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Abstract 

Meaning relatedness affects storage of ambiguous words in the mental lexicon: unrelated 

meanings (homonymy) are stored separately whereas related senses (polysemy) are stored as 

one large representational entry. We hypothesized that word frequency could have similar 

effects on storage, with low-frequency words having high representational overlap and high-

frequency words having low representational overlap. Participants performed lexical decision 

or semantic categorization to high- and low-frequency nouns with few and many senses. 

Results showed a three-way interaction between frequency, task type, and polysemy. Low-

frequency words showed a polysemy advantage with lexical decision but a polysemy 

disadvantage with semantic categorization, whereas high-frequency words showed the 

opposite pattern. These results confirmed our hypothesis that relatedness and word frequency 

have similar effects on storage of ambiguous words. 

Key words: polysemy, lexical ambiguity, relatedness, word frequency, representational 

overlap 
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Several researchers (e.g., Kawamoto, 1993; Klein & Murphy, 2001; Klepousniotou et al., 

2008) have suggested that ambiguity might be a continuum ranging from words with several 

non-overlapping entries to those with many strongly-overlapping ones. One feature which is 

commonly investigated regarding this continuum is relatedness (e.g., Azuma & Van Orden, 

1997; Rodd et al., 2002). On one end of the continuum are homonyms, words with few 

unrelated meanings. An example of a homonym would be the word ‘bank’ which can refer 

either to the side of a river or to a financial institution. On the other end are polysemous 

words with their many strongly-related senses. 

Polysemy is a pervasive element of language, since almost every word can be 

interpreted in several slightly different ways. For example, the word ‘hook’ can refer to 

similar objects (compare coat hooks and fish hooks) but also to hook-shaped trajectories such 

as by a road or a boxer. In addition, the word can be used as verb, referring to actions 

performed with hook-like objects (‘to hook a fish’) or in hook-like trajectories (‘The road 

hooks to the right.’). The word has even been metaphorically extended to talk about 

addictions (‘hooked on a feeling’). Similar patterns can be found for almost any word: they 

form a cloud of interrelated senses. 

Whereas homonymous meanings are hypothesized to be stored as separate entries, 

polysemous senses are thought to form one large entry due to overlap (e.g., Rodd et al., 

2004). This storage difference would then result in opposite reaction time patterns for the two 

types of ambiguity: a polysemy advantage due to larger shared activation space but a 

homonymy disadvantage caused by smaller individual activation spaces. Although there has 

been experimental support for this hypothesis (e.g., Beretta et al., 2005; Rodd et al., 2002, 

Experiment 3; Tamminen et al., 2006), there have also been studies that found a polysemy 

advantage but no homonymy disadvantage (e.g., Klepousniotou & Baum, 2007; Rodd et al., 

2002, Experiment 2). Therefore, it seems that overlap may be affected by factors other than 
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relatedness. The current study was conducted to investigate one of these factors: word 

frequency. 

Kawamoto (1993) suggested that frequency may play a role in whether senses 

develop separate representations in the lexicon: the more often they are encountered, the 

more likely it is that they develop their own entries. This hypothesis fits with the findings of 

differential effects for homonymy and polysemy: it seems likely that unrelated meanings are 

encountered separately more often than related senses purely because they occur in very 

different contexts and are more easily distinguished from each other. However, the interesting 

question is whether frequency alone can influence ambiguity effects. In particular, we were 

interested to see whether frequency affects the processing of polysemous words because we 

suspected (due to the reasons stated above) that homonyms develop separate entries by 

default whereas this may not be the case for polysemous words. Therefore, we expected to 

find frequency effects for the processing of words with many related senses. 

A second variable of interest was task type. Rodd et al. predicted that the effect of 

polysemy should reverse into a processing disadvantage (Rodd et al., 2002; 2004) or 

disappear (Rodd et al., 2002) when participants do not merely perform lexical decision but 

have to process words for meaning in a semantic categorization task. Similarly, a parallel 

distributed processing (PDP) model by Armstrong & Plaut (2008) predicted an ambiguity 

advantage when a task does not require precise interpretation of a word but an ambiguity 

disadvantage when a specific interpretation is needed. However, whereas Rodd et al. 

expected both patterns for high-overlap words (polysemy), Armstrong and Plaut found a 

processing advantage for high-overlap words (polysemy) when a specific interpretation was 

not required but a processing disadvantage for low-overlap words (homonymy) when a 

specific interpretation was required. We wanted to investigate whether our manipulation of 

sense overlap by varying frequency would also result in differential processing patterns for 
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lexical decision and semantic categorization. Therefore, we added task type as a second 

manipulation. 

The current study showed a two (frequency: low/high) by two (task type: lexical 

decision/semantic categorization) by two (polysemy: few or many senses) design. With 

lexical decision, we wanted to test predictions for low- and high-frequency words. We 

predicted a polysemy advantage for low-frequency words because interpretations would not 

have been encountered often enough to develop separate representations, therefore presenting 

one large activation surface. This finding would be in line with both Rodd et al. (2002) and 

Armstrong and Plaut (2008). In contrast, predictions for high-frequency words could go two 

ways. Assuming that high frequency leads to several smaller individual activation surfaces, 

we either expected a polysemy disadvantage (Rodd et al.) or no effect at all (Armstrong and 

Plaut). With semantic categorization, a polysemy disadvantage for low-frequency words 

would support predictions by Rodd et al. whereas a polysemy disadvantage for high-

frequency words would support the model proposed by Armstrong and Plaut. 

Method 

Participants 

Sixty undergraduate students at the University of Aberdeen participated in return for course 

credit. Thirty of them (21 female) took part in the lexical decision task; the remaining half 

(17 female) performed the semantic categorization task. Age ranged from 17 to 31 (MLEX = 

20; MSEM = 22.5). All participants had normal or corrected-to-normal vision, and were native 

speakers of English. 

Design and materials 

The study encompassed a mixed 2 x 2 x 2 design: frequency (low/high) by task 

(lexical/semantic) by polysemy (few/many senses). Data were analysed by means of linear 



Polysemy in the Mental Lexicon 5 

 

mixed-effect models (e.g., Dixon, 2008; Jaeger, 2008; Baayen, 2008). Frequency and 

polysemy were manipulated within participants while task type varied between participants. 

The target stimuli consisted of 120 concrete object words. Interested readers are referred to 

Supplementary Materials A for this stimulus set as well as a description of its properties. 

Filler stimuli were included for both task conditions. For lexical decision, the 120 filler words 

consisted of concrete nouns for living beings (e.g., ‘snail’). Fillers for the semantic 

categorization condition consisted of 55 concrete object words and 175 concrete animal 

words. Thus, in both conditions half of the word stimuli referred to living beings, the other 

half to objects. Finally, the lexical decision task also required inclusion of 240 nonwords 

(legal nonwords and pseudo-homophones). These were matched in length to the words, and 

were created by replacing a letter in existing words (that were different from the word 

stimuli). 

Procedure 

Participants were presented with a series of letter strings. They responded by pressing one of 

two buttons: word/nonword (lexical decision condition) or object/animal (semantic 

categorization condition). On each trial, a fixation cross appeared for 500 ms, followed by 

presentation of the letter string (Courier New, 28 points). The trial ended when the participant 

had responded or 3000 ms after presentation of the word. Following the end of the trial, the 

screen remained blank for 1000 ms before presentation of the next fixation cross. Order of 

presentation was randomised for each participant. Prior to the experimental session, 

participants performed a few practice trials for which they received speed and accuracy 

feedback. The experiments were presented by means of a Dell PC (Windows XP), using E-

Prime software, and responses were recorded via an Eprime SRBox. The experimental 

session took around 15 minutes to complete. 
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Analyses 

Data were analysed by means of linear mixed-effect models (Dixon, 2008; Jaeger, 2008; an 

extensive description of the method can be found in Baayen, 2008; for a user-friendly 

overview tailored towards researchers without a strong computational background, see 

Cunnings, 2012). An overview of the analyses can be found in Supplementary Materials B. 

Analyses for both reaction times and error rates always included the three effects of interest 

(frequency, task type, and polysemy) as well as their interactions. 

Results 

Target trials were excluded from analyses if reaction times were 2.5 standard deviations 

above/below each participant’s mean per condition (2.92% of trials). Of the remaining trials, 

participants’ mean error rate ranged from 0% to 10% (M = 3.61%). For error rates, the 

model’s fit was significantly increased by adding random slopes (χ2 (11) = 44.14, p < .001). 

This best-fitting model (N= 6990, log-likelihood = -956.54) showed no significant effects for 

any of the main effects, nor of the interactions, all ps ≥ .428. A summary of the error rate 

results has been provided in Table 1. Error trials were excluded for the reaction time 

analyses. For those filtered data, participants’ mean reaction times ranged from 424 to 720 ms 

(M = 547 ms). Reaction time data have been summarized in Table 2. 

(tables 1 and 2 about here) 

For reaction times, adding random slopes significantly increased the model’s fit (χ2 

(11) = 53.74, p < .001). Therefore, the best fitting model for reaction times (N = 6738, log-

likelihood = 1887.96) included both random intercepts and random slopes. Of the main 

effects, only frequency reached significance, t = -4.86, p < .001. The effect of task type did 

not reach significance, t = 1.51, p = .131. The same was true of polysemy, t = -1.46, p = .144. 

All interaction effects reached significance. Frequency interacted with task type, t = 3.14, p = 

.002, as well as polysemy, t = 2.21, p = .027. In addition, task type interacted with polysemy, 
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t = 2.49, p = .013. Most importantly, there was a three-way interaction between all three 

factors, t = -3.39, p = < .001. To shed more light on this three-way interaction, we conducted 

separate analyses for low- and high-frequency words. 

For low-frequency words, the model’s fit was significantly improved by adding 

random slopes (χ2 (4) = 38.03, p < .001). The same was true for high-frequency words (χ2 (4) 

= 14.08, p = .007). The best-fitting model for low-frequency words (N = 3323, log-likelihood 

= 871.08) showed no main effects for either task type, t = 1.47, p = .142, or polysemy, t = -

1.27, p = .204. However, there was an interaction between these two variables, t = 2.28, p = 

.023. As can be seen in Table 2, low-frequency words showed a 15 ms polysemy advantage 

with lexical decision, but a 15 ms polysemy disadvantage with semantic categorization. The 

best-fitting model for high-frequency words (N = 3415, log-likelihood = 959.55) showed 

significant main effects of task type, = 3.84, p < .001 and polysemy, t = 2.04, p = .041. 

Importantly, the interaction between task type and polysemy again reached significance, t = -

2.60, p = .009. However, the pattern went into the opposite direction as had been found for 

low-frequency words. High-frequency words showed a 14 ms polysemy disadvantage with 

lexical decision, but a 10 ms polysemy advantage with semantic categorization. 

 Finally, we excluded several alternative explanations for the current findings by 

checking contribution to variance by any of the six matched word properties (bigram 

frequency, number of neighbours, familiarity, concreteness, word length, and number of 

syllables) as well as two unmatched word properties (age of acquisition and semantic 

diversity). Only two word properties significantly contributed to variance: familiarity (t = -

3.14, p = .002) and bigram frequency (t = -2.38, p = .017). Effects of the remaining word 

properties did not reach significance (all ps ≥ .131). The extended model’s fit was again 

significantly improved by including random slopes (χ2 (22) = 65.26, p < .001). The new 

model that included the two extra variables (N = 6738, log-likelihood = 1902.07) showed 



Polysemy in the Mental Lexicon 8 

 

effects that were very similar to those for the original model. Task type and polysemy still did 

not affect reaction times (both ps ≥ .084). The effect of frequency still reached significance, 

as did all interactions (all ps ≤ .028). Thus, most of the eight additional word properties did 

not affect reaction times at all, while inclusion of familiarity and bigram frequency did not 

affect the current findings. 

Discussion 

The current study was conducted to test the hypothesis that word frequency affects 

representational overlap in the mental lexicon. To this end, we had participants perform 

lexical decision and semantic categorization tasks for low- and high-frequency words with 

few or many senses. We found a three-way interaction between word frequency, task type, 

and polysemy. Low-frequency words showed a polysemy advantage with lexical decision, 

but a polysemy disadvantage with semantic categorization. In contrast, high-frequency words 

showed the opposite pattern: a polysemy disadvantage with lexical decision, but a polysemy 

advantage with semantic categorization. 

Firstly, the current findings confirmed our prediction that lexical decision would 

result in a polysemy advantage for low-frequency words with lexical decision. This finding is 

in line with Rodd et al. (2002) as well as Armstrong and Plaut (2008): both teams predicted 

that high sense overlap should result in a processing advantage when words do not have to be 

processed for meaning. However, whereas these researchers focused on overlap caused by 

meaning relatedness, we posited that word frequency can affect representational overlap as 

well. The remaining effects provided support for this hypothesis. 

Secondly, our findings supported the low-overlap prediction for high-frequency 

words: lexical decision for high frequency words resulted in a polysemy disadvantage. This 

novel pattern would be hard to explain if meaning overlap was only affected by relatedness. 

In that case, both low- and high-frequency words would show a polysemy advantage with 
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lexical decision. However, the current findings make perfect sense under the hypothesis that 

even related senses develop separate representations if they have been encountered 

frequently. Thus, results are in line with Rodd et al. (2002) who predicted that weak 

representational overlap should result in a processing disadvantage. Again, whereas Rodd et 

al. posited this pattern for unrelated meanings (homonymy), our findings support the notion 

that this pattern will also occur for related senses (polysemy) as long as they are encountered 

frequently. 

Thirdly, current results supported representational overlap predictions for the 

semantic categorization task. Semantic categorization resulted in a polysemy disadvantage 

for low-frequency words. These findings fit with predictions by Rodd et al. (2002) who 

proposed that high representational overlap (polysemy) should turn into a disadvantage with 

semantic categorization due to the fact that a specific interpretation was now required. Again, 

the fact that we found this pattern for low-frequency but not high-frequency words supports 

our hypothesis that frequency affects representational overlap, with senses of low-frequency 

words overlapping more strongly than those for high-frequency words. 

Fourthly, apart from the findings for the low-frequency words in the lexical decision 

task, the current results are not in line with those found by Armstrong and Plaut (2008). In 

their data, low representational overlap (homonymy) did not affect reaction times when no 

specific interpretation was required whereas high representational overlap (polysemy) did not 

affect reaction times with high precision requirements. Although their findings did show 

effects of both homonymy and polysemy with a task requiring moderate precision, assuming 

such moderate precision requirements for our current study would still not explain the 

different reaction time patterns for our lexical and semantic tasks. Thus, it seems that 

processing depth (current study) and processing precision (Armstrong and Plaut) affect word 

recognition in different ways. 
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Finally, our results showed a novel and unexpected pattern: high-frequency words 

showed a polysemy advantage with semantic categorization. As far as we are aware, similar 

processing advantages have not been found for homonymy when words need to be processed 

more deeply. Based on Armstrong and Plaut (2008), we actually suspected we might find an 

opposite pattern: a polysemy disadvantage for high-frequency words in the semantic 

categorization task. However, several theories (see Twilley & Dixon, 2000) propose that the 

commonly-found homonymy disadvantage may be the result of reinterpretations after early 

commitments. Interestingly, under our low-overlap hypothesis for high-frequency words, this 

processing pattern may have worked out to the readers’ benefit in our semantic categorization 

task. If high-frequency words have developed low-overlap representations for senses, it may 

be that one of these senses is more dominant than the other. This seems particularly likely for 

our semantic categorization task, since our target stimuli were explicitly selected to have 

dominant object interpretations and participants were encouraged to categorize these words 

as either objects or animals. Therefore, it might be that participants first selected the most 

dominant interpretation, and ended up being correct in the majority of cases so 

reinterpretation was not needed. We wonder whether a similar processing advantage may also 

be found for homonyms when their dominant interpretation is contextually relevant. 

The current study supported our hypothesis that word frequency affects 

representational overlap in a way similar to relatedness: low frequency (like polysemy) 

results in high representational overlap, whereas high frequency (like homonymy) leads to 

low representational overlap. Furthermore, it showed that interactions of frequency and 

polysemy result in differential processing with lexical decision and semantic categorization. 

Finally, we found indications that low representational overlap may not always hinder word 

processing; depending on meaning dominance and contextual relevance, having to commit 

early may actually be advantageous. 
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Table 1. Mean error rates. 

frequency  task type   polysemy 

     few senses many senses all 

        

low  lexical   4.8 (21.5) 5.7 (23.2) 5.3 (22.4) 

low  semantic   4.0 (19.7) 4.7 (21.1) 4.4 (20.4) 

low  all   4.4 (20.6) 5.2 (22.2) 4.8 (21.4) 

        

high  lexical   2.3 (15.0) 3.1 (17.3) 2.7 (16.2) 

high  semantic   2.2 (14.6) 2.1 (14.2) 2.1 (14.4) 

high  all   2.2 (14.8) 2.6 (15.8) 2.4 (15.3) 

        

all  lexical   3.6 (18.5) 4.4 (20.5) 4.0 (19.6) 

all  semantic   3.1 (17.3) 3.4 (18.1) 3.2 (17.7) 

all  all   3.3 (17.9) 3.9 (19.3) 3.6 (18.6) 

Note. Error rates as percentages (with standard deviations in brackets). 

  



Table 2. Mean reaction times. 

frequency  task type   polysemy 

     few senses many senses all 

        

low  lexical   547 (128) 532 (116) 539 (122) 

low  semantic   572 (132) 587 (136) 579 (134) 

low  all   560 (130) 559 (130) 559 (130) 

        

high  lexical   505 (105) 519 (114) 512 (110) 

high  semantic   564 (131) 554 (131) 559 (131) 

high  all   535 (122) 537 (124) 536 (123) 

        

all  lexical   526 (118) 525 (115) 525 (117) 

all  semantic   568 (131) 570 (134) 569 (133) 

all  all   547 (127) 548 (127) 547 (127) 

Note: Reaction times in ms (with standard deviations in brackets). 
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Supplementary materials A: 

Stimulus information 

The target word set consisted of 120 concrete non-homonyms primarily referring to objects. 

A summary of their properties has been provided in Table 1. The stimuli themselves are 

presented in Table 2. Both tables can be found at the end of this manuscript. Below we 

briefly describe construction of the stimulus set. 

Previous studies (e.g., Rodd et al., 2002) have shown that defining ambiguity by 

means of questionnaires increases the risk of conflating homonymy and polysemy because 

the two co-occur. Therefore, several variables were defined by means of the Wordsmyth 

Dictionary-Thesaurus (WDT; Parks, Ray, & Bland, 1998). This online dictionary provides 

separate entries for meanings and senses, and lists them in order of frequency of use (see 

Parks et al., 1998; http://www.wordsmyth.net/?mode=history). Words were selected if only 

one meaning was provided, and if the first (or only) sense entry was a concrete noun 

interpretation. 

The first independent variable frequency was defined by means of lemma frequency 

counts taken from the CELEX database (Baayen, Piepenbrock, & Van Rijn, 1993). In text 

and tables, the variable will be reported as frequency per million. However, for the analyses 

we used the log-transformed scores (as recommended by e.g. Whaley, 1978). Word 

frequencies ranged from 2 per million (‘leek’) to 353 per million (‘car’), with a mean of 38.5 

per million. The second independent variable polysemy was defined by counting the number 

of sense entries in the WDT. Number of senses for the included words ranged from 1 (e.g., 

‘barn’) to 21 (‘crown’), with a mean of 4.87. After we had constructed our stimulus set, the 

WDT changed their formatting. Whereas transitive and intransitive verbs were originally 

consistently listed as separate sense entries, now they are sometimes combined into one entry 

and sometimes listed separately. However, when we re-counted the sense entries while 
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consistently treating transitive and intransitive verbs as separate senses, we found that the 

number of sense entries remained the same as before. Therefore, this formatting change did 

not affect our definitions or analyses. 

Conditions were closely matched for 6 variables: bigram frequency and number of 

neighbours (Baayen et al., 1993), familiarity and concreteness (Coltheart, 1981), as well as 

word length and number of syllables. As can be seen in Table 1, quite similar numerical 

values were obtained for all conditions. Statistically, word properties were indeed closely 

matched between all polysemy conditions (all Fs < 0.19, all ps > .665). However, as 

mentioned in the main text, the same was not true for the frequency conditions (many ps < 

.05). To ensure that this issue did not distort findings, we checked whether any of these word 

properties contributed to models’ fits. In addition, contributions were also checked for two 

additional variables for which information was not widely available when the stimulus set 

was being constructed: age of acquisition (Kuperman, Stadthagen-Gonzalez, & Brysbaert, 

2012) and semantic diversity (Hoffman, Lambon Ralph, & Rogers, 2013). More details about 

these additional analyses can be found in Supplementary Materials B. 
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Table 1. Descriptive statistics for target stimuli Experiments 1 and 2 

 Few senses  Many senses 

 low high 

all 

 low high 

all 

 frequency frequency  frequency frequency 

        

Example sword knife   shield crown  

        

N 30 30 60  30 30 60 

Senses 2.17 3.20 2.68  6.13 7.97 7.05 

Frequency 12.07 66.27 39.17  12.50 63.27 37.88 

Familiarity 5.08 5.58 5.33  5.12 5.51 5.32 

Concreteness 5.99 6.01 6.00  6.00 6.02 6.01 

Letters 4.97 4.73 4.85  5.27 4.37 4.82 

Syllables 1.33 1.33 1.33  1.50 1.10 1.30 

Bigram frequency 8289 7278 7783  7806 7114 7460 

Neighbours 4.93 6.83 5.88  2.83 8.50 5.67 
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Table 2. Target stimuli 

Few Senses Many Senses 

Low Frequency Higher Frequency Low Frequency Higher Frequency 

badge apple anchor belt 

barn basket balloon bench 

blouse bell bean bomb 

broom blanket birch bone 

cage boat bucket boot 

cigar bottle cherry brick 

coffin bread chestnut button 

couch bullet coin cake 

flask car cork chain 

grape card cradle coat 

helmet carpet diamond crown 

leek cheek flute gun 

mattress chest fork hammer 

medal clock glove key 

onion desk gown leaf 

oven doll horn nail 

peach egg jewel pan 

pear engine kite plate 

plank fruit lemon rod 

poster hat needle ship 

sofa hut olive shoe 

spool jacket pearl sink 

spoon knife plum skirt 

stair lamp ribbon stone 

statue map saddle table 

sword missile shield tank 

twig phone shovel tent 

vase toe ski thumb 

vine tray spear train 

yacht weapon trumpet trunk 
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Supplementary Materials B: 

Analyses 

Data were analysed by means of linear mixed-effect models.  Target responses were excluded 

if they were 2.5 standard deviations above/below each participant’s mean for the eight 

conditions. In the reaction time analyses only correct trials were included. Reaction times 

were log-transformed (as recommended in Baayen, 2008). We were interested in the main 

effects of frequency (low/high), task type (lexical/semantic), and polysemy (few/many 

senses), as well as their interactions. These were all included by default. Eight additional 

(“covariate”) variables were included to exclude alternative explanations and increase 

statistical power (by reducing noise): the six matched word properties (bigram frequency, 

number of neighbours, familiarity, concreteness, word length, and number of syllables) and 

two additional variables for which information was not available when the stimulus set was 

being constructed (age of acquisition and semantic diversity). However, these additional 

variables were only included if they significantly improved a model’s fit (see below). The 

word properties (being continuous variables) were centred to reduce collinearity within the 

model (Jaeger, 2010). 

Random intercepts were added for participants and items. In addition, it was checked 

whether a model’s fit was significantly improved by including random slopes: over-item 

slopes (for task type) and over-subject slopes (for polysemy, frequency, and their interaction). 

Models were fitted by means of the forward “best-path” approach (as in e.g. Baayen, 2008; 

Cunnings, 2012), in which random slopes are added or subtracted on the basis of ANOVAs 

between models. As can be seen in the main text, contributions of random slopes were 

significant in all current models, so they were included. 

We checked for any potential confounding effects of the matched and unmatched 

word properties by including them as additional variables in a second model. Inclusion of 
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these covariate variables was determined by first including all eight of them in an initial 

model. They were only included in the final model if they significantly contributed to 

variance. Since covariates were only added to the second analysis to ensure that they did not 

influence findings, their effects will not be extensively discussed in the main text. However, 

it will be reported which ones were included and whether their inclusion affected results. 

Currently there is no agreement about the optimal way to estimate significance for 

effects obtained with the function lmer(), so as suggested by Cunnings (2012) we decided to 

use a formula from Baayen (2008, p248): 

p = 2 * (1 - pt(abs(X), Y-Z)). 

In this formula, X is the t-value, Y is the number of observations, and Z is the number 

of fixed effect parameters including the intercept (so Z comes down to the total number of 

fixed effects plus 1). Binomial data such as accuracy scores can be analysed with the function 

glmer(), which in contrast to the function lmer() does provide significance levels. Therefore, 

no additional calculations were needed for accuracy data. 
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