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Abstract. Glauberman’s Z∗-theorem and analogous statements for odd primes

show that, for any prime p and any finite group G with Sylow p-subgroup S,

the centre of G/Op′ (G) is determined by the fusion system FS(G). Building
on these results we show a statement that seems a priori more general: For any

normal subgroup H of G with Op′ (H) = 1, the centralizer CS(H) is expressed

in terms of the fusion system FS(G) and its normal subsystem induced by H.

Keywords: Finite groups; fusion systems; Glauberman’s Z∗-theorem.

Throughout p is a prime. Glauberman’s Z∗-theorem [3] and its generalization
to odd primes, which is shown using the classification of finite simple groups (see
[7] and [4]), can be reformulated as follows:

Theorem A. Let G be a finite group with Op′(G) = 1, and S ∈ Sylp(G). Then
Z(G) = Z(FS(G)).

We refer the reader here to [2] for basic definitions and results regarding fusion
systems; see in particular Definitions I.4.1 and I.4.3 for the definition of central
subgroups and the centre Z(F). A more common formulation of the Z∗-theorem
states that, assuming the hypothesis of Theorem A, we have t ∈ Z(G) if and only
if tG ∩ S = {t} for every element t ∈ S of order p. Given a normal subgroup H of
a finite group G, a Sylow p-subgroup S ∈ Sylp(G), and an element t ∈ S of order
p, one can apply the Z∗-theorem with H〈t〉 in place of G to obtain the following
corollary: Provided Op′(H) = 1, we have tH ∩ S = {t} if and only t ∈ CS(H). In
this short note, we use Theorem A to give a less obvious characterization of CS(H).

Given a saturated fusion system F on a finite p-group S and a normal subsystem
E of F on T 6 S, Aschbacher [1, (6.7)(1)] showed that the set of subgroups X of
CS(T ) with E ⊆ CF (X) has a largest member CS(E). He furthermore constructed
a normal subsystem CF (E) on CS(E), the centralizer of E in F ; see [1, Chapter 6].
Note that CS(E) depends not only on S and E but also on the fusion system F in
which both S and E are contained.

The definition of CS(E) generalizes the definition of Z(F) since CS(F) = Z(F).
Moreover, for every normal subgroup H of a finite group G with Sylow p-subgroup
S, FS∩H(H) is a normal subsystem of FS(G) by [2, I.6.2]. Thus, the following
theorem, which we prove later on, can be seen as a generalization of Theorem A.

Theorem B. Let G be a finite group and let S be a Sylow p-subgroup of G. Let
H �G with Op′(H) = 1. Then CS(FS∩H(H)) = CS(H).

In the statement of Theorem B it is understood that CS(FS∩H(H)) is formed
inside of FS(G). The result says in other words that, under the hypothesis of
Theorem B, for any X 6 S with FS∩H(H) ⊆ CFS(G)(X), we have X 6 CS(H).
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This is not true if one drops the assumption that H is normal in G as the following
example shows: Let G := G1 × G2 with G1

∼= G2
∼= S3. Set p = 3, S = O3(G),

Si := O3(Gi) and let R be a subgroup of G of order 2 which acts fixed point freely
on S. Set H := S1 o R. Then S1 = S ∩H ∈ Syl3(H) and FS1

(H) = FS1
(G1) ⊆

CFS(G)(S2) as S2 = CS(G1). However, S2 66 CS(H) by the choice of R.

Theorem B was conjectured by the second author of this paper in [6]. Our proof
of Theorem B builds on Theorem A and the reduction uses only elementary group
theoretical results. Essential is the following lemma, whose proof is self-contained
apart from using the conjugacy of Hall-subgroups in solvable groups.

Lemma 1. Let G be a finite group with Sylow p-subgroup S and a normal subgroup
H. Let P 6 S such that P ∩ H is centric in FS∩H(H). Then for every p′-
element ϕ ∈ AutG(P ) with [P,ϕ] 6 P ∩ H and ϕ|P∩H ∈ AutH(P ∩ H), we have
ϕ ∈ AutH(P ).

Proof. This is [5, Proposition 3.1]. �

Proof of Theorem B. We assume the hypothesis of Theorem B. Furthermore, we
set F := FS(G), T := S ∩ H and E := FT (H). If a homomorphism ϕ between
subgroups A and B of T is induced by conjugation with an element h ∈ H, then
ϕ extends to ch : ACS(H) → BCS(H) and ch restricts to the identity on CS(H).
Thus E ⊆ CF (CS(H)), so by the definition of CS(E), we have CS(H) 6 CS(E). To
prove the converse inclusion, choose t ∈ CS(E). Define:

G0 := H〈t〉 and S0 := T 〈t〉,
so that plainly S0 is a Sylow p-subgroup of G0 and F0 := FS0

(G0) is a saturated
fusion system on S0. Note also that Op′(G0) = 1 as Op(G0) = Op(H) and Op′(H) =
1 by assumption.

By Theorem A, Z(F0) = Z(G0) 6 CS(H). It thus suffices to prove t ∈ Z(F0). As
t ∈ CS(E) 6 CS(T ), t ∈ Z(S0). Let P be a subgroup of S0 which is centric radical
and fully normalized in F0. Then t ∈ Z(S0) 6 CS0

(P ) 6 P . It is sufficient to prove
[t,AutF0(P )] = 1. For as P is arbitrary, Alperin’s fusion theorem [2, Theorem 3.6]
implies then t ∈ Z(F0). As P is fully F0-normalized, AutS0(P ) ∈ Sylp(AutF0(P ))
and thus AutF0

(P ) = AutS0
(P )Op(AutF0

(P )). Note that [t,AutS0
(P )] = 1 as

t ∈ Z(S0). Hence, it is enough to prove

[t, Op(AutF0(P ))] = 1.

Let ϕ ∈ AutF0
(P ) be a p′-element. SinceOp(H) = Op(G0), we haveOp(AutF0

(P )) =
Op(AutH(P )). In particular, ϕ ∈ AutH(P ) and thus ϕ|P∩T ∈ AutH(P ∩ T ) =
AutE(P ∩T ). As t ∈ P 6 S0 = T 〈t〉, we have P = (P ∩T )〈t〉. Moreover, t ∈ CS(E)
implies that E ⊆ CF (〈t〉). Hence, ϕ|P∩T extends to ψ ∈ AutF (P ) with the property
that tψ = t. Note that o(ψ) = o(ϕ|P∩T ) and thus ψ is a p′-element as ϕ has order
prime to p. Moreover, plainly [P,ψ] 6 P ∩ T and ψ|P∩T = ϕ|P∩T ∈ AutH(P ∩ T ).
Since E � F0, P ∩ T is E-centric by [1, 7.18]. Now it follows from Lemma 1
that ψ ∈ AutH(P ). Thus, χ := ϕ ◦ ψ−1 ∈ AutH(P ) 6 AutF0

(P ). Clearly
χ|P∩T = Id as ψ extends ϕ|P∩T . Moreover, using that H is normal in G, we obtain
[P, χ] 6 [P,AutH(P )] = [P,NH(P )] 6 P ∩H = P ∩ T . Hence, by [2, Lemma A.2],
χ ∈ CAutF0

(P )(P/(P ∩ T )) ∩ CAutF0
(P )(P ∩ T ) = Op(AutF0

(P )) = Inn(P ) as P is

radical in F0. As Inn(P ) 6 AutS0
(P ) and [t,AutS0

(P )] = 1, it follows tχ = t. By
the choice of ψ, also tψ = t and consequently tϕ = t. Since ϕ was chosen to be an
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arbitrary p′-element in AutF0
(P ) and Op(AutF0

(P )) is the subgroup generated by
these elements, it follows that [t, Op(AutF0(P ))] = 1. As argued above, this yields
the assertion. �
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