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The Dynamics of Coalition 
Formation on Complex Networks
S. Auer1,2, J. Heitzig2, U. Kornek2, E. Schöll1 & J. Kurths2,3,4,5,6

Complex networks describe the structure of many socio-economic systems. However, in studies of 
decision-making processes the evolution of the underlying social relations are disregarded. In this 
report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) 
on an acquaintance network. We include both the network’s influence on the formation of coalitions 
and vice versa how the network adapts to the current coalition structure, thus forming a social 
feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier 
research to more complex decision-making determined by costs and benefits, and from bilateral 
to multilateral cooperation. We show how phase transitions emerge from such coevolutionary 
dynamics, which can be interpreted as processes of great transformations. If the network adaptation 
rate is high, the social dynamics prevent the formation of a grand coalition and therefore full 
cooperation. We find some empirical support for our main results: Our model develops a bimodal 
coalition size distribution over time similar to those found in social structures. Our detection and 
distinguishing of phase transitions may be exemplary for other models of socio-economic systems 
with low agent numbers and therefore strong finite-size effects.

Statistical physics provides a powerful means to conceptually study mechanisms of socio-economic sys-
tems and their associated transformations such as market restructuring, social upheavals and revolutions. 
Many socio-economic systems exhibit network structures1, and a number of studies show how network 
structures influence behaviour such as bilateral cooperation2. Much less work is done on the reverse 
effect that the network structure in turn adapts to behaviour3–5. While both processes are interesting in 
themselves, in the context of opinion dynamics it is actually the feedback loop of both network adapta-
tion and dynamics on the network which leads to the most interesting nonlinear effects. E.g., the seminal 
work of Holme6 presents a model in which a phase transition occurs that can be interpreted as a great 
transformation.

In this report, we transfer the methods of Holme6 from local social dynamics to a more complex 
form of mesoscopic social self-organization, namely that of multilateral cooperation (here called coali-
tions), whose interaction with network structures has not been studied before. In particular, we present a 
model of the coevolution of an adaptive network representing social acquaintance and a coalition struc-
ture which is a partition of nodes into coalitions of arbitrary size representing multilateral cooperation 
(Fig. 1). Instead of an exogenously given number of opinion groups as previously studied in the literature, 
the number of coalitions in our model evolves endogenosly as a process of self-organization from the 
boundedly rational behavior of the agents. Our model can be applied to socio-economic environments 
where cooperation promises economic or social advantages, and to study such diverse subjects as firm 
size distributions, fish cohorts, and political parties. Our methods to detect phase transitions are espe-
cially applicable to small real-world systems. However, in our case low sample sizes do not necessarily 
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indicate interaction processes with a low number of people since each agent might be composed of 
many individuals, already. A common economic situation for which cooperation is critical is the use of 
a common pool resource. It leads to nontrivial coalition formation dynamics because agents not only 
have an incentive to form a coalition but also to leave a coalition in order to profit from the efforts of the 
remaining coalition. Since one of the major current economic challenges, the transition to a low-carbon 
economy, is closely related to several common pool resources like the atmosphere and renewable energy 
sources, we focus on the application of our model to common pool resources in this article.

Results
In our model, each coalition rationally decides how much of the resource to exploit and gets a cor-
responding payoff that depends on all coalitions’ sizes and decisions. On this basis, individual agents 
rationally decide to form new coalitions with their acquaintances or merge or leave existing coalitions. 
Finally, they may also form new acquaintance links to members of their own coalition or break existing 
ones to members of other coalitions. The main control parameter in our model is the relative speed of 
acquaintance adaptation vs coalition formation, the adaptation rate φ, and the main feature of the result-
ing dynamics is the distribution of coalition sizes that evolves as an equilibrium over time.

For the case of agents exploiting a common pool resource7, we find a second order phase transition 
when adaptation versus coalition formation crosses its critical value, φ =  φc. For subcritical adaptation 
rates (see Methods for the description of the model and parameters), the coalition structure is dominated 
by very few macroscopic or even near-global coalitions. This leads to a peculiarly multimodal size distri-
bution that can also be observed in various real-world systems8–13, not only in socio-economic contexts 
but also in purely physical systems such as droplets14. In contrast, at the critical adaptation rate, a more 
heterogeneous but power-law-tailed size distribution with much smaller maximal coalitions emerges (see 
Figs 2 and 3).

Change in Coalition Size Distributions. We see significant changes in the distribution from a few 
macroscopic coalitions to complex multimodal distributions, when the adaptation rate φ is changed. 
There are two extremes. For φ =  0 the dynamics are purely based on coalition formation and hence 
coalition sizes approach the initial component sizes. In contrast, for φ =  1 only network adaptation takes 
place: starting with a coalition structure of only singletons, this parameter setting immediately converges 
without any further changes taking place; from the beginning, there are no coalition partners to link 
with. For small φ the distribution has peculiar features: a linearly decreasing frequency for small coalition 
sizes s and one or two local maxima for larger coalition sizes. Its multimodal nature emerges endoge-
nously from the nonlinear dynamics of coalition formation. As a matter of fact, from empirical obser-
vations, multimodal distributions of social structures are well known, e.g. multimodal size distributions 
have been found in growth patterns of fish cohorts8,9 and droplet sizes14, in human communication10 and 
in firm and city size distributions of developing countries11–13.

For a typical size of coalition forming systems, N =  300 nodes, a look at the distribution of s in steps 
of Δ φ =  0.1 initially does not reveal any interesting artifacts such as power-laws. However, at values of φ 
close to one, the local maxima at the tails disappear, and for a critical adaptation rate φc ≈  0.97 coalition 
sizes show a power-law tail (Fig. 3c). The reason for such a high critical value are the more macroscopic 
effects of the coalition formation process as compared to the network adaptation process; it may involve 
hundreds of agents at once whereas network adaptation only affects three agents at a time (see Methods). 
In Fig. 4a, a higher resolution plot of maximum coalition size S vs. ϕ shows a turning point of this order 
parameter15, something we expect for a second-order phase transition. It is not very distinctive but this 
is expected due to finite size effects16. Samples of up to 500 nodes are rather small for statistical physics 
and an exponential progression of system sizes would be more revealing as network distances scale 
slowly with N. Still, we chose a linear progression in N because the coalition formation process causes 
high computational costs with rising N and agent numbers of up to several hundreds are quite realistic 
for many socio-economic systems17. Nevertheless, phase transitions appear, only the accompanying sin-
gularities are washed out or smoothed18 due to finite-size effects. Also, we expect only small finite-size 

Figure 1. Scheme of coevolution. In each period, either one random cross-coalition links is replaced by 
an intra-coalitional link (adaptation with rate φ) or some random agent changes the coalition structure 
(coalition formation with rate 1 −  φ), where each two members of a coalition must be connected by a path 
in the network.
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corrections19 to critical scaling with an exponential progression to larger N which are insignificant in the 
context of socio-economic modeling. Thus, the detailed analysis of finite-size phase transitions may be 
of great use for further models in this context.
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Figure 2. Acquaintance network with coalition structure (each color represents one coalition, black dots 
are singleton coalitions) for varying system size (columns: N = 300, N = 600 and N = 900) and adaptation 
rate (rows: φ = 0.97 and φ = 0.1). Note that some of the smaller network components consist of more than 
one coalition. Each network is the equilibrium result of one model run.
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Figure 3. Left (a–c) log-log plot of frequency distribution of all coalition sizes s and right (d–f) histograms 
P(S) of maximum coalition size S in the consensus state for φ =  0.2, φ =  0.8 and φ =  0.97, respectively. 
N =  300 and k  =  3 (for 500 model runs).
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Second-order Phase Transition. From these plots alone, the type of phase transition (first- or 
second-order) is hard to identify because a finite sample size will give both first- and second-order tran-
sitions a similar appearance. However, the type of transition is revealed by the probability density func-
tion of the order parameter S. For a varying control parameter φ, first-order transitions have two peaks 
at fixed position with changing height20. Whereas for a second-order transition, a Gaussian peak contin-
uously changes its position—the maximum and mean values of S are moving to smaller values for 
increasing φ18 until the Gaussian converts to a heavy-tailed function at the critical point. In our case, for 
φ =  0.2 and φ =  0.8, the Gaussian curve fits relatively well, but for φ =  0.97 there is an obvious mismatch. 
For Fig.  3d with χ2 =  21.7, and for Fig.  3e with χ2 =  29.6, the Chi-squared test statistics is below the 
critical quantile, 30 10 05 19

2χ = .. ,
. This means that on the level 5% we cannot reject the hypothesis of a 

normal distribution. For Fig.  3f, χ2 =  242.2 exceeds the critical quantile 22 40 05 13
2χ = .. ,

. A long tail 
appears, featuring bigger coalition sizes that cannot be explained by a Gaussian distribution18. Both 
arguments underline the assumption of a continuous phase transition.

Quantification of the Scaling Relation. Via the maximum of the coefficient of variation of S, VS, 
it is possible to identify the critical region (Fig.  4b). According to scaling theory, for different agent 
numbers, VS should peak at about the same value of φ, only slightly shifted from the critical point by 
const. ⋅  N−1/ν, where ν is a critical exponent21. In the region close to the expected critical point φc, we 
have estimated VS for several agent numbers and indeed all maxima appear approximately at φ =  0.97, in 
accordance with our earlier estimate. With this knowledge, it is possible to quantitatively grasp the criti-
cal dynamics. To determine the critical exponents, it is important to recall the classical scaling relation21 
and apply it to our model case, where φ takes the role of temperature and S the role of magnetization 
(see Methods for further explanation):

S N f N 1c
v
1( )φ φ= ( − ) , ( )

β
ν−

where β is another critical exponent. At first, it should be possible to find a scaling exponent z for which 
SNz intersects for all agent numbers in a single point (φc, f(0))22. Therefore, we vary z until a value φc is 
found where all curves cross. This is the case for z ≈  0.76. At this point z =  β/ν. In Fig. 4c, the result of 

Figure 4. Plot of (a) order parameter S, (b) coefficient of variation VS and (c) S scaled with N−z over 
control parameter φ for different agent numbers N. (d) Data collapse close to the critical point φc. S scaled 
with N−z over (φ −  φc) scaled with Nν. All variables are averaged over 100 model runs.
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successfully scaling the order parameter is shown. After that, scaling (φ −  φc) by the factor N
1
ν  will lead 

to a data collapse in a region closely drawn around the critical point φc
22. This way, in Fig. 4d the critical 

exponent ν was found to be approximately ν =  (0.35)−1.

Discussion
What can we infer from these results? If the acquaintance network in our coalition formation model 
adapts only slowly to the coalition structure, the formation of a grand coalition is most probable. Only 
for really high adaptivity, a fast transition to a heterogeneous coalition structure appears because then the 
effect of coalition formation is suppressed by a permanent rewiring of the acquaintance links. Before it is 
even possible to find a neighbor coalition to unite with, at some earlier stage the link to this coalition was 
already removed. If adaptivity represents some kind of social punishment (deprivation of social contact 
between agents from different coalitions) then in this case punishment would actually be counterproduc-
tive. At high frequency it leads to the isolation of a high number of small and midsize coalitions forming 
independent network components. However, full cooperation provides the highest benefits to all agents 
in many socio-economic situations, including the common pool context of our study. From an outside 
perspective, e.g. consumers facing an oligopoly, it may however be desirable to keep coalitions (cartels) 
small. Of course, this phenomenon of coalition isolation is caused by our assumption that the total 
number of acquaintances stays constant over time which has been argued to be approximately realistic 
in social relations1. As this assumption has such large effect on the model outcome and implications, it 
would be most interesting to study different scenarios in future work. In the context of contemporary 
issues, our findings can be used to support transformation processes by fostering the persistence of social 
networks by lowering φ. Both our model and real-world systems may undergo non-equilibrium phase 
transitions (in equilibrium physics an isolated system maximizes its entropy whereas non-equilibrium 
phase transition are driven by an external force, e.g. a heat bath, or control parameter23) and therefore the 
investigation of socio-economic transformations can profit from conceptual models of decision-making 
processes. Less realistic is the investigation of agents in a fixed state after model convergence. However, 
after only a few time steps we observe the same basic appearance of coalition size distributions. E.g. in 
the subcritical case, we see a multimodal distribution with the local maxima migrating to greater values 
with evolving time (similar to14). Still, this aspect is part of ongoing work.

In our model, we have increased the level of complexity from simple opinion adaptation processes 
from earlier research to more complex decision making determined by costs and benefits, and from local 
social interaction to mesoscopic cooperation. Our approach gets support from empirical data. In our 
model, the fat-tailed and bimodal coalition size distributions develop over time, they are model-inherent. 
The distributions resulting from such processes of self-organization deliver measurable quantities to 
study such transformation processes. Future work should vary the payoff sub-model in order to rep-
resent different archetypical socio-economic situations than the common-pool setting. One may then 
compare them with firm size distributions12,13,17 from different economic sectors to identify the drivers 
of firm size growth. Other cases of multimodality in social systems were found in city size distributions 
of developing countries11 and fish cohorts8,9 possibly resulting from cooperative phenomena. However, 
even natural processes such as droplet growth give a similar picture: a power-law distribution for small 
droplets and a maximum for larger ones14. For the study of specific real-world systems, it might however 
be necessary to model heterogeneous agents. But most importantly, the observation of phase transitions 
with respect to network adaptivity in our model encourages follow-up work on the role that the relative 
speed of processes in social feedback loops has for transformation process.

Methods
We start with an Erdös-Rényi random acquaintance network and a coalition structure composed of one 
singleton “coalition” per agent (coalitions of size 1), representing no initial cooperation. Coalitions are 
collective decision-makers and the members of a coalition act as one player and therefore, each agent 
can only be a member of one coalition. Over time, any number of coexisting but disjoint coalitions may 
emerge, each of which has to be a connected set of nodes in the network, i.e., formally a coalition struc-
ture is a partition of the network nodes into connected sets24. Each coalition i generates a payoff flow Π x 
for each of its members x given by

s X s X s F1 2 1 2x i i i
2 2 2

Π = ( + / )/( + / ) − . ( )

In this, si is the size of coalition i, F a parameter representing the fixed costs of maintaining a coalition, 
and X the solution to the equation

X X s1 1 1 1
3j

j
2( )∑− / = / + / ,

( )
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where the sum is over all coalitions j (see the Supporting Information, SI, for an economic derivation of 
this equation from a common pool resource exploitation game). In each time-step of the model, either 
of two processes occur:

1. With probability φ, the network adapts to the coalition structure by rewiring one cross-coalitional 
link of a randomly chosen agent x to another randomly chosen member of x’s coalition (unless 
x is already linked to all her coalition members). This keeps the total number of links constant 
which is approximately true for many real-world social systems25.

2. Otherwise, i.e., with probability 1 −  φ, a randomly chosen agent x may change the coalition struc-
ture. The agent may either

(a).  leave her coalition (in which case the rest of the coalition splits up into its connected 
components),

(b).  merge her coalition with any combination of her neighbors’ coalitions (in which case this 
merger must be profitable to all affected nodes in terms of the underlying payoff model),

(c). or do nothing, 

depending on which of these moves results in the largest next time-step’s payoff for x.
Note that the amount of change caused by one instance of process 1 is restricted to only three nodes, 

while process 2 typically affects a much larger number of nodes in one step, especially when the involved 
coalitions are already meso- or macroscopic.

The model has converged when no agents are able to rewire their links or find it profitable to change 
the coalition structure any longer. In the corresponding steady state there may still be several coalitions 
in each connected component of the network (see Fig. 2). Thus, the order parameter defining order and 
disorder in this socio-economic context is not the network component size but the size of the largest coa-
lition, S. If we imagine assigning different coalitions to different spin directions, it is possible to draw an 
analogy to the magnetic spin model20. If all nodes are singletons, there are N different coalitions whose 
sizes does not exceed 1 (hence, S =  1). In the analogy, all spins would be pointing into different directions 
averaging out to a macroscopic magnetization of zero. The other extreme would be the state of a grand 
coalition where S =  N. Here, all spins would be pointing into the same direction resulting in a non-zero 
magnetization (the ferromagnetic state). The transition from one state of the order parameter to the other 
can be of first or second order. In our model, without network adaptation (for φ =  0) the largest coalition 
converges to a size S of the order of N. With increasing φ the coalition formation process is increasingly 
disturbed and S decreases. Therefore, the adaptation rate φ is the natural choice for the control parameter.

From the feedback loop between coalition and network structure we expect the dynamics of this 
model to be highly non-linear. We study these dynamics with varying control parameter φ, in particular 
the occurrence of non-equilibrium phase transitions. Phase transitions can be identified and character-
ized with the help of scaling theory which states characteristic system variables (order parameters) to be 
power-law distributed at the critical value of the control parameter21,23. A visualization of the coalition 
structure for different system sizes gives a first insight (Fig.  2). At the critical point, system patterns 
should not substantially change for different system sizes. As a quantification we accompany this graphi-
cal hint of finite-size scaling with the frequency distribution of all coalition sizes, s, that remain after the 
model has converged (Fig. 3a–c), which may take up to 106 time steps.
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