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ABSTRACT 

Filamentous microstructures from the 3.46 billion year (Ga)-old Apex chert of 

Western Australia have been interpreted as remnants of Earth’s oldest cellular 

life, but their purported biological nature has been robustly questioned on 

numerous occasions. Despite recent claims to the contrary, the controversy 

surrounding these famous microstructures remains unresolved. 

 

Here we interrogate new material from the original ‘microfossil site’ using high 

spatial resolution electron microscopy to decode the detailed morphology and 

chemistry of the Apex filaments. Light microscopy shows that our newly 

discovered filaments are identical to the previously described ‘microfossil’ 

holotypes and paratypes. Scanning and transmission electron microscopy data 

show that the filaments comprise chains of potassium- and barium-rich 

phyllosilicates, interleaved with carbon, minor quartz and iron oxides. 

Morphological features previously cited as evidence for cell compartments and 

dividing cells are shown to be carbon-coated stacks of phyllosilicate crystals. 

Three-dimensional filament reconstructions reveal non-rounded cross sections 

and examples of branching incompatible with a filamentous prokaryotic origin 

for these structures.  

 

When examined at the nano-scale, the Apex filaments exhibit no biological 

morphology nor bear any resemblance to younger bona fide carbonaceous 

microfossils.  Instead, available evidence indicates that the microstructures 

formed during fluid-flow events that facilitated the hydration, heating and 
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exfoliation of potassium mica flakes, plus the redistribution and adsorption of 

barium, iron and carbon within an active hydrothermal system. 

 

Keywords: Apex Chert, Pilbara Craton, Microfossils, Pseudofossils, Archean Life 

 

1. Introduction 

The Apex microfossil debate is one of the longest running and highest profile 

controversies in palaeobiology and evolution. At its heart are filamentous 

microstructures found in black chert veins within the 3.46 Ga Apex Basalt near 

Marble Bar in the Pilbara Craton of Western Australia (Schopf and Packer, 1987; 

Schopf, 1993). On one side of the debate is the claim that these microstructures 

represent at least eleven species of filamentous prokaryote microfossils comprising 

some of the earliest morphological evidence of life on Earth (Schopf and Packer, 

1987; Schopf, 1992, 1993, 1999, 2006; Schopf et al., 2007; Schopf and Kudryavtsev 

2009, 2012). An opposing view is that these microstructures are not microfossils, 

merely blobs of carbon, fortuitously arranged in roughly filamentous patterns around 

crystal boundaries (Brasier et al., 2002, 2004, 2005, 2006, 2011, 2015). Adding 

complexity to the debate are separate reports from elsewhere in the Apex chert of 

other non-biological microfossil-like artefacts and later carbonaceous contaminants 

(Pinti et al., 2009; Marshall et al., 2011; Olcott Marshall et al., 2012; Sforna et al., 

2014), inconclusive chemical studies attempting to assess the biogenictiy of Apex 

chert carbon (De Gregorio and Sharp, 2006; De Gregorio et al., 2009), plus questions 

over the suitability of the confocal laser Raman microspectroscopy technique 

favoured by the proponents of a biological origin (Pasteris and Wopenka, 2002, 2003; 

Marshall and Olcott Marshall, 2013). Below we summarise the history of the study of 
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the Apex chert microstructures before presenting our new high spatial resolution 

electron microscopy data. 

 

1.1. History of the Apex microfossil debate 

The Apex chert ‘microfossils’ first entered the literature in 1987 (Schopf and Packer, 

1987) and were described in detail in the early 1990’s (Schopf, 1992, 1993). They 

were formally classified as fossils of uncertain biological affinity, ‘Bacteria Incertae 

Sedis’. However, phrases in Schopf (1993) such as ‘I interpret…..the remaining seven 

species….as probable cyanobacteria’  and ‘…suggest that cyanobacterial oxygen-

producing photosynthesizers may already have been extant this early in Earth history’ 

heavily implied a cyanobacterial affinity. This implication entered into many 

textbooks and popular science books written in subsequent years. With it came the 

inference of a relatively advanced level of prokaryote evolution at 3.5 Ga, plus an 

early origin of photosynthetic oxygen production on Earth. Little attempt was made to 

test these dogmatic assumptions until the authenticity of the ‘microfossils’ themselves 

was challenged almost a decade later (Dalton, 2002). 

 

There were a number of subtle details in the initial reports (Schopf and Packer, 1987; 

Schopf, 1992, 1993) that are not wholly consistent with an interpretation of the 

filaments as microfossils, yet a decade or more passed without a thorough re-

examination of the type material. Firstly, the claimed taxonomic diversity is 

particularly vast, being more diverse than 92% of all other Precambrian filamentous 

fossil assemblages. Comparable diversity is not seen until some 1500 Ma later, for 

example in the Gunflint Formation of Canada (Barghoorn and Tyler, 1965). Such 

taxonomic diversity in a deposit of this great age would require an early origin and 
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diversification, then very slow evolution, of filamentous microbes. A number of the 

figured microfossils are rather light in colour, with yellow, orange and light brown 

examples (see colour images in Brasier et al., 2011). This is in contrast to other 

reports of early Archean carbon that illustrate a dark brown to black colour, and hence 

raises questions about the true age and carbonaceous composition of some of the 

Apex microstructures. The filaments do not exhibit biological behaviour; instead they 

are solitary, irregular and randomly orientated. Questions were also raised about the 

selectivity of the data chosen for publication, with suggestions that more complex 

objects exhibiting branching, a trait that would not have occurred in such primitive 

organisms, were withheld from publication (Packer quoted in Dalton, 2002). Although 

reported as ‘thin-sections’ (Schopf and Packer, 1987; Schopf 1993), the thicknesses of 

the rock slices containing the type specimens are not standard (30 µm) but range from 

193 to 380 µm (Brasier et al., 2005). The structures illustrated by Schopf and Packer 

(1987) and Schopf (1993) cannot be imaged in a single depth plain: this requires 

montaging of several photographs. Inconsistencies between illustrations of the same 

specimens also occur (Schopf and Packer, 1987; Schopf, 1993); for example, Fig. 3i 

from Schopf (1993) is the same specimen as Fig. 1a from Schopf and Packer (1987) 

but the former omits what appears to be a fold in the filament seen in the top right of 

the latter. 

 

In 2002, the Apex debate gathered pace with the publication of back-to-back papers in 

Nature (Brasier et al., 2002; Schopf et al., 2002). Brasier et al. (2002) presented new 

geological mapping data, a petrographic re-examination of the type material and 

observations from additional material collected from the original ‘microfossil’ 

locality. This revealed further inconsistencies in the earlier reports. For example, it 
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had been claimed that the microfossils occurred in a sedimentary bedded chert unit 

and that all of the microfossils occurred in early rounded sedimentary clasts (Schopf, 

1993). In contrast, Brasier et al. (2002) showed that the microstructures occurred in 

black chert veins that intrude the lower part of the Apex Basalt. Furthermore, Brasier 

et al. (2002) showed that the microstructures co-occurred with a suite of minerals and 

textures characteristic of a hydrothermal setting, and that near-identical micro-

structures also occurred in later generations of chert matrix as well as other rock types 

in the immediate vicinity of the black chert veins. Using a computer-assisted montage 

imaging approach, Brasier et al. (2002) also showed that parts of the type 

microstructures had been left out of the original manually-montaged 

photomicrographs (Schopf and Packer, 1987; Schopf, 1993). This additional 

information appeared to show filament branching and distribution of carbon around 

ghosts of mineral crystals. The combined evidence led Brasier et al. (2002) to 

conclude that the ‘microfossils’ were in fact carbonaceous mineral rims that formed 

around recrystallizing grain margins during a complex series of hydrothermal events. 

 

Schopf et al. (2002) dismissed the petrographic contextual arguments presented by 

Brasier et al. (2002). They countered with confocal laser Raman microspectroscopic 

data that demonstrated a kerogenous carbonaceous composition for the microfossils.  

These authors claimed that correlation of this kerogenous chemistry with 

morphologically identifiable features characteristic of microorganisms confirmed their 

earlier conclusion that the Apex microstructures were bona fide microfossils. Laser 

Raman specialists, however, felt that Schopf et al. (2002) had over-interpreted the 

data and went on to demonstrate that laser Raman cannot unambiguously distinguish 

carbon of a biological precursor from that of an abiotic nature (Pasteris and Wopenka, 
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2002, 2003). Since these seminal papers, the debate has swung back and forth with 

Schopf and colleagues using laser Raman and confocal laser scanning microscopy 

(CLSM) in an attempt to reassert the biogenicity of the microfossils (e.g., Schopf, 

2006; Schopf et al., 2007; Schopf and Kudryavtsev 2009, 2012), while Brasier and 

colleagues have presented more detailed geological mapping and petrography in 

support of their mineral rim pseudofossil hypothesis (e.g., Brasier et al., 2004, 2005, 

2006, 2011). Schopf and colleagues now concede that the geological setting is 

hydrothermal rather than sedimentary and have moved away from a cyanobacterial 

interpretation for the ‘microfossils’, suggesting instead that the ‘microfossils’ likely 

represent ‘remnants of thermophilic microbes, preserved in situ and perhaps 

permineralized in hydrothermally milled and rounded organic rich clasts’ (Schopf and 

Kudryavtsev, 2012). 

 

In latter years the debate has been blurred somewhat by descriptions of further suites 

of abiogenic microfossil-like objects from various parts of the Apex chert (Pinti et al., 

2009; Marshall et al., 2011), and a multitude of chemical analyses of Apex carbon (De 

Gregorio and Sharp, 2006; De Gregorio et al. 2009; Olcott Marshall et al., 2012; 

Sforna et al., 2014). There is no doubt that these studies have provided valuable data 

concerning the formation and subsequent alteration environments of the Apex chert 

and the carbon contained within. However, these microfossil-like artefacts do not 

show close similarity to the type Apex ‘microfossils’, and the chemical analyses were 

not performed on the ‘microfossils’. This has led some to question their relevance to 

the (re)interpretation of the type Apex ‘microfossils’ (Schopf and Kudryavtsev, 2012) 

and, if anything, has made the original claims easier to defend. Indeed recently, 

Schopf and Kudryavtsev (2012) claimed ‘a resolution of the controversy’ in favour of 
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a bona fide microfossil origin for the Apex chert microstructures, although no 

additional data to support this hypothesis was presented in that paper. However, it is 

clear that the controversy has not been resolved, highlighted by the vigorous debate 

that immediately followed publication of that paper (Marshall and Olcott Marshall, 

2013; Olcott Marshall and Marshall, 2013; Pinti et al., 2013; Schopf and Kudryavtsev, 

2013).  

 

Here we return to the original microfossil locality and use high spatial resolution 

electron microscopy to show precisely what minerals and textures comprise 

filamentous microstructures equivalent to the ‘microfossil’ holotypes and paratypes. 

This allows us to demonstrate that the purported microfossil filaments are not cellular 

in nature and do not constitute morphologically preserved prokaryotes. Instead, they 

comprise sheets of phyllosilicates with carbon sandwiched in between. Our hypothesis 

of a phyllosilicate origin for the Apex ‘microfossils’ was first presented in Brasier et 

al. (2015) and this was supported by a subset of the data reported here. This 

contribution greatly expands on the evidence presented in Brasier et al. (2015) with 

analyses of many more filaments, plus three-dimensional data and comparative 

Raman data not previously published. 

 

2. Materials and methods 

2.1. Sample locality and geological setting 

The c. 3.46 Ga Apex Basalt is found in the East Pilbara granite greenstone terrane of 

the Pilbara craton, Western Australia (Fig. 1). It is part of the Warrawoona Group, a 

10-15 km thick volcano-sedimentary succession dominated by extrusive volcanic 

rocks with minor interstratified chert, barite, carbonate and volcaniclastic units. The 
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‘microfossils’ were initially reported from the Apex chert (informal name), the 

lowermost of several thin stratiform chert horizons within the Apex Basalt in the 

vicinity of Chinaman Creek, approximately 5 km west of the township of Marble Bar 

(Schopf and Packer, 1987; Schopf, 1993). However, the geological setting of the 

Apex ‘microfossils’ has been reinvestigated, with the results presented in detail in 

Brasier et al. (2005) and Brasier et al. (2011). In summary, this new geological 

mapping has shown that the ‘microfossils’ do not come from a sedimentary stratiform 

chert layer as initially claimed (Schopf, 1993) but from a hydrothermally influenced 

subsurface vein system, some 100 m below the stratiform Apex chert (Fig. 1c-d). This 

context has been supported by subsequent independent studies (Van Kranendonk, 

2006; Pinti et al., 2009) and a hydrothermal geological context for the ‘microfossils’ 

is now widely accepted (Schopf and Kudryavtsev, 2012).  The reinterpreted 

geological setting does not rule out the presence of life in these rocks because 

microorganisms are common in modern hydrothermal environments (e.g., Jannasch 

and Wirsen, 1981). It does, however, bring added complexity to the interpretation of 

any microstructures contained within such rocks, not least because of the possibility 

of the presence of abiogenic carbon generation in hydrothermal environments (e.g., 

Berndt et al., 1996) and the ease with which elements and minerals can be altered and 

transported by hydrothermal fluids. 

 

The material studied here (sample CHIN-3) comes from the original ‘microfossil’ 

locality (Fig. 1c-d) and was collected in 2001 (see also locality CC4 of Brasier et al., 

2011). Analysis of previously published type specimens is compromised by the 193-

380 m thick preparations (Brasier et al., 2005) making optical petrography difficult. 

There is also an understandable prohibition (by the Natural History Museum, London) 
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on destructive or intrusive techniques, meaning for example that high spatial 

resolution approaches such as focused ion beam milling combined with scanning- or 

transmission-electron microscopy (FIB-SEM and FIB-TEM) cannot be performed on 

the type specimens. Our materials are therefore standard (~30 m thick) polished 

geological thin sections, making optical characterisation more straightforward and 

allowing the application of the full range of high spatial resolution analytical 

techniques currently available to us. Crucially, filamentous microstructures found in 

our new material are identical to those found in the type material (see Section 3.1. for 

details), unlike some recent studies of the Apex chert (Pinti et al., 2009; Marshall et 

al., 2011). 

 

2.2. Focussed ion beam (FIB) preparation of TEM samples  

Prior to FIB milling the thin sections were examined by optical microscopy, 2D and 

3D laser Raman plus SEM to gain an understanding of the filament distributions and 

morphologies, and to select the most appropriate targets for detailed study. Any risk 

of surface contamination leading to microfossil-like artefacts (for example during thin 

section preparation and polishing) are here mitigated because FIB preparation of TEM 

sections allows features below the surface (typically up to about 15 m depth) of the 

thin sections to be targeted. The preliminary SEM work was performed using a Zeiss 

Supra 1555 and the optical microscopy was performed using Nikon Optiophot-2, 

Nikon Optiophot-pol and Zeiss Axioskop 2 microscopes.  

 

Most TEM samples were prepared using a dual-beam FIB system (FEI Nova 

NanoLab) at the Electron Microscopy Unit (EMU), University of New South Wales. 

Electron beam imaging was used to identify microstructures of interest in the polished 
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thin sections coated with c. 30 nm of gold, allowing site-specific TEM samples to be 

prepared. The TEM sections were prepared by a series of steps involving different 

Ga
+
 ion beam energies and currents (see Wacey et al., 2012), resulting in ultrathin 

wafers of c. 100 nm thickness. These TEM wafers were extracted using an ex-situ 

micromanipulator and deposited on continuous-carbon copper TEM grids. One TEM 

wafer was prepared at the FEI factory in Brno, Czech Republic, using a dual-beam 

FEI Helios NanoLab G3 instrument. Here, the partially thinned wafer was attached to 

an Omniprobe® copper TEM holder using platinum connector strips, then final 

thinning to c.80 nm was performed in situ on the holder. This protocol means that 

there is no carbon film underneath the wafer, simplifying subsequent carbon 

elemental mapping in the TEM. 

 

2.3. TEM analysis of FIB-milled wafers 

TEM data were obtained using a FEI Titan G2 80-200 TEM/STEM with ChemiSTEM 

Technology operating at 200 kV, plus a JEOL 2100 LaB6 TEM operating at 200 kV 

equipped with a Gatan Orius CCD camera and Tridiem energy filter. Both 

instruments are located in the Centre for Microscopy, Characterisation and Analysis 

(CMCA) at The University of Western Australia. HAADF (high angle annular dark-

field) STEM images and EDS (ChemiSTEM) maps were obtained on the FEI Titan. 

Energy filtered (EFTEM) elemental maps were obtained on the JEOL 2100 using the 

conventional three-window technique (Brydson, 2001), with energy windows selected 

to provide optimum signal-to-noise. Selected area electron diffraction for mineral 

identification was performed on the Jeol 2100 with an aperture that selected a ~200 

nm field of view. 
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2.4. FIB-SEM and FIB-SEM 3D nano-tomography 

FIB milling and SEM imaging was performed on a Zeiss Auriga Crossbeam dual 

beam instrument at EMU. The protocol was a modified version of that described in 

Wacey et al (2012), with milling and imaging parameters optimized to suit the type of 

sample (i.e. carbon, iron oxides and phyllosilicates within a silica matrix). Regions of 

interest (ROI) previously identified using optical microscopy and laser Raman micro-

spectroscopy were covered with a protective (c. 1m-thick) platinum layer. Initial 

front and side trenches were milled with a 10 nA Ga
+
 ion beam. An additional gold 

coat was then applied and the sample was heated in an oven at ~50 C overnight to 

minimize any instability caused by moisture escape/degassing during the opening of 

the trenches. The front face of the ROI was then cleaned and polished using a 2 nA 

beam current. Imaging was performed at 5 kV using the back-scattered electron (BSE) 

detector in order to minimise charging effects and maximise the contrast between 

minerals of differing masses. Sequential slices were milled with a 2 nA Ga
+
 beam 

current and the slice spacing was 200 nm. The working distance (5.0 mm) was tracked 

during sequential imaging, and tilt correction was enabled. Each newly milled face 

was imaged (2048 x 1536 pixels) with an image capture time of ~80 seconds. This 

long image capture time was required to obtain images of high enough quality for 

subsequent 3D reconstruction. Semi quantitative elemental mapping of FIB-milled 

faces was performed using an Oxford X-max SDD energy dispersive X-ray 

spectroscopy (EDS) system attached to the Zeiss Auriga Crossbeam instrument, with 

detection limits of about 0.5-1 atomic %. Note that any technique involving a focused 

ion beam is destructive and could not be applied to the type specimens held at the 

Natural History Museum, London. 
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2.5. 3D reconstruction and visualisation 

Sequential FIB-SEM nano-tomography images were stacked, aligned and cropped 

using SPIERSalign (Sutton et al., 2012). The resultant stacks were imported into the 

AVIZO 8.0 software package where carbonaceous material was segmented allowing 

3D models of the carbon associated with the filaments to be produced. The models 

were visualised and rendered in AVIZO 8.0 and publication quality images were 

captured from multiple orientations in 3D space. 

   

FIB-SEM nano-tomography collects mostly morphological data. The carbonaceous 

material studied here is easy to detect in SEM images because of its different mass 

(hence contrast/brightness) compared to the silicates and silica matrix in which it is 

found. In our source SEM backscatter electron images, for example, carbon appears 

black, silica and phyllosilicates grey, and iron oxides bright white; hence carbon can 

easily be segmented from the remaining material. We performed EDS chemical 

analysis on selected SEM slices to confirm that the chemistry matched with the 

morphological features we saw, but did not do EDS on every slice because that would 

have been impractical in terms of analysis time. Hence, the 3D reconstructions do not 

depend on the size of a particular elemental EDS peak, so each pixel in an image is 

either ‘on’ or off’ for carbon. The 3D reconstructions are built primarily from 

morphological features visible in SEM, measured slice-by slice. 

 

2.6. Confocal laser Raman microspectroscopy 

Confocal laser Raman microspectroscopy was performed on a WITec alpha 300RA+ 

instrument with a Toptica Photonics Xtra II 785 nm laser source at the CMCA, UWA. 

Laser excitation intensity at the sample surface was in the 1-5 mW range, well below 
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the intensity that may damage carbonaceous material (e.g., Everall et al., 1991) and 

comparable to previous studies of the Apex chert (e.g., Olcott Marshall et al., 2012; 

Sforna et al., 2014). The laser was focused through a 100x/0.9 objective to obtain a 

spot size of smaller than 1 m.  Spectral acquisitions were obtained with 600 l/mm 

grating and a peltier-cooled (-60 °C) 1024 x 128 pixel CCD detector. Laser centering 

and spectral calibration were performed daily on a silicon chip with characteristic Si 

Raman band of 520.4 cm
-1

. Count rates were optimised prior to point spectra 

acquisition or hyperspectral mapping using the dominant quartz Raman band of 465 

cm
-1

. Spectra were collected in the 100-1800 rel. cm
-1

 region in order that both 1
st
 

order mineral vibration modes and 1
st
 order carbonaceous vibration modes could be 

examined simultaneously. Raman maps were acquired with the spectral centre of the 

detector adjusted to 944 cm
-1

, with a motorised stage allowing XYZ displacement 

with precision of better than 1 m. A total of 15 filaments were mapped in 2D with 

each map containing between 13,440 and 22,400 individual spectra. Spectral 

decomposition and subsequent image processing were performed using WITec Project 

FOUR software, with baseline subtraction using a 3
rd

 or 4
th

 order polynomial. Carbon 

maps were created by integrating over the ~1600 cm
-1

 ‘G’ Raman band. The ~1350 

cm
-1

 carbon ‘D’ Raman band was not used to construct maps because this may suffer 

from interference from the ~1320 cm
-1

 hematite Raman band in these samples (cf. 

Marshall and Olcott Marshall, 2013). All analyses were conducted on material 

embedded below the surface of the thin section to avoid artefacts in the Raman 

spectra resulting from polishing and/or surface contamination. 

 

For 3D analysis, successive scans of nine filaments were performed at increasing z-

depth within the thin section, with a 1 m z-spacing interval. Only filaments 
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occurring entirely in the top ~15 m of the thin sections were analysed, partly because 

of loss of Raman signal and spatial resolution at greater depth (Schopf et al., 2005; 

Marshall and Olcott Marshall, 2013), and partly so that FIB-SEM data (which is also 

far easier to obtain in the upper 15 m of a thin section) could be subsequently 

collected from some of the same filaments. 3D Raman data were segmented and 

visualised in AVIZO 8.0. 

 

3. Results 

3.1. Petrography 

Micro-mapping of petrographic thin sections through our new material (sample 

CHIN-3) reveal equivalent fabrics to those found in the previously described 

‘microfossil’ type sections of the Apex chert (Brasier et al., 2005). Multiple 

generations of brecciation, fissure filling and chert veining are evident. The majority 

of each thin section comprises a fissure filling fabric (fabric A of Brasier et al., 2005) 

that includes dark brecciated microcrystalline silica clasts rich in carbon and heavy 

metals (Fig. 2, A1), plus subsequent paler generations of microcrystalline silica (Fig. 

2, A2-3) that infilled early voids within the breccia. Multiple veins of clear 

microquartz (Fabric B of Brasier et al., 2005) are present, and clear microquartz also 

infills some larger cavities (Fig. 2, B). The filaments described here are found only in 

fabric A, with the vast majority occurring in generation A2 (Fig. 2). 

 

Filamentous microstructures (referred to as filaments from here on) are common in 

sample CHIN-3 (Figs. 3-7). Filament diameters range from 1.4 m to 13 m, with a 

mean of 4.2 m (n=140). Filament lengths range from 9 m to 97.5 m with a mean 

of 33 m (n=140). A size frequency distribution of the population of CHIN-3 
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filaments shows close similarity to previous studies of the Apex ‘microfossils’ (Fig. 8; 

cf. Schopf, 1993; Brasier et al., 2006). CHIN-3 filaments are a variety of colours, 

from pale grey (e.g., Fig. 3n) to dark brown (e.g., Fig. 7i) to almost black (e.g., Fig. 

6k). Iron staining is also common, resulting in large numbers of filaments having an 

orange/pale brown (e.g., Fig. 6l) or even yellow coloration (e.g., Fig. 7j). Rarely, 

filaments change in colour along their length, exhibiting patches that are particularly 

dark or black interspersed with yellow or orange patches (Fig. 7j). This variety of 

coloration is comparable to the ‘microfossil’ holotypes where yellow (Fig. 5c) and 

orange iron-stained (Fig. 7c) specimens have been illustrated alongside dark brown 

and grey/black examples (Brasier et al., 2005, 2011). Filament distribution is also 

comparable to the ‘microfossil’ holotypes, occurring as solitary objects with random 

orientations. It is notable that a high proportion of the filaments from CHIN-3 are 

iron-stained. This is consistent with the large quantity of pyrite in this sample 

indicating a plentiful supply of iron in this part of the hydrothermal system. The 

lighter colour of many of the CHIN-3 filaments compared to the ‘microfossil’ 

holotypes may be due to the fact that our images come from 30 m-thick thin sections 

as opposed to the 193-380 m-thick thin sections used in earlier studies (Schopf, 

1993; Brasier et al., 2005, 2011). 

 

Crucially, CHIN-3 filaments exhibit the same diagnostic morphological features as 

those shown by the ‘microfossil’ holotypes and paratypes and subsequently used by 

Schopf (1993) to erect the 11 taxa of the Apex chert ‘microbiota’. These features 

include disc-shaped, quadrate and short cylindrical medial ‘cells’ (Figs. 3-7); 

attenuation of filaments towards their apices (Fig. 3a-g); a variety of terminal ‘cell’ 

shapes including rounded, pillow-shaped and conical (e.g., arrows in Figs. 4-5); and 
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evidence for ‘bifurcating cells’ and ‘cell pairs’ (Fig. 6h-m). In Figures 3-7 we show 

multiple examples of filaments from CHIN-3 that are directly equivalent to the 

holotypes of 8 out of the 11 Apex chert ‘microfossil’ taxa. These include filaments 

equivalent to Primaevifilum attenuatum (Fig. 3a-g), Primaevifilum delicatum (Fig. 3h-

n), Primaevifilum laticellosum (Fig. 4a-f), Primaevifilum conicoterminatum (Fig. 4g-

m), Primaevifilum amoenum (Fig. 6a-g), Archaeoscillatoriopsis grandis (Fig. 5a-g) 

Archaeoscillatoriopsis disciformis (Fig. 5h-n), and Archaeoscillatoriopsis maxima 

(Fig. 7a-d). We also illustrate filaments from CHIN-3 that are equivalent in 

morphology to unnamed ‘microfossils’ reported from the Apex chert in Schopf and 

Packer (1987) (Fig. 7e-m), plus examples of ‘bifurcating cells’ equivalent to those 

illustrated in Schopf (1993) (Fig. 6h-m). 

 

Of the remaining 3 taxa of Apex ‘microfossils’ that are not illustrated here, a 

biological origin for Eoleptonema apex has already been disproven. This object has 

been shown to be a carbon-filled crack (Steele et al., 2008) and hence does not have 

the same formation mechanism as the material illustrated in this study. We do not 

observe filaments with diagnostic features and very narrow 0.5-0.6 m diameters 

equivalent to Archiotrichion septatum. Some of our narrowest filaments from CHIN-3 

(<1.8 m) likely equate to the Primaevifilum minutum taxa of Schopf (1993) but these 

lack the defining morphological features of the wider filaments so we have not 

focused our efforts on these. 

 

The combined evidence shows that the new filaments described here from CHIN-3 

are equivalent to the holotypes and paratypes of the Apex chert ‘microfossils’ of 

Schopf and Packer (1987) and Schopf (1993). This means that interpretations and 
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conclusions drawn from subsequent high spatial resolution study of this new material 

can also be applied to the previously described type material. Specifically, use of 

CHIN-3 enables application of destructive techniques on purported microfossil 

specimens that are prohibited on the type material. This is in contrast to some recent 

studies of the Apex chert where new types of filamentous pseudofossils were 

described but these exhibited little morphological resemblance to the type 

‘microfossil’ material (Pinti et al., 2009; Marshall et al., 2011). 

 

3.2. Detailed filament morphology and chemistry 

Previous studies of the Apex ‘microfossils’ have relied upon optical microscopy and 

laser Raman microspectroscopy to decode their morphology and chemistry (e.g., 

Brasier et al., 2002; Schopf et al., 2002, 2007; Schopf and Kudryavtsev, 2009, 2012), 

while SEM and TEM have not previously been applied to Apex material. Both SEM, 

and especially TEM, provide much higher spatial resolution data and here reveal 

morphological and chemical features that are essentially invisible when viewed using 

light microscopy or Raman. 

 

TEM analyses of ultrathin wafers through four representative filaments from CHIN-3 

reveal filament morphologies that are characteristic of a mineralic origin, plus 

complex nano-scale intergrowths of mineral phases (Figs. 9-10). Each filament is 

made up of multiple plate- or sheet-like grains of phyllosilicate (Figs. 9-10, green), 

sitting within a matrix of microcrystalline quartz. Sometimes, quartz is also seen inter-

grown with the phyllosilicate within a filament (Fig. 10d). ChemiSTEM mapping 

shows that the phyllosilicate mineral contains the elements K, Al, Si, O, plus variable 

amounts of Ba and minor Mg (Fig. 9). Electron diffraction patterns of this mineral 
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obtained in the TEM (Fig. 10f-g) possess d-spacings consistent with a 2:1 layered 

phyllosilicate crystal lattice structure. This structure is found both in micas and some 

clay minerals (Downs et al., 1993). The nano-morphology of the phyllosilicate, 

appearing as a worm-like stack of crystals, closely resembles vermiculite, a common 

alteration product of mica (Medeiros et al., 2009). However, the chemical 

composition is spatially heterogenous on the nano- to micro-scale. Together with the 

presence of barium that was likely hydrothermally sourced (Van Kranendonk, 2006; 

Griffith and Paytan, 2012), this suggests that the phyllosilicate is a complex 

hydrothermal association of mica alteration products that are best termed vermiculite-

like.  

 

Further ChemiSTEM mapping shows that carbon (Figs. 9-10, yellow) and iron oxides 

(Figs. 9-10, red) are closely associated with the phyllosilicate filaments. Both carbon 

and iron are seen interleaved between sheets of phyllosilicates within the body of the 

filaments, and also coat the outer margins of some parts of the filaments. In addition, 

carbon frequently occurs away from the filaments within the quartz matrix (Figs. 9b,f, 

10b, 11a-b) where it forms a boundary phase between quartz grains. ChemiSTEM 

mapping also gives insights into the relative timing of the introduction of carbon into 

these filaments. Carbon is frequently found coating barium-rich phyllosilicate grains 

and coating iron oxide particles (Fig. 11c-e), indicating that at least some of the 

carbon was the latest of all of the phases to become associated with the filaments. 

 

FIB-SEM data reveal further complexities to the filaments and additional insights into 

carbon distribution (Figs. 12-13). For these analyses, hundreds of successive 200 nm 

thick slices were milled through four representative filaments (filaments 8, 15, 33 and 
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97; shown petrographically in Figs. 6e, 4k, 3d and 6g respectively). After each slice 

was cut an SEM image was acquired. These images demonstrate how the morphology 

of the filaments changes quite significantly over spatial scales of only a few 

micrometres. In some slices, their filamentous nature is clear and the sheet-like 

phyllosilicate grains appear neatly stacked (Fig. 13b, slices 133 and 143). In other 

slices, filaments are seen to branch (Fig. 13a, slice 85, labelled ‘branch’), abruptly 

thicken (Fig, 12a, slice 8, compare top and bottom of image) or be joined by 

additional microstructures (Fig. 12a, slice 137, centre right). Furthermore, SEM 

highlights a number of nano-cracks within the chert matrix (Fig. 12a, slice 88 and Fig. 

13a, slice 85); these commonly feed right into the filaments and are frequently filled 

with carbon, once again highlighting the fact that carbon can be a rather late phase in 

the vicinity of the filaments. Like the TEM data, the SEM data show significant 

amounts of carbon interleaved between phyllosilicate sheets (e.g., black material in 

Fig. 13b, slices 133 and 143), around the margins of the filaments (e.g., Fig. 13a, slice 

85), and dotted throughout the quartz matrix (e.g., Fig. 13b, slice 45). 

 

Raman microspectroscopy was performed in order to compare the distribution and 

thermal maturity of carbon in our new CHIN-3 material to that in previous studies of 

the holotype ‘microfossils’ (e.g., Brasier et al., 2002; Schopf et al., 2002, 2007; 

Schopf and Kudryavtsev, 2009, 2012). Raman spectra obtained from the filaments 

across the 100-1800 cm
-1

 spectral region exhibit vibrational bands at ~1350 cm
-1

 

(carbon ‘D’ or ‘disordered’ band) and ~1600 cm
-1 

(carbon ‘G’ or ‘graphitic’ band) 

characteristic of kerogenous carbonaceous materials (Fig. 14) and are comparable to 

previous Raman analyses of the Apex ‘microfossils’ (e.g., fig. 4 of Brasier et al., 

2002; fig. 3 of Schopf et al., 2002; fig. 6 of Schopf and Kudryavtsev, 2009). 
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Quantitative comparisons are not possible because detailed parameters (e.g. exact D 

and G peak positions and widths, plus D/G intensity ratios) are not reported in those 

previous publications, and small changes in the position of the carbon D band can be 

caused by the use of different lasers (e.g., our 785 nm laser compared to the 488.1 nm, 

514.5 nm or 531 nm lasers of previous studies; cf. Pocsik et al., 1998). Quantitative 

comparisons are also hindered by potential inaccuracies in carbon D band parameters 

induced by the presence of hematite (having a major vibrational band at ~1320 cm
-1

, 

very close to the carbon D band) in some Apex samples (cf. Marshall and Olcott 

Marshall, 2013). Nevertheless, the Raman data show that our new filaments contain 

carbon of very similar thermal maturity to both that found in the Apex ‘microfossil’ 

holotypes (e.g., Schopf et al., 2002), and to indigenous carbon reported elsewhere in 

the Apex black chert veins (e.g., Olcott Marshall et al., 2012; Sforna et al., 2014). 

 

Raman mapping using the c. 1600 cm
-1

 carbon G band confirms that carbon is 

correlated with filamentous morphology in CHIN-3 (Fig. 14a-j). In some filaments the 

Raman maps indicate moderate amounts of carbon rather homogenously distributed 

throughout the body of the filament (Fig. 14i-j). This is equivalent to most Raman 

maps of the ‘microfossil’ holotypes (e.g., fig 2 of Schopf et al., 2002) where the 

‘microfossils’ appear to be rather solid carbonaceous filaments. In several other 

CHIN-3 filaments, the distribution of carbon is heterogenous with carbon-rich 

portions separated by carbon-poor portions (Fig. 14a-h). In these cases the maps most 

closely resemble those presented previously for the holotypes of Primaevifilum 

amoenum and Primaevifilum conicoterminatum (fig 4h-l, o-t of Schopf et al., 2007) 

where the box-like carbon-poor zones in the maps were interpreted as cellular 

compartments now filled with quartz. A three-dimensional reconstruction of 
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sequential Raman maps through filament 8 (Fig. 15a-b) closely resembles that 

previously produced for Primaevifilum amoenum (fig. 4g of Schopf et al., 2007). Like 

P. amoenum, filament 8 appears to comprise a number of box-like mineral-filled 

compartments (Fig. 15b, arrows) separated by carbon. In the absence of other data, 

these compartments may be mistaken for cell lumina. However, it is particularly 

notable that the distribution of carbon in the Raman maps does not resemble the 

distribution of carbon in the higher spatial resolution SEM and TEM images (compare 

for example Fig. 14 with Fig. 9, and Fig. 15b with 15c-g). This important point will 

be discussed further below (Section 4.2). Finally, Raman mapping also shows that 

there is a significant amount of carbon distributed outside of the filaments within the 

quartz matrix. Raman spectra from this carbon are almost identical to those from 

carbon found within and along the edge of the filaments (Fig. 14k), consistent with 

previous observations (Brasier et al., 2002). 

 

Reconstruction and three-dimensional visualisation of the FIB-SEM data highlights 

some features of the CHIN-3 filaments that are not visible in standard optical images 

or Raman maps. For example, filament 8 is seen to have a short branch close to its 

uppermost termination that is only visible from certain viewpoints in x,y,z space (Fig. 

15d,f, white arrow). This branch runs from the main long axis of the filament almost 

vertically down into the thin section. Hence, it is hidden from view when the filament 

is viewed in optical microscopy or visualised looking down the z-axis from above 

(compare Figs 15c and d). These 3-dimensional visualisations make it clear that this 

structure is a branch and cannot be attributed to folding of the filament (cf. Schopf 

quoted in Dalton, 2002). This filament also has an offset close to its lowermost 

termination that is seen in optical images and confirmed by the 3D model (Figs. 15a 
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and c, red arrow). Again, it is very apparent that the distribution of carbon as shown 

by these 3D FIB-SEM visualisations is very different to that seen in the lower spatial 

resolution 3D Raman visualisation (compare Fig. 15b with 15c-g). Filament 15 has a 

significant branch that runs from close to its medial point almost vertically down into 

the thin section (Fig. 16a-d). There are hints of this branch in the optical image and in 

the 3D model viewed down the z-axis (Fig. 16a-b, arrows) but the branch becomes 

much clearer, and an origin due to folding of the filament can be dismissed, when the 

3D model is rotated (Fig. 16c-d, branch circled). Likewise, filament 33 has a short 

branch extending from close to its medial point at a high angle down into the thin 

section (Fig. 16e-h). Again, there are hints of this branch in the optical image (Fig. 

16e, arrow) but it is much more evident in the 3D model (Fig. 16f-g, arrow). In all 

three of these filaments the sheet like nature of carbon distribution is also highlighted 

in the 3D visualisations (Fig. 15g, 16d,h arrows). 

 

4. Discussion 

4.1. Cellular nature of the Apex filaments? 

Schopf and Kudryavtsev (2012) state that resolution of the Apex microfossil 

controversy hinges on ‘whether the Apex fossils are cellular and composed of 

kerogenous carbon’. In a follow up comment Schopf and Kudryavtsev (2013) state 

there is an ‘extensive body of data establishing the biogenicity of the demonstrably 

cellular carbonaceous Apex fossils’. These statements about cellularity are now 

discussed in light of our new data. 
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Our new SEM and TEM data disprove the claim that the Apex filaments are cellular. 

Despite significant carbon being associated with the filaments, the distribution of this 

carbon is incompatible with cellular filamentous prokaryotes. 

 

When examined at the nano-scale, carbon associated with bona fide microfossils is 

restricted to particular domains that correspond to cell or sheath walls and is largely 

absent from the interior of the cells/sheaths (Oehler et al., 2006; Wacey et al., 2012). 

In well-preserved permineralised (i.e. three dimensionally preserved) primitive 

prokaryote specimens the carbon forms rounded continuous microstructures (see for 

example fig. 12 of Wacey et al., 2012) while in more poorly preserved specimens 

these microstructures may be interrupted by mineral growth, yet still retain an overall 

cylindrical or ovoid shape in cross section (see figs 13-14 of Wacey et al., 2012). 

Carbon is rarely redistributed far from the microfossil walls. In marked contrast, the 

carbon associated with the Apex filaments is equally abundant in the interior of the 

filaments as along the filament margins. There are no rounded continuous 

carbonaceous microstructures, with most carbon taking on a rather linear, sheet-like or 

spikey appearance. Furthermore, multiple sheet-like carbonaceous features traversing 

the width of the filament are not organised in a manner consistent with cross walls of 

a chain of cells. Not only are there far too many carbonaceous sheets to match the 

number of cell walls viable in filaments of this length, the gaps between the sheets are 

very variable, with some of the sheets <50 nm apart. For a bona fide chain of cells, the 

cross walls of adjacent cells would likely be at least an order of magnitude further 

apart. 
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The relative age of carbon with respect to the other mineral phases is also 

incompatible with fossilised microbial cells. The silicate mineral grains making up the 

majority of the filament appear to have been formed before much of the iron oxide 

and carbon and this is incompatible with patterns of precipitation of silicates within 

cells (cf. Wacey et al., 2014). Furthermore, the morphology and composition of the 

silicates are consistent with a hydrothermal formation mechanism and less consistent 

with biologically induced precipitation. It is possible that some primary carbonaceous 

material fell into the hydrothermal vents along with phyllosilicates and other minerals 

from the country rocks. However, the presence of carbon of identical thermal maturity 

outside of the filaments, along quartz grain boundaries, indicates that carbon 

distribution was heavily influenced by mineral crystallisation and any primary 

carbonaceous material has been significantly redistributed within the hydrothermal 

system. The presence of carbon along nano-fractures leading into some filaments 

shows that mobile carbon was present in the system for a considerable period of time 

after the initial formation of the filaments. This indicates, along with data from some 

recent studies (e.g., Sforna et al., 2014), that carbon now associated with Apex 

filaments is unlikely to have been fossilised in situ as previously claimed (Schopf and 

Kudryavtsev, 2012). 

 

4.2. How accurate is laser Raman mapping of ancient putative microfossils?  

As noted in Section 3.2, laser Raman mapping reveals significantly different 

distributions of carbon within the filaments to those obtained through TEM or SEM 

analysis. Both SEM and TEM analyses show that carbon mostly occurs as distinct 

narrow linear bands and sheets interspersed with phyllosilicates and occasional quartz 

(e.g., Figs 9-10, 12-13, 15g, 16d,h). In contrast, both 2D and 3D Raman maps of the 
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same filaments (Figs. 14, 15b) blur these linear carbon features into more 

homogenous carbon-rich zones, and alternating carbon-rich and carbon-poor zones 

are only resolved at the micrometer scale rather than the nanometer scale. In addition, 

Raman mapping does not accurately replicate the morphology of the filaments in 

three dimensions, frequently failing to resolve parts of the filaments, especially key 

features such as branches buried deeper within the thin section under the main axis of 

a filament (e.g., compare Fig. 15b with 15d). 

 

These differences can, in part, be attributed to the differences in spatial resolution 

capabilities of the three techniques. Both SEM and TEM are capable of resolving nm-

scale features. In this study, pixels in the SEM images mostly corresponded to around 

20 nm of material, while those in the TEM images were commonly less than 5 nm. 

This means that narrow carbonaceous features and other very small mineral grains 

could easily be resolved. Similarly, ChemiSTEM elemental mapping in the TEM can 

detect coatings of carbon ~5 nm thick, enabling the relative timings of e.g., Ba, Fe and 

C to be decoded.  In contrast, the lateral spatial resolution of our laser Raman 

instrument is only about 500 nm and the vertical resolution around 1 m, while that of 

previous Raman analyses is even coarser (e.g., Schopf et al., 2002, quoted lateral 

resolution <1 m, and vertical resolution 1-3 m). This in turn leads to less accurate 

maps and an amalgamation of tiny linear features into larger rounded zones. 

Furthermore, due to the effects of spherical aberration, Raman suffers from a decrease 

in spatial resolution and a drop in signal intensity with depth (Schopf et al., 2005), so 

that the accuracy of Raman maps deteriorates further with increasing depth within a 

thin section. It has been shown that, under typical Raman analysis conditions, data 

collected at a depth in excess of 15 m below the surface of a thin section will be 
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unusable for constructing Raman maps (Marshall and Olcott Marshall, 2013). Further, 

for the carbon G band, the depth at which accurate maps can be constructed may be 

limited to about 6 m below the surface (Marshall and Olcott Marshall, 2013). These 

limitations of Raman explain why features lying below the main axis of the filaments 

in CHIN-3 are not resolved in Raman maps, and why some filaments that plunge into 

the thin section cannot be mapped for carbon along their entire length. 

 

It has been claimed that there are ~1900 ‘cells’ in 174 microfossil specimens in 

studied samples of the Apex chert (Schopf and Kudryavtsev, 2013), yet Raman maps 

from only 6 specimens have ever been published (Schopf et al., 2002, 2007; Schopf 

and Kudryavtsev, 2009, 2012). Of these, two show specimens apparently made of 

solid carbon with no cellularity (figs 2g and 2i of Schopf et al., 2002), while another 

two show specimens mostly comprising carbon with occasional small angular gaps, 

interpreted to be filled with quartz, but incompatible with the morphology of cell 

lumina (figs 3h and 3k of Schopf and Kudryavtsev, 2012). Only two specimens 

contain features in Raman maps that resemble cell lumina (figs 4g-i and 4o-t of 

Schopf et al., 2007) and even here it is noticeable how thick the supposed ‘cell walls’ 

are compared to the inferred quartz-filled lumina, and how blocky or box-like the 

inferred lumina are compared to the equivalent light microscope images. It is also 

notable that the box-like ‘cell lumina’ are of a similar size to the quoted lateral spatial 

resolution of the Raman instrument and are, in some cases, smaller than the quoted 

vertical resolution of the instrument. Hence, a ‘cell lumina’ in a Raman map only 

equates to a handful of pixels or voxels in the image. In addition, the accuracy of the 

3D model of Primaevifilum amoenum (fig. 4g of Schopf et al., 2007) may be 

questioned because the focal spacing between successive images was 0.75 m but the 
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quoted vertical spatial resolution of the instrument was 1-3 m. Even without this 

caveat, the published 3D model of Primaevifilum amoenum does not demonstrate its 

cylindrical nature as claimed (Schopf et al., 2007) because it is never shown in 

multiple orientations and the cross sectional morphology of the filament is never 

illustrated. 

 

In many of the previous Raman maps of the Apex ‘microfossils’ one can observe 

carbon outside of the analysed filament. This is evident in both 2D maps (e.g., white 

material around the edges of figs 2f and 2i of Schopf et al., 2002) and sequential 

images of 3D datasets (e.g., pale grey material in fig. 4h-l of Schopf et al., 2007). 

Furthermore, some of the carbon at the margins of the filaments has a rather spikey 

morphology, appearing to extend from the filament in narrow linear bands into the 

surrounding quartz matrix (e.g., fig. 4s of Schopf et al., 2007). 

 

It was also claimed that Raman spectra could distinguish kerogenous carbonaceous 

materials having a biological precursor from those with abiotic formation mechanisms 

(Schopf et al., 2002). This claim has since been disproved by laser Raman specialists 

(e.g., Pasteris and Wopenka, 2003) and it has been shown that Raman cannot 

distinguish disordered biological material from other poorly ordered carbons produced 

by processes such as redox reactions during serpentinization (Pasteris, 1998), 

inorganic deposition from high temperature fluids (Wopenka and Pasteris, 1993), 

geological deposition from hydrothermal solutions (Brasier et al., 2002) or high 

temperature heating of precursor compounds (Beny-Bassez and Rouzaud, 1985). Of 

course, the Raman spectra of Apex carbon are consistent with a biological precursor 

origin. Hence, it is possible that some or all of the carbon within the Apex 
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‘microfossil’ type samples may ultimately have a biological origin, but it has been 

redistributed to such an extent that no primary biological morphologies have been 

preserved. This places the Apex chert carbon in a similar category to that of the c. 

3.82 Ga Akilia supracrustal rocks (Mojzis et al., 1996; Manning et al., 2006) in terms 

of providing only ambiguous geochemical evidence for life on the early Earth. 

 

Our current work, together with that of others cited above, shows that neither Raman 

point spectra nor Raman mapping is capable of determining the biogenicity of a 

putative carbonaceous microfossil. More crucially, this current work shows that 

misinterpretations of the structure of putative microfossils may occur when Raman 

and optical data are obtained in isolation from higher spatial resolution data. In the 

case presented here, selected CHIN-3 filaments could plausibly be interpreted to 

contain box-like ‘cell lumina’ when only Raman maps are considered (e.g., Fig. 14c-j; 

Fig. 15b). However, this hypothesis is disproven when SEM and/or TEM data from 

the same filaments is taken into account, and a mineralic origin for the filaments 

becomes clear. Previous reports of the ‘microfossil’ holotypes likely also suffer from 

these Raman-induced misinterpretations (e.g., Schopf et al., 2002, 2007; Schopf and 

Kudryavtsev, 2009, 2012). 

 

4.3. A new formation mechanism for the Apex ‘microfossils’ 

The data presented here requires us to reject a microfossil origin for the Apex 

filaments. Rather, the data points towards a multi-stage hydrothermally-controlled 

mechanism. We propose that this begins with hydrothermal production of K- and Ba- 

rich micas of the Warrawoona Group. These are known to include interstitial, micron-

sized potassium- and barium-rich micas precipitated in siliceous layers of the Marble 
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Bar Chert (Orberger et al., 2004, 2006; Van Kranendonk, 2006); and potassium micas 

found in hydrothermally altered and highly silicified Warrawoona Group basalts, both 

as pseudomorphs after plagioclase laths, needles and aggregates, and as micron-scale 

blades and fibers inter-grown with quartz grains in veinlets (Nakamura and Kato, 

2004; see their fig. 3f). Following transportation, these hydrothermally-produced 

micas were subjected to further hydrothermal alteration, in turn becoming hydrated 

phyllosilicates termed vermiculites (e.g. Prakash Narashima et al., 2006). These 

common hydrothermal alteration products have a similar crystal structure to the 

precursor micas but have additional hydrated cations (usually Mg) in the crystal 

lattice (De la Calle and Suquet, 1988). It is also notable that a very similar mineral 

(termed hydro-muscovite by the authors) has been reported as a common alteration 

product of both biotite and K-feldspar in the Kitty’s Gap chert of the nearby 3.45 Ga 

Panorama Formation (Oberger et al., 2006). The additional hydrated cations of 

minerals such as vermiculite give them the remarkable ability to exfoliate (i.e. 

undergo accordion-like expansion at right angles to their cleavage plane) when heated 

rapidly, as this additional water is converted to steam (Prakash Narashima et al., 

2006). Once exfoliated, the morphology of vermiculite strongly resembles a worm 

(hence, vermiculite from the Latin vermiculare ‘to breed worms’), which in turn 

matches the morphology of the filaments in the Apex chert.  

 

In the Apex hydrothermal system, pulses of hydrothermal activity would first alter the 

mica to vermiculite and subsequently heat the vermiculite causing exfoliation. Once 

exfoliated, vermiculite has a very high surface area and a high adsorption capacity 

resulting from the strong capillary action of slit-like pores between plate-like grains 

(Medeiros et al., 2009). Today vermiculite is used for a number of industrial purposes, 
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but of particular relevance here is its use for cleaning up oil spills (e.g., Zhao et al., 

2011). Likewise, in the Apex hydrothermal system, these microscopic worm-like 

vermiculite grains would have a strong affinity for any carbon that was moving 

around the system, and carbon would be adsorbed and held on the mineral surface. 

This is consistent with the distribution of carbon that we see in our TEM and SEM 

maps where it appears as linear or sheet-like features with a strong locational affinity 

for the slit like pores between adjacent phyllosilicate crystals.  

 

5. Conclusions  

We have here demonstrated that filamentous microstructures, previously thought to be 

Earth’s oldest microfossils, are in fact mineral artefacts comprising stacks of 

phyllosilicate grains with carbonaceous coatings.  

 

We have analysed new material from the Apex chert ‘microfossil locality’ that 

contains filaments identical to the holotypes and paratypes of at least 8 out of the 11 

taxa of the ‘Apex chert microbiota’ erected by Schopf (1993). By applying state-of-

the-art electron microscopy techniques (not permitted on the type specimens) to this 

new material we have revealed the 3D nano-structure and chemistry of the filaments. 

All filaments analysed are made up of multiple plate-like grains of a vermiculite-like 

phyllosilicate, with occasional intergrowths of quartz, enclosed within a quartz matrix. 

Several of the microstructures are not simple filaments as originally claimed, but are 

branched in ways that are incompatible with a primitive bacterial origin. 

 

Carbon occurs within the filaments as narrow (~10’s nm) bands and sheets in between 

the phyllosilicate grains with a distribution incompatible with known filamentous 
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prokaryote morphology. It also occurs as irregular coatings at the boundaries of the 

filaments, at junctions between quartz grains within the matrix, and in late stage nano-

fractures. The carbon Raman signature is comparable to previous studies, indicating 

that the carbon may ultimately have had a biological origin, but these data are equally 

consistent with the carbon forming during abiogenic hydrothermal synthesis. 

Whatever the primary origin of the carbon, the combined data indicate that it is either 

a late phase and/or has been redistributed to such an extent that no original biological 

morphology could be preserved. Rather than being fossilised prokaryote organisms, 

we interpret the filaments as resulting from the alteration and exfoliation of flakes of 

mica, plus the redistribution of barium, iron and carbon during repeated episodes of 

fluid movement within a hydrothermal system. 

 

This work has important implications for the evaluation of primitive life on Earth and, 

by extension, in extra-terrestrial settings. Herein, candidate microfossils that appear to 

pass most currently accepted biogenicity criteria when examined at the micrometer 

scale, have been shown to fail several criteria when examined at the sub-micrometer 

scale. Hence, future work should focus on the refinement of biogenicity criteria using 

bone-fide microfossils and definitive non-biological microfossil-like artefacts 

examined at the sub-micrometer scale. In this context we caution against the use of 

laser Raman mapping as stand alone chemical evidence to support the biogenicity of 

ancient putative microfossils. This technique lacks the spatial resolution to accurately 

map the distribution of carbon in such samples and should, at the very least, be 

supported by higher spatial resolution analytical techniques. 
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Figure Legends 

Fig. 1. Geological context for the Apex chert ‘microfossils’.  (a) Overview of the East 

Pilbara Terrane of the Pilbara Craton, Western Australia showing the location of the 

Apex chert at Chinaman Creek (arrow) (modified from Van Kranendonk et al., 2007 

and Wacey, 2009). (b) Stratigraphy of the Marble Bar greenstone belt, Pilbara, 

Western Australia. The Apex chert (unofficial name) is found in the lower portion of 

the Apex Basalt. (Age dates come from Thorpe et al., 1992; de Vries, 2004; plus a 

collection of Geological Survey of Western Australia zircon geochronological results 

summarised in Van Kranendonk et al., 2007) (c) Geological map of the north block of 

the Apex Basalt around Chinaman Creek in the Marble Bar greenstone belt. The 

‘microfossil’ locality is found in a black chert vein (N1) at some 50–100 m 

palaeodepth below the stratiform Apex chert. (d) Photograph looking approximately 

south of the north block of the Apex Basalt. Chinaman Creek is in the foreground 

with the N1 black chert vein outlined in red and the stratiform chert in pale yellow. 
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The ‘microfossil’ locality is marked with a star. (c-d) Modified from Brasier et al., 

2005. 

 

Fig. 2. Petrographic context for filaments in sample CHIN-3. The thin section is 

dominated by fissure fill fabrics (Fabric A of Brasier et al., 2005) including dark 

brecciated microcrystalline silica clasts rich in carbon and heavy metals (A1), plus 

subsequent paler generations of microcrystalline silica (A2-3) that infilled early voids 

within the breccia. Veins of clear microquartz (Fabric B of Brasier et al., 2005) are 

present elsewhere in the thin section, while clear microquartz also infills some larger 

cavities (B). Filaments directly equivalent to the ‘microfossil’ holotypes and paratypes 

of Schopf (1993) occur in early A fabrics, mostly A2. Examples of filaments analysed 

in detail in this study are numbered. Larger objects that may be part of the same 

morphological spectrum as the filaments are arrowed. 

 

Fig. 3.  Apex chert ‘microfossil’ holotypes (Schopf, 1993) and equivalent filaments 

from our new material (part 1 of 5). (a-b) Primaevifilum attenuatum holotype and 

accompanying interpretative sketch (Schopf, 1993). (c) Primaevifilum attenuatum 

holotype reimaged using Automontage software (Brasier et al., 2002) showing 

potential side-branch omitted from the image in (a) plus iron staining. (d-g) Filaments 

equivalent to Primaevifilum attenuatum from sample CHIN-3. Note the attenuation of 

filaments towards their apices, a feature that was erected as a defining characteristic 

of this species (Schopf, 1993, Table 1). Star indicates filament investigated using high 

spatial resolution electron microscopy in this study. (h-i) Primaevifilum delicatulum 

holotype and accompanying interpretative sketch (Schopf, 1993). (j) Primaevifilum 

delicatulum holotype reimaged using Automontage software (Brasier et al., 2002) 
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showing additional adjoining microstructures omitted in (h). Dashed box indicates 

area shown in (h). (k-n) Filaments equivalent to Primaevifilum delicatulum from 

sample CHIN-3. Small red numbers simply refer to the naming convention of the 

filaments. 

 

Fig. 4. Apex chert ‘microfossil’ holotypes (Schopf, 1993) and equivalent filaments 

from our new material (part 2 of 5). (a-b) Primaevifilum laticellulosum holotype and 

accompanying interpretative sketch (Schopf, 1993). (c) Primaevifilum laticellulosum 

holotype reimaged using Automontage software (Brasier et al., 2002). (d-f) Filaments 

equivalent to Primaevifilum laticellulosum from sample CHIN-3. Note pillow-shaped 

terminal ‘cells’ (arrows), a feature that was erected as a defining characteristic of this 

species (Schopf, 1993, Table 1). (g-h) Primaevifilum conicoterminatum holotype and 

accompanying interpretative sketch (Schopf, 1993). (i) Primaevifilum 

conicoterminatum holotype reimaged using Automontage software (Brasier et al., 

2002). (j-m) Filaments equivalent to Primaevifilum conicoterminatum from sample 

CHIN-3. Note conical terminal ‘cells’ (arrows), a feature that was erected as a 

defining characteristic of this species (Schopf, 1993, Table 1). Star indicates filament 

investigated using high spatial resolution electron microscopy in this study. Small red 

numbers simply refer to the naming convention of the filaments. 

 

Fig. 5. Apex chert ‘microfossil’ holotypes and paratypes (Schopf, 1993) plus 

equivalent filaments from our new material (part 3 of 5). (a-b) Archaeoscillatoriopsis 

grandis paratype and accompanying interpretative sketch (Schopf, 1993). (c) 

Archaeoscillatoriopsis grandis paratype reimaged using Automontage software 

showing microstructure to have a pale yellow colour (Brasier et al., 2011). (d-g) 
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Filaments equivalent to Archaeoscillatoriopsis grandis from sample CHIN-3. Star 

indicates that filament 96 was investigated using electron microscopy in this study, 

and the yellow line indicates the position of the extracted TEM wafer shown in Figure 

10c-g. (h-i) Archaeoscillatoriopsis disciformis holotype and accompanying 

interpretative sketch (Schopf, 1993). (j) Archaeoscillatoriopsis disciformis holotype 

reimaged using Automontage software (Brasier et al., 2002) showing that this filament 

has a side branch, possible lower extension, and appears to outline a rhombic crystal 

ghost (red arrow). Dashed box shows area imaged in (h). (k-n) Filaments equivalent to 

Archaeoscillatoriopsis disciformis from sample CHIN-3. Note the hemispheroidal to 

globular terminal ‘cells’ (black arrows), a feature that was erected as a defining 

characteristic of this species (Schopf, 1993, Table 1). Small red numbers simply refer 

to the naming convention of the filaments. 

 

Fig. 6. Apex chert ‘microfossil’ holotypes (Schopf, 1993) plus equivalent filaments 

from our new material (part 4 of 5). (a-b) Primaevifilum amoenum holotype and 

accompanying interpretative sketch (Schopf, 1993). (c) Primaevifilum amoenum 

holotype reimaged using Automontage software (Brasier et al., 2002) showing 

possible side branch (arrow). (d-g) Filaments equivalent to Primaevifilum amoenum 

from sample CHIN-3. Stars indicate filaments investigated using high spatial 

resolution electron microscopy in this study. (h-i) Examples of bifurcated cells and 

cell pairs (arrows) as stated in Schopf (1993) and reimaged using Automontage 

software (Brasier et al., 2011). (j-m) Examples of ‘bifurcated cells’ and ‘cell pairs’ 

(arrows) from filamentous microstructures within sample CHIN-3. (n) Filament 155, 

with yellow line indicating position of the extracted TEM wafer shown in Figure 10a-

b. (o) Filament 101, with yellow line indicating position of the extracted TEM wafer 
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shown in Figure 9. Small red numbers simply refer to the naming convention of the 

filaments. 

 

Fig. 7. Apex chert ‘microfossil’ holotype (Schopf, 1993) and unnamed paratypes 

(Schopf and Packer, 1987) plus equivalent filaments from our new material (part 5 of 

5). (a-b) Archaeoscillatoriopsis maxima holotype and accompanying interpretative 

sketch (Schopf, 1993). (c) Archaeoscillatoriopsis maxima holotype reimaged using 

Automontage software showing significant iron staining (Brasier et al., 2011). (d) 

Filament equivalent to Archaeoscillatoriopsis maxima from sample CHIN-3. (e) 

Unnamed microfossil from Schopf and Packer (1987). (f-g) Filaments equivalent to 

the object shown in (e) from sample CHIN-3. (h) Unnamed microfossil from Schopf 

and Packer (1987), (i-j) Filaments equivalent to the object shown in (h) from sample 

CHIN-3. (k) Unnamed microfossil from Schopf and Packer (1987). (l-m) Filaments 

equivalent to the object shown in (k) from sample CHIN-3. Star indicates filament 

investigated using high spatial resolution electron microscopy in this study. Small red 

numbers simply refer to the naming convention of the filaments. (n-o) Microstructures 

in CHIN-3 with a partial filamentous nature but morphology incompatible with an 

interpretation as microfossils. In the central portion of (n) large phyllosilicate mineral 

grains (arrow) have disrupted the filamentous shape, while in (o) the microstructure is 

somewhat larger than previously reported for any of the type microfossils. 

 

Fig. 8. Size frequency distribution of filaments from CHIN-3 (blue) compared to 

previous data from the Apex chert (red and green). Widths of modern prokaryote 

filaments and bona fide filamentous microfossils from the 1878 Ma Gunflint chert are 

also given for comparison (from Brasier et al., 2015). 
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Fig. 9. Chemistry of the filaments (part 1 of 2). (a) Dark-field scanning TEM image of 

an ultrathin (c. 100 nm) slice through filament 101 (see Fig. 6o for corresponding 

optical image). Note that in dark-field scanning TEM images low mass material is 

dark in colour and high mass material bright white. Hence, carbon will appear dark 

grey to black in such images. (b) False colour ChemiSTEM elemental overlay map of 

the area indicated in (a), where green is aluminium representing phyllosilicate, red is 

iron representing iron oxide, and yellow is carbon. The filament is seen to comprise 

book-like stacks of sheet-like phyllosilicate grains sitting in a quartz matrix (black). 

Carbon and iron are frequently found in between the sheets of phyllosilicate, as well 

as around parts of the margins of the filament and in the quartz matrix. (c-h) 

Individual false colour ChemiSTEM elemental maps of the filament showing that the 

phyllosilicate is potassium-rich and, in places, barium-rich. 

 

Fig. 10. Chemistry of the filaments (part 2 of 2). (a) Dark-field scanning TEM image 

of an ultrathin (c. 100 nm) slice through filament 155 (see Fig. 6n for corresponding 

optical image). (b) ChemiSTEM elemental map of the area indicated in (a), where 

green is aluminium representing phyllosilicate, red is iron representing iron oxide, and 

yellow is carbon. Note how carbon and iron are frequently found as planar features in 

between sheets of phyllosilicates, as well as around the margins of the filament and in 

the matrix (arrow). (c) Dark-field scanning TEM image of an ultrathin (c. 100 nm) 

slice through part of filament 96 (see Fig. 5g for corresponding optical image). (d) 

ChemiSTEM elemental map of the area indicated by green box in (c) where green is 

aluminium from phyllosilicate, red is iron from iron oxide, and yellow is carbon. 

Here, a number of quartz grains (q) are intermixed with the phyllosilicate sheets 
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within the filament. Again, carbon and iron are found in between phyllosilicate sheets 

and around the margins of the filament. (e) Close up ChemiSTEM carbon map of the 

region of filament 96 indicated by the yellow box in (c), emphasizing the way narrow 

strings or sheets of carbon (yellow) are interleaved with phyllosilicate and quartz 

grains (black). (f-g) Selected area electron diffraction patterns from the regions of the 

TEM wafer indicated in (c). DP1 is consistent with the [001] zone axis pattern from a 

2:1 phyllosilicate. DP2 shows a pattern of ring arcs, representative of a set of closely 

aligned grains of a 2:1 phyllosilicate with the beam incident parallel to the {00l} plane 

(modified from Brasier et al., 2015). 

 

Fig. 11. Carbon distribution and timing in the vicinity of the filaments. (a) Dark field 

scanning TEM image of the quartz matrix in the vicinity of filament 9 (the very edge 

of the filament can be seen in the bottom centre of the TEM image; see Fig. 14a for 

optical image of filament 9). Several micro-quartz grain boundaries are visible (dark 

curvi-linear features). (b) ChemiSTEM elemental map of the same area as (a) showing 

that carbon occurs at many of the quartz grain boundaries; iron is not associated 

within this carbon. In contrast, both iron and carbon occur at the margins of the 

aluminium-rich (green) phyllosilicate filament. (c-e) False colour three element 

overlays of parts of the filaments shown by the dashed boxes in Figs 9-10. In some 

zones, carbon (yellow) coats iron (red) in between sheets of phyllosilicates (green), 

while in others carbon (yellow) coats barium-rich phyllosilicate (blue) once again 

suggesting that carbon was the later phase. 

 

Fig. 12. Three dimensional morphology of filament 8 (equivalent to Primaevifilum 

amoenum holotype) and filament 15 (equivalent to Primaevifilum conicoterminatum 
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holotype) from sample CHIN-3. (a) Backscatter SEM images of 3 out of 155 

successive focused ion beam (FIB)-milled slices through filament 8. The space 

between slices is 200 nm so the 155 slices cover 31 m of material parallel to the 

main trend of the filamentous microstructure. The approximate location of each of the 

figured slices (S8, S88 and S137) is shown on the optical image. (b) Backscatter SEM 

images of 3 out of 135 successive FIB-milled slices through filament 15. The slice 

spacing is 200 nm so the 135 slices cover 27 m of material parallel to the main trend 

of the filamentous microstructure. The approximate location of each of the figured 

slices (S68, S83 and S109) is shown on the optical image. In both cases the data 

demonstrate the significant morphological variability at the nano-scale as one moves 

through the length of the filaments. In all slices, uniform mid-grey is the quartz 

matrix, slightly paler grey sheet-like material stacked together in complex book-like 

patterns is the phyllosilicates, black is carbon, and brightest grey/white is Fe- and Ba-

rich heavy minerals. Carbon is clearly seen to coat many of the individual 

phyllosilicate sheets in the book-like stacks. Carbon also occurs at several grain 

boundaries in the quartz matrix and in a number of nano-cracks that, in places, join 

the filaments. 

 

Fig. 13. Three dimensional morphology of filament 33 (equivalent to Primaevifilum 

attenuatum holotype) and filament 97 (equivalent to Primaevifilum amoenum 

holotype) from sample CHIN-3. a) Backscatter SEM images of 3 out of 200 

successive FIB-milled slices through filament 33. The space between slices is 200 nm 

so the 200 slices cover 40 m of material parallel to the main trend of the filamentous 

microstructure. The approximate location of each of the figured slices (S33, S85 and 

S123) is shown on the optical image. (b) Backscatter SEM images of 3 out of 168 
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successive FIB-milled slices through filament 97. The slice spacing is 200 nm so the 

168 slices cover 33.6 m of material parallel to the main trend of the filamentous 

microstructure. The approximate location of each of the figured slices (S45, S133 and 

S143) is shown on the optical image. As in Fig. 12, uniform mid-grey is the quartz 

matrix, slightly paler grey sheet-like material stacked together in complex book-like 

patterns is the phyllosilicates, black is carbon, and brightest grey/white is Fe- and Ba-

rich heavy minerals. Carbon is clearly seen to coat many of the individual 

phyllosilicate sheets in the book-like stacks. Carbon also occurs at several grain 

boundaries in the quartz matrix and in a number of nano-cracks that, in places, join 

the filaments. Filament 33 is seen to branch at depth below the surface of the thin 

section (see slice 85, ‘branch’). 

 

Fig. 14. Raman images and spectra from CHIN-3 filaments. (a) Transmitted light 

photomicrograph of filament 9. (b) Raman G band intensity map of the area marked 

by the blue box in (a), analyzed 6 m below the surface of the thin section. (c) 

Transmitted light photomicrograph of filament 97. (d) Raman G band intensity map of 

the area marked by the blue box in (c), analyzed 3 m below the surface of the thin 

section. (e) Transmitted light photomicrograph of filament 38. (f) Raman G band 

intensity map of the area marked by the blue box in (e), analyzed 6 m below the 

surface of the thin section. (g) Transmitted light photomicrograph of filament 3. (h) 

Raman G band intensity map of the area marked by the blue box in (g), analyzed 4 

m below the surface of the thin section. (i) Transmitted light photomicrograph of 

filament 4. (j) Raman G band intensity map of the area marked by the blue box in (i), 

analyzed 3 m below the surface of the thin section. Arrows in b, d, f and h indicate 

box-like carbon-poor zone of the filaments. Note that only sub-portions of a given 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

filament can be mapped at a single focal depth. (k) Typical Raman spectra in the 1
st
 

order carbon region from CHIN-3 filaments and matrix. The spectra are broadly 

comparable to one another and to previous Raman analyses of the Apex ‘microfossils’ 

(Brasier et al., 2002; Schopf et al., 2002). Variations in the D band shape may be due 

to interference from the 1320 cm
-1

 hematite band in the vicinity of the filaments (cf. 

Marshall and Olcott Marshall, 2013). 

 

Fig. 15. Three-dimensional reconstruction of filament 8. (a) Transmitted light 

photomicrograph of filament 8. (b) 3D visualization of Raman images from filament 8 

showing carbonaceous composition (red) and box-like mineral-filled compartments 

(arrows). (c) 3D visualization of FIB-SEM images from filament 8 shown in the same 

orientation as (a-b). Red arrow shows offset in filament, also seen in the optical 

image. (d-f) 3D FIB-SEM model rotated to show additional complexities to the 

filament not seen in (a-b). Of particular note is the small branch extending down 

below the main body of the filament (arrows in d,f). (g) Higher magnification 

visualization showing the sheet-like nature of much of the carbon in the filament 

(arrows). 

 

Fig. 16. Three-dimensional reconstruction of filaments 15 and 33. (a) Transmitted 

light photomicrograph of filament 15. (b) 3D visualization of FIB-SEM images from 

filament 15 shown in the same orientation as (a). Note that a small side feature can be 

seen in both images (arrows). (c-d) 3D FIB-SEM model rotated to show the additional 

thick branch extending down below the main body of the filament (dashed circles). 

Note also the linear sheet-like nature of much of the carbon (arrow in d). (e) 

Transmitted light photomicrograph of filament 33. (f) 3D visualization of FIB-SEM 
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images from filament 33 shown in the same orientation as (e). Note that a small side 

feature is hinted at in the light micrograph (arrow) and is seen more clearly in the 3D 

model (arrow). (g) 3D FIB-SEM model rotated to more clearly demonstrate the short 

thick branch extending down below the main body of the filament (arrow). (h) Higher 

magnification visualization showing the sheet-like nature of much of the carbon, 

especially at the narrow end of the filament (arrow). 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 
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Figure 13 
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Figure 14 
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Figure 15 
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Figure 16 
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Graphical abstract 
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Research highlights 

 

 New sub-micrometer analyses of the famous Apex chert ‘microfossils’ are presented 

 Candidate filamentous ‘microfossils’ comprise stacks of phyllosilicate grains 

 The distribution of carbon is inconsistent with fossilised prokaryote cells 

 Carbon also occurs throughout the quartz matrix and in late stage fractures 

 ‘Microfossils’ are thus reinterpreted as hydrothermally mediated mineral artefacts 


