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ABSTRACT 22 

For the greater part of the last century, anthropogenic palynology has made a sustained 23 

contribution to archaeology and to Quaternary science in general, and pollen-analytical 24 

papers have appeared in Journal of Archaeological Science since its inception. The present 25 

paper focuses selectively upon three areas of anthropogenic palynology, enabling some 26 

assessment as to whether the field is advancing: land-use studies, archaeological site study, 27 

and modelling. The Discussion also highlights related areas including palynomorph 28 

identification and associated proxies. There is little doubt that anthropogenic palynology has 29 

contributed to the vitality of pollen analysis in general, and although published research can 30 

be replicative or incremental, site- and landscape-based studies offer fresh data for further 31 

analysis and modelling. The latter allows the testing of both palynological concepts and 32 

inferences and can inform archaeological discovery and imagination. Archaeological site 33 
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studies are often difficult, but palynology can still offer much to the understanding of 34 

occupation sites and the discernment of human behaviour patterns within sites. 35 
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1. Introduction41 

42 

Since the employment of pollen analysis in human contexts over half a century ago (Firbas, 43 

1937; Iversen, 1941; Fægri, 1944; Godwin, 1944), anthropogenic palynology has made a 44 

sustained contribution to archaeology, archaeological science and the wider realms of 45 

palaeoecology and Quaternary science (Behre, 1986; Birks et al., 1988; Edwards and 46 

MacDonald, 1991; Bell and Walker, 2004; Roberts, 2014). From its first volume, pollen 47 

analysis has featured in the pages of Journal of Archaeological Science (Dimbleby and Evans 48 

1974; Greig and Turner 1974) – perhaps not a total surprise given that soils palynologist 49 

Geoffrey Dimbleby was a first editor – and this has continued. The number of papers 50 

containing a sole or substantial pollen content remained relatively constant over the first 20 51 

years of the journal’s life and has increased since then (Fig. 1a-b); however, allowance must 52 

be made for the increase in the number of all archaeological science articles published over 53 

time (Fig. 1c), which itself reflects the health of the field in general. Caveats clearly apply to 54 

the use of such data and the mode of extraction (see the caption to Fig. 1), but palynology 55 

obviously represents a recognisable component in the journal’s profile and, indeed, following 56 

Dimbleby, two of the outlet’s editors (Kevin Edwards 1983-92, and Chris Hunt 2011-14) 57 

have also been palynologists as have other members of the editorial board.  58 

59 

This is not the place to produce an in-depth analysis of the metrics associated with 60 

palynological papers within the Journal of Archaeological Science. As intimated, palynology 61 

is a mainstay of palaeoecology and Quaternary science, and journals covering these fields 62 

contain impressive numbers of palynological papers in their own right (Table 1). While many 63 

of these articles are concerned with anthropogenic topics, or are of relevance to human 64 

activity, that cannot be said to apply to the majority of them. In addition, there are journals 65 

for which palynology is a strength or even dominant, most notably Review of Palaeobotany 66 

and Palynology, Grana and Vegetation History and Archaeobotany.  67 
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 68 

We focus selectively upon three areas of anthropogenic palynology which enable us to assess 69 

whether the field is advancing. This paper does not claim to be comprehensive and there are 70 

areas which are not covered here at all, even if they could have relevance to the practice of 71 

humanly-related palynology (e.g. automated pollen counting [Holt and Bennett, 2014], 72 

genetics [Parducci et al., 2013], many related proxies [O’Brien et al., 2005; Meadows, 2014], 73 

and, of course, dating issues [Whittle et al., 2011]). Similarly, we barely address the issue of 74 

microscopic charcoal and fire which have a long and continuing history in palynology (cf. 75 

Swain, 1973; Patterson et al., 1987; Bradshaw and Sykes, 2014; Sadori et al., 2015). It does, 76 

however, cover key areas which could contribute to priority research questions identified for 77 

palaeoecology (Seddon et al., 2014). 78 

 79 

2. Can traditional land-use employments of palynology still inform and surprise us? 80 

 81 

The investigation of the past relationship between vegetation and people has classically 82 

involved the study of pollen and associated proxies (e.g. fungal spores, microscopic charcoal) 83 

preserved within stratified, waterlogged deposits such as lake mud and peat (Fægri et al., 84 

1989). The spatial scale of the vegetation reconstructions possible through this method are 85 

highly dependent upon the size of the pollen site under investigation; put very simply, small 86 

diameter sites such as woodland hollows will provide information about fine-scale vegetation 87 

patterns immediately around the sampling location, whilst large lakes record the regional 88 

picture (cf. Jacobson and Bradshaw 1981; Prentice 1985; Sugita 1994; Bradshaw 2007). The 89 

conventional methodological approach has been to make inferences based upon the analysis 90 

of a single core that is deemed by the investigator to be representative of changes occurring 91 

throughout the landscape in question. Research into multiple pollen profiles spread across the 92 

same site (e.g. Edwards, 1983; Waller, 1998), or combining data across a network of 93 

locations (e.g. Tipping, 2010; Ledger et al., 2014), whilst time consuming, can offer more 94 

precise details about the spatial patterning in vegetation and the impact of prehistoric society 95 

on land cover (e.g. Lechterbeck et al., 2014; Woodbridge et al., 2014). 96 

 97 

Advances in the modelling and simulation of vegetation using practical tools that incorporate 98 

knowledge about pollen production, transport and deposition (e.g. Sugita, 2007a, 2007b; 99 

Gaillard et al., 2008), plus the widening availability of an expanding number of large pollen 100 

datasets though on-line databases such as the European Pollen Database 101 
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(http://www.europeanpollendatabase.net/; Fyfe et al., 2009) and Neotoma 102 

(http://www.neotomadb.org/), mean that the discipline may grow to rely less upon the 103 

‘traditional’ field- and laboratory-based empirical studies described above for all its answers 104 

(see section 4 below). Nevertheless, conventional pollen analytical investigations still 105 

continue to play a key role within the discipline, not least in the empirical testing of models 106 

and simulations, the filling of gaps in the spatial and temporal coverage of vegetation 107 

histories, refining existing patterns, and challenging ideas and knowledge. This can be 108 

exemplified through a brief examination of selected aspects of recent pollen-analytical 109 

research from some of the North Atlantic islands colonised by Norse/Viking settlers during 110 

the late first millennium AD (Fig. 2).  111 

 112 

In the Faroe Islands, pollen-analytical studies have played a crucial role in the re-examination 113 

of the timing of first human settlement. On the basis of saga literature and the archaeological 114 

record, the initial settlement (‘landnám’) of this island group has normally been ascribed to 115 

the arrival of Norse settlers sometime during the early 9th century AD; this being despite 116 

evidence to the contrary appearing in another contemporary literary source – De Mensura 117 

Orbis Terrae, written around AD 825 – in which the Irish monk, Dicuil, stated that anchorites 118 

had reached lands fitting the description of the Faroe Islands in advance of the ‘northmen 119 

pirates’ (Tierney, 1967; Dugmore et al., 2005). Jóhansen (1971) was the first to present 120 

palynological evidence for a possible pre-Viking presence, though the timing (given as ~AD 121 

600-700) surrounding his discovery of Avena (cf. oats) pollen in a profile from ‘ancient 122 

Celtic fields’ disturbed by burrowing puffins on Mykines (Jóhansen, 1979) was later brought 123 

into question (e.g. Buckland et al., 1998). Yet the early cultivation of cereals was also 124 

subsequently indicated at Eiði on the island of Eysturoy (Hannon et al., 2005) and especially 125 

at Hovsdalar, Suðeroy, where optimising methods for the detection of cereal-type pollen 126 

grains revealed a pollen curve for Hordeum-type (barley) extending back to ~AD 560 127 

(Edwards et al., 2005a, 2005b). Most recently, the discovery of carbonised barley grains 128 

appearing in peat ash of anthropogenic origin at Á Sondum on the island of Sandoy, and 129 

radiocarbon-dated to the 4-6th centuries AD (Church et al., 2013; Fig. 3), delivers strong 130 

archaeological evidence for an early human presence that offers justification for the 131 

interpretation arising from the pollen-analytical evidence. This ‘process’ finds echoes in 132 

palynological inferences surrounding the determination of a hunter-gatherer occupation of 133 

certain areas within the Northern and Western Isles of Scotland, which, for a long time, had 134 

no proven cultural reality (Gregory et al., 2005; Edwards, 2009). 135 
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 136 

In Iceland – where Norse settlement is dated to around AD 870 – an important landscape-137 

scale question that palynologists have been addressing is the spatial extent of tree birch 138 

(Betula pubescens) woodland at the time of colonisation and how this became diminished 139 

following the arrival of people. Common perception of past woodland coverage in Iceland 140 

has been heavily influenced by a comment made by Ari the Wise in the 12th century 141 

Íslendingabok (Book of the Icelanders) which stated that woodland at the time of landnám 142 

stretched from the mountains to the seashore (Benediktsson, 1968). This is seemingly borne 143 

out by some of the earlier studies (e.g. Einarsson, 1963; Hallsdóttir, 1987) in which pollen 144 

diagrams typically demonstrate sharp declines in birch woodland during the 10th century 145 

which have been directly linked to clearance. Not unexpectedly perhaps, this seems to be an 146 

over-simplification of the picture, and as the number of pollen-analysed sites has expanded, it 147 

has become clear that many exposed high altitude and coastal locations have always been 148 

very open in character (Erlendsson et al., 2009). Furthermore, whilst human impact at 149 

landnám did undoubtedly lead to an overall decline in woodland, the rates and patterns of 150 

reduction are more variable than was first envisaged. For example, pollen data produced by 151 

Lawson et al. (2007) for the inland district of Mývatnssveit shows a steady regional decline in 152 

Betula pollen over a period of ~400 years following settlement, demonstrating a slow 153 

drawdown on the woodland resource, possibly involving active management, rather than the 154 

rapid destruction of otherwise valuable birch woodland (Fig. 4). This led the authors to 155 

speculate that substantial patches of birch may have survived in many areas long after 156 

landnám, but are simply not being widely detected because the pattern of sampling has 157 

predominantly focused around the farms where human impacts would presumably have been 158 

most intense. 159 

 160 

The Norse diaspora led not only to the dispersal of people across the North Atlantic but also 161 

the deliberate and accidental movement of flora and fauna (cf. Sadler and Skidmore, 1995). 162 

Pollen analysis provides a powerful tool for tracing the introduction and spread of non-native 163 

plants, and has been used in Greenland to advance the debate regarding what constitutes the 164 

‘Old Norse’ (anthropochorous) element within the modern flora. One of the most striking 165 

features noted by Fredskild (1973, 1988) in his pollen diagrams from Qassiarsuk, south 166 

Greenland, is the appearance and expansion of Rumex acetosella (sheep’s sorrel) after 167 

landnám (AD 985), leading him to conclude that the species was introduced by the Norse 168 

settlers. More recently, palynological studies representing a network of sites around Norse 169 
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farms located in the former Eastern Settlement of Greenland have allowed the production of a 170 

series of maps at regular (100 year) intervals that trace the dispersal of the plant through the 171 

wider landscape and confirm its status as a key biostratigraphic marker for settlement 172 

(Schofield et al., 2013). The synthesised data do, however, reveal some subtleties. At certain 173 

locations (e.g. Sissarluttoq; Fig. 5) the rise in R. acetosella pollen following landnám is 174 

delayed, while in another instance the pollen from the plant is absent. This might indicate that 175 

the plant was introduced – presumably from Iceland – at only selected locations from which 176 

it subsequently spread rapidly to most of the other farmsteads. The variable abundances of R. 177 

acetosella pollen depicted at sites on the maps also stimulate debate about what effect any 178 

differences in the size, function or role of farms might have had on creating suitable habitats 179 

for the plant to flourish. 180 

 181 

The impact of Norse colonists across each of the North Atlantic island environments can be 182 

recognised through a widely repeatable palynological ‘footprint’ for human settlement in 183 

pollen diagrams (Edwards et al., 2011a). A defining aspect of this signature (Fig. 5) is an 184 

increase in dung (coprophilous) fungal spores reflecting the introduction of domesticated 185 

grazing animals (primarily sheep, cows and goats) to landscapes as part of the settlement 186 

process (cf. Schofield and Edwards, 2011). Since the last major review of Quaternary pollen 187 

analysis (Seppä and Bennett, 2003), significant progress has been made with the 188 

identification, taphonomy, indicative value and quantification of such non-pollen 189 

palynomorphs (NPPs) as part of the wider palynological method, and this has now become an 190 

important aspect of investigations into land-use history. In particular, the analysis of fungal 191 

spores which are typically present in sample residues alongside pollen, but were for long 192 

ignored by palynologists (especially Sporormiella-type, Sordaria-type and Podospora-type), 193 

can be demonstrated as a powerful proxy for tracing the past impacts of herbivory (e.g. van 194 

Geel et al., 2003; Blackford and Innes, 2006; Cugny et al., 2010; Feeser and O’Connell, 195 

2010; Schofield and Edwards, 2011; Baker et al., 2013). New advances in the extraction and 196 

amplification of ancient DNA (aDNA) from sedimentary sequences are likely to proliferate 197 

into archaeological science to aid identification of grazing animals (e.g. Giguet-Covex et al., 198 

2014). Applying aDNA to existing sequences with clear pollen and NPP indicators for human 199 

management may result in great advances in understanding how people and animals shaped 200 

their landscapes.  201 

 202 
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Human-environment interaction in the Anthropocene has been identified as one of six key 203 

themes linked to priority research questions in palaeoecology (Seddon et al. 2014). The case 204 

studies presented from the North Atlantic arena demonstrate that traditional studies of land-205 

use history through pollen analysis can continue to play a central role in advancing our 206 

understanding of when human activities ‘began altering ecosystems at globally relevant 207 

scales and how ecosystems responded in these human-mediated landscapes’ (ibid. p. 259).  208 

 209 

3. Palynology of archaeological sites 210 

 211 

Archaeological sites present many problems, but also opportunities, for the understanding of 212 

past human environments and activities. In northern latitudes at least, soil palynology 213 

represents the most frequently adopted approach to the pollen-analytical investigation of 214 

archaeological sites. There is an extensive body of published research in the area and it would 215 

be invidious not to note Dimbleby’s long and substantial contribution (summarized in 216 

Dimbleby, 1985) that had its beginnings in soil pollen methodology (Dimbleby, 1957, 1961a, 217 

1961b) and an appreciation of landscape-scale human modification (Dimbleby, 1962). This 218 

work has laid a foundation for much subsequent research in a variety of archaeological 219 

contexts (e.g. Bakker and Groenman-van Waateringe, 1988; Segerström, 1991; Kelso, 1994; 220 

Tipping, 1994; Edwards and Whittington, 1998; Whittington and Edwards, 1999; Groenman-221 

van Waateringe, 2011). 222 

 223 

The terrestrial deposits which characterise many archaeological sites are reflective of 224 

taphonomic pathways which are far from the relatively well known systems typical of lakes 225 

and mires (Tweddle and Edwards, 2010). By their very nature, archaeological sediments are 226 

liable to have been disturbed and are typically heterogeneous, combining a mixture of 227 

materials from different sources (Greig, 1981). This applies, for example, in the case of 228 

artificially accreting soils (plaggens or anthrosols), whose pollen content may be derived 229 

from the in situ vegetation (crops and weeds rooted in the soil itself), additions of waste 230 

(turves, peat, straw, animal dung, etc.) to fields from house or byre, plus the pollen rain from 231 

the surrounding vegetation communities and the background airborne component 232 

(Groenman-van Waateringe, 1992; Buckland et al., 2009; Donaldson et al., 2009; Ledger et 233 

al., 2015; Fig. 6). The environmental conditions under which pollen is preserved on 234 

archaeological sites may, in many cases, also be sub-optimal (i.e. drier and less acidic) when 235 

compared with the natural depositional contexts favoured for ‘conventional’ studies (section 236 
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2). As a consequence, palynologists working on archaeological sites must contend with 237 

pollen depositional biases, and often low total pollen concentrations and poor pollen 238 

preservation (Bottema, 1975; Hall, 1981; Hunt, 1994; Weinstein-Evron, 1994; Lebreton et 239 

al., 2010), although much methodological work has focused upon understanding these issues 240 

(e.g. Sangster and Dale, 1961, 1964; Havinga, 1967; Davidson et al., 1999; Bunting and 241 

Tipping 2000; Tipping 2000).  242 

 243 

Important taphonomic work has explored the representativeness and reliability of 244 

palynomorph assemblages from caves (Weinstein, 1981; Weinstein-Evron, 1994; Coles et al., 245 

1989; Diot, 1991; Genty et al., 2001; Simpson and Hunt, 2009; Fig. 7) and fluvial sites 246 

(Brush and Brush, 1972; Fall, 1987; Hunt, 1994). Cave deposits show consistent taphonomic 247 

biases where an entrance flora is present (Coles and Gilbertson, 1994) and where animal 248 

vectors are prolific (Hunt and Rushworth, 2005), but otherwise, pollen floras in caves reflect 249 

closely the pollen rain within a few kilometres of the sampling site. In some parts of the 250 

world, including central France, southeastern Spain, peninsular Italy and Libya, a substantial 251 

proportion of our understanding of Middle and Late Quaternary vegetation and associated 252 

environments, comes from caves. Such geographical areas cannot always furnish suitable 253 

long lake and peat bog records and this is an example of how archaeological sites can be 254 

useful in plugging significant palynological gaps.  255 

 256 

Processes such as suffusion, recycling and bioturbation can relocate material through 257 

archaeological deposits and soils, and these processes are a consistent cause for concern for 258 

archaeopalynologists. This problem can sometimes be addressed by careful examination of 259 

the condition of pollen grains preserved in the sediment. Intrusive or recycled pollen will 260 

often be preserved in a visibly different condition to in situ organic-walled microfossils. 261 

Ultraviolet fluorescence microscopy offers an underused method to assess the stratigraphic 262 

integrity of pollen assemblages where mixing is suspected (Hunt, 1998; Yeloff and Hunt, 263 

2005). With the advent of digital image analysis, this technique can be applied systematically 264 

with little operator error (Hunt et al., 2007a). Pollen fluoresces in the visible wavelengths 265 

under UV illumination. As pollen ‘ages’ taphonomically, the intensity of fluorescence 266 

diminishes and colour progresses from blue, through yellow, to orange, red and finally 267 

brown. Recycled material appears less bright and further towards the red end of the spectrum 268 

than in situ material, whereas intrusive (modern) grains show as blue, and thermally mature 269 

(burnt) material as intense light blue (ibid.) (Fig. 8).  270 
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 271 

It should be stressed that palynology is significantly more than basic pollen and spore 272 

analysis. Organic particulates are generated by many natural processes and human activities. 273 

Many of these particulates preserve well and are amenable to analysis using the palynofacies 274 

technique (Hunt and Coles, 1988). Thus the feeding of crop residues to sheep or goats in a 275 

Libyan farmstead led to characteristic palynofacies and pollen assemblages (Hunt et al., 276 

2001) and humanly-set fires within the Great Cave of Niah in Sarawak, Malaysian Borneo, 277 

resulted in characteristic thermally-mature amorphous matter, caused by the heating of cave 278 

sediments (Hunt et al., 2007b). In Ludden Dene, Halifax, UK, very distinctive coppicing, fire 279 

and regeneration cycles are visible in pollen and palynofacies signatures from charcoal-280 

burning hearths (Ibbetson, 2011). 281 

 282 

From earlier beginnings (Turner, 1965; Göransson, 1986; Edwards, 1993), there continues to 283 

be a productive development of insights and methods (Mercuri, 2008; Waller et al., 2012; 284 

Woodbridge et al., 2014) within the palynology of archaeological sites. Yet in a world where 285 

traditional activities and land-use patterns are vanishing before the onslaught of globalisation, 286 

there is still an urgent need to study ethnopalynological patterns caused by a wide range of 287 

actions before these disappear forever. These include aspects of landscape management, and 288 

agricultural, industrial and domestic practices.  289 

 290 

4. Modelling vegetation cover from pollen data 291 

 292 

Quantification of vegetation cover from pollen-analytical data has been a long-desired goal of 293 

all groups who use such data. The use of pollen to address archaeological questions such as 294 

the contextual environmental conditions for a particular site or type of site (e.g. Brown et al., 295 

2011), or the scale of woodland clearance during European prehistory (e.g. Fyfe et al., 2014), 296 

requires the ability to transform pollen data into a meaningful quantity beyond the relative 297 

abundance of different pollen taxa. This is hampered by several factors, notably the 298 

differential production of pollen by different plant species and the varying spatial scale of 299 

representation of pollen sequences. In essence, the relationship between pollen proportions 300 

and the abundance of the source plants in the vicinity of a particular site is not linear (Sugita 301 

et al., 1999). 302 

 303 
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Approaches to the transformation of pollen to vegetation abundance began in the 1960s 304 

(Davis, 1963) and were developed over subsequent decades (Andersen, 1970; Prentice and 305 

Parsons, 1983; Prentice, 1985). A resurgence of interest in such approaches was triggered in 306 

the early 2000s with the development of the Pollen-Landscape Calibration (POLLANDCAL) 307 

network (Gaillard et al., 2008). Significant advances have been made in the transformation of 308 

pollen proportions to estimated plant abundance, resulting in the development of a 309 

'Landscape Reconstruction Algorithm' (LRA), as described by Sugita (2007a, 2007b). A 310 

major advantage of the LRA is that the spatial scale of representation is formally recognised, 311 

and indeed is included within the output of the approach, in what is described as the 'relevant 312 

source area of pollen' (RSAP). This is best thought of as the distance at which background 313 

pollen loading (the regional pollen rain) is constant between sites in a region, and is formally 314 

defined in modern pollen-vegetation studies as the distance beyond which the correlation of 315 

pollen to vegetation abundance does not change or improve (Sugita, 2007b). 316 

 317 

The modelling approach has been described and discussed at length elsewhere (e.g. Sugita 318 

2007a, 2007b; Gaillard et al., 2008; Sugita et al., 2010; Nielsen and Odgaard, 2010; Fyfe et 319 

al., 2013; Marquer et al., 2014), but it marks perhaps one of the most significant advances in 320 

the analysis of pollen data in recent decades. The LRA comprises two components (Fig. 9). 321 

The REVEALS model estimates taxon abundance within the broad region (50-100 km radius 322 

around a site) using pollen count data from sites that are taken to be representative of the 323 

regional pollen rain (e.g. large lakes). This regional taxon abundance is then used as one input 324 

parameter for the LOVE model, which subtracts the background component to estimate 325 

vegetation abundance within the source area of target (smaller) sites that are more 326 

representative of local plant communities. The LRA requires not only pollen count data from 327 

sites that are regional and local in character, but also estimates of the relative pollen 328 

productivity (RPP) of the taxa being quantified (Broström et al., 2008), and figures for the 329 

fall speeds of the different pollen types involved. The approach has, to date, been evaluated 330 

using modern pollen-vegetation comparisons in both northern Europe and North America 331 

(e.g. Hellman et al., 2008; Sugita et al., 2010) and much recent work has been focused on 332 

specific assumptions inherent within the models. The global application of this model-based 333 

approach is limited by the availability of PPEs (pollen productivity estimates) from regions of 334 

interest, and much work is currently in progress or being initiated to develop these parameters 335 

from areas beyond northwest Europe and North America, such as southern Africa (Duffin and 336 

Bunting, 2008), China (Xu et al., 2014) and Greenland (Bunting et al., 2013). 337 
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 338 

The output of the LRA is thus an estimate of plant abundances within a broad region, and 339 

within a given radius of the target pollen site. Preliminary results of the application of the 340 

LRA to pollen data from Exmoor, southwest Britain, provide insights into spatial patterning 341 

of upland vegetation (Fig. 10). It is possible to distinguish Calluna-, Poaceae- and 342 

Cyperaceae-dominated moorland communities and to estimate how much woodland persisted 343 

into the medieval period. Results from the REVEALS model have been interpreted to suggest 344 

that landscapes were more open in the past than had previously been assumed from pollen 345 

proportions alone (Soepboer et al., 2010; Nielsen et al., 2012; Fyfe et al., 2013; Marquer et 346 

al., 2014; but see Davis et al., 2015). Application of the full LRA to landscape research is still 347 

in its infancy, with few published studies (Nielsen and Odgaard, 2010; Fredh et al., 2012; Cui 348 

et al., 2013; Hultberg et al., 2015), none of which specifically target archaeological questions 349 

per se, and the arrangement of plants within the RSAP of a target site (i.e. maps of vegetation 350 

cover) cannot yet be determined. One difficulty that still needs to be overcome is that 351 

different vegetation patterns may result in the same pollen loading at a particular place in the 352 

landscape, leading to problems of equifinality (Caseldine et al., 2008; Bunting and 353 

Middleton, 2009).  354 

 355 

An alternative, complementary, approach to the LRA has been to tackle the problem in 356 

reverse, by starting with hypothetical vegetation arrangements in a landscape (managed 357 

within a GIS) and calculating pollen loadings at selected points or locations (Figs. 9, 11). 358 

These simulated pollen loadings can then be compared to empirical pollen count data in order 359 

to assess the plausibility of hypothetical vegetation arrangements (e.g. Caseldine and Fyfe, 360 

2006; Fyfe, 2006; Stedingk and Fyfe, 2009). This has been formally described as the Multiple 361 

Scenario Approach (MSA: Bunting and Middleton, 2009). Through this method, 'swarms' of 362 

vegetation arrangements can now be modelled and compared to empirical data, to assess the 363 

'best fit' through a data/model comparison. The MSA still requires PPEs, estimates of the fall 364 

speed of pollen and modelling of a sufficiently large landscape so that the background pollen 365 

component is included, but it does offer palynologists a means of testing, rejecting and/or 366 

validating different landscape scenarios (Tipping et al., 2009). 367 

 368 

Both the spatial and temporal scale of pollen data is of critical importance in accurately 369 

modelling past vegetation. As described above, the LRA first models regional vegetation 370 

(using REVEALS) within a radius of 50-100 km around the pollen site, and then moves on to 371 
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consider the 'local' vegetation (using LOVE). The spatial scale of 'local' vegetation is 372 

dependent on a range of factors, including the size of the sampling site, and the physical 373 

arrangement of plants in the landscape (Bunting et al., 2004). It is important that the scales 374 

chosen for vegetation reconstruction match the hypothesised impact of people in the 375 

landscape: for instance, small-scale ephemeral woodland clearance is unlikely to be 376 

distinguished in a regional analysis. The temporal scale of vegetation disturbance is also 377 

important. Much recent work around the impact of early Neolithic peoples (e.g. Whittle et al., 378 

2011; Whitehouse et al., 2014) has emphasised the short biographies of monument 379 

complexes. Unless pollen sequences are sufficiently temporally resolved (through high-380 

resolution pollen analysis; cf. Turner and Peglar, 1988; Innes et al., 2004; Edwards et al., 381 

2008) and precisely dated, modelling work is unlikely to be helpful in detailing the impact of 382 

short-lived 'events' in the archaeological record. The LRA also necessitates a shift in the 383 

sampling framework for landscape reconstruction. It is insufficient to have a narrow focus on 384 

a small number of pollen sites which have local pollen source areas, as modelling of the 385 

wider regional vegetation is also essential. Sugita et al. (2010) have demonstrated that groups 386 

of small sites can be used to derive a regional average for vegetation cover, but few regions 387 

across Europe, or indeed beyond, possess dense networks of sites which are either 388 

sufficiently well resolved or with appropriately detailed chronologies to allow such an 389 

approach to be successful at this time. 390 

 391 

Where does this currently leave us, with respect to using a pollen modelling approach to 392 

advance archaeological knowledge? Caseldine et al. (2008) and Fyfe et al. (2010) considered 393 

the role of such research in integrated projects and the usefulness of the output. They were at 394 

pains to stress that the output is a virtual reconstruction of the past that can be considered 395 

plausible, whether derived from pollen data (e.g. the LRA) or tested against it (the MSA). 396 

Whilst the term 'landscape' has been used here, the output of either the MSA or the LRA is 397 

not a landscape reconstruction, but might be better described as a pseudo-landscape, a partial 398 

and credible representation of a fraction of the lived experience of communities who had a 399 

mutual relationship with the plants around them. Within the constraints of model robustness 400 

and data availability, the modelling approach allows us to reject, if necessary, fundamental 401 

ideas about the structure of prehistoric or historical landscapes; the recognition of the extent 402 

of openness across northwest Europe through application of the REVEALS model is an 403 

excellent example of this which should lead to reconsiderations of the structure of Mesolithic 404 

environments and interactions (Nielsen et al., 2012; Fyfe et al., 2013; Marquer et al., 2014). 405 
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Visualisation of plausible pseudo-landscapes, particularly of contrasting vegetation 406 

arrangements that might produce a similar pollen loading at a single site (e.g. Winterbottom 407 

and Long, 2006), may play an important part in the 'thinking through', or (re-)interpretation of 408 

archaeological site data, and thus become part of a new interpretive toolset.  409 

 410 

5.  Discussion 411 

 412 

There is no doubting that anthropogenic palynology has contributed great vitality to the 413 

science of pollen analysis. Although published research can be replicative or incremental, it 414 

remains the case that site- and landscape-based studies continually offer fresh data for further 415 

analysis and modelling.  416 

 417 

The future of palynological analysis on archaeological sites is promising, albeit a difficult and 418 

frequently frustrating exercise. Palynology can offer much to the understanding of occupation 419 

sites, both in terms of the wider vegetational and environmental contexts and in discerning 420 

patterns of human behaviour within sites. As stated earlier, scale is of key importance in any 421 

modelling work that attempts to address human-environment relationships. If archaeological 422 

site palynology is going to share in this aspect of the field (and sharing is not necessarily 423 

mandatory for advancement of the sub-discipline), then the up- and down-scaling of models 424 

may represent a fertile area of development (cf. Mercuri et al. 2015, p. 4). On- and off-site 425 

palynology will undoubtedly continue to play a major role within integrated multi-proxy 426 

analyses, and the advances that can be gained from the application of a suite of 427 

complementary methods that already include NPPs, traditional archaeobotany and 428 

micromorphology, are likely to expand out to include innovative new approaches such as 429 

biomarkers (Linseele et al., 2013), sedimentary geochemistry (e.g. D'Anjou et al., 2012) and 430 

aDNA (Giguet-Covex et al., 2014).  431 

 432 

The analysis of NPPs has now become routine within many palynological studies and further 433 

advances should be anticipated. Baker et al. (2013) note that certain coprophilous fungal 434 

spores (notably Sporormiella-type) can now be regarded as clear bioindicators for the 435 

presence of grazing animals within the landscape, but some doubt remains about other 436 

‘coprophilous’ types which are often interpreted in the same manner. An empirical link 437 

between the numbers of coprophilous fungal spores preserved in peats and lake muds, and 438 

livestock numbers/densities, still needs to be established (Raper and Bush, 2009), while 439 



14 

 

further testing is required to confirm the extent to which different NPPs can be linked 440 

specifically to the dung of certain animals or groups of herbivores (e.g. Richardson, 2001). 441 

 442 

Although there is exhaustive high-quality monographic documentation of economically-443 

useful plants in some tropical regions (for instance Herrera and Urrego, 1996), global 444 

coverage is uneven. In island SE Asia for example, the range of subsistence plants is vast and 445 

many either produce totally undiagnostic pollen (e.g. Oryza [rice]), or are reproduced 446 

vegetatively and do not flower (e.g. many Dioscorea spp. [yams]), or generate pollen which 447 

does not preserve (cf. Musa spp. [bananas]). One avenue of research in this case might be to 448 

investigate the weed floras and ancillary plants associated with cultivation systems. 449 

Monocultures are typical in conventional Western farming, but are unknown within many 450 

tropical systems, where complex polycultures, often involving many perennial plants, are 451 

practised. In some cases, long-established forms of arboriculture/forest management produce 452 

economically useful plants (Hunt and Rabett, 2014). Many of these systems are threatened by 453 

logging and mineral extraction and investigation is urgently necessary to identify their 454 

palynological signature. 455 

 456 

When it comes to the identification of key subsistence plants within anthropogenically-457 

modified plant communities, then palynology is unlikely to be as precise as macrofossil 458 

analysis (Birks and Birks, 2000; Dickson and Dickson, 2000; Bosi et al., 2015). The 459 

determination of Cerealia pollen grains especially remains a contested topic (Edwards and 460 

Hirons, 1984; Göransson, 1986; Edwards, 1989; Poska and Saarse, 2006; Behre, 2007; 461 

Brown, 2007; Tinner et al., 2007), but there is no doubting that the recording of cereal-type 462 

pollen grains has raised many questions, some of which have been verified by archaeobotany 463 

(Church et al., 2013; Edwards, 2014; Henriksen, 2014). Pollen genetics may eventually assist 464 

in resolving debates and uncertainties, as well as revealing new research horizons. 465 

Meanwhile, just as it has done since the early days of palynology (Firbas, 1937; Grohne, 466 

1957; Beug, 1961, 2004; Andersen and Bertelsen, 1972. Andersen, 1979; Köhler and 467 

Lange,1979), advances in the identification of cereal – morphological, statistical and 468 

methodological – continue (Edwards and McIntosh, 1988; Edwards et al., 2005b; Tweddle et 469 

al., 2005; Joly et al., 2007; López-Merino et al., 2015), while approaches being developed for 470 

Poaceae differentiation may also assist in this (Mander et al., 2013, 2014). 471 

 472 
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Moving beyond cereals, uncovering evidence for the cultivation of plants through pollen 473 

analysis continues to prove difficult in many cases due to the restricted level of taxonomic 474 

precision which can be achieved through routine counting using a transmitted-light 475 

microscope. A fundamental problem is the separation of the pollen of crop plants from that of 476 

other species within the same genus or family where these include several taxa that inhabit 477 

different natural and cultural environments (the Fabaceae being a case in point). In addition, 478 

of those cultivated plants which can be confidently identified (e.g. Fagopyrum [buckwheats], 479 

Linum usitatissimum [flax], Vicia faba [broad bean]), many are low pollen producers (Behre, 480 

1981) and this further reduces their visibility in the palynological record. Recent advances 481 

have been made, however, with the detection of woodland management techniques. For 482 

example, modern pollen-vegetation studies in British woodlands have demonstrated that 483 

pollen production for Corylus avellana (hazel) is significantly higher in the early years after 484 

coppicing (as has long been surmised), yet flowering of Alnus glutinosa (alder) and Tilia 485 

cordata (lime) is supressed under the same conditions (Waller et al., 2012). In the tropical 486 

Americas, methodological developments in the concentration of pollen of important cultigens 487 

(e.g. Mahinot esculenta [manioc], Ipomoea batatas [sweet potato] and Zea mays [maize]) 488 

have made recognition of cultivation more reliable. Large pollen types (>53 microns) that are 489 

typical of cultivars are separated from the rest of the pollen sample using an additional 490 

sieving stage (Whitney et al., 2012), and then identified through rapid scanning of the coarser 491 

fraction, whilst the fine fraction is counted as usual. Major advances in the identification of 492 

pre-Columbian agriculture in the Amazonian basin have resulted through the enhanced ability 493 

to identify the key crops from a combined palynological and phytolith approach, from both 494 

archaeological sites and adjacent wetlands (Mayle and Iriate, 2014; Whitney et al., 2014). 495 

 496 

6. Envoi 497 

 498 

As we approach the centenary of Lennart von Post’s public demonstration of the utility of 499 

pollen analysis (von Post, 1916; Manten, 1967), it is instructive to reflect upon several key 500 

issues of relevance to anthropogenic palynology as much as to the parent discipline. Once the 501 

field equipment and basic laboratory infrastructure are in place, it is a relatively low-cost 502 

science, dependent largely on associated fieldwork funding. By the same token, its best 503 

practitioners need to be highly skilled as taxonomists and as ecologists in the widest sense 504 

(embracing plant, human and landscape ecology). Apart from obvious collaborations with 505 

archaeologists and those working in allied environmental disciplines, palynologists, 506 
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increasingly, must either be adept at, or able to join forces with statisticians and modellers. If 507 

they have not come up through the ranks of empirically-based palynology, such valued co-508 

workers may not be especially knowledgeable concerning the strengths and weaknesses of 509 

palaeoecology, and this puts the onus on the palynologist to be especially vigilant and not to 510 

become unreasonably transported by the ‘wonders’ of ungrounded data manipulation. 511 

 512 

Back in 1967, limnologist Ed Deevey observed (p. 65):  513 

 514 

Von Post’s simple idea, that a series of changes in pollen proportions  515 

in accumulating peat was a four-dimensional look at vegetation, must  516 

rank with the double helix as one of the most productive suggestions  517 

of modern times.  518 

 519 

It seems to us that there has been no diminution in the quantity, nor, arguably, the quality of 520 

output within the field. We may have concerns about the ability of palynologists and research 521 

colleagues to be fully cognizant with the explosion of literature, but these may be the 522 

perpetual worries of middle- and late-career academics.  523 

 524 

The archaeologist Stig Welinder (1988, p. 129) commented somewhat forlornly that: 525 

 526 

Pollen analysis is a science fascinatingly devoid of epistemological  527 

theory compared to modern archaeology. 528 

 529 

– but we would adopt a more positive perspective. After all, the purpose of archaeological 530 

science might be seen as the use of science to inform archaeological enquiry, and this is most 531 

usefully based in reality, however determined, prior to the use of derived information in the 532 

service of advanced conjecture, theory, quantification or modelling. For its part, 533 

palynological modelling, anthropogenic or otherwise, provides a fresh lens through which to 534 

view and test both palynological concepts and inferences and, by extension, to inform 535 

archaeological discovery and imagination. 536 

 537 
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Figure captions 1242 

 1243 

Fig. 1. Data relating to palynological publications (n = 211) contained in Journal of 1244 

Archaeological Science, 1974-2014. Data were extracted using the advanced search facility 1245 

within the Elsevier home page of the journal, searching for ‘pollen’ or ‘palynology’ within 1246 

title, abstract or keywords of articles, review articles and short communications: (a) number 1247 

of palynological papers within the journal per annum; (b) total number of papers within the 1248 

journal per annum; (c) palynological papers as a percentage of total papers within the journal 1249 

per annum. 1250 

 1251 

Fig. 2. Map showing countries mentioned in the text (with the exception of Sarawak). 1252 

 1253 

Fig. 3. The site of Á Sondum, Faroe Islands, is located beneath the grass-roofed building at 1254 

the bottom right of the picture (photograph by K.J. Edwards). The lower diagram shows 1255 

calibrated 14C dates for archaeological contexts from Á Sondum compared to the time of 1256 

appearance of Hordeum-type pollen from Hov (see text and Church et al., 2013 for further 1257 

details). A – lower peat ash patch; B – upper peat ash patch; C – longhouse external midden; 1258 

D –longhouse central hearth; E – Hordeum-type pollen percentages from the site of Hov 1259 

(pollen sum c. 500 total land pollen (TLP); F – Hordeum-type pollen percentages from Hov, 1260 

optimised pollen sum estimated at c. 1500 TLP. 1261 

 1262 

Fig. 4. Betula pubescens (downy birch) growing on lava fields close to Mývatn, northeast 1263 

Iceland (photo by K.J. Edwards). The graph on the right shows pollen percentage data for B. 1264 

pubescens from Helluvaðstjörn, with confidence intervals at the 2σ level (see text and 1265 

Lawson et al., 2007 for further details).  1266 

 1267 

Fig. 5. Photograph at the top of the diagram shows a Norse building at Sissarluttoq, Eastern 1268 

Settlement, Greenland (photo K.J. Edwards). The palynological spectra (selected taxa only) 1269 

in the lower diagram span the time of Norse settlement (landnám) and come from lake mud 1270 

contained in a small pond beside the ruins at Sissarluttoq. The introduction of people and 1271 

domesticated animals into a pristine environment around AD 1000 (SSQ-1/2 zone boundary) 1272 

resulted in a reduction in pollen from shrubs (e.g. Salix) and grazing-sensitive herbs (e.g. 1273 

Apiaceae), and an expansion in anthropochores (e.g. Lactuceae), apophytes (e.g. Rumex 1274 
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acetosella), coprophilous fungal spores (HdV-55A, -113 and -368), and microscopic 1275 

charcoal. The reverse pattern can be seen following abandonment of the site around AD 1400 1276 

(SSQ-3/4 boundary). For the full dataset and discussion, see Edwards et al. (2011b).  1277 

 1278 

Fig. 6. Anthropogenically enhanced plaggen soils can yield useful pollen data, demonstrated 1279 

here using pollen sites in Greenland (Atikilleq, Vatnahverfi; Ledger et al., 2015) and the UK 1280 

(Village Bay, Hirta, St Kilda; Donaldson et al., 2009). (a) coastal section at Atikilleq where 1281 

the plaggen deposit could be traced over a distance of ∼20 m (photo by J.E. Schofield); (b) 1282 

the sampled section at Atikilleq comprising basal natural soil, plaggen (organic-rich sandy 1283 

soil containing charcoal and charred bone fragments, ∼21 cm thickness) and a surface 1284 

capping of sandy soil and turf (photo by J.E. Schofield); (c) summary pollen spectra from 1285 

Atikilleq indicating relatively high concentrations of pollen (dominated by Poaceae, 1286 

Cyperaceae and Ranunculus acris-type) from the start of woodland reduction (landnám); (d) 1287 

Consumption Dyke formed from field-gathered boulders and stones (constructed AD 1830) 1288 

in Village Bay underlain by plaggen soils (soil profile 8 was in the centre of the picture, 1289 

photo by C. Deacon); (e) soil profile 8, Village Bay (72 cm depth, photo by C. Deacon); (f) 1290 

summary diagram from the Village Bay profiles showing the occurrence of some of the main 1291 

pollen types (% TLP, upper scale beneath diagram) and total pollen concentration (grains cm-
1292 

3 wet sediment, lower scale). 1293 

 1294 

Fig. 7. Part of the West Mouth of the Great Cave of Niah, Sarawak, taken from the rockfall in 1295 

the southern passage in 2008 (photograph by C.O. Hunt). The pollen sample transect (line 1296 

diagram) is in the Archaeological Reserve to the far side of the cave mouth, just beyond the 1297 

shelter at that side of the cave. Percentage pollen fallout for major ecological groups per year 1298 

on a transect running inside the cave from the entrance zone (data from Hunt and Rushworth, 1299 

2005) show that the main source for pollen in the first 25 m of the transect is airfall, with 1300 

assemblages closely mirroring those from taphonomic samples in the forests outside the cave. 1301 

The influence of bat and bird vectors on pollen assemblages beyond 25 m into the transect, 1302 

where swiftlet nests and bat roosts are abundant, can be seen in the high percentages of 1303 

mangrove pollen and low frequencies of open-ground taxa.  1304 

 1305 

Fig. 8. Fluorescence micrographs and intensity value graphs (red, green and blue light, 1306 

relative to a greyscale from 0 [no light] to 256) for pollen and spores from the basal peats on 1307 
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Dooncarton Mountain, Co. Mayo, Ireland (Hunt et al. 2007). (a) image of two Corylus grains, 1308 

the upper being recycled and showing a typical dull orange colour, the lower showing the 1309 

brighter yellow colours typical of in-situ material; (b) intensity analysis of in-situ Corylus 1310 

grain shown in (a); (c) intensity analysis of recycled Corylus grain shown in (a). Note that all 1311 

three colour bands show lower intensity; (d) image of thermally mature (burnt) Polypodium 1312 

grain showing the very bright pale blue fluorescence typical of burned material; (e) intensity 1313 

analysis of the thermally mature Polypodium grain shown in (d). Note that the blue band 1314 

shows high intensity, but that there is virtually no fluorescence in the red wavelengths. (For 1315 

greater clarity, see the on-line colour version). 1316 

1317 

Fig. 9. Schematic diagrams illustrating the key inputs and modelling programmes used within 1318 

the Landscape Reconstruction Approach (LRA) and the Multiple Scenario Approach (MSA) 1319 

modified from Bunting and Middleton (2009). Both modelling approaches draw on pollen 1320 

productivity estimates (PPEs) and fall speed of pollen, and use the same pollen dispersal and 1321 

deposition models. The LRA requires raw pollen counts as input data; the MSA requires raw 1322 

pollen count data for evaluation of simulated pollen proportions. 1323 

1324 

Fig. 10. LRA-based estimates of local vegetation cover within the NSAP (necessary source 1325 

area of pollen) of sixteen sites (designated by abbreviations) on Exmoor (indicative 1326 

photograph by Ralph M. Fyfe) for the time period 1500-1000 cal BP. For each site, the 1327 

regional vegetation is estimated in REVEALS using the other 15 sites, followed by 1328 

estimating local vegetation for that site using LOVE. The error bars represent 2σ confidence 1329 

limits.1330 

1331 

Fig, 11. A simulation of broad vegetation zones on Exmoor (upper panel). Zones are 1332 

differentiated based on a combination of elevation and slope, and follow archaeological 1333 

interpretations of the early medieval period (Rippon et al., 2006); vegetation is kept simple, 1334 

with only five taxa. Forty-nine sets of simulated pollen loadings have been generated from 1335 

within the inset box, and are illustrated in the lower panel. Full details of the simulation can 1336 

be found in Fyfe (2006). (For greater clarity, see the on-line colour version). 1337 

1338 



Table 1. Numbers of palynological papers appearing in selected journals since their dates of 

release.  

Journal Period 

covered 

Number of 

palynological 

papers* 

Mean number of 

palynological 

papers per 

annum** 

The Holocene 1991-2014 627 26.13 

Quaternary Science Reviews 1982-2014 608 18.42 

Quaternary International 1989-2014 476 18.31 

Palaeogeography, 

Palaeoclimatology, Palaeoecology 

1965-2014 792 15.84 

Journal of Quaternary Science 1986-2014 398 13.72 

Quaternary Research 1970-2014 606 13.47 

Boreas 1972-2014 336 7.81 

Journal of Archaeological Science 1974-2014 211 5.15 

* Based on the words ‘pollen’ or ‘palynology’ appearing within the title, abstract or

keywords of articles, review articles and short communications, where these are ascertainable 

within the relevant search engines of the journal home pages. There is likely to be uncertainty 

in these figures. 

** These figures are not normalized for annual journal length. 
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