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Abstract

Ski boards, helmets are sandwich structures and prone to core indentation failure under lo-

calised loads. In this work, axisymmetric response of a circular composite sandwich plate

subjected to indentation by a rigid flat/hemi-spherical punch is examined. Flat punch is

assumed to impose an axisymmetric line load, whereas spherical indentor imposes point

load. Small deformation response is investigated by solving the equilibrium equations ex-

actly, while large deformation response is estimated using Berger’s method. The indentation

behavior is predicted numerically by modelling core as (i) a continuum foam and (ii) a plate

on foundation with reaction force (i.e. interaction problem) by employing user interaction

subroutine in commercial finite element package Abaqusr. Derived analytical estimates for

the indentation loads and the corresponding finite element predictions are found to be in good

agreement with the experimental measurements.

Keywords: Composite Sandwich Plates; Non-linear behavior; Indentation; Flat/Spherical

Punch

1. Introduction

Sandwich construction has gained acceptance as sport sticks [1] and ski boards [2], pro-

tective helmet (head-gear) because of their superior specific strength and stiffness compared
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to monolithic plates made from either core or faceplate materials. The protective head-gear

(helmet) is also a sandwich structure. The core of the sandwich structures is susceptable to

indentation failure due to its relatively low modulus and strength when loaded locally. Stress

and failure analysis of sandwich structures under quasi-static localized loads and low velocity

impact using experimental tests can be expensive while finite element (FE) predictions are

computationally intensive. Hence, there is a need for analytical modeling of the deformation

and failure behavior of composite sandwich plates for design purposes. The impact of the

relevant studies can be seen from the recent works [3–6] in a wide range of applications.

Considerable research has been carried out on the response of sandwich beams and plates

subjected to quasi-static indentation loading [7]. Current methodology differs from the higher

order sandwich plate theory (HSPT) [8] in which the core is considered to be elastic, while

in current study the emphasis is on the post core indentation failure behavior. Several inden-

tation models [7, 9–12] ignored the bottom faceplate deflection to effectively investigate the

local deformation and post indentation failure response in the sandwich structures and these

studies have shown reasonable comparison with experiments for circular sandwich plates.

These contributions motivate the methodology implemented in the present study. The fol-

lowing discussion is confined only to sandwich plates with composite faceplates, which are

usually considered as linear elastic in nature. To investigate the local indentation of the sand-

wich plates, the core is in general treated as a deformable foundation (viz., elastic; rigid

perfectly plastic (RPP); or elastic-perfectly plastic, EPP). Existing indentation failure models

from the literature are summarized in Table 1 for flat punch (FP) as well as spherical punch

(SP) loading.

2



Table 1 Literature on the indentation response of composite sandwich plates.
Punch Deformation Core Literature Remarks and assumptions

Spherical Small Elastic [13]†‡§] Arbitrary elastic foundations.
(SP) [14, 15]†§] Strength of materials approach.

[16]§‡ Exact solutions in terms of Bessel
functions.

[17]] Three dimensional elasticity solu-
tion. Punch loading pressure and
contact radius are variables.

[18]§ Contact pressure from SP loading is
taken from elastic-half space anal-
ogy.

RPP [11]§ Solved equilibrium differential equa-
tions in terms of Bessel function.

EPP [11]§ Modified RPP foundation solution to
achieve EPP foundation response by
adding the elastic limit displacement.

Large Elastic [19]†‡§ Solved using perturbation methods.
[20]‡] Closed form series solutions were

derived.
RPP [10]]\ Bending rigidity and in-plane dis-

placements of the faceplate were ne-
glected. The SP is assumed to be a
FP of 0.4 × SP radius.

[11]§ Simultaneous differential equations
were solved numerically.

[12]§\ Simplistic function was assumed for
in-plane displacement.

EPP [9]†§ Approximate solution was proposed
by scaling the indentation load from
small deformation theory.

Flat Small Elastic [13]‡§,[15]†,‡ Flat punch loading was modelled as
axisymmetric line load.

[18]§ Contact pressure distributions result-
ing from punch loading were taken
from elastic-half space analogy.

RPP, EPP None in literature.
Large Elastic [19]‡§,[15]†,‡ Flat punch loading was modelled as

axisymmetric line load.
RPP [21]§\ Extended analysis in [10] to arbitrary

faceplate composite layup.
EPP None in literature.

† Winkler’s foundation. ‡ Two-parameter foundation. ] Cartesian coordinate system.
§ Polar coordinate system. \ Principle of minimum total potential energy.
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The governing differential equations of equilibrium resulting from small deformations

can be solved exactly. However, incorporating large deformations to the faceplate leads to

two simultaneous coupled differential equations [15, 19] which can not be solved exactly. In

estimating the large deformation behavior analytically, one could adopt to: (i) approximate

methods, e.g., Ritz method, Galerkin’s method, Perturbation methods, Fourier series solu-

tions [10, 12, 19, 20], (ii) scaling the load estimated from the small deformation theory using

membrane stiffness [9], (iii) solving the differential equations numerically [11] or (iv) un-

coupling the differential equations with appropriate assumptions as stated in [22]. Sandwich

plates with metallic faceplates which are elastic-plastic need a different methodology (due to

formation of plastic hinges on the faceplate) as described in [23, 24] and are not considered

in the current study.

Most of the existing studies focused on the indention of sandwiched plates subjected to

spherical punch (SP) loading, in which the faceplate in-plane displacements were neglected.

Studies on the indentation behavior of sandwich plates with flat punch (FP) loading are

limited [21]. None of the contributions in open literature, e.g. [9, 11] provides a closed

form solution, that considers the midplane displacements of the faceplate when subject to

indentation loading. However, a few existing closed form solutions for load-displacement

response [10, 12, 21] are based on too-simplistic assumptions of either neglecting midplane

displacements of the faceplate or based on polynomial approximations for the displacement.

Hence in the current work, small deformation solutions for a sandwich structure subject

to indentation loading are derived by exactly solving the corresponding differential equations

for a flat punch (FP). Then, analytical solutions resulting from large deformations are derived

for the indentation of circular composite sandwich plates by a FP including radial inplane

displacement using Berger’s method [22]. Subsequently, the analytical solution of the defor-

mation of sandwich plate subjected to indentation load by a spherical punch (SP) is derived

from the corresponding solution of FP [14].
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2. Analytical modeling

To investigate the indentation response of a sandwich plate subjected to localized loads,

the global bending of the sandwich plate is avoided by considering a sandwich plate resting

on a rigid backing as shown in Figure 1a. Consider a circular sandwich plate with a radius R,

consisting of a core of thickness c, bonded between two identical elastic faceplates each of

thickness t and subjected to indentation load via a rigid flat indenter of radius a. The Young’s

modulus, Poisson’s ratio and compressive strength of the core are Ec, νc and σc, respectively.

The faceplates are made from a material with Young’s modulus E f , Poisson’s ratio ν f and

equivalent bending rigidity D f expressed as [9]: D f ≈
√

D11D22(η+1)/2 where η =

(D12 +2D16)/
√

D11D22 and Di j are the components of the bending stiffness matrix. For an

isotropic plate D f ≈ E f t3/[12(1−ν2
f )]. A polar coordinate system r− z is defined at the

intersection of the longitudinal axis of the punch and the mid surface of the top faceplate of

the sandwich plate. It is assumed that the radius of the plate is much larger than the punch

radius, i.e., R� a and the core thickness is much larger than the faceplate thickness (c >> t).

Hence, R and c have negligible effect on the overall local indentation behavior. The deformed

shape of the faceplate does not conform to the punch shape after the initial deformation [25].

Hence, the applied indentation load P is distributed over the circumference of a circle of

radius a as an axisymmetric line load with magnitude p = P/(2πa). Consequently, the contact

interaction between the faceplate and the indenter in the region 0 ≤ r ≤ a is not considered

in the analytical modeling. The central displacement corresponding to the punch load P is δ.

2.1. Small deformation of a plate resting on an EPP foundation

The purpose of the analysis presented in this section is to determine three important as-

pects of an indentation problem: (i) the load-displacement response of the indentor, (ii) the

local deformed profile of the top faceplate when subjected to an arbitrary indentation load

P = 2πap and (iii) the load versus plastic radius relationship.
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(a) Sandwich plate on rigid base. (b) Small deformation (FP): EPP

(c) Large deformation (FP): RPP (d) Large deformation (SP): RPP
Figure 1 Schematic representation of a sandwich plate subjected to indentation loading.

At the start of the indentation, the core behaves as elastic foundation. The deformation

behavior of a plate on an elastic foundation is given by Panc [26] as

wi(r) =
Pl2

4D f
[f0 (a)u0(r)−g0 (a)v0(r)] ; (1a)

wo(r) =
Pl2

4D f
[u0 (a) f0(r)−v0 (a)g0(r)] (1b)

where, wi and wo are the deflection profiles of the top faceplate inside and outside the loading

radius a, respectively, l (= 4
√

D f /k) is a characteristic length, k is the foundation modulus

(defined in Eq. (2)), un (r) =Re Jn
(
reiψ/l

)
, vn (r) = Im Jn

(
reiψ/l

)
, fn (r) =Re H(1)

n
(
reiψ/l

)
,

and gn (r) = Im H(1)
n
(
reiψ/l

)
are real valued functions, Jn is the Bessel’s function of first kind

of nth index, H(1)
n , H(2)

n are the first and second Hankel’s functions of nth index, respectively

and ψ = π/4. Conventionally, foundation modulus is defined as k = Ec/c. However, as the
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core thickness tends to infinity (c→ ∞), the foundation modulus tends to zero (k→ 0), which

is physically unrealistic. Hence, to limit the value of the k for thick core, the following limits

are used [9]:

k =
Ec

c∗ (1−ν2
c)

; where c∗ = min
(
c, c3D) ; c3D =

128
27

[
2D f

(
1−ν2

c
)

Ec

]1/3

(2)

As the indentation progresses, the core starts to yield when the indentation load and the corre-

sponding punch displacement reaches their limiting values (according to maximum through-

thickness stress criterion) [25]:

δel =
σc

k
; PFP

el =
4 D f σc

k l2
1

u0(a) f0(a) − v0(a) g0(a)
(3)

For load, P ≥ PFP
el or punch displacement, δ ≥ δel , the core yields and behaves as an

EPP foundation as shown in Figure 1b, in which λ is the plastic radius (equals to a at the

onset of plastic yield). For an indentation load P ≥ PFP
el , the plastic zone λ will propagate

outward beyond the punch radius a i.e. λ > a. Within the plastic zone 0 ≤ r ≤ λ, the core

has been compressed to its yield strength and thus exerts a uniform pressure of magnitude

σc on the top faceplate. However, in the region r ≥ λ, the deformation of the core is still

elastic and the core exerts a load of magnitude kw on the top faceplate. For simplicity, we

divide the deformation region into three zones: (i) the plastic zone in the interval 0 ≤ r ≤

a with transverse displacement wpi, (ii) the plastic zone in the a ≤ r ≤ λ with transverse

displacement designated as wpo, and (iii) the elastic zone in the interval λ ≤ r ≤ ∞ with a

transverse displacement denoted by we. The governing differential equations for the three

zones are given respectively by

for 0≤ r ≤ a : D f ∇
2
r ∇

2
r wpi = −σc (4a)

for a≤ r ≤ λ : D f ∇
2
r ∇

2
r wpo = −σc (4b)

for r ≥ λ : D f ∇
2
r ∇

2
r we + k we = 0 (4c)

where ∇2
r is the Laplacian operator in polar coordinates. Ensuring finite deflection and

zero slope at r = 0 and vanishing deflection at r = ∞, the general solutions to Eq. (4) are
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shown as

for 0≤ r ≤ a : wpi(r) = B1 r2 + B2 −
σc r4

64 D f
(5a)

for a≤ r ≤ λ : wpo(r) = B3 r2 ln(r) + B4 ln(r) + B5 r2 + B6 −
σc r4

64 D f
(5b)

for r ≥ λ : we(r) = B7 f0 (r) + B8 g0 (r) (5c)

where B j ( j =1 to 8) are the integration constants determined from the continuity in trans-

verse displacement, slope, bending moment and shear force at r = a and r = λ, and the

derived constants B j are given in Appendix A.

Additionally, the unknown load P versus indentation radius λ relationship is established

using the condition wpo(λ) = σc/k to obtain

P =
π

2 η12

{
8
√

2 l2
η7
(
σc λ

2 − 2 η11
)
−
√

2 η8

[
σc λ

4 − 2
Pi

el
π

(
λ

2 − a2)]
+ 16 λ l

(
η6 η11−2 σc l2

η5
)}

(6)

where expressions for η j ( j = 1 to 13) are given in Appendix A.

The above solution can be used to analyse the small deformation of a sandwich plate

subjected to localized indentation. For a given plastic radius, λ, the indentation load P is

estimated from Eq. (6), and the corresponding punch displacement δ = wpi(a) is found from

Eq. (5a). To establish the load-displacement response: a range is assumed for plastic radius

e.g. λ = a to 2.5a and for each value of λ, Eq. (5a) at r = a and Eq. (6) are evaluated to obtain

the corresponding punch displacement and indention load, respectively.

To establish the deformation profile of the top faceplate at a plastic radius, λ; the inden-

tation load, P obtained from Eq. (6) is used to evaluate the deformation profile from Eqs.(5a)

-(5c) for a range of r values of interest e.g. r = 0 to 2.5 a.

2.2. Large deformation theory

In this section, large deformation of the faceplate is considered using the approximate dif-

ferential equations given by Berger [22]. Initially the load-displacement relations are derived

for FP loading and these are subsequently modified by making the punch radius a = 0 to get
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the corresponding solutions for the spherical punch.

2.2.1. Plate on RPP foundation subjected to FP loading

Berger [22] assumed that the second invariant of midplane strains can be neglected with-

out loss of much accuracy in predicting the large deformation behavior. This assumption led

to two uncoupled differential equations governing in-plane (u) and out-of-plane (w) displace-

ments and hence can be solved individually. The uncoupled governing differential equations

for FP loading can be expressed as:
d
dr

(
∇

2
r w
)
−α

2 dw
dr

=− σcr
2D f

+
PH (r−a)

2πrD f
(7a)

1
r

d
dr

(ru) =
α2t2

12
− 1

2

(
dw
dr

)2

(7b)

where, α is the Berger’s constant, H (r−a) is the Heaviside step function equals to zero

if r < a and one if r ≥ a. Equation (7a) provides the bending deflection while Eq. (7b)

governs the stretching deformation of the faceplate. The general solution to the Eq. (7a),

after imposing finite deflection and zero slope at r = 0 can be shown to be

w(r,α) =C1I0(αr)+C2 +
σcr2

4D f α2 +
PH (r−a)

2πD f α2

[
ϒ1− ln

( r
a

)]
(8)

where, Ci are the integration constants to be determined from boundary conditions at r = λ, In

is the modified Bessel’s function of first kind of nth index and ϒi are defined in Appendix B.

Expanding the Heaviside function in Eq. (8) and substituting it in Eq. (7b) and successive

integration gives the in-plane displacement functions ui and uo for the inside and outside the

loading radius respectively, as

ui(r,α) =
α2t2r

24
+

C3

r
−

[
C2

1α2ϒ3r
4

+
C1rσcI2(αr)

2α2D f
+

σ2
cr3

32D2
f α4

]
(9a)

uo(r,α) =
α2t2r

24
+

C4

r
−

{
C2

1α2ϒ3r
4

+
C1rσcI2(αr)

2α2D f
+

σ2
cr3

32D2
f α4

+P2

[
K0(αa)I0(αa)ϒ4

16
√

π5D2
f α2

+ϒ6

]
− Pσcr (1+2ϒ5)

8πD2
f α4

+P

[
C1I0(αa)ϒ4

8
√

π3D f
+ϒ7

]}
(9b)

where C3 and C4 are the integration constants and Kn is the modified Bessel’s function
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of second kind of nth index, functions ϒi are provided in Appendix B. Since the in-plane

displacement is zero at the center of the plate i.e. ui(0) = 0, C3 becomes zero. The integration

constant C4 is calculated using the continuity condition ui(a) = uo(a). Additional unknown

load versus plastic radius, P−λ, relation is found using the zero radial moment condition i.e.

Mr(λ) = 0 and can be shown to be

P(α) =
πλσc

α

2I1(αλ)−αλI0(αλ)

I0(αa)− I0(αλ)
(10)

The unknown Berger’s constant, α can only be found numerically, by solving uo(λ) = 0.

With this, the analytical model for the large deformation of a sandwich plate subjected to FP

loading is obtained as follows: for a given λ (> 0), the indentation load P(α) from Eq. (10)

is substituted into Eq. (9b) to numerically solve for α using uo(λ) = 0 boundary condition.

The corresponding punch displacement δ(α) = w(0) is estimated from Eq. (8).

In the limiting case as α→ 0, Eqs. (8)-(10) reduce to the following small deformation

solutions

w(r) =
PH (r−a)

8πD f

[
(r2 +a2)ln

( r
a

)
+a2− r2

]
− σcr4

64D f
+

C′1r2

4
+C′2 (11a)

P =
πλ4σc

2(λ2−a2)
(11b)

where

C′1 =
P

4πD f

[
1− a2

λ2 −2ln
(

λ

a

)]
+

σcλ2

8D f
(12a)

C′2 =
Pλ2

16πD f

[
1− a2

λ2 −2
a2

λ2 ln
(

λ

a

)]
− σcλ4

64D f
(12b)

The solution for a sandwich plate resting on a RPP foundation subject to FP loading is

thus established. To estimate the solution for the plate resting on a EPP foundation from the

derived RPP foundation solution, a correction to the punch displacement is applied by adding

an elastic limit displacement δel .

2.2.2. Plate on RPP foundation with SP loading

In pratice the contact radius of the spherical punch increases with respect to increase in
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indentation depth. However in the present work effect of contact radius is eliminated based

on the assumption: SP is assumed to impose a point load [10, 11]. As mentioned earlier,

the solution for SP is derived for a central concentrated load, P by making flat punch radius,

a to zero as done by [14]. The assumed point load can be viewed as the static resultant

contact force between the SP and the faceplate. The difference between the solution based on

the point load and that for the SP which incorporate the contact radius should, according to

Saint-Vennat principles, become very small at sufficiently large distance from the point load.

The governing differential equations for SP loading were not derived explicitly, instead

the limit a→ 0 is applied to Eqs. (8)-(10). Using the limiting forms I0 ≈ 1, I1 ≈ αr/2 and

I2(0)≈ α2r2/8 and neglecting all the singular terms resulting from Kn(αa) gives

w(r,α) = F1I0(αr)+F2 +
σcr2

4D f α2 −
P

2πD f α2 [K0(αr)+ ln(r)] (13a)

w(0,α) = F1 +F2 +
P

2πD f α2

[
ln
(

2
α

)
− γ

]
(13b)

u(r,α) =
α2t2r

24
+

F3

r
−

{
F2

1 α2ϒ′3r
4

+
F1rσcI2(αr)

2α2D f
+

σ2
cr3

32D2
f α4

+P2
ϒ
′
6−

Pσcr
(
1+2ϒ′5

)
8πD2

f α4

+P

[
F1ϒ′4

8
√

π3D f
+ϒ

′
7

]}
(13c)

P(α) =
πλσc

α

2I1(αλ)−αλI0(αλ)

1− I0(αλ)
(13d)

where γ (= 0.577) is the Euler’s constant and the integration constants Fi, Γ′1 and ϒ′i are

defined in Appendix C. The unknown Berger’s constant can only be found numerically by

solving u(λ) = 0 boundary condition. With this, analytical model for the large deformation

of a sandwich plate subjected to SP loading is studied as follows: for a given λ (> 0), the

indentation load P(α) from Eq. (13d) is substituted into Eq. (13c) to numerically solve for α

using u(λ) = 0. The corresponding punch displacement δ(α) = w(0) is estimated from Eq.

(13b).

In the limiting case as α→ 0, Berger’s solution is found to agree with the small deforma-
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tion equilibrium solution as

w(r) =
P

16πD f

[
2r2ln

( r
λ

)
+λ

2− r2
]
− σcλ4

64D f

(
1− r2

λ2

)2

(14a)

P =
πλ2σc

2
(14b)

However, to apply the derived RPP foundation solution to EPP foundation, one has to off-

set the punch displacement by elastic limit displacement δel = σc/k corresponds to a limiting

load of PSP
el = 8σc

√
D f /k .

3. Experimental studies

This section describes the experimental methodology used to validate the analytical so-

lution presented above. Closed cell Divinycellr poly-vinyl chloride (PVC) foams (supplied

by Diab Inc. Thailand) with nominal densities 35 kg/m3 (H35), 45 kg/m3 (H45), 80 kg/m3

(H80) and 100 kg/m3 (H100) were used as core materials for sandwich plate construction.

Uniaxial compression experiments were performed under displacement control at 1 mm/min

using the specimens of 50 mm × 50 mm in the raise direction of thicknes. The engineering

stress-strain response resembles that of an elastic perfectly-plastic (EPP) behavior and the

measure properties are listed in Table 2.
Table 2 Properties of foams

Foams∗

Property H35 H45 H80 H100
Density (kg/m3) 35 45 80 100
Young’s Modulus (MPa) 22 35 49 52
Yield strength (MPa) 0.5 0.65 1.2 2
Yield strain (%) 2.273 1.857 2.449 3.846
∗ For all the foams an elastic Poisson’s ratio of 0.3, plastic
Poisson’s ratio of 0.0 are used.

Quasi-isotropic composite faceplates with [-60/0/60]ns (n = 1,2) configuration was cured

from unidirectional E-glass/epoxy prepregs (supplied by Weihai Guangwei Composites Co.,

Ltd., China). Thickness of quasi-isotropic laminates [-60/0/60]1s and [-60/0/60]2s are mea-

sured to be 0.7 mm and 1.3 mm, respectively. The in-plane Young’s modulus and Poisson’s
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ratio of the quasi-isotropic laminates as reported in our previous work are 25.3 GPa and 0.24,

respectively [25].

Sandwich plates were constructed by bonding the quasi-isotropic laminates to the foam

core using Hysol EA 9309.3NA epoxy paste adhesive (manufactured by Henkel). Two to

four layers of foam blanks were bonded to construct a nominal core of thickness 50 mm and

cured under a pressure of 1 kPa for four days. A faceplate was bonded to the foam core only

on the indentation side of the sandwich plate.

The sandwich plate (of 200 mm x 200 mm) was clamped using two mild steel plates

(of size 300 mm × 300 mm using a central circular hole of 160 mm diameter) on the top

and bottom to get a circular plate geometry in experiments. Indentation experiments were

conducted with a flat punch of diameter 20 mm and a spherical punch of diameter 10 mm

by placing the sandwich plate on a flat rigid base. All the indentation experiments were

conducted on Instron 5567 under displacement control at a nominal speed of 1 mm/min.

4. Finite element modeling

The accuracy of the analytical models for the indentation behavior of the sandwich plates

is verified by comparing them with finite element (FE) predictions. To predict the indentation

response of the sandwich plates, axisymmetric FE models were developed in ABAQUS CAE

version 6.11. The computational geometry along with the loading and boundary conditions

are shown in Figure 2. The faceplates and core were meshed using four node bilinear ax-

isymmetric reduced integration elements (CAX4R) while the flat punch (FP) was modeled as

an analytical rigid body. To understand the implications of the assumed analytical analogy,

indentation simulations are also conducted using ring punch (RP). The core was meshed with

100 elements in the thickness direction and faceplate has 6 elements in thickness direction,

while maintaining 900 elements in the radial direction for both faceplate and core. Stiffness

hourglass control was used to avoid spurious energy modes resulting from reduced integra-

tion. Smooth displacement loading was applied to the punch to simulate the quasi-static
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loading condition. Friction less contact is defined between faceplate and rigid punch.

(a) (b)
Figure 2 FE modelling strategies of the sandwich plate. (a) Continuum foam (CF) model and (b) Interaction
(UINTER) model.

The core was modeled using two methodologies: (a) continuum foam (CF) model in

Figure 2a, and (b) interaction (UINTER) model in Figure 2b. In the CF model, the core

was modeled using crushable foam constitutive model of Deshpande and Fleck [27]. Elastic

properties of the foams are listed in Table 2. After the elastic limit, foam behavior is perfectly

plastic with isotropic hardening. In the second methodology, i.e. UINTER model, the core

and bottom faceplate are not modelled explicitly rather the reaction force (from the foam

core) is applied on the top faceplate bottom surface (usually termed as a slave surface in

interaction terminology). This is achieved using Abaqus user interaction subroutine UINTER

with input variables k and σc. To define the interaction, a dummy rigid surface (termed

as master surface to represent bottom faceplate) is modeled to interact with a deformable

slave surface. All degrees of freedom of the rigid master surface are constrained. Elastic

foundation is simulated by applying the “k w” pressure on the slave surface. In simulating

the EPP foundation, if “k w” is greater than σc then a reaction pressure σc is applied on the

top faceplate. Hence, this is considered as a maximum (through-thickness) normal stress

yield criterion, similar to the yield criterion used in the analytical modeling.
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To be consistent with the analytical formulations, small or large deformation theory sim-

ulations were carried out by switching the non-linear geometry (i.e. NLGEOM) option off or

on, in Abaqus software.

Elastic foundation (CF and UINTER) and EPP (UINTER) simulations were carried out

using implicit solver as UINTER subroutine can only be used with implicit solver. However,

the EPP (CF) simulations were simulated using explicit solver.

5. Results and discussion

In this section, analytical stiffness and load-displacement estimates for the plate on elas-

tic and EPP foundation are compared against the experimental measurements and FE predic-

tions. Initially, the elastic solution is used as a benchmark solution to assess the stiffness pre-

diction from different FE methodologies under consideration and validity of the assumption:

FP imposes an axisymmetric line load. Later, the load-displacement estimates are compared

against the FE predictions.

5.1. Elastic foundation: stiffness response

A comparison of stiffness estimates among different strategies are listed in Table 3. The

maximum percentage difference between the flat punch (FP) and ring punch (RP) (in both

CF and UINTER models) is ≈ 2.6%, which decreases with increasing foam density. Hence,

FP can be replaced with an axisymmetric line load.
Table 3 Comparison of stiffness (N/mm) prediction between different methodologies using indentation analogy.

Methodology
FE

Anal. Continuum foam UINTER
Foam Eq. (1) FP error† RP error‡ error§ FP error† RP error‡ error§

H35 957.7 964.7 -0.7 985.1 -2.9 -2.1 966.6 -0.9 991.4 -3.5 -2.6
H45 1587.7 1472.6 7.2 1498.0 5.6 -1.7 1604.3 -1.0 1629.9 -2.7 -1.6
H80 2275.9 2004.7 11.9 2030.4 10.8 -1.3 2329.3 -2.3 2318.2 -1.9 0.5

H100 2423.4 2117.4 12.6 2142.4 11.6 -1.2 2489.0 -2.7 2465.0 -1.7 1.0
† Anal−FP

Anal
×100;

‡ Anal−RP
Anal

×100;
§ FP−RP

FP
×100
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The percentage error in stiffness between analytical estimates and FE predictions in-

creases with increasing foam density. This error (< 10 %) is due to the differences in repre-

senting the foam yield behavior in FE (CF) or loading condition in analytical modeling i.e.

the load is considered to be axisymmetric line load. However, the predictions from RP model

shows a decrease in percentage error with increasing foam density. Hence, it is evident that

the analytical models are better validated using either FP/RP using UINTER models in the

context of small deformation.

5.2. Load versus displacement response

The FE predictions (from UINTER model) of load variation with punch displacement

shown in Figure 3 are in good agreement with the analytical estimates, as the deformation

progresses beyond the core yield. Since the analytical stiffness solution for small deforma-

tion agreed well with the FE solutions of UINTER models rather than CF based models, in

Figure 3 the FE predictions from CF models were not plotted for small deformations.

Small deformation (EPP) analytical estimates agreed well with the FE (small deforma-

tion) predictions up to δ/t of 4.0. However, these estimates were found to deviate from

experimental measurements when δ/t > 2. This is due to large deformation (stretching) ef-

fect in the faceplates. The proposed analytical (RPP) estimates (with stretching) are well in

agreement with the experiments and FE predictions up to the failure of the top faceplate both

in FP as well as SP. Hosseini et al. [21] estimates are under predict load (at a given displace-

ment), possibly due to the assumption of negligible midplane displacements. In the context

of SP estimates, Zhou and Strong [12] estimates are too stiff and found to deviate far from

the experimental measurements and hence omitted from the comparison. However, Türk and

Hoo-Fatt [10] membrane estimates are also found to be stiff.

5.3. Deflection profile

The deflection profiles estimated from the analytical models are compared with the FE

predictions in Figures 5 and 6 at a given indentation load for flat and spherical punches,
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(a)

(b)
Figure 3 Indentation load versus nondimensional displacement responses for sandwich plates under FP loading
with faceplate thickness (a) t = 0.7 mm and (b) t = 1.3 mm. EPP, RPP-nonlinear and RPP-linear estimates from
Eq. (5), Eq. (8) and Eq. (11a), respectively. Hosseini prediction is plotted from Hosseini et al.[21].

respectively. Experimental measurements of the deformation profile of the faceplate were

not made during the tests, hence, the punch displacement is taken from the load-displacement

curve and shown as a point. Analytical estimates of deformation profile for RPP foundation

are offset by the elastic limit displacements (δel in Figures 5 and 6) to match with the EPP
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(a)

(b)
Figure 4 Indentation load versus nondimensional displacement responses for sandwich plates under SP loading
with faceplate thickness (a) t = 0.7 mm and (b) t = 1.3 mm. RPP estimate is from Eq. (13b). HooFatt curve is
plotted from Türk and Hoo-Fatt [10].

foundation. This led to the discrepancy between the analytical estimates and FE predictions

for r ≥ λ. It is evident that the proposed analytical estimates are in better agreement with the

FE predictions compared to the estimates of Hosseini et al. [21] and Türk and Hoo-Fatt [10].
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(a)

(b)
Figure 5 Comparison of deflection profiles by different formulations subjected to FP loading at 3.5 kN indenta-
tion load with faceplate thickness (a) t = 0.7 mm and (b) t = 1.3 mm. RPP estimate is from Eq. (8). Hosseini
curve is plotted from Hosseini et al.[21].

6. Conclusions

Analytical formulations are proposed to estimate the indentation response of the com-

posite sandwich plates subjected to quasi-static indentation by a rigid flat punch (FP). The

faceplate was assumed to have linear elastic behavior with axisymmetric deformation and the

indentation response has been modeled using beam on foundation methodology. The loading

of flat punch (FP) is assumed to impose an axisymmetric line load on the faceplate along the
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(a)

(b)
Figure 6 Comparison of deflection profiles by different formulations subjected to SP loading at 1.5 kN indenta-
tion load with faceplate thickness (a) t = 0.7 mm and (b) t = 1.3 mm. RPP estimate is from Eq. (13a). HooFatt
curve is plotted from Türk and Hoo-Fatt [10].

punch radius, a.

Typical polymer and metallic foams show EPP behavior under uniaxial compression and

hence the core is treated as an EPP foundation in the context of small deformations and

the governing differential equation is solved exactly. However small deformation solutions

deviate from the actual indentation loads when the indentation depth is greater than two

times the thickness of the faceplate; due to the large deformation effects in the faceplate.
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Hence, Berger’s approximate differential equations are considered for RPP foundation and

the differential equations are solved exactly for FP loading. SP indentation response was

derived as a limiting case: flat punch solution with zero radius. Derived RPP core load-

displacement relations and deflection profiles were offset by elastic limit displacement, δel

(without altering the load) to achieve the EPP foundation response.

Reasonable agreement is observed among FE predictions, experimental measurements

and analytical estimates for the indentation load-displacement and deflection profile of the

top faceplate at applied loads that satisfy small/large deformation regimes.
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Appendix A Indentation of a plate on EPP foundation

The coefficients in the displacement function Eq. (5) for a plate on elastic-perfectly plastic

foundation based on indentation analogy are defined as follows.

B1 = B5 +B3 [ln(a)+1] ; B2 = B6 +B4 [ln(a)−1] ; B3 =
P

8πD f
; B4 = a2B3 (A.1)

B5 =
σc

4D f η12

{
8λl3

η5 [ln(λ)+1]+
λlη6

2
[
4λ

2ln(λ)+λ
2 +2a2]

−
√

2 l2
η7
[
4 λ

2 ln(λ)+2 λ
2 +a2]+ η8

2
√

2

[
λ

4 ln(λ)+16 l4 +a2
λ

2]} (A.2)

B6 =
σc

64D f η12

{
128λl3

η5
[
a2ln(λ)−λ

2]
+4λlη6

[
8a2

λ
2ln(λ)−3λ

4−4a2
λ

2−64l4]
−
√

2l2
η7
[
64a2

λ
2ln(λ)−36λ

4−16a2
λ

2−256l4]
−
√

2η8

[
a2

λ
4(3−4ln(λ))+λ

6 +128l4
λ

2−64a2l4
]}

(A.3)

B7 =
σcl3

2D f η13

{
2
√

2l
[
4η2l2−η1

(
λ

2−a2)]−8λl2 f0(λ)+λg0 (λ)
(
2a2−λ

2)} (A.4)
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B8 =−
σcl3

2D f η12

{
2
√

2l
[
4η1l2 +η2

(
λ

2−a2)]+8λl2g0(λ)+λ f0 (λ)
(
2a2−λ

2)} (A.5)

where

η1 = f1(λ)−g1(λ); η2 = f1(λ)+g1(λ); η3 = f0(λ)−g0(λ)

η4 = f0(λ)+g0(λ); η5 = [f1(λ)]
2 +[g1(λ)]

2 ; η6 = [f0(λ)]
2 +[g0(λ)]

2

η7 = η2f0(λ)−η1g0(λ); η8 = η1f0(λ)+η2g0(λ); η9 = η3g1(λ)−η4 f1(λ)

η10 = η3f1(λ)+η4 g1(λ); η11 =
Pi

el
2π
− σcλ2

2

η12 =
√

2
[
4η7l2−η8

(
λ

2−a2)]−4lλη6

η13 =
√

2
[
4η10l2 +η9

(
λ

2−a2)]−4lλη6

Appendix B Indentation of a plate on RPP with FP

Integration constants in Eq. (8) are

C1 =
P(1−Γ1)

2πD f α3λI1(αλ)
− σcλ

2D f α3I1(αλ)

C2 =
P

2πD f α3λ

[
I0(αa)− I0(αλ)

I1(αλ)
+αλln

(
λ

a

)]
+

σcλ

4D f α3λ

[
2I0(αλ)

I1(αλ)
−αλ

] (B.1)

Γ1 = αλ [I1(αλ)K0(αa)+K1(αλ)I0(αa)] ; ϒ1 = I0(αr)K0(αa)−K0(αr)I0(αa)

ϒ2 = K1(αr)2−K0(αr)K2(αr); ϒ3 = I1(αr)2− I0(αr)I2(αr)

ϒ4 = rG2,2
2,4

(
0, 1

2
0,1,−1,−1

∣∣∣α2r2
)

; ϒ5 = I0(αa)K2(αr)−K0(αa)I2(αr)

ϒ6 =
1

16π2rD2
f α4

{
α

2r2
[
I0(αa)2

ϒ2 +K0(αa)2
ϒ3

]
−4ϒ1 +2ln(r)

}
ϒ7 =

C1K0(αa)rϒ3

4πD f
− C1I0(αr)

2πα2rD f

where G is the Meijer-G function.
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Appendix C Indentation of a plate on RPP with SP

F1 =
P(1−Γ′1)

2πD f α3λI1(αλ)
− σcλ

2D f α3I1(αλ)

F2 =
P

2πD f α3λ

[
I0(αa)− I0(αλ)

I1(αλ)
+αλln(λ)

]
+
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[
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−αλ

]
F3 =−

P2

8π2α4D2
f

[
ln
(

α

2

)
+ γ− 1

2

]
− Pσc

2πα6D2
f
− PF1

2πα2D f

(C.1)

where γ = 0.577 is the Euler’s constant.

Γ
′
1 = αλK1(αλ); ϒ

′
1 =−K0(αr); ϒ

′
2 = K1(αr)2−K0(αr)K2(αr)

ϒ
′
3 = I1(αr)2− I0(αr)I2(αr); ϒ

′
4 = rG2,2

2,4

(
0, 1

2
0,1,−1,−1

∣∣∣α2r2
)

; ϒ
′
5 = K2(αr)

ϒ
′
6 =

1
16π2rD2

f α4

[
α

2r2
ϒ
′
2−4ϒ

′
1 +2ln(r)

]
; ϒ

′
7 =−

F1I0(αr)
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