noninvasive Measurements of Airway Inflammation in Steroid Reduction in Children. *Am J Respir Crit Care Med* 2005;**171:**1077-1082.
- 18. Pijnenburg MW, Hofhuis W, Hop WC, de Jongste JC. Exhaled nitric oxide predicts asthma relapse in children with clinical asthma remission. *Thorax* 2005;**60:**215-8.

- 19. American Thoracic Society. Recommendations for the standardized procedures for the online and offline measurement of exhaled nitric oxide and nasal nitric oxide in adults and children. *Am J Respir Crit Care Med* 1999;**160**:2104-2117.
- 20. American Thoracic Society. Recommendations for Standardized Procedures for the Online and Offline Measurement of Exhaled Lower Respiratory Nitric Oxide and Nasal Nitric Oxide. *Am J Respir Crit Care Med* 2005;**171**:912-930.
- 21. George SC, Hogman M, Permutt S, Silkoff PE. Modeling pulmonary nitric oxide exchange. *J Appl Physiol* 2004;**96:**831-839.
- 22. Paraskakis E, Brindicci C, Fleming L, et al. Measurement of bronchial and alveolar nitric oxide production in normal children and children with asthma. *Am J Respir Crit Care Med* 2006;**174**:260-7.
- 23. Baraldi E, Azzolin NM, Cracco A, Zacchello F. Reference values of exhaled nitric oxide for healthy children 6-15 years old. *Pediatric Pulmonology* 1999;**27**(1):54-8
- 24. Buchvald F, Baraldi E, Carraro S, et al. Measurements of exhaled nitric oxide in healthy subjects age 4 to 17 years. *J Allergy Clin Immunol* 2005;**115**:1130-6.
- 25. Napier E, Turner SW. Methodological issues related to exhaled nitric oxide measurement in children aged four to six years. *Pediatr Pulmonol* 2005;**40:**97-104.
- 26. Szefler SJ, Mitchell H, Sorkness CA, et al. Management of asthma based on exhaled nitric oxide in addition to guideline-based treatment for inner-city adolescents and young adults: a randomised controlled trial. *Lancet* 2008;**372:**1065-72.
- 27. Fritsch M, Uxa S, Horak F, Jr., et al. Exhaled nitric oxide in the management of childhood asthma: a prospective 6-months study. *Pediatr Pulmonol* 2006;**41:**855-62.
- 28. Pike K, Selby A, Price S, et al. Exhaled nitric oxide monitoring does not reduced exacerbation frequency or inhaled corticosteroid dose in paediatric asthma: a randomised controlled trial. *Clin Respir J* 2013;**7:**204-213.
- 29. Verini M, Consilvio NP, Di Pillo S, et al. FeNO as a Marker of Airway Inflammation: The Possible Implications in Childhood Asthma Management. *J Allergy* 2010;**691425**(doi 10.1155/2010/691425).
- 30. Pijnenburg MW, Bakker EM, Hop WC, de Jongste JC. Titrating steroids on exhaled nitric oxide in children with asthma: a randomized controlled trial. *Am J Respir Crit Care Med* 2005;**172:**831-6.
- 31. Petsky H, Li AM, Kynaston JA, Turner C, Chang AB. Dual Centre Randomised Trial on Tailored Asthma Therapy Based on Exhaled Nitric Oxide (FENO) Versus Routine Clinical Care (abstract). *Am J Respir Crit Care Med* 2010;**A3928**(doi 10.1164/AJRCCM-confernec.2010.181.1).
- 32. de Jongste JC, Carraro S, Hop WC, Group CS, Baraldi E. Daily telemonitoring of exhaled nitric oxide and symptoms in the treatment of childhood asthma. *Am J Respir Crit Care Med* 2009;**179:**93-7.
- 33. Peirsman EJ, Carvelli TJ, Hage PY, et al. Exhaled Nitric Oxide in Childhood Allergic Asthma Management A Randomised Controlled Trial. *Pediatr Pulmonol* 2013;**DOI 10.1002/ppul.22873**.

- 34. Voorend-van Bergen S, Vaessen-Verberne A, Landstar A, et al. FeNO and web-based monitoring in paediatric asthma management; the BATMAN study. *Eur Respir J* 2013;**42**(Suppl 57):629s.
- 35. Petsky HL, Cates CJ, Lasserson TJ, et al. A systematic review and meta-analysis: tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils). *Thorax* 2010;**doi:10.1136/thx.2010.135574**.
- 36. Jartti T, Wendelin-Saarenhovi M, Heinonen I, Hartiala J, Vanto T. Childhood asthma management guided by repeated FeNO measurements: a meta-analysis. *Paediatr Respir Rev* 2012;**13**:178-183.
- 37. Mahr TA, Malka J, Spahn JD. Inflammometry in pediatric asthma: a review of fractional exhaled nitric oxide in clinical practice. *Allergy Asthma Proc* 2013;**34:**210-9.
- 38. Dweik RA, Boggs PB, Erzurum SC, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. *Am J Respir Crit Care Med* 2011;**184:**602-15.
- National Institute for Clinical Excellence. Measuring fractional exhaled nitric oxide concentrations in asthma -NIOX MINO, NIOX VERO and NO breath:diagnostics consultation document.

   <u>http://www.nice.org.uk/nicemedia/live/13864/65618/65618.pdf</u> (accessed 23-12-2013) 2013.
- 40. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. *BMC Med Res Methodol* 2005;**5**(13).
- 41. Roberts G, Hurley C, Bush A, Lack G. Longitudinal study of grass pollen exposure, symptoms, and exhaled nitric oxide in childhood seasonal allergic asthma. *Thorax* 2004;**59**:752-6.
- 42. Piacentini GL, Peroni DG, Bodini A, et al. Childhood Asthma Control Test and airway inflammation evaluation in asthmatic children. *Allergy* 2009;**64:**1753-7.
- 43. Cutts R, Turner S. Longitudinal measurements of exhaled nitric oxide in children what is a significant change in FENO? *Pediatr Allergy Immunol* 2013;**24:**540-548.
- 44. Pontin J, Blaylock M, Walsh GM, Turner SW. Sputum eosinophil apoptotic rate is positively correlated to exhaled nitric oxide in children. *Pediatr Pulmonol* 2008;**43:**1130-4.
- 45. Franklin PJ, Turner SW, Le Souëf PN, Stick SM. Exhaled nitric oxide and asthma: complex interactions between atopy, airway responsiveness and symptoms in a community population of children. *Thorax* 2003;**58**:1048-1052.
- 46. Steerenberg PA, Janssen NA, de Meer G, et al. Relationship between exhaled NO, respiratory symptoms, lung function, bronchial hyperresponsiveness, and blood eosinophilia in school children. *Thorax.* 2003;**58**(3):242-5.
- 47. Waibel V, Ulmer H, Horak E. Assessing asthma control: symptom scores, GINA levels of asthma control, lung function, and exhaled nitric oxide. *Pediatr Pulmonol* 2012;47:113-8.
- 48. Silvestri M, Spallarossa D, Battistini E, Brusasco V, Rossi GA. Dissociation between exhaled nitric oxide and hyperresponsiveness in children with mild intermittent asthma. *Thorax* 2000;55:484-8.

- 49. van Den Toorn LM, Prins JB, Overbeek SE, Hoogsteden HC, de Jongste JC. Adolescents in clinical remission of atopic asthma have elevated exhaled nitric oxide levels and bronchial hyperresponsiveness. *American Journal of Respiratory & Critical Care Medicine* 2000;**162:**953-7.
- 50. Frank TL, Adisesh A, Pickering AC, et al. Relationship between exhaled nitric oxide and childhood asthma. *American Journal of Respiratory & Critical Care Medicine* 1998;**158**(4):1032-6.
- 51. Turner SW, Heaton T, Rowe J, et al. Early-onset atopy is associated with enhanced lymphocyte cytokine responses in 11-year-old children. *Clin Exp All* 2007;**37:**371-80.
- 52. Baraldi E, Azzolin NM, Zanconato S, Dario C, Zacchello F. Corticosteroids decrease exhaled nitric oxide in children with acute asthma. *Journal of Pediatrics* 1997;**131**(3):381-5.
- 53. Abuzayan I, Paraskakis E, Turner SW. Changes to exhaled nitric oxide in asthmatic children after drinking a caffeine-containing cola drink. *Pediatr Pulmonol* 2010;45:1228-32..
- 54. Abuzayan I, Turner SW. Changes in exhaled nitric oxide after ingestion of L-arginine in children: a pilot study. *Pediatr Pulmonol* 2010;**45**:236-40.
- 55. Petsky H, Kynaston JA, McElrea M, Turner C, Isles A, Chang AB. Cough and exhaled nitric oxide levels: what happens with exercise? *Frontiers Pediatr* 2013;**doi 10.3389/fped.2013.00030**.
- 56. Vahlkvist S, Sinding M, Skamstrup K, Bisgaard H. Daily home measurements of exhaled nitric oxide in asthmatic children during natural birch pollen exposure. *J Allergy Clin Immunol* 2006;**117**:1272-6.
- 57. Laoudi Y, Nikasinovic L, Sahraoui F, Grimfeld A, Momas I, Just J. Passive smoking is a major determinant of exhaled nitric oxide levels in allergic asthmatic children. *Allergy* 2010;**65**:491-7.
- 58. Warke TJ, Mairs V, Fitch PS, Ennis M, Shields MD. Possible association between passive smoking and lower exhaled nitric oxide in asthmatic children. *Arch Environ Health* 2003;**58:**613-6.
- 59. Mar TF, Jansen K, Shepherd K, Lumley T, Larson TV, Koenig JQ. Exhaled nitric oxide in children with asthma and short-term PM2.5 exposure in Seattle. *Envir Health Perspect* 2005;**113:**1791-4.
- 60. Gadish T, Soferman R, Merimovitch T, Fireman E, Sivan Y. Exhaled nitric oxide in acute respiratory syncytial virus bronchiolitis. *Arch Pediatr Adolesc Med* 2010:**164:**727-31.
- 61. Franklin PJ, Turner SW, Hall GL, Moeller A, Stick SM. Exhaled nitric oxide is reduced in infants with rhinorrhea. *Pediatr Pulmonol* 2005;**39:**117-9.
- 62. de Gouw HW, Grunberg K, Schot R, Kroes AC, Dick EC, Sterk PJ. Relationship between exhaled nitric oxide and airway hyperresponsiveness following experimental rhinovirus infection in asthmatic subjects. *Eur Respir J* 1998:**11:**126-32.
- 63. van der Valk RJ, Baraldi E, Stern G, Frey U, de Jongste JC. Daily exhaled nitric oxide measurements and asthma exacerbations in children. *Allergy* 2012;**67:**265-71.

- 64. Stark H, Purokivi M, Kiviranta J, Randell J, Tukiainen H. Short-term and seasonal variations of exhaled and nasal NO in healthy subjects. *Respir Med* 2007;**101**:265-71.
- 65. Jouaville LF, Annesi-Maesano I, Nguyen LT, Bocage AS, Bedu M, Caillaud D. Interrelationships among asthma, atopy, rhinitis and exhaled nitric oxide in a population-based sample of children. *Clin Exp All* 2003;**33:**1506-11.
- 66. McGill C, Malik G, Turner SW. Validation of a hand-held exhaled nitric oxide analyzer for use in children. *Pediatr Pulmonol* 2006;**41:**1053-7.
- 67. Kapande KM, McConaghy LA, Douglas I, et al. Comparative repeatability of two handheld fractional exhaled nitric oxide monitors. *Pediatr Pulmonol* 2011;**47**:546-50.
- 68. Beck-Ripp J, Griese M, Arenz S, Koring C, Pasqualoni B, Bufler P. Changes of exhaled nitric oxide during steroid treatment of childhood asthma. *Eur Respir J* 2002;**19**:1015-9.
- 69. Buchvald F, Eiberg H, Bisgaard H. Heterogeneity of FeNO response to inhaled steroid in asthmatic children. *Clin Exp All* 2003;**33:**1735-40.
- 70. Pijnenburg MW, Bakker EM, Lever S, Hop WC, De Jongste JC. High fractional concentration of nitric oxide in exhaled air despite steroid treatment in asthmatic children. *Clin Exp All* 2005;**35**:920-5.
- 71. Shaw DE, Berry MA, Thomas M, et al. The use of exhaled nitric oxide to guide asthma management: a randomized controlled trial. *Am J Respir Crit Care Med* 2007;**176:**231-7.
- 72. Smith AD, Cowan JO, Brassett KP, Herbison GP, Taylor DR. Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. *N Engl J Med* 2005;**352**:2163-73.
- 73. Gibson PG. Using fractional exhaled nitric oxide to guide asthma therapy: design and methodological issues for ASthma TReatment ALgorithm studies. *Clin Exp All* 2009;**39**:478-90.
- 74. Kharitonov SA, Gonio F, Kelly C, Meah S, Barnes PJ. Reproducibility of exhaled nitric oxide measurements in healthy and asthmatic adults and children. *Eur Respir J* 2003;**21:**433-8.
- 75. Michils A, Louis R, Peche R, Baldassarre S, Van Muylem A. Exhaled nitric oxide as a marker of asthma control in smoking patients. *Eur Respir J* 2009;**33:**1295-301.
- 76. Hewitt RS, Modrich CM, Cowan JO, Herbison GP, Taylor DR. Outcomes using exhaled nitric oxide measurements as an adjunct to primary care asthma management. *Primary Care Respir J* 2009;**18**:320-7.
- 77. Weatherall M, Finlgeton J, Eyers S, Beasley R. A half doubling does change in bronchial hyperresponsiveness in a populaiton represents an important difference. *Translational Respir Med* 2013;**1:**4.
- 78. Powell H, Murphy VE, Taylor DR, et al. Management of asthma in pregnancy guided by measurement of fraction of exhaled nitric oxide: a double-blind, randomised controlled trial. *Lancet* 2011;**378:**983-90.
- 79. Steerenberg PA, Janssen NA, de Meer G, et al. Relationship between exhaled NO, respiratory symptoms, lung function, bronchial hyperresponsiveness, and blood eosinophilia in school children. *Thorax.* 2003;**58:**242-5.

- 80. van Den Toorn LM, Prins JB, Overbeek SE, Hoogsteden HC, de Jongste JC. Adolescents in clinical remission of atopic asthma have elevated exhaled nitric oxide levels and bronchial hyperresponsiveness. *American Journal of Respiratory & Critical Care Medicine* 2000;**162**(3 Pt 1):953-7.
- 81. Piacentini GL, Bodini A, Costella S, et al. Exhaled nitric oxide and sputum eosinophil markers of inflammation in asthmatic children. *European Respiratory Journal* 1999;**13**(6):1386-90.
- 82. Warke TJ, Fitch PS, Brown V, et al. Exhaled nitric oxide correlates with airway eosinophils in childhood asthma. *Thorax* 2002;**57:**383-7.
- 83. Cabral AL, Vollmer WM, Barbirotto RM, Martins MA. Exhaled nitric oxide as a predictor of exacerbation in children with moderate-to-severe asthma: a prospective, 5-month study. *Ann Allergy Asthma Immunol* 2009;**103**:206-11.
- 84. Buchvald F, Eiberg H, Bisgaard H. Heterogeneity of FeNO response to inhaled steroid in asthmatic children. *Clin Exp All* 2003;**33**(12):1735-40.
- 85. Pijnenburg MW, Bakker EM, Lever S, Hop WC, De Jongste JC. High fractional concentration of nitric oxide in exhaled air despite steroid treatment in asthmatic children. *Clinical & Experimental Allergy* 2005;**35**(7):920-5.
- 86. Dahgam S, Nyberg F, Modig L, Naluai AT, Olin AC. Single nucleotide polymorphisms in the NOS2 and NOS3 genes are associated with exhaled nitric oxide. *J Med Genet* 2012;**49**:200-5.
- 87. Storm van's Gravesande K, Wechsler ME, Grasemann H, et al. Association of a missense mutation in the NOS3 gene with exhaled nitric oxide levels. *Am J Respir Crit Care Med* 2003;**168**:228-31.
- 88. Ali M, Khoo SK, Turner S, Stick S, Le Souef P, Franklin P. NOS1 polymorphism is associated with atopy but not exhaled nitric oxide levels in healthy children. *Pediatr All Immunol* 2003;**14:**261-5.

# FIGURE LEGENDS

Figure 1. Summary of the asthma-dependent and independent factors associated with increased or reduced concentrations of exhaled nitric oxide ( $FE_{NO}$ ).

Figure 2. A forest plot comparing the effect on exacerbations requiring oral corticosteroid treatment where maintenance treatment is driven by exhaled nitric oxide (ENO) and symptoms versus symptoms alone.

Figure 3. A forest plot comparing the effect on inhaled corticosteroid dose at the time of study exit where maintenance treatment is driven by exhaled nitric oxide (ENO) and symptoms versus symptoms alone.

# Exhaled nitric oxide and the management of childhood asthma – yet another promising biomarker "has been" or a misunderstood gem

# Steve Turner Child Health, University of Aberdeen, Aberdeen, UK

### Contact details:

Dr S Turner, Child Health, Royal Aberdeen Children's Hospital, Aberdeen, UK, AB25 2ZG. Tel +44 1224 438470. <a href="mailto:s.w.turner@abdn.ac.uk">s.w.turner@abdn.ac.uk</a>

Key words: Asthma, Child, Nitric oxide, Respiratory Symptoms

Conflicts of interest: Dr Turner has completed three studies where consumables were provided by Aerocrine.

**ABSTRACT** 

Childhood asthma is a common chronic condition. Approximately five percent of all

children in western countries are prescribed treatment with inhaled corticosteroids (ICS)

to prevent asthma symptoms. Current guidelines advocate titrating ICS dose to

symptoms but this approach is not without problem, e.g. how to discern asthmatic from

non-asthmatic symptoms? And when to reduce ICS dose? This review describes the

strengths and weaknesses of fractional exhaled nitric oxide (FE<sub>NO</sub>) as an objective index

for individualising asthma control in children. Epidemiological and mechanistic

evidence suggest that FE<sub>NO</sub> should be a promising biomarker for eosinophilic airway

inflammation (a hall mark for asthma) but somewhat surprisingly, clinical trials in

children have not consistently found benefit from adding FE<sub>NO</sub> to a symptom-based

approach to ICS treatment in children. There are a number of reasons why FE<sub>NO</sub> has

apparently failed to translate from promising biomarker to clinically useful tool, and one

reason may be a lack of understanding of what merits a significant intrasubject change in

FE<sub>NO</sub>. This review describes the rise and apparent fall of FE<sub>NO</sub> as biomarker for asthma

and then focuses on more recent evidence which suggest that FE<sub>NO</sub> may prove to have a

role in the management of childhood asthma and in particular preventing exacerbations.

Keywords: Asthma, Control, Child, Exhaled Nitric Oxide, Randomised Clinical Trial

2

# **EDUCATIONAL AIMS**

- $\bullet$  To summarise the literature from observational studies which support the role of fractional exhaled nitric oxide (FE<sub>NO</sub>) as a biomarker for asthma control.
- ullet To summarise the results from clinical trials which have used  $FE_{NO}$  to guide asthma treatment.
- ullet To explore why there was an apparent failure to translate FE $_{NO}$  from bench to bedside.
- ullet To explore how  $FE_{NO}$  might be used in the future management of childhood asthma

### 1. A HISTORICAL BACKDROP TO ASTHMA AND NITRIC OXIDE

1.1 The search for an asthma control biomarker. Childhood asthma is a very common condition world wide<sup>1</sup> and approximately five percent of all children in western countries are prescribed inhaled corticosteroids (ICS) to prevent asthma symptoms<sup>2</sup>. Asthma remains a challenging condition to diagnose and manage in children (and adults) since there is no definition, diagnostic test or biomarker to objectively monitor disease control. Historically, several biomarkers have been evaluated as potential biomarkers for asthma control including peak flow, spirometry, bronchial hyperresponsiveness and eosinophil cationic protein but these tests all lack sufficient sensitivity and specificity. This review will focus on the potential for fractional exhaled nitric oxide (FE<sub>NO</sub>) to be a biomarker for childhood asthma. This review will not explore the potential utility of FE<sub>NO</sub> for diagnosing asthma which has been reviewed elsewhere<sup>3,4</sup>. A as a simple rule low FE<sub>NO</sub> (<10ppb) can be considered a good screen to exclude allergic asthma in children aged  $\geq$ five years and concentrations of  $\geq 19$ ppb might have positive predictive value<sup>4</sup> but the interpretation of higher FE<sub>NO</sub> remains challenging and this is predominantly due to confounding by atopy which leads to elevated FE<sub>NO</sub> independent of asthma.

There is a pressing need for a biomarker for asthma management in children<sup>5</sup> due to a number of clinically important questions to which there are currently no answers (table 1). Currently the management of asthma is driven by symptoms and at times can be based on trial and error. One example of clinical uncertainty is the case of a child with asthma symptoms despite treatment with inhaled steroids – does the clinician increase

ICS dose or add in long acting beta agonist or leukotriene receptor antagonist? Children with asthma also get non-asthmatic respiratory symptoms<sup>6</sup> so how does the clinician deduce whether respiratory symptoms in a child with asthma are asthmatic or not? Third and fourth clinical scenarios are the decision-making behind stepping down or stopping ICS treatment in a child with no asthma symptoms on ICS treatment? Exhaled NO has the potential to give insight into these everyday clinical dilemmas.

1.2. Exhaled nitric oxide and asthma control, a brief summary of the evidence. Until the late 1980s, nitric oxide was thought to be just a pollutant generated from burning fossil fuels, but was subsequently found to be important to cellular function in many human organs and in 1992 was voted molecule of the year by Science magazine. Nitric oxide, a simple diatomic molecule, proved to be important in cellular communication and was the substance previously known as endothelial derived relaxing factor, a potent vasodilator. Nitric oxide is produced by two enzymes. Constitutive nitric oxide synthase (NOS) constantly produces NO at relatively low concentration and this activity is thought to be important to health and well being; at low concentrations NO's properties in the respiratory system may include antimicrobial, immune regulation and possibly bronchodilation. The second enzymatic source of NO is inducible NOS which, on stimulation, can produce higher concentrations of NO compared to constitutive NOS which are associated with disease <sup>7-9</sup>. In the airways, higher concentrations of NO have no homeostatic role and are thought to be secondary to eosinophil inflammation 10. The presence of gaseous nitric oxide in human exhaled breath was first reported in 1993<sup>11</sup> and shortly afterwards was found to be elevated in adults with asthma<sup>12</sup>; this observation was replicated in children four years later <sup>13</sup>. A flurry of scientific activity relating exhaled nitric oxide to asthma was published during the early 2000s and this indicated both the potential <sup>14,15</sup> and the limitations <sup>16</sup> of using NO in exhaled breath as a biomarker for asthma (table 2).

With the epidemiology and cellular/molecular work pointing to  $FE_{NO}$  being a potential biomarker for asthma control in children and a standard methodology agreed, a number of studies explored where  $FE_{NO}$  might be used in asthma management. One study demonstrated how rising exhaled nitric oxide concentration (using a threshold concentration of >22ppb) and rising airway eosinophilia (using % eosinophil count as a continuous variable) were independently predictive of failure to step down inhaled corticosteroids in children with stable asthma  $^{17}$ . A second study measured  $FE_{NO}$  four weeks after cessation of ICS treatment and found that concentrations in excess of 49ppb had the best sensitivity (71%) and specificity (93%) for subsequent asthma relapse  $^{18}$ . By 2005 clinical trials were under way where  $FE_{NO}$  was applied to asthma management as an adjuvant to the standard symptom-based approach advocated by consensus guidelines.

1.3. A standard methodology for measuring NO in exhaled breath. This was agreed by the American Thoracic and European Respiratory Societies and published in 1999<sup>19</sup> and revised in 2005<sup>20</sup>. One of the challenges in measuring NO in exhaled breath is flow dependence, i.e. at higher expiratory flows, concentrations are reduced and *vice versa* (figure 1). The flow dependence of exhaled NO does give insight into the origin of elevated NO in an individual (broadly from the proximal or distal airways) by deriving

flow independent parameters. Descriptions of derivation of flow independent parameters and their potential clinical relevance in children are available elsewhere  $^{21,22}$ . The agreed standard was to measure the fractional exhaled nitric oxide at 50 ml/s. Using this methodology, a child without asthma would typically have FE<sub>NO</sub> of 8-10 parts per billion (ppb)  $^{23}$  but concentrations might be up to 25 ppb  $^{24}$ . Not only was there evidence to support the paradigm that FE<sub>NO</sub> was a biomarker for asthma control from epidemiological, observational and mechanistic studies, FE<sub>NO</sub> measurements could be made quickly, with minimal discomfort, good reproducibility  $^{25}$  and results were available within minutes.

# 2. EXHALED NO AS A BIOMARKER FOR ASTHMA MANAGEMENT IN CHILDREN

2.1. Results from clinical trials. At the time of writing there have been at least eightsix trials published which explored the clinical utility of  $FE_{NO}$  in the management of asthma in children  $^{26-33}$ . These randomised clinical trials compared standard symptom-based management against standard management plus  $FE_{NO}$  (rather than symptom based versus  $FE_{NO}$  based management) and each study used absolute  $FE_{NO}$  values to guide changes in treatment (rather than relative or personalised  $FE_{NO}$  values). The clinical trials were undertaken by groups working independently and inevitably there is considerable heterogeneity between designs of the trials (table 3). The lower age limit for inclusion varied between 5 and 12 years, one recruited from the community<sup>26</sup> whilst the remainder recruited from hospital clinics  $^{27-33}$  and some only included atopic children with

asthma<sup>27,30,32,33</sup>. The absolute FE<sub>NO</sub> values used as cut offs ranged between 10 and 40ppb, some trials had only one cut off FE<sub>NO</sub> value <sup>27,29,30,32,33</sup>, whilst others had three or four FE<sub>NO</sub> values to trigger escalation in asthma treatment <sup>26,28</sup> and one employed different single cut offs for an individual based on their atopic status<sup>31</sup>. One study also included FEV<sub>1</sub> in the decision making algorithm in addition to FE<sub>NO</sub> <sup>27</sup>. The primary outcome for the studies, upon which the power calculations were based, were varied and included ICS  $dose^{28-30}$   $FEV_1^{27}$ , exacerbations  $^{28,29,31}$ , severity  $^{29}$  and symptomatic  $^{32,33}$ . None of the studies observed improved asthma control among the FE<sub>NO</sub> arms, three found reduced exacerbations <sup>26,29,31,33</sup>, two found improved physiological measurements (i.e. spirometry <sup>27</sup> and bronchial hyperresponsiveness <sup>30</sup>), -and two found increased doses of ICS among those randomised to FE<sub>NO</sub> guided treatment <sup>26,27</sup> and one found reduced asthma severity over the course of the trial<sup>29</sup>. One very recent study, published only in abstract form at the time of writing <sup>34</sup> reported symptoms free days in 280 children aged 4-18 years randomised to (i) symptom driven treatment (ii) web-based monthly monitoring and (iii) symptom based treatment plus 4 monthly FE<sub>NO</sub> measurement; here symptom free days increased marginally the FE<sub>NO</sub> arm. Systematic reviews and metaanalyses using data from some of these studies have concluded that the evidence does not support the addition of FE<sub>NO</sub> to standard symptom-based management of asthma for dayto-day control 35-37 but one finds evidence for FE<sub>NO</sub> leading to reduced exacerbations 37. In contrast, at least one expert group argues that FE<sub>NO</sub> has an important role in the management of asthma<sup>38</sup>. Between evidence synthesis<sup>35-37</sup> and expert opinion<sup>38</sup>, a recent report from the National Institute for Clinical Efficacy in the UK <sup>39</sup> has suggested that "it could be argued that the available evidence does point towards some benefit to the technology [FE<sub>NO</sub> measurement]" and cites limitations in the current literature as including "cut off values [which] are highly variable and largely based on derivation studies" and "unclear step-up/step-down protocols".

- 2.2 Meta analysis. Although this is not a systematic review, the eight papers identified in section 2.1 are likely to represent most papers published in this area and meta analysis was undertaken. Standard software was used (Review manager 5.2). The outcomes were (i) risk for an individual requiring at least once course of oral corticosteroids. Details of individuals requiring  $\geq$ 1 course of OCS were provided by the author of one study  $^{28}$  and was not available for a second  $^{29}$ . Meta-analysis of these seven studies demonstrated that risk for an individual having an exacerbation was reduced by treatment guided by FE<sub>NO</sub> plus symptoms versus symptoms alone, odds ratio 0.67 [95% CI 0.51, 0.88] (figure 1). One study  $^{26}$  contributed almost two thirds of data for this analysis and therefore substantially influences the overall result from the meta analysis. Overall, there is a reduction in exacerbations requiring OCS treatment where asthma treatment is informed by both FE<sub>NO</sub> and symptoms
- (ii) risk for an individual having any exacerbation (however defined in the study design). The risk for an individual having  $\geq 1$  exacerbation of any type could not be determined two studies (one reported total number of exacerbations<sup>27</sup> and a second did not report exacerbations <sup>29</sup>); treatment with FE<sub>NO</sub> plus symptoms was associated with an identical reduction in risk compared to symptoms only as for need for OCS (OR 0.67 [95% CI 0.51, 0.88].
- (iii) ICS dose at the end of the study. Analysis for ICS dose at end of study was complicated by data being presented as median and interquartile range whereas the

software (widely regarded as the gold standard) requires mean and standard deviation values. Data were transformed to mean and standard deviation <sup>40</sup> assuming that 25<sup>th</sup> and 75<sup>th</sup> centile values were low and high end of the range; these assumptions can be easily challenged and should be considered when interpreting the results from this meta analysis. Data were not available for three studies of which two<sup>29, 30</sup> reported (in the text) no increase in dose and one<sup>26</sup> reported higher dose ICS (mean difference 119 microg budesonide equivalent [95% CI 49, 189]) associated with treatment guided by FE<sub>NO</sub>. Among the remaining 5 studies there was an overall mean increase in ICS dose of 106 microg BUD equivalent [95% CI 75, 138], figure 2. The magnitude of this association is consistent with the one large study which dominated the meta analysis<sup>26</sup> and FE<sub>NO</sub> guided treatment seems to be associated with an increased in ICS dose of approximately 100 microg BUD equivalent. In addition to the assumptions about mean and SD values (which resulted in an apparent dose reduction for the FENO arm of the study by de Jongste et al <sup>32</sup>when median values in the two arms were equal at 200 microg), there is an additional caveat to these results; the results are heterogeneous and when adjusted for (i.e. random effects) the mean increase in ICS is 88 microg BUD equivalent [95% CI -10, 86].

### 3. WHY MIGHT EXHALED NO NOT BE A USEFUL BIOMARKER?

3.1 Exhaled NO is poorly specific for asthma. Elevated NO is a biomarker for eosinophilic inflammation rather than for asthma per se and this indirect relationship with asthma may explain why some studies find  $FE_{NO}$  is an index of asthma control scores  $^{41-43}$ , FEV<sub>1</sub><sup>44</sup> and bronchial hyper responsiveness (BHR) <sup>45</sup> <sup>46</sup>, FE<sub>NO</sub> is not universally associated with control<sup>47</sup>, FEV<sub>1</sub><sup>45</sup> or BHR<sup>48</sup>. There is also the possibility that FE<sub>NO</sub> is a more accurate index of asthma control for some individuals, eg those with atopy, or for individuals where there is discordance between symptoms and FEV<sub>1</sub>. Eosinophilic inflammation may be asymptomatic and this most likely explains the relationship between FE<sub>NO</sub> and atopy and bronchial hyperreactivity in children without asthma  $^{45,49,46,50}$ . It has been proposed that FE<sub>NO</sub> is merely an index of atopy, ie a skin prick test, since concentrations are positively correlated with the number of skin tests <sup>45</sup> and age at onset of atopy <sup>51</sup> but this is probably over simplistic since FE<sub>NO</sub> does change acutely after exposure to oral corticosteroid treatment 52, certain foods 53,54, exercise 55 and pollen 56. What has been recognised is that factors other than asthma may acutely and chronically influence NO production in children (table 4, figure 12). Male gender and increasing height are consistently associated with modest increase in FE<sub>NO</sub> concentrations and, although children are not likely to grow by more than a few cm between clinic visits, the association with anthropometric measurements challenges the logic behind having single FE<sub>NO</sub> values to trigger changes in ICS throughout for childhoodchildren; a teenager will grow by as much as 30cm during puberty and their FE<sub>NO</sub> value before puberty will rise by approximately 5-10 ppbbe of little relevance post puberty. As an aside, the association between height and increased FE<sub>NO</sub> is an interesting observation since a

measurement of concentration should adjust for size so this is not simply bigger people producing more NO. Dietary exposures have been associated with acute changes in FE<sub>NO</sub> in children <sup>53,54</sup> but these changes are short-lived and of a small magnitude. Nitric oxide is derived from the amino acid L-arginine and ingestion of a dose of L-arginine equivalent to two chicken breasts is associated with a 5 ppb rise in FE<sub>NO</sub> which lasts one hour<sup>54</sup>. Caffeine induces nitric oxide synthase and ingestion of a large drink of cola leads to a 9ppb increase in FE<sub>NO</sub> after 30 minutes which resolves after one hour. 53 Inhaled exposures such as second hand tobacco smoke <sup>57 58</sup> and poor outdoor air quality<sup>59</sup> are associated with increased FE<sub>NO</sub> but it is not known how long these changes last for. Respiratory infection with virus temporarily affects FE<sub>NO</sub> values but the nature of this association is not clear; FE<sub>NO</sub> values are reduced in infants with respiratory syncitial virus<sup>60</sup> or rhinitis <sup>61</sup> but in adults with experimentally induced rhinovirus infection, FE<sub>NO</sub> rises by approximately 5ppb 62. There is little direct evidence of the effect of viral infection in children; indirect evidence comes from observations made during exacerbations, precipitated by rhinovirus, which are associated with elevated  $FE_{NO}^{52,63}$ . The apparently inconsistent findings between virus infection and changing FE<sub>NO</sub> might reflect differences in the host response to different virus which may be age related and also the retention of NO within secretions. Further evidence of almost continuous but small fluctuations in  $FE_{NO}$  is evidenced by the diurnal variability in concentrations  $\frac{6463}{3}$ ; concentrations are less than 1 ppb higher in the morning compared to the afternoon. In addition to variability over minutes and hours, FE<sub>NO</sub> is elevated in children with asthma during periods when grass pollen exposure is present 41,56 and also is elevated during the autumn (when moulds cast spores) for those exposed to indoor moulds <sup>43</sup>. Children with hayfever have elevated  $FE_{NO}^{6564}$  and concentrations become particularly elevated during the spring when compared to those without hayfever <sup>43</sup>. In addition to the factors described in table 4 and figure 12, intrasubject variability in  $FE_{NO}$  measurements may also be introduced by the apparatus itself. As with all analytical processes, there is variability in repeated measurements using the same apparatus and this variability can be reduced by measuring two or three  $FE_{NO}$  values and reporting the mean value <sup>20</sup> but this requires time and also costs money. Further apparatus-dependent variability arises when different methods to derive NO are used; one study found an intrasubject difference of 4ppb between devices made by the same manufacturer <sup>6665</sup>. Intrasubject variability becomes considerably greater when apparatus from different manufacturers are used <sup>67666</sup> where a typical difference might be 8ppb but range between -12 and +28ppb. At present it seems sensible to make repeated measurements for a given individual using the same apparatus.

3.2 Trials were confounded by poor adherence with inhaled corticosteroid treatment. Adherence to ICS treatment is crucial to the interpretation of elevated  $FE_{NO}$ , as it currently is for standard symptom-based asthma management. Elevated  $FE_{NO}$  is associated with poor asthma control  $^{41-43}$  and poor adherence with ICS treatment  $^{26,6826,67}$ , whereas increasing ICS treatment leads to reduced  $FE_{NO}$   $^{6867}$ . Adherence to treatment is always a challenge to measure in asthma, one paper found that typical  $FE_{NO}$  concentrations for adolescents with adherence was >50% was 24 ppb and was 31ppb for those with <50% compliance  $^{26}$ . A second study of 17 children found that compliance with ICS of between 75 and 100% was associated with a relative reduction in  $FE_{NO}$  of

50-100% whereas compliance below 75% was associated with changes in  $FE_{NO}$  of less that 50%  $^{6867}$ . Observations of heterogeneity in  $FE_{NO}$  response to ICS  $^{69,7068,69}$  might reflect the presence of individuals with high  $FE_{NO}$  but little airway eosinophilia, a phenomenon seen in adults  $^{7179}$  but not described in children, or heterogeneity in adherence to ICS treatment. Although there is most likely to be incomplete adherence to ICS in the clinical trials, asthma outcomes improved in both  $FE_{NO}$  and standard arms of most trials suggesting that adherence was generally good.

3.3~Wrong~study~design. The clinical trials which have been completed in children to date all compared standard symptom-based treatment versus standard treatment plus  $FE_{NO}$  and perhaps trials should compare symptom-based treatment versus  $FE_{NO}$  only treatment. This bold study design has only been used in one trial of adult patients  $^{727+}$  and found that  $FE_{NO}$  guided treatment was associated with reduced ICS doses and a non significant trend for reduced symptoms compared to symptom based management. The poor correlation between asthma control and  $FE_{NO}$  reported in some studies  $^{41-43}$  and the lack of correlation in at least one study  $^{47}$  does question whether asthma treatment can be guided only by  $FE_{NO}$ . On the one hand,  $FE_{NO}$  and symptoms measure different outcomes and therefore an algorithm which captures both outcomes might be better than either alone. A more conservative approach might argue that there is a too much of a leap of faith involved in using  $FE_{NO}$  to guide treatment, and the symptom-based approach is patient-centred and therefore symptoms should predominate as the ultimate trigger for changing asthma treatment.

3.4 Insufficient power. Although studies justified their sample size by a power calculation, descriptions of the power calculations do not include a mean or median  $FE_{NO}$ 

value and associated variability. Pragmatically, only <u>two one published</u> stud<u>iesy</u> randomised more than 100 children<sup>26</sup> 32 so it is possible that the remaining studies may have been underpowered.

3.5 Wrong cut offs used. Although increased FE<sub>NO</sub> is associated with adverse asthma outcomes in children, the definition of what is "increased" remains unclear. although concentrations of >35ppb in children are, by consensus, thought to be high <sup>34</sup>. Evidence from population Whilst there is some guidance from population based studies suggests that to help address the question "what is a high FE<sub>NO</sub>?" concentrations of >35ppb in children are "high" 38 but the question "what is a significant change in FE<sub>NO</sub> for an individual?" remains poorly understood and has been explored in detail elsewhere 7372. One early study suggested that a change of 4 ppb might be clinically significant <sup>7473</sup> but, as table 4 demonstrates, there are many factors other than asthma which can acutely change FE<sub>NO</sub> by an order of at least 4ppb. Furthermore, a rise of 4ppb might be important in a child whose previous FE<sub>NO</sub> was 10ppb but not for a second individual whose FE<sub>NO</sub> was 20ppb and relative change in FE<sub>NO</sub> seems a more meaningful method for interpreting repeated measurements. More Rrecent studies in adults have suggested that rather than a relative change of <30% is unlikely to be clinically relevant 7574 and a change from poor control to good control was associated with a FE<sub>NO</sub> reduction of greater than 35%  $\frac{7675}{}$ . Having a "significant" magnitude of change in FE<sub>NO</sub> of 30-35% would be consistent with a clinically meaningful change in bronchial hyperreactivity (a hallmark for asthma and correlated with  $FE_{NO}$ ) of half a doubling dose  $\frac{7776}{}$ . Variability in repeated measurements of FE<sub>NO</sub> may be greater in children compared with adults. For example, Iin one study of children, a FE<sub>NO</sub> rise of 60% from baseline (with 95% confidence

intervals of approximately 25, 140) was associated with an exacerbation — where daily FE<sub>NO</sub> measurements were made over 30 weeks observed that FE<sub>NO</sub> rose by 60% (with 95% confidence intervals of approximately 25, 140) during an exacerbation 6352 and by extrapolation, a rise in FE<sub>NO</sub> of less than 60% might be indicative of increasing symptoms. A clinical practical guideline published by the American Thoracic Society in 2011 38 acknowledged a weak evidence base and cautiously recommended that a rise in FE<sub>NO</sub> of >20% or (in children) >20ppb may be significant and that a minimally important reduction in FE<sub>NO</sub> was >20% for those with a FE<sub>NO</sub> of  $\geq$ 50ppb and <10ppb for those for those with lower values. Although current guidelines consider changes in FE<sub>NO</sub> expressed as an absolute figure or relative (percentage) change<sup>34</sup>, Iin the adult literature there has been interest in expressing FE<sub>NO</sub> as a percentage of predicted but this option is losing favour, mostly due to lack of precision and to differences between reference populations raising the question of which reference is the best for a given population? A fourth method to express FE<sub>NO</sub> is a as percentage of lowest value and is measured after a two week course of oral corticosteroids, but this has an associated morbidity, might yield a low FE<sub>NO</sub> value which cannot be achieved with ICS treatment and should be reserved for use only in special cases under expert supervision. Of the four methods described, percentage difference seems best suited for individualising treatment since this recognises the relatively wide range of values within a population of children.

3.6 Insight into intrasubject variability. One recent study has given insight into the question "what is a significant change in  $FE_{NO}$ ?" <sup>43</sup>. 178 children were recruited, of whom 47 had asthma, in a community-based observational study where  $FE_{NO}$  was measured over six two-month intervals. The difference between paired  $FE_{NO}$ 

measurements was expressed as an absolute value and limits of agreement. As might be expected, the limits of agreement for paired FE<sub>NO</sub> measurements were greater for those with higher initial concentrations. Average FE<sub>NO</sub> values were stable over eight months but did become significantly higher over a ten month interval, presumably due to the children becoming taller. Asthma was associated with elevated FE<sub>NO</sub> in this population (27ppb versus 10 ppb for non asthmatic) but when both time and baseline FE<sub>NO</sub> value were considered, asthma was not independently associated with change in FE<sub>NO</sub> value. As a rough rule of thumb, the authors suggested that  $FE_{NO}$  values may rise by up to 200% of the previous measurements over two to four months, independently of asthma. For example, in the 40 children with initial FE<sub>NO</sub> between 11 and 20 ppb (median value 14ppb) the upper limits of agreement for measurements taken at a two and four month interval were +22ppb and +14 ppb respectively. As might be expected over time (and regression to the mean), low initial FE<sub>NO</sub> concentrations became higher whilst higher concentrations became lower; thus the lower limits of agreement over two and four months for children whose initial FE<sub>NO</sub> was 21-30 ppb were -19 and -25ppb. In keeping with the suggestion that a more permissive approach to interpretation of FE<sub>NO</sub> values, a more liberal algorithm which allowed FE<sub>NO</sub> concentrations to rise by up to 100% (from 16 to 29ppb) was found to be effective in reducing exacerbations and improving quality of life among pregnant women  $\frac{78}{}$ .

In addition to describing variability in  $FE_{NO}$  over time, this study related  $FE_{NO}$  to asthma control (both present and future) and also to environmental exposures which might affect  $FE_{NO}$  values <sup>43</sup>. There was weak correlation between  $FE_{NO}$  and current and future asthma control measured over a four month interval (correlation coefficient approximately 0.2).

Compared with maintained good asthma control over two months, children who were poorly controlled but became well controlled had elevated  $FE_{NO}$ ; in contrast, neither those who had good asthma control which became poorly controlled nor those whose asthma control remained poor had elevated  $FE_{NO}$ . These observations suggested that elevated  $FE_{NO}$  is an index of poor current control but not poor control in two month's time. Additionally the findings suggested that the mechanism for persistently poorly controlled symptoms in children with asthma may not involve eosinophilic airway inflammation.

### Future research directions - so where do we go beyond 2014 with $FE_{NO}$ ?

It is too early to consign  $FE_{NO}$  to the dust bin where failed biomarkers for asthma are placed. There is still sufficient evidence to indicate that  $FE_{NO}$  may have a role in helping to address the current situation where there are too many children treated with inappropriately high doses of inhaled corticosteroids and conversely, too many children with poorly controlled asthma whose quality of life can be improved with ICS treatment. The inconsistency between the epidemiology and mechanistic studies (supportive of a role for  $FE_{NO}$  in asthma management) and the clinical trials to date (which are generally not supportive of adding  $FE_{NO}$  to standard symptom-based management) suggests either  $FE_{NO}$  lacks precision or we have not properly understood how to interpret  $FE_{NO}$  as a clinical tool. Time will show whether  $FE_{NO}$  does have role or not in the management of childhood asthma. If  $FE_{NO}$  does prove to have a role in the management of childhood asthma then clinicians will have to place trust in  $FE_{NO}$  since guidelines will have to use  $FE_{NO}$  to step treatment down as well as up. Now that insight is being gained into what

merits a significant change in  $FE_{NO}$ , clinical trials are needed which test these percent of baseline cut offs to treatment algorithms. Future clinical trials designed to use  $FE_{NO}$  to improve asthma outcomes might consider the following:

- 1. Comparing symptom based management and  $FE_{NO}$  only based management. This might follow in the success of trials comparing symptoms versus  $FE_{NO}$  plus symptoms; the apparent failure of previous studies will understandably make clinicians very cautious in using only  $FE_{NO}$  to guide treatment.
- 2. Careful attention to treatment adherence. This needs to be integral to clinical trials since poor adherence has great potential to mask any true clinical benefit but in the long term, FE<sub>NO</sub> may prove to give the clinician insight into adherence.
- 3. What is the "best" outcome. At present, the evidence would suggest that FE<sub>NO</sub> may have a greater influence in reducing exacerbations rather than improving day-to-day control of symptoms. It is possible that one algorithm may lead to better control and another to fewer exacerbations for a given individual. On a practical note, having symptom control as an outcome and part of the algorithm is a potential flaw in study design.
- 4. Absolute versus relative  $FE_{NO}$  values. There is sufficient evidence to categorise individuals as having high  $FE_{NO}$  on study entry but more work is required in establishing whether cut offs for second and subsequent  $FE_{NO}$  values should be absolute or percent of previous values.
- 5. Algorithms could use  $FE_{NO}$  to guide treatment step up options for individuals with uncontrolled asthma despite compliance with ICS treatment, i.e. to further increase ICS or use alternative "add ons", as has been applied in adults  $\frac{78}{2}$ .

- 5.6. Algorithms could use  $FE_{NO}$  to step down ICS treatment, even when (non-asthmatic) symptoms are present.
- 6.7. Clinical setting. Childhood asthma is a condition which is mostly managed in the community and trial design should ideally reflect this and aspire to an ideal of easily delivered personalised treatment algorithms
- 7.8. Preschool children. Methodologies are required to allow  $FE_{NO}$  to be measured in younger children currently  $FE_{NO}$  can be measured in children aged 5-6 years

#### REFERENCES

- 1. Lai CK, Beasley R, Crane J, et al. Global variation in the prevalence and severity of asthma symptoms: phase three of the International Study of Asthma and Allergies in Childhood (ISAAC). *Thorax* 2009;**64:**476-83.
- 2. Turner S, Thomas M, von Ziegenweidt J, Price D. Prescribing trends in asthma: a longitudinal observational study. *Arch Dis Child* 2009;**94:**16 22.
- 3. Ludviksdottir D, Diamant Z, Alving K, Bjermer L, Malinovschi A. Clinical aspects of using exhaled NO in asthma diagnosis and management. *Clin Respir J* 2012;**6:**193-207.
- 4. Brodlie M, McKean MC. Exhaled nitric oxide in the diagnosis of childhood asthma. *Brit Med J* 2009;**339:**b5418.
- 5. Szefler SJ, Wenzel S, Brown R, et al. Asthma outcomes: biomarkers. *J Allergy Clin Immunol* 2012;**129**.
- 6. Turner S. An asthmatic child with a troublesome cough. *Brit Med J* 2011;**342:**c6846.
- 7. Guo FH, Comhair SA, Zheng S, et al. Molecular mechanisms of increased nitric oxide (NO) in asthma: evidence for transcriptional and post-translational regulation of NO synthesis. *Journal of Immunology* 2000;**164:**5970-80.
- 8. Hamid Q, Springall DR, Riveros-Moreno V, et al. Induction of nitric oxide synthase in asthma. *Lancet* 1993;**342:**1510-3.
- 9. Lane C, Knight D, Burgess S, et al. Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. *Thorax* 2004;**59**:757-60.
- 10. Payne D, Adcock I, Wilson N, Oates T, Scallan M, Bush A. Relationship between exhaled nitric oxide and mucosal eosinophilic inflammation in children with difficult asthma, after treatment with oral prednisolone. *Am J Respir Crit Care Med* 2001;**164**:1376-81.
- 11. Borland C, Cox Y, Higenbottam T. Measurement of exhaled nitric oxide in man. *Thorax* 1993;**48:**1160-2.
- 12. Alving K, Weitzberg E, Lundberg J. Increased amount of nitric oxide in exhaled air of asthmatics. *Eur Respir J* 1993;**6:**1368-70.
- 13. Nelson BV, Sears S, Woods J, et al. Expired nitric oxide as a marker for childhood asthma. *Journal of Pediatrics* 1997;**130**:423-7.
- 14. Kharitonov SA, Barnes PJ. Does exhaled nitric oxide reflect asthma control? Yes, it does! *Am J Respir Crit Care Med* 2001;**164**(5):727-8.
- 15. de Jongste JC. Yes to NO: the first studies on exhaled nitric oxide-driven asthma treatment. *Eur Respir J* 2005;**26:**379-81.
- 16. Franklin PJ, Stick SM. The value of FeNO measurement in asthma management: the motion against FeNO to help manage childhood asthma--reality bites. *Paediatric Respiratory Reviews* 2008;**9:**122-6.
- 17. Zacharasiewicz A, Wilson N, Lex C, et al. Clinical Use of Noninvasive Measurements of Airway Inflammation in Steroid Reduction in Children. *Am J Respir Crit Care Med* 2005;**171**:1077-1082.
- 18. Pijnenburg MW, Hofhuis W, Hop WC, de Jongste JC. Exhaled nitric oxide predicts asthma relapse in children with clinical asthma remission. *Thorax* 2005;**60:**215-8.

- 19. American Thoracic Society. Recommendations for the standardized procedures for the online and offline measurement of exhaled nitric oxide and nasal nitric oxide in adults and children. *Am J Respir Crit Care Med* 1999;**160**:2104-2117.
- 20. American Thoracic Society. Recommendations for Standardized Procedures for the Online and Offline Measurement of Exhaled Lower Respiratory Nitric Oxide and Nasal Nitric Oxide. *Am J Respir Crit Care Med* 2005;**171**:912-930.
- 21. George SC, Hogman M, Permutt S, Silkoff PE. Modeling pulmonary nitric oxide exchange. *J Appl Physiol* 2004;**96:**831-839.
- 22. Paraskakis E, Brindicci C, Fleming L, et al. Measurement of bronchial and alveolar nitric oxide production in normal children and children with asthma. *Am J Respir Crit Care Med* 2006;**174**:260-7.
- 23. Baraldi E, Azzolin NM, Cracco A, Zacchello F. Reference values of exhaled nitric oxide for healthy children 6-15 years old. *Pediatric Pulmonology* 1999;**27**(1):54-8.
- 24. Buchvald F, Baraldi E, Carraro S, et al. Measurements of exhaled nitric oxide in healthy subjects age 4 to 17 years. *J Allergy Clin Immunol* 2005;**115**:1130-6.
- 25. Napier E, Turner SW. Methodological issues related to exhaled nitric oxide measurement in children aged four to six years. *Pediatr Pulmonol* 2005;**40:**97-104.
- 26. Szefler SJ, Mitchell H, Sorkness CA, et al. Management of asthma based on exhaled nitric oxide in addition to guideline-based treatment for inner-city adolescents and young adults: a randomised controlled trial. *Lancet* 2008;**372:**1065-72.
- 27. Fritsch M, Uxa S, Horak F, Jr., et al. Exhaled nitric oxide in the management of childhood asthma: a prospective 6-months study. *Pediatr Pulmonol* 2006;**41:**855-62.
- 28. Pike K, Selby A, Price S, et al. Exhaled nitric oxide monitoring does not reduced exacerbation frequency or inhaled corticosteroid dose in paediatric asthma: a randomised controlled trial. *Clin Respir J* 2013;**7:**204-213.
- 29. Verini M, Consilvio NP, Di Pillo S, et al. FeNO as a Marker of Airway Inflammation: The Possible Implications in Childhood Asthma Management. *J Allergy* 2010;**691425**(doi 10.1155/2010/691425).
- 30. Pijnenburg MW, Bakker EM, Hop WC, de Jongste JC. Titrating steroids on exhaled nitric oxide in children with asthma: a randomized controlled trial. *Am J Respir Crit Care Med* 2005;**172:**831-6.
- 31. Petsky H, Li AM, Kynaston JA, Turner C, Chang AB. Dual Centre Randomised Trial on Tailored Asthma Therapy Based on Exhaled Nitric Oxide (FENO) Versus Routine Clinical Care (abstract). *Am J Respir Crit Care Med* 2010;**A3928**(doi 10.1164/AJRCCM-confernec.2010.181.1).
- 32. de Jongste JC, Carraro S, Hop WC, Group CS, Baraldi E. Daily telemonitoring of exhaled nitric oxide and symptoms in the treatment of childhood asthma. *Am J Respir Crit Care Med* 2009;**179:**93-7.
- 33. Peirsman EJ, Carvelli TJ, Hage PY, et al. Exhaled Nitric Oxide in Childhood Allergic Asthma Management A Randomised Controlled Trial. *Pediatr Pulmonol* 2013;**DOI 10.1002/ppul.22873**.

- 34. Voorend-van Bergen S, Vaessen-Verberne A, Landstar A, et al. FeNO and web-based monitoring in paediatric asthma management; the BATMAN study. *Eur Respir J* 2013;**42**(Suppl 57):629s.
- 35. Petsky HL, Cates CJ, Lasserson TJ, et al. A systematic review and meta-analysis: tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils). *Thorax* 2010;**doi:10.1136/thx.2010.135574**.
- 36. Jartti T, Wendelin-Saarenhovi M, Heinonen I, Hartiala J, Vanto T. Childhood asthma management guided by repeated FeNO measurements: a meta-analysis. *Paediatr Respir Rev* 2012;**13**:178-183.
- 37. Mahr TA, Malka J, Spahn JD. Inflammometry in pediatric asthma: a review of fractional exhaled nitric oxide in clinical practice. *Allergy Asthma Proc* 2013;**34:**210-9.
- 38. Dweik RA, Boggs PB, Erzurum SC, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. *Am J Respir Crit Care Med* 2011;**184:**602-15.
- 39. National Institute for Clinical Excellence. Measuring fractional exhaled nitric oxide concentrations in asthma -NIOX MINO, NIOX VERO and NO breath:diagnostics consultation document.

  <a href="http://www.nice.org.uk/nicemedia/live/13864/65618/65618.pdf">http://www.nice.org.uk/nicemedia/live/13864/65618/65618.pdf</a> (accessed 23-12-2013) 2013.
- 40. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. *BMC Med Res Methodol* 2005;**5**(13).
- 41. Roberts G, Hurley C, Bush A, Lack G. Longitudinal study of grass pollen exposure, symptoms, and exhaled nitric oxide in childhood seasonal allergic asthma. *Thorax* 2004;**59:**752-6.
- 42. Piacentini GL, Peroni DG, Bodini A, et al. Childhood Asthma Control Test and airway inflammation evaluation in asthmatic children. *Allergy* 2009;**64:**1753-7.
- 43. Cutts R, Turner S. Longitudinal measurements of exhaled nitric oxide in children what is a significant change in FENO? *Pediatr Allergy Immunol* 2013;**24:**540-548.
- 44. Pontin J, Blaylock M, Walsh GM, Turner SW. Sputum eosinophil apoptotic rate is positively correlated to exhaled nitric oxide in children. *Pediatr Pulmonol* 2008;**43:**1130-4.
- 45. Franklin PJ, Turner SW, Le Souëf PN, Stick SM. Exhaled nitric oxide and asthma: complex interactions between atopy, airway responsiveness and symptoms in a community population of children. *Thorax* 2003;**58**:1048-1052.
- 46. Steerenberg PA, Janssen NA, de Meer G, et al. Relationship between exhaled NO, respiratory symptoms, lung function, bronchial hyperresponsiveness, and blood eosinophilia in school children. *Thorax.* 2003;**58**(3):242-5.
- 47. Waibel V, Ulmer H, Horak E. Assessing asthma control: symptom scores, GINA levels of asthma control, lung function, and exhaled nitric oxide. *Pediatr Pulmonol* 2012;**47:**113-8.
- 48. Silvestri M, Spallarossa D, Battistini E, Brusasco V, Rossi GA. Dissociation between exhaled nitric oxide and hyperresponsiveness in children with mild intermittent asthma. *Thorax* 2000;55:484-8.

- 49. van Den Toorn LM, Prins JB, Overbeek SE, Hoogsteden HC, de Jongste JC. Adolescents in clinical remission of atopic asthma have elevated exhaled nitric oxide levels and bronchial hyperresponsiveness. *American Journal of Respiratory & Critical Care Medicine* 2000;**162:**953-7.
- 50. Frank TL, Adisesh A, Pickering AC, et al. Relationship between exhaled nitric oxide and childhood asthma. *American Journal of Respiratory & Critical Care Medicine* 1998;**158**(4):1032-6.
- 51. Turner SW, Heaton T, Rowe J, et al. Early-onset atopy is associated with enhanced lymphocyte cytokine responses in 11-year-old children. *Clin Exp All* 2007;**37:**371-80.
- 52. Baraldi E, Azzolin NM, Zanconato S, Dario C, Zacchello F. Corticosteroids decrease exhaled nitric oxide in children with acute asthma. *Journal of Pediatrics* 1997;**131**(3):381-5.
- 53. Abuzayan I, Paraskakis E, Turner SW. Changes to exhaled nitric oxide in asthmatic children after drinking a caffeine-containing cola drink. *Pediatr Pulmonol* 2010;45:1228-32..
- 54. Abuzayan I, Turner SW. Changes in exhaled nitric oxide after ingestion of L-arginine in children: a pilot study. *Pediatr Pulmonol* 2010;**45**:236-40.
- 55. Petsky H, Kynaston JA, McElrea M, Turner C, Isles A, Chang AB. Cough and exhaled nitric oxide levels: what happens with exercise? *Frontiers Pediatr* 2013;**doi 10.3389/fped.2013.00030**.
- 56. Vahlkvist S, Sinding M, Skamstrup K, Bisgaard H. Daily home measurements of exhaled nitric oxide in asthmatic children during natural birch pollen exposure. *J Allergy Clin Immunol* 2006;**117**:1272-6.
- 57. Laoudi Y, Nikasinovic L, Sahraoui F, Grimfeld A, Momas I, Just J. Passive smoking is a major determinant of exhaled nitric oxide levels in allergic asthmatic children. *Allergy* 2010;**65:**491-7.
- 58. Warke TJ, Mairs V, Fitch PS, Ennis M, Shields MD. Possible association between passive smoking and lower exhaled nitric oxide in asthmatic children. *Arch Environ Health* 2003;**58**:613-6.
- 59. Mar TF, Jansen K, Shepherd K, Lumley T, Larson TV, Koenig JQ. Exhaled nitric oxide in children with asthma and short-term PM2.5 exposure in Seattle. *Envir Health Perspect* 2005;**113**:1791-4.
- 60. Gadish T, Soferman R, Merimovitch T, Fireman E, Sivan Y. Exhaled nitric oxide in acute respiratory syncytial virus bronchiolitis. *Arch Pediatr Adolesc Med* 2010;**164**:727-31.
- 61. Franklin PJ, Turner SW, Hall GL, Moeller A, Stick SM. Exhaled nitric oxide is reduced in infants with rhinorrhea. *Pediatr Pulmonol* 2005;**39:**117-9.
- 62. de Gouw HW, Grunberg K, Schot R, Kroes AC, Dick EC, Sterk PJ. Relationship between exhaled nitric oxide and airway hyperresponsiveness following experimental rhinovirus infection in asthmatic subjects. *Eur Respir J* 1998;**11:**126-32.
- 63. van der Valk RJ, Baraldi E, Stern G, Frey U, de Jongste JC. Daily exhaled nitric oxide measurements and asthma exacerbations in children. *Allergy* 2012;**67:**265-71.

- 64. Stark H, Purokivi M, Kiviranta J, Randell J, Tukiainen H. Short-term and seasonal variations of exhaled and nasal NO in healthy subjects. *Respir Med* 2007;**101**:265-71.
- 65. Jouaville LF, Annesi-Maesano I, Nguyen LT, Bocage AS, Bedu M, Caillaud D. Interrelationships among asthma, atopy, rhinitis and exhaled nitric oxide in a population-based sample of children. *Clin Exp All* 2003;**33:**1506-11.
- 66. McGill C, Malik G, Turner SW. Validation of a hand-held exhaled nitric oxide analyzer for use in children. *Pediatr Pulmonol* 2006;**41:**1053-7.
- 67. Kapande KM, McConaghy LA, Douglas I, et al. Comparative repeatability of two handheld fractional exhaled nitric oxide monitors. *Pediatr Pulmonol* 2011:**47:**546-50.
- 68. Beck-Ripp J, Griese M, Arenz S, Koring C, Pasqualoni B, Bufler P. Changes of exhaled nitric oxide during steroid treatment of childhood asthma. *Eur Respir J* 2002;**19**:1015-9.
- 69. Buchvald F, Eiberg H, Bisgaard H. Heterogeneity of FeNO response to inhaled steroid in asthmatic children. *Clin Exp All* 2003;**33:**1735-40.
- 70. Pijnenburg MW, Bakker EM, Lever S, Hop WC, De Jongste JC. High fractional concentration of nitric oxide in exhaled air despite steroid treatment in asthmatic children. *Clin Exp All* 2005;**35**:920-5.
- 71. Shaw DE, Berry MA, Thomas M, et al. The use of exhaled nitric oxide to guide asthma management: a randomized controlled trial. *Am J Respir Crit Care Med* 2007;**176:**231-7.
- 72. Smith AD, Cowan JO, Brassett KP, Herbison GP, Taylor DR. Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. *N Engl J Med* 2005;**352**:2163-73.
- 73. Gibson PG. Using fractional exhaled nitric oxide to guide asthma therapy: design and methodological issues for ASthma TReatment ALgorithm studies. *Clin Exp All* 2009;**39:**478-90.
- 74. Kharitonov SA, Gonio F, Kelly C, Meah S, Barnes PJ. Reproducibility of exhaled nitric oxide measurements in healthy and asthmatic adults and children. *Eur Respir J* 2003;**21:**433-8.
- 75. Michils A, Louis R, Peche R, Baldassarre S, Van Muylem A. Exhaled nitric oxide as a marker of asthma control in smoking patients. *Eur Respir J* 2009;**33:**1295-301.
- 76. Hewitt RS, Modrich CM, Cowan JO, Herbison GP, Taylor DR. Outcomes using exhaled nitric oxide measurements as an adjunct to primary care asthma management. *Primary Care Respir J* 2009;**18**:320-7.
- 77. Weatherall M, Finlgeton J, Eyers S, Beasley R. A half doubling does change in bronchial hyperresponsiveness in a populaiton represents an important difference. *Translational Respir Med* 2013;**1:**4.
- 78. Powell H, Murphy VE, Taylor DR, et al. Management of asthma in pregnancy guided by measurement of fraction of exhaled nitric oxide: a double-blind, randomised controlled trial. *Lancet* 2011;**378:**983-90.
- 79. Steerenberg PA, Janssen NA, de Meer G, et al. Relationship between exhaled NO, respiratory symptoms, lung function, bronchial hyperresponsiveness, and blood eosinophilia in school children. *Thorax.* 2003;**58:**242-5.

- 80. van Den Toorn LM, Prins JB, Overbeek SE, Hoogsteden HC, de Jongste JC. Adolescents in clinical remission of atopic asthma have elevated exhaled nitric oxide levels and bronchial hyperresponsiveness. *American Journal of Respiratory & Critical Care Medicine* 2000;**162**(3 Pt 1):953-7.
- 81. Piacentini GL, Bodini A, Costella S, et al. Exhaled nitric oxide and sputum eosinophil markers of inflammation in asthmatic children. *European Respiratory Journal* 1999;**13**(6):1386-90.
- 82. Warke TJ, Fitch PS, Brown V, et al. Exhaled nitric oxide correlates with airway eosinophils in childhood asthma. *Thorax* 2002;**57:**383-7.
- 83. Cabral AL, Vollmer WM, Barbirotto RM, Martins MA. Exhaled nitric oxide as a predictor of exacerbation in children with moderate-to-severe asthma: a prospective, 5-month study. *Ann Allergy Asthma Immunol* 2009;**103**:206-11.
- 84. Buchvald F, Eiberg H, Bisgaard H. Heterogeneity of FeNO response to inhaled steroid in asthmatic children. *Clin Exp All* 2003;**33**(12):1735-40.
- 85. Pijnenburg MW, Bakker EM, Lever S, Hop WC, De Jongste JC. High fractional concentration of nitric oxide in exhaled air despite steroid treatment in asthmatic children. *Clinical & Experimental Allergy* 2005;**35**(7):920-5.
- 86. Dahgam S, Nyberg F, Modig L, Naluai AT, Olin AC. Single nucleotide polymorphisms in the NOS2 and NOS3 genes are associated with exhaled nitric oxide. *J Med Genet* 2012;**49**:200-5.
- 87. Storm van's Gravesande K, Wechsler ME, Grasemann H, et al. Association of a missense mutation in the NOS3 gene with exhaled nitric oxide levels. *Am J Respir Crit Care Med* 2003;**168**:228-31.
- 88. Ali M, Khoo SK, Turner S, Stick S, Le Souef P, Franklin P. NOS1 polymorphism is associated with atopy but not exhaled nitric oxide levels in healthy children. *Pediatr All Immunol* 2003;**14:**261-5.

Table 1. Clinically important questions in asthma management where  $FE_{NO}$  may give insight

Are these asthmatic symptoms in this child with asthma?

Should treatment be stepped up with inhaled corticosteroids or alternative medications?

When is it appropriate to step down inhaled corticosteroid treatment?

When is it safe to stop treatment with inhaled corticosteroids?

Table 2. Summary of the literature suggesting that exhaled nitric oxide ( $FE_{NO}$ ) may or may not be a good biomarker for childhood asthma.

| Studies suggesting FE <sub>NO</sub> may be a good                               | Studies suggesting FE <sub>NO</sub> may NOT be a good                |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------|
| biomarker for childhood asthma                                                  | biomarker for childhood asthma                                       |
| FE <sub>NO</sub> is elevated in children with asthma <sup>13</sup>              | FE <sub>NO</sub> is elevated in atopic non-asthmatic                 |
|                                                                                 | children 45 7978 and in adolescents whose                            |
|                                                                                 | asthma has remitted 8079                                             |
| Exhaled nitric oxide is positively correlated                                   | Exhaled NO is not related to FEV <sub>1</sub> 45 or                  |
| with threewo hallmarks for asthma, sputum                                       | BHR <sup>48</sup>                                                    |
| eosinophils $\frac{44,81,82}{44,80,81}$ (r=0.5), $-\frac{\text{FEV}_1}{44}$ and |                                                                      |
| and bronchial hyperresponsiveness (BHR) 45                                      |                                                                      |
| 46                                                                              |                                                                      |
|                                                                                 |                                                                      |
| Exhaled nitric oxide is positively correlated                                   |                                                                      |
|                                                                                 |                                                                      |
| with airway eosinophilia after two weeks                                        |                                                                      |
| treatment with oral corticosteroids (r=0.5) 10                                  |                                                                      |
| Elevated FE <sub>NO</sub> is associated with poor                               | FE <sub>NO</sub> is not correlated with asthma control <sup>47</sup> |
| asthma control (r=0.2) 41-43                                                    |                                                                      |
| FE <sub>NO</sub> rises after withdrawal of ICS and                              | FE <sub>NO</sub> does not predict relapse after ICS                  |
| before symptoms relapse <sup>18</sup>                                           | withdrawal 8382                                                      |
| Treatment with inhaled corticosteroids reduces                                  | FE <sub>NO</sub> remains elevated in some individuals                |
| $FE_{NO}$ in children with asthma $\frac{6867}{}$ .                             | despite treatment with ICS 84.8583,84.                               |
|                                                                                 |                                                                      |

Table 3. Details of the six randomised controlled trials comparing standard symptom-based asthma management against standard management plus exhaled nitric oxide (FE<sub>NO</sub>) in children with asthma. \*presented as abstract and additional data provided by Prof Chang (personal communication).

| Study                    | Population details                                                                                                                         | FE <sub>NO</sub> Cut off(s) used                                 | Study design                                                                                                                                                                      | Primary outcome                                                                                   | Secondary outcomes                                                                                                                                                       |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| de Jongste <sup>32</sup> | Aged 6-18 attending academic centres or hospitals. Atopic (by plasma IgE or skin prick test). Stable mild-moderate asthma. 151 randomised. | ≥20 ppb for<br>6-10 year<br>olds<br>≥25 ppb for<br>>10 year olds | 30 week study, intervention arm made daily FE <sub>NO</sub> measurements.  Treatment reviewed each 3 weeks by telephone, physiological testing 1, 3, 5 months and at end of study | Symptom free days during last 3 months of trial; this improved equally in both arms of the trial. | No difference between control and intervention arm for ICS dose, FEV <sub>1</sub> , FE <sub>NO</sub> or exacerbations.                                                   |
| Peirsman <sup>33</sup>   | Age range not stated.  Mild to severe asthma attending hospital clinics. Atopic (by plasma IgE or skin prick testing). 99 randomised       | <u>≥20 ppb</u>                                                   | 52weekstudy.FENOandsymptomsreviewedeverythree months                                                                                                                              | Symptom free days;<br>no difference<br>between groups                                             | Exacerbation; reduced in intervention arm (18/49) compared to the control arm (35/50).                                                                                   |
| Fritsch <sup>27</sup>    | Aged 6-18 years. 52 randomised. Attending hospital clinic. Skin prick positive.                                                            | Greater than or ≤20ppb                                           | 6 month duration,<br>assessed each 6<br>weeks                                                                                                                                     | FEV <sub>1</sub> – no difference                                                                  | Exacerbations, mid expiratory flows, control. Mid expiratory flow 11 % higher in FE <sub>NO</sub> group. Increased ICS doses (200 microg/day) in FE <sub>NO</sub> group. |
| Petsky* <sup>31</sup>    | Aged >4 years 81 children invited 63 randomised. Attending hospital clinic.                                                                | ≥ or less than 10 ppb for non atopic children ≥ or less than     | 12 month study,<br>monthly visits for<br>four months and<br>alternate months<br>thereafter.                                                                                       | Exacerbation – FE <sub>NO</sub> associated with reduced exacerbations (19% versus 47%)            | Quality of life and spirometry did not significantly differ between groupsalso improved marginally.  Spirometry unchanged.  31                                           |

|                          |                                                                                                            | 12 ppb with one positive skin test ≥ or less than 20 ppb with more than one positive skin test |                                               |                                                                                         |                                                                                                                                                                                                                                                                                  |
|--------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pijnenberg <sup>30</sup> | Aged 5-18 years. 108 screened 89 randomised. Attending hospital clinic. Atopic asthma treated with ICS.    | Less than or ≥30ppb                                                                            | 12 month study with assessments each 3 months | ICS dose. No difference between groups.                                                 | FE <sub>NO</sub> group had improved PD <sub>20</sub> (1.3 doubling doses), lower FE <sub>NO</sub> (geometric mean difference at end of study 32% lower) and trend for fewer exacerbations (20% versus 39%)                                                                       |
| Pike <sup>28</sup>       | Aged 6-17 years. 96 screened, 90 randomised. Attending hospital clinic with moderate-severe asthma.        | ≤15ppb<br>15.1-24.9ppb<br>≥25 ppb                                                              | 12 month study,<br>assessed each 2<br>months  | ICS dose and exacerbation. No difference between groups.                                | Spirometry, no difference between groups.                                                                                                                                                                                                                                        |
| Szeffler <sup>26</sup>   | Aged 12-20 years. 780 screened. 546 randomised. Inner city area where ≥20% households below poverty level. | 0-20<br>20.1-30<br>30.1-40<br>>40                                                              | 46 week duration assessments each 6-8 weeks   | Number of days with symptoms. No difference between FE <sub>NO</sub> and control groups | FE <sub>NO</sub> group had: Mean increased fluticasone treatment 119 microg/day. 10% reduction in proportion requiring OCS Among obese children 0.6 fewer days with symptoms. For those with multiple positive skin tests (ie >9 out of 14 tested) 0.8 fewer days with symptoms. |

| Verini <sup>29</sup> | Aged 6-17 years. 64    | 12 | 12 month study   | Severity score                 | Spirometry – no difference |
|----------------------|------------------------|----|------------------|--------------------------------|----------------------------|
|                      | children. Referred to  |    | with assessments | (mean reduced                  |                            |
|                      | hospital and admitted. |    | at baseline and  | significantly from             |                            |
|                      |                        |    | after 6 and 12   | 1.1 to 0.6 and 0.8             |                            |
|                      |                        |    | months           | after 6 and 12                 |                            |
|                      |                        |    |                  | months only in the             |                            |
|                      |                        |    |                  | FE <sub>NO</sub> group).       |                            |
|                      |                        |    |                  | Exacerbation (mean             |                            |
|                      |                        |    |                  | number reduced                 |                            |
|                      |                        |    |                  | from 2.0 to 1.0 and            |                            |
|                      |                        |    |                  | $0.8$ only in $FE_{NO}$        |                            |
|                      |                        |    |                  | group), treatment              |                            |
|                      |                        |    |                  | (unchanged in FE <sub>NO</sub> |                            |
|                      |                        |    |                  | group but some                 |                            |
|                      |                        |    |                  | evidence of                    |                            |
|                      |                        |    |                  | increased treatment            |                            |
|                      |                        |    |                  | in control arm).               |                            |

Table 4. Factors which are associated with changes in  $FE_{NO}$  in children independent of asthma

| Factor                               | Approximate magnitude of effect                       |
|--------------------------------------|-------------------------------------------------------|
| Height                               | Up to 1ppb rise per cm height gained <sup>24</sup>    |
| Dietary exposures                    | Short lived rise of up to 5-10ppb <sup>53,54</sup>    |
| Allergen exposure                    | Rise of up to 50% during birch pollen                 |
|                                      | season <sup>56</sup>                                  |
| Exposure to second hand smoke        | Reduction of 100% (26ppb for exposed                  |
|                                      | children versus 56ppb) <sup>57</sup> or absolute      |
|                                      | reduction of 10ppb <sup>58</sup>                      |
| Asthma exacerbation                  | Typical rise of approximately 60% 41                  |
| Exposure to poor outdoor air quality | Rise of approximately 1ppb 4 hours after              |
|                                      | each increase of 10mg/m <sup>3</sup> fine particulate |
|                                      | exposure (PM <sub>2.5</sub> ) <sup>59</sup>           |
| Genetic variations                   | Variations in genes coding for NOS2 and               |
|                                      | NOS3 may lead to differences in FE <sub>NO</sub> in   |
|                                      | adults of 10% 8685 or 10ppb 8786 but no               |
|                                      | association found for NOS1 variant and                |
|                                      | FE <sub>NO</sub> in children 8887                     |

### FIGURE LEGENDS

Figure 1. Diagram demonstrating the flow dependence of exhaled nitric oxide (FE<sub>NO</sub>). At lower flows, concentrations are higher and *vice versa*. The figure also demonstrates how the absolute FE<sub>NO</sub> value is derived from a plateau achieved over a ten second exhalation in older children and adults (six seconds in younger children).

Figure  $\underline{12}$ . Summary of the asthma-dependent and independent factors associated with increased or reduced concentrations of exhaled nitric oxide (FE<sub>NO</sub>).

Figure 2. A forest plot comparing the effect on exacerbations requiring oral corticosteroid treatment where maintenance treatment is driven by exhaled nitric oxide (ENO) and symptoms versus symptoms alone.

Figure 3. A forest plot comparing the effect on inhaled corticosteroid dose at the time of study exit where maintenance treatment is driven by exhaled nitric oxide (ENO) and symptoms versus symptoms alone.