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Abstract. This article is concerned with perfect isometries between blocks
of finite groups. Generalizing a method of Enguehard to show that any two
p-blocks of (possibly different) symmetric groups with the same weight are
perfectly isometric, we prove analogues of this result for p-blocks of alternating
groups (where the blocks must also have the same sign when p is odd), of
double covers of alternating and symmetric groups (for p odd, and where we
obtain crossover isometries when the blocks have opposite signs), of complex
reflection groups G(d, 1, n) (for d prime to p), of Weyl groups of type B and
D (for p odd), and of certain wreath products. In order to do this, we need
to generalize the theory of blocks, in a way which should be of independent
interest.

1. Introduction

Perfect isometries, introduced by M. Broué in [1], are the shadow, at the level of
characters, of very deep structural correspondences between blocks of finite groups
(such as derived equivalences, or splendid equivalences). The existence of such
equivalences is at the heart of Broué’s Abelian Defect Conjecture, which predicts
that any p-block of a finite group G with abelian defect group P and its Brauer
correspondent in NG(P ) are derived equivalent.

Recently, there has been considerable progress in the construction of equivalences
between blocks, especially using a method, introduced and developed by J. Chuang
and R. Rouquier in [5], and based on sl2-categorification. As a consequence of
their work, they show that two p-blocks of (possibly different) symmetric groups
with isomorphic defect groups are splendidly equivalent; see [5, Theorem 7.2]. This
explains the result [7, Theorem 11] of M. Enguehard, which is an analogue of [5,
Theorem 7.2], but at the level of characters, that is, the existence of Broué perfect
isometries between such blocks.

For p-blocks of (possibly different) double covers of the symmetric and alternat-
ing groups, it has been conjectured by M. Schaps and R. Kessar that, with some
additional assumptions, a similar result holds. There are partial results in this
direction, for example [13], [14] and [16]. However, even at the level of characters,
the existence of perfect isometries between these p-blocks was yet unproved.

This article dicusses perfect isometries. Besides suggesting the existence of a
derived equivalence between blocks, any perfect isometry between two p-blocks of
finite groups provides an isomorphism between their centres, and an isomorphism
between the Grothendieck groups of their module categories. In particular, perfectly
isometric p-blocks have the same numbers of ordinary and of modular characters,

2010 Mathematics Subject Classification. Primary 20C30, 20C15; Secondary 20C20.
1



2 OLIVIER BRUNAT AND JEAN-BAPTISTE GRAMAIN

and their Cartan matrices and decomposition matrices have the same invariant
factors.

Furthermore, the weaker version of Broué’s Abelian Defect Conjecture (that
is, Broué’s conjecture at the level of characters) gives, in the abelian defect case,
deep insight into more numerical conjectures, such as the Alperin, Knörr-Robinson,
Alperin-McKay and Dade conjectures (see for example [6]).

In this paper, we generalize Enguehard’s method (see [7]) based on the Murnaghan-
Nakayama rule in the symmetric group (which gives a way to compute iteratively
the values of irreducible complex characters). We will prove that similar results hold
for many classes of groups where some analogues of the Murnaghan-Nakayama rule
are available.

For this, we extract the properties of the Murnaghan-Nakayama rule needed in
Enguehard’s method, which we axiomatize in the concept of an MN-structure for
a finite group. In some cases, for example when the analogue of the Murnaghan-
Nakayama rule for the considered groups do not give information on the whole
group, but only on certain conjugacy classes (this happens for the double covers
of the symmetric and alternating groups), we need to replace the set of p-regular
elements of the group by an arbitrary union of conjugacy classes. We then develop
a generalized modular theory, and define generalized blocks and generalized per-
fect isometries. Note that the notion of generalized blocks and generalized perfect
isometries introduced by B. Külshammer, J. B. Olsson and G. R. Robinson in [15] is
not exactly the same as ours. In some way, our notion is more general, because any
Külshammer-Olsson-Robinson isometry or Broué isometry is a generalized perfect
isometry in our sense.

The article is organized as follows. In Section 2 we generalize the theory of
blocks of characters. Note that §2.1 is of independent interest, because it in partic-
ular gives a natural framework to use the techniques of the usual modular p-block
theory for the theory of Küshammer, Olsson and Robinson. The main result of this
section (Theorem 2.10) provides the bridge necessary to compare blocks and spaces
of class functions of (possibly distinct) groups which have similar MN-structures.
This combinatorification of the ideas in [7] can in turn be used to exhibit perfect
isometries between blocks of these groups (see Corollary 2.17 and Theorem 2.20).

The remaining sections are devoted to describing MN-structures in several fam-
ilies of finite groups, and using our methods to build explicitly perfect isometries
between their blocks.

More precisely, we prove in Section 3 that two p-blocks of (possibly different)
alternating groups with same weight, (and the same signature type when p is odd)
are perfectly isometric (see Theorems 3.9, 3.10 and 3.11).

Then, in Section 4, we study the case of spin blocks of the double covers of
the symmetric and alternating groups, and we prove the perfect isometry version
of the Kessar-Schaps conjecture. We show that, when p is odd, any two spin p-
blocks with the same weight and sign are perfectly isometric (see Theorem 4.21
and Corollary 4.22). As is to be expected in these groups (see [14]), we also obtain
crossover isometries, relating a p-block in “the symmetric case” to a p-block in
“the alternating case”. Note that, in the proof of these results, even though the
isometries we obtain are Broué isometries, we crucially need the generalized theory
introduced in Section 2.
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In the last section, we examine the case of certain wreath products. Applying
our method, we give in §5.2 and §5.3 a new and more uniform construction of the
isometries appearing in Broué’s Abelian Defect Conjecture for symmetric groups,
isometries introduced by M. Osima, and the generalized perfect isometry considered
in [2] in order to show the existence of p-basic sets for the alternating group (see
Theorem 5.1, Theorem 5.3 and Corollary 5.2). Even though these results are not
new, they give explicit isometries, and considerably simplify the calculations (for
example, note that the initial proof of Rouquier [25] of Broué’s perfect isometries
Conjecture for symmetric groups (see [25]) is not constructive, and is based on a
strong result of Fong and Harris in [8] on perfect isometries in wreath products).

In §5.4, we apply our method to p-blocks of complex reflection groups G(d, 1, n)
with d prime to p, and obtain in Theorem 5.4 an analogue of Enguehard’s result
for these groups. In particular, this gives the result for p-blocks (with p odd) of
(possibly different) Weyl groups of type B (see Corollary 5.6). In §5.5, we also
prove the result for p-blocks (with p odd) of (possibly different) Weyl groups of
type D (Theorems 5.7 and 5.8). All of these are new results.

Finally, in §5.6, we give an analogue of the generalized perfect isometry of [2,
Thoerem 3.6] for p-blocks (with p odd) of alternating groups (see Therorem 5.12). In
a certain sense (see Example 5.9), this is a natural analogue of Osima’s isometry for
alternating groups. When the p-block of the alternating group has abelian defect,
our result gives an alternative proof of Broué’s perfect isometries Conjecture first
obtained by Fong and Harris in [9] (see Corollary 5.13).

We hope that our results, and in particular the fact that the Broué perfect
isometries constructed here are explicit, will help to prove that the corresponding
p-blocks are in fact derived equivalent.

2. Generalities

In this section, G denotes a finite group and C a set of conjugacy classes of G.
We set

(1) C =
∪
c∈C

c.

We write Irr(G) for the set of irreducible characters of G over the complex field C,
and ⟨ , ⟩G for the usual hermitian product on C Irr(G). For x ∈ G, we denote by
xG the conjugacy class of x in G. Define resC : C Irr(G) → C Irr(G) by setting, for
any class function φ ∈ C Irr(G),

resC(φ)(g) =

{
φ(g) if g ∈ C,
0 otherwise.

For B ⊆ C Irr(G), we set BC = {resC(χ) | χ ∈ B}.

2.1. Generalized modular theory. Let b be a Z-basis of the Z-module Z Irr(G)C .
For every χ ∈ Irr(G), there are uniquely determined integers dχφ such that

(2) resC(χ) =
∑
φ∈b

dχφφ.

We denote by b∨ the dual basis of b with respect to ⟨ , ⟩G, i.e. the unique C-basis
b∨ = {Φφ |φ ∈ b} of C Irr(G)C such that ⟨Φφ, ϑ ⟩ = δϑφ for all ϑ ∈ b.
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Proposition 2.1. Let C be a set of conjugacy classes of G. Suppose that b is a Z-
basis of Z Irr(G)C, and denote by b∨ = {Φφ |φ ∈ b} the dual basis of b with respect
to ⟨ , ⟩G (as above). Then:

(i) For every φ ∈ b, we have

(3) Φφ =
∑

χ∈Irr(G)

dχφχ =
∑

χ∈Irr(G)

dχφ resC(χ),

where the dχφ’s are the integers defined in Equation (2).
(ii) We have

Z Irr(G) ∩ Z Irr(G)C = Zb∨.

Proof. Let φ ∈ b. We have Φφ ∈ C Irr(G)C . It follows that ⟨Φφ, χ ⟩G = ⟨Φφ, resC(χ) ⟩G
for all χ ∈ Irr(G). Using Equation (2), we deduce that

⟨Φφ, χ ⟩G =
∑
ϑ∈b

dχϑ⟨Φφ, ϑ ⟩G

= dχφ.

This proves (i).
By (i), we clearly have Zb∨ ⊆ Z Irr(G) ∩ Z Irr(G)C . Conversely, suppose that ψ

is a generalized character vanishing on the elements x such that xG /∈ C. Then

ψ =
∑
φ∈b

⟨ψ,φ ⟩GΦφ.

Since b ⊂ Z Irr(G)C , for every φ ∈ b, there are integers aφχ (not necessarily unique)
such that

φ =
∑

χ∈Irr(G)

aφχ resC(χ).

Define
ψφ =

∑
χ∈Irr(G)

aφχχ ∈ Z Irr(G).

Then resC(ψφ) = φ. Moreover, ψ ∈ Z Irr(G)C . It follows that

⟨ψ,φ ⟩G = ⟨ψ,ψφ ⟩G,
which is an integer because ψ ∈ Z Irr(G) and (ii) holds. □

Now, we introduce a graph as follows. The vertex set is Irr(G) and two vertices
χ and χ′ are linked by an edge, if there is φ ∈ b such that dχφ ̸= 0 and dχ′φ ̸= 0.
The connected components of this graph are called the C-blocks of G.

Remark 2.2. Note that the C-blocks of G depend on the choice of the Z-basis b
of Z Irr(G)C .

If B is a union of C-blocks of G, we write Irr(B) for the subset of Irr(G) corre-
sponding to the vertices of B, and bB for the set of elements of b which give edges
in B. We set b∨B = {Φφ |φ ∈ bB}. Note that b∨B is the dual basis of bB (when bB is
viewed as a basis of the C-vector space CbB) with respect to ⟨ , ⟩G.

We may (and do) order the elements of Irr(G) and b in such a way that, if the
rows and columns of D = (dχφ)χ∈Irr(G),φ∈b are ordered correspondingly, then D
is a block-diagonal matrix, and each (diagonal) block DB of D corresponds to a
C-block B of G.
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Corollary 2.3. With the notation as above, for every C-block B of G, we have
Φφ =

∑
χ∈Irr(B)

dχφχ for all φ ∈ bB, and

Z Irr(B) ∩ Z Irr(G)C = Zb∨B.

Corollary 2.4. With the above notation, let χ, ψ ∈ Irr(G) and φ, ϑ ∈ b be such
that ⟨φ, ϑ ⟩G ̸= 0 and dχφ ̸= 0 ̸= dψϑ. Then χ and ψ lie in the same C-block.

Proof. Let φ, θ ∈ b. By Proposition 2.1(i), we have

δφ θ = ⟨Φφ, θ ⟩G =
∑

χ∈Irr(G)

dχφ⟨ resC(χ), θ ⟩G

=
∑

χ∈Irr(G)

∑
η∈b

dχφdχη

 ⟨ η, θ ⟩G

=
∑
η∈b

 ∑
χ∈Irr(G)

dχφdχη

 ⟨ η, θ ⟩G.

Now, if we write K = (⟨φ, θ ⟩G)φ,θ∈b, then the preceding equation gives I =tDDK.
Thus, K is invertible and K−1 =tDD. Furthermore, D is a block-diagonal matrix.
Hence, K−1 also has a block-diagonal structure. More precisely, the blocks of K−1

are the tDBDB ’s for all C-blocks B of G. It follows that K has the same block-
diagonal structure as K−1. In particular, if ⟨φ, θ ⟩G ̸= 0, then φ and θ lie in the
same C-block of G.

Our assumption that ⟨φ, ϑ ⟩G ̸= 0 therefore implies that ϑ and φ lie in a common
C-block B of G. By the definition of C-blocks, this means that φ and ϑ correspond to
some subsets cφ and cϑ of edges in a connected component B of the graph previously
introduced. Moreover, χ (respectively ψ) is a vertex of some edge in cφ (respectively
in cϑ), because dχφ ̸= 0 (respectively dψϑ ̸= 0). Therefore χ, ψ ∈ B. □

2.2. MN-Restriction. We fix a set of G-conjugacy classes C and a union of C-
blocks B ofG, and denote by C the corresponding set of elements as in Equation (1).

Definition 2.5. We say that G has an MN-structure with respect to C and B, if
the following properties hold.

1. There is a subset S ⊆ G containing 1 and stable under G-conjugation.
2. There is a bijection between a subset A ⊆ S × C and G (the image of

(xS , xC) ∈ A will be denoted by xS · xC), such that for (xS , xC) ∈ A

g(xS · xC) = (gxS) · (gxC) and xS · xC = xSxC = xCxS .

Moreover, for all xS ∈ S and xC ∈ C, we have (xS , 1) ∈ A and (1, xC) ∈ A.
3. For xS ∈ S, there is a subgroup GxS

≤ CG(xS) such that

GxS ∩ C = {xC ∈ C | (xS , xC) ∈ A}.
For xS ∈ S, we denote by CxS the set of GxS -conjugacy classes of GxS ∩C.

4. For xS ∈ S, there is a union of CxS
-blocks BxS

of GxS
and a homomorphism

rxS : C Irr(B) → C Irr(BxS ) satisfying

rxS (χ)(xC) = χ(xS · xC) for all χ ∈ C Irr(B) and (xS , xC) ∈ A.

Moreover, we assume that G1 = G, B1 = B and r1 = id.
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In the rest of this subsection, we suppose that G has an MN-structure. For
xS ∈ S, we define a homomorphism dxS : C Irr(B) → C Irr(BxS )

CxS by setting

(4) dxS
(χ) = resC ◦rxS (χ) for χ ∈ Irr(B).

The C-basis of C Irr(BxS )
CxS used to define the union of CxS-blocks BxS of GxS

(see Remark 2.2) is denoted by bxS
, and we write

exS
: Cb∨xS

→ C Irr(B)

for the adjoint map of dxS
with respect to ⟨ , ⟩G.

Take any y = yS · yC ∈ G with yS ∈ xGS . For any t ∈ G such that tyS = xS ,
one has tyC ∈ GxS

by Definition 2.5(3), and the set X of elements tyC with t ∈ G
such that tyS = xS is stable under GxS

-conjugation (because GxS
⊆ CG(xS)). We

denote by ExS
yS ,yC a set of representatives of the GxS -classes of X.

Lemma 2.6. With the notation above, for any ϕ ∈ Cb∨xS
and (yS , yC) ∈ A, we

have

exS
(ϕ)(yS · yC) =


|CG(yS · yC)|

∑
xC∈ExS

yS,yC

ϕ(xC)

|CGxS
(xC)|

if yGS = xGS ,

0 otherwise.

Proof. We denote by 1G,x the indicator function of the conjugacy class of x in G.
We have

exS
(ϕ)(yS · yC) = |CG(yS · yC)|⟨ exS

(ϕ), 1G,yS ·yC ⟩G
= |CG(yS · yC)|⟨ϕ, dxS

(1G,yS ·yC ) ⟩GxS
,

because dxS and exS are adjoint. Moreover, by Definition 2.5(3),we deduce that

dxS
(1G,yS ·yC ) =

∑
xC∈ExS

yS,yC

1GxS
,xC

if yGS = xGS and 0 otherwise. This implies in particular that exS (ϕ)(yS · yC) = 0
whenever yGS ̸= xGS . Now, suppose that yGS = xGS . Then

exS
(ϕ)(yS · yC) = |CG(yS · yC)|

∑
xC∈ExS

yS,yC

⟨ϕ, 1GxS
,xC

⟩GxS

= |CG(yS · yC)|
∑

xC∈ExS
yS,yC

ϕ(xC)

|CGxS
(xC)|

,

as required. □

By Definition 2.5(1), S =
∪
λ∈Λ λ, where each λ ∈ Λ is a conjugacy class of

G. For each λ ∈ Λ, we choose a representative xλ ∈ λ, and we let Gλ = Gxλ
,

Bλ = Bxλ
, rλ = rxλ , Cλ = CxS and dλ = dxλ

.
Let g = gS · gC ∈ G. In the following, we say that g is of type λ if gS ∈ λ.

Furthermore, we set EλgS ,gC = Exλ
gS ,gC .

Now, we set

dG : C Irr(B) →
⊕
λ∈Λ

C Irr(Bλ)
Cλ , χ 7→

∑
λ∈Λ

dλ(χ).
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For λ ∈ Λ, we define lλ : C Irr(Gλ)
Cλ → C Irr(G) by setting

(5) lλ(ψ)(g) =


1

|EλgS ,gC |
∑

xC∈Eλ
gS,gC

ψ(xC) if gGS = λ

0 otherwise
,

and put
lG :

⊕
λ∈Λ

C Irr(Gλ)
Cλ → C Irr(G),

∑
λ∈Λ

ψλ 7→
∑
λ∈Λ

lλ(ψλ).

Remark 2.7. Let ψ ∈ C Irr(Gλ)
Cλ , and suppose that ψ is constant on Eλxλ,y

for
every y ∈ C ∩ Gλ. Then lλ(ψ)(g) = 0 except when gS ∈ λ. In this case, we have
lλ(ψ)(g) = ψ(xC), where xC is any element of EλgS ,gC .

Lemma 2.8. The homomorphism dG is injective, and the map lG◦dG is the identity
on C Irr(B).

Proof. Let x ∈ G. Then by Definition 2.5(2), x is G-conjugate to xλ · xC for some
λ ∈ Λ and xC ∈ C, and for any χ ∈ C Irr(B), we then have

χ(x) = χ(xλxC) = rλ(χ)(xC) (by Definition 2.5(4))
= resC(r

λ(χ))(xC)

= dλ(χ)(xC) (by definition of dλ).

Now, fix χ ∈ C Irr(B) such that dG(χ) = 0. Then, for every λ′ ∈ Λ, we have
dλ′(χ) = 0. In particular, dλ(χ)(xC) = 0, and it follows that χ(x) = 0. Thus dG is
injective.

Note that
lG ◦ dG =

∑
λ′∈Λ

lλ′ ◦ dλ′ .

Hence, for every χ ∈ C Irr(B), we have

lG ◦ dG(χ)(x) =
∑
λ′∈Λ

lλ′ ◦ dλ′(χ)(x).

By Equation (5), if λ′ ̸= λ, then lλ′(dλ′(χ))(x) = 0. On the other hand, since dλ(χ)
is constant on Eλxλ,y

for any y ∈ C ∩Gλ, Remark 2.7 implies

lλ ◦ dλ(χ)(x) = lλ ◦ dλ(χ)(xλxC) = dλ(χ)(xC) = resC(r
λ(χ))(xC) = χ(x),

as required. □

For λ ∈ Λ, we set bλ = bxλ
and eλ = exλ

. The dual of
⊕

λ∈Λ C Irr(Bλ)
CxS is⊕

λ∈Λ Cb∨λ and the homomorphism

eG :
⊕
λ∈Λ

Cb∨λ → C Irr(B),
∑
λ∈Λ

ϕλ 7→
∑
λ∈Λ

eλ(ϕλ)

is the adjoint of dG.

Remark 2.9. Write Zbλ(C) for the submodule of Zbλ consisting of class functions
constant on Eλxλ,y

for any y ∈ C ∩ Gλ. Let K = rkZ(Zbλ(C)). By the invariant
factor decomposition theorem, there are a Z-basis bλ = {b1, . . . , bN} of Zbλ and
positive integers m1, . . . ,mK such that m1|m2| · · · |mK and {m1b1, . . . ,mKbK} is
a Z-basis of Zbλ(C). Let 1 ≤ i ≤ K and y ∈ C ∩ Gλ. Then for any t ∈ Eλxλ,y

,
one has mibi(t) = mibi(y) because mibi ∈ Zbλ(C). Since mi ̸= 0, we deduce that
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bi(t) = bi(y). Thus, bi ∈ Zbλ(C) and mi = 1. In the following, we will write
bCλ = {b1, . . . , bK} for the Z-basis of Zbλ(C) coming from such a construction.

2.3. Isometries. Let G and G′ be two finite groups. We fix C (respectively C′) a
set of conjugacy classes of G (respectively G′), and B (respectively B′) a union of
C-blocks of G (respectively C′-blocks of G′). As above, we write

C =
∪
c∈C

c and C ′ =
∪
c′∈C′

c′.

We consider the isomorphism

Θ :

{
C Irr(B)⊗ C Irr(B′) −→ End(C Irr(B),C Irr(B′))∑

χ,χ′ χ⊗ χ′ 7−→
(
φ 7→

∑
χ,χ′⟨φ, χ ⟩Gχ′

)
Note that, if we write f̂ = Θ−1(f) for any f ∈ End(C Irr(B),C Irr(B′)), then

(6) f̂ =
r∑
i=1

e∨i ⊗ f(ei),

where e = (e1, . . . , er) is any C-basis of C Irr(B) with dual basis e∨ = (e∨1 , . . . , e
∨
r )

with respect to ⟨ , ⟩G.

Theorem 2.10. Let G and G′ be two finite groups. Suppose that
(1) The group G (respectively G′) has an MN-structure with respect to C and

B (respectively C′ and B′). We keep the same notation as above, and the
object relative to G′ are denoted with a ‘prime’.

(2) Assume there are subsets Λ0 ⊆ Λ and Λ′
0 ⊆ Λ′ such that :

(a) For every λ ∈ Λ with λ ̸∈ Λ0 (respectively λ′ ∈ Λ′ with λ′ /∈ Λ′
0), we

have rλ = r′λ
′
= 0.

(b) There is a bijection σ : Λ0 → Λ′
0 with σ({1}) = {1} and for λ ∈ Λ0,

an isometry Iλ : C Irr(Bλ) → C Irr(B′
σ(λ)) such that

Iλ ◦ rλ = r′σ(λ) ◦ I{1}.

(3) For λ ∈ Λ0, we have Iλ(Cb∨λ) = Cb′∨σ(λ). We write Jλ = Iλ|Cb∨λ .

Then for all x ∈ G, x′ ∈ G′, we have

(7) Î{1}(x, x
′) =

∑
λ∈Λ0

∑
ϕ∈bC

λ

eλ(Φϕ)(x)l
′
σ(λ)(J

∗−1
λ (ϕ))(x′),

where bλ and bCλ are as in Remark 2.9, and b∨λ = {Φϕ |ϕ ∈ bλ} is the dual basis of
bλ as in §2.1.

Proof. First, we remark that, for λ ∈ Λ0, the adjoint of the inclusion i : Cb∨λ →
C Irr(Bλ) is i∗ = resC . Moreover, Hypothesis (3) implies that the following diagram
is commutative:

Cb∨λ
Jλ //

i

��

Cb′∨σ(λ)

i

��
C Irr(Bλ)

Iλ // C Irr(Bσ(λ))
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Dualizing, we obtain the following commutative diagram:

Cbλ Cb′σ(λ)
J∗
λ

oo

C Irr(Bλ)

resC

OO

C Irr(Bσ(λ))

resC′

OO

I−1
λ

oo

(The bottom arrow is indeed I−1
λ because we identified C Irr(Bλ) and C Irr(Bσ(λ))

with their duals.) Thus, we have resC ◦I−1
λ = J∗

λ ◦ resC′ , which implies that J∗−1
λ ◦

resC = resC′ ◦Iλ, and we obtain

J∗−1
λ ◦ resC ◦rλ = resC′ ◦Iλ ◦ rλ

J∗−1
λ ◦ dλ = resC′ ◦r′σ(λ) ◦ I{1}
J∗−1
λ ◦ dλ = d′σ(λ) ◦ I{1},(8)

where the second equality comes from Hypothesis (2).
Write Zbλ(C) as in Remark 2.9. We have dλ(C Irr(B)) ⊂ Cbλ(C). Define bλ, bCλ

as in Remark 2.9, and set Vλ = lλ(CbCλ) and V ′
λ′ = l′λ′(Cb′C

′

λ′).
Now, the assumption (2.a) implies that dG =

∑
λ∈Λ0

dλ and if we again write
lG for the restriction of lG to ⊕λ∈Λ0C Irr(Gλ)

Cλ to simplify the notation, then
Lemma 2.8 gives that lG ◦ dG is the identity on C Irr(B) (the same is true for
l′G′ ◦d′G′). In particular, lλ is surjective. Furthermore, for λ′ ∈ Λ0 such that λ ̸= λ′,
one has dλ′ ◦ lλ(ϕ) = 0 for all ϕ ∈ Cbλ(C). Indeed, for every x ∈ C ∩Gλ′ , one has

dλ′ ◦ lλ(ϕ)(x) = resC ◦rλ
′
(lλ(ϕ))(x) = rλ

′
(lλ(ϕ)(x) = lλ(ϕ)(xλ′x) = 0,

because λ ̸= λ′. It follows that C Irr(B) = ⊕λ∈Λ0Vλ (the same is true for C Irr(B′)).
Thus, by Equation (8), the following diagram is commutative:

(9) C Irr(B)
I{1} //

dG

��

C Irr(B′)

d′
G′

��⊕
λ∈Λ0

Cbλ

lG

��

⊕J∗−1
λ //⊕

λ∈Λ0
Cb′σ(λ)

l′
G′

��⊕
λ∈Λ0

Vλ
I{1} //⊕

λ∈Λ0
V ′
σ(λ)

Let λ ∈ Λ0 and ϕ ∈ Cbλ(C). Then dλ ◦ lλ(ϕ) ∈ Cbλ(C). Let x ∈ Gλ. If x /∈ C,
then ϕ(x) = 0 = dλ ◦ lλ(ϕ)(x). Assume that x ∈ C. Then x ∈ Gλ ∩ C. So, by
Definition 2.5(3), (xλ, x) ∈ A, and by Definition 2.5(4) and Remark 2.7 we have

dλ ◦ lλ(ϕ)(x) = rλ ◦ lλ(ϕ)(x) = lλ(ϕ)(xλ · x).

Therefore, Remark 2.7 gives dλ ◦ lλ(ϕ)(x) = ϕ(x). So, this proves that for every
ϕ ∈ Cbλ(C), we have

(10) dλ ◦ lλ(ϕ) = ϕ.

Consider
e =

∪
λ∈Λ0

{lλ(ϕ) |ϕ ∈ bCλ}.
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By Equation (10), for λ ∈ Λ0, the family {lλ(ϕ) |ϕ ∈ bCλ} is linearly independent,
and since lλ is surjective, it is a basis of Vλ. Hence, it follows that e is a basis of
C Irr(B).

Now, we claim that

e∨ =
∪
λ∈Λ0

{
eλ(Φϕ) |ϕ ∈ bCλ

}
.

Indeed, if λ, µ ∈ Λ0 with λ ̸= µ, then for any ϑ ∈ bCλ and ϕ ∈ bCµ, we have

⟨ eλ(Φϑ), lµ(ϕ) ⟩G =
1

|G|
∑
g∈G

eλ(Φϑ)(g) lµ(ϕ)(g) = 0,

by Equation (5) and Lemma 2.6. Furthermore, if ϕ, φ ∈ bCλ, then Equation (10)
gives

⟨ eλ(Φφ), lλ(ϕ) ⟩G = ⟨Φφ, dλ ◦ lλ(ϕ) ⟩Gλ
= ⟨Φφ, ϕ ⟩Gλ

= δφϕ,

and the result follows. Thus, writing Î{1} with respect to the basis e, we obtain

Î{1} =
∑
λ∈Λ0

∑
ϕ∈bλ

eλ(Φϕ)⊗ l′σ(λ)(J
∗−1
λ (ϕ)),

as required. □

Remark 2.11. Note that the assumption (2) of the theorem implies that the
assumption (3) of the theorem holds for λ = {1}. Indeed, for ϕ ∈ C Irr(B), we have
ϕ ∈ Cb∨{1} if and only if resC(ϕ) = 0, where C = G\C. However, x ∈ G lies in C if
and only if its type λ is non-trivial. Thus, Definition 2.5(4) implies that ϕ ∈ Cb∨{1}
if and only if rλ(ϕ) = 0 for all λ ̸= {1}. Let ϕ ∈ Cb∨{1}. Then for any {1} ̸= λ ∈ Λ0,

r′σ(λ)(I{1}(ϕ)) = Iλ(r
λ(ϕ)) = 0.

Since σ is a bijection with σ({1}) = {1}, we deduce that I{1}(ϕ) ∈ Cb′∨σ(λ). To
obtain the reverse inclusion, we apply this argument to I−1

{1}.
In particular, if for any λ ∈ Λ0, the group Gλ has an MN-structure with respect

to C ∩ Gλ and Bλ, then the assumption (3) of Theorem 2.10 is automatically
satisfied.

Remark 2.12. Suppose that (Iλ : C Irr(Bλ) → C Irr(B′
σ(λ)))λ∈Λ0 are isome-

tries such that properties (1), (2) and (3) of Theorem 2.10 hold. Then I−1
λ :

C Irr(B′
σ(λ)) → C Irr(Bλ) also satisfies the hypotheses of the theorem (for σ−1 :

Λ′
0 → Λ0). Moreover, writing Î with respect to the self-dual C-basis Irr(B) of

C Irr(B), we have

(11) Î =
∑

χ∈Irr(B)

χ⊗ I(χ).

It follows that

Î =
∑

χ′∈Irr(B′)

I−1(χ′)⊗ χ′ = conj

 ∑
χ′∈Irr(B′)

I−1(χ′)⊗ χ′

 = conj
(
Î−1 ◦ τ

)
,

where τ : G × G′ → G′ × G, (x, x′) 7→ (x′, x) and conj denotes the complex
conjugation.
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2.4. Generalized perfect isometries. An isometry I : C Irr(B) → C Irr(B′)
with respect to the scalar products ⟨ , ⟩G and ⟨ , ⟩G′ is said to be a generalized
perfect isometry if I(Z Irr(B)) = Z(Irr(B′)) and

(12) I ◦ resC = resC′ ◦I.

Remark 2.13. Following Külshammer, Olsson and Robinson (see [15]), we say that
an isometry I : C Irr(B) → C Irr(B′) is a KOR-isometry if I(Z(Irr(B)) = Z Irr(B′)
and for all χ, ψ ∈ Irr(B), one has

⟨ resC(χ), resC(ψ) ⟩G = ⟨ resC′ (I(χ)) , resC′ (I(ψ)) ⟩G′ .

Note that the argument in the proof of [2, Proposition 2.2] shows that the KOR-
isometries are precisely the isometries that satisfy Equation (12). For the conve-
nience of the reader, we now prove this fact. Before this, we recall that the notion
of blocks in [15] is not the same as ours. The KOR-blocks are the equivalence
classes for the equivalence relation on Irr(G) obtained by extending by transitivity
the relation defined by ⟨ resC(χ), resC(ψ) ⟩G ̸= 0. First, we will show that Irr(B) is
a union of KOR-blocks. Since the KOR-blocks are a partition of Irr(G), it is clear
that Irr(B) is contained in a union of KOR-blocks. It is sufficient to show that if
χ ∈ Irr(B) and ψ ∈ Irr(G) are such that ⟨ resC(χ), resC(ψ) ⟩G ̸= 0, then ψ ∈ Irr(B).
Let χ ∈ Irr(B) and ψ ∈ Irr(G) be such that ⟨ resC(χ), resC(ψ) ⟩G ̸= 0, that is∑

φ, ϑ∈b

dχφdψϑ⟨φ, ϑ ⟩G ̸= 0.

In particular, there exists some φ, ϑ ∈ b such that dχφdψϑ⟨φ, ϑ ⟩G ̸= 0. Hence,
dχφ ̸= 0 ̸= dψϑ and ⟨φ, ϑ ⟩G ̸= 0. Thanks to Corollary 2.4, we conclude that ψ lies
in the C-block of χ.

Now suppose I : C Irr(B) → C Irr(B′) is a generalized perfect isometry. Let
χ, ψ ∈ Irr(B). Then

⟨ resC′ (I(χ)) , resC′ (I(ψ)) ⟩G = ⟨ I (resC(χ)) , I (resC(ψ)) ⟩G = ⟨ resC(χ), resC(ψ) ⟩G,

because I is an isometry.
Conversely, assume that I is a KOR-isometry. Let χ ∈ Irr(B). We have

I(resC(χ)) = I

 ∑
ψ∈Irr(G)

⟨ resC(χ), ψ ⟩Gψ


=

∑
ψ∈Irr(B)

⟨ resC(χ), resC(ψ) ⟩GI(ψ)

=
∑

ψ∈Irr(B)

⟨ resC′(I(χ)), resC′(I(ψ)) ⟩G′I(ψ)

=
∑

ψ∈Irr(B)

⟨ resC′(I(χ)), I(ψ) ⟩G′I(ψ)

= resC′(I(χ)),

proving the claim.

Proposition 2.14. Suppose that {Bi |1 ≤ i ≤ r} is the set of KOR-blocks of G
with respect to a set of classes C. Then there is a Z-basis b of Z Irr(G)C such that
the Bi’s are the C-blocks of G with respect to b.
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Proof. By definition of the KOR-blocks, the sets Irr(Bi)
C and Irr(Bj)

C for i ̸= j
are orthogonal with respect to ⟨ , ⟩G, implying that

Z Irr(G)C =

r⊕
i=1

Z Irr(Bi)
C .

Choose any Z-basis bi of Z Irr(Bi)
C and write b∨i for the dual basis of bi in the

C-space C Irr(Bi)
C with respect to ⟨ , ⟩G. Define b = b1 ∪ . . . ∪ br. Then b is a

Z-basis of Z Irr(G)C . Moreover, since b∨i ⊆ C Irr(Bi)
C , and since the KOR-blocks

are orthogonal, we deduce that b∨ = b∨1 ∪ . . . ∪ b∨r is the dual basis of b. Now, for
φ ∈ bi, we have

Φφ = resC(Φφ) =
r∑
j=1

∑
χ∈Irr(Bj)

dχφ resC(χ) =
∑

χ∈Irr(Bi)

dχφ resC(χ),

because Φφ ∈ C Irr(Bi)
C . Hence, for χ′ /∈ Irr(Bi), we have

dχ′φ = ⟨Φφ, χ′ ⟩G =
∑

χ∈Irr(Bi)

dχφ⟨ resC(χ), resC(χ′) ⟩G = 0.

This proves that Bi is a union of C-blocks. Furthermore, we have seen in Re-
mark 2.13 that conversely, the C-blocks are unions of KOR-blocks. The result
follows. □

Proposition 2.15. Let I : C Irr(B) → C Irr(B′) be an isometry, and assume that
I(Z Irr(B)) = Z Irr(B′). The following assertions are equivalent

(i) I is a generalized perfect isometry.
(ii) If Î(x, y) ̸= 0, then either (x, y) ∈ C×C ′, or (x, y) ∈ C×C ′

, where C = G\C
and C

′
= G\C ′.

Proof. Suppose that I is a generalized perfect isometry. Note that C Irr(B)C⊥ =

C Irr(B)C and

(13) C Irr(B) = C Irr(B)C ⊕ C Irr(B)C .

Moreover, for any ϕ ∈ C Irr(B′), there is χ ∈ C Irr(B) such that I(χ) = ϕ (because
I is an isometry). Thanks to Equation (12), we have resC′(ϕ) = I(resC(χ)). Hence,
the restriction I : C Irr(B)C → C Irr(B′)C

′
is surjective, and yet bijective (because

I is injective). Since I is an isometry, we have

I
(
(C Irr(B)C)⊥

)
= I

(
C Irr(B)C

)⊥
= (C Irr(B′)C

′
)⊥.

It follows that

(14) I(C Irr(B)C) = C Irr(B′)C
′
.

Now, we choose a C-basis b of C Irr(B)C with dual basis b∨ and a C-basis b of
C Irr(B)C with dual basis b

∨
. Therefore, thanks to Equation (13), b∪ b is a C-basis

of C Irr(B) with dual basis b∨ ∪ b∨. Writing Î with respect to this basis, we obtain

(15) Î =
∑
α∈b

α∨ ⊗ I(α) +
∑
β∈b

β∨ ⊗ I(β).

Now, let (x, y) ∈ C × C
′
. Then Equation (15) gives Î(x, y) =

∑
α∈b α

∨(x)I(α)(y).
But I(α) ∈ C Irr(B′)C

′
, implying that I(α)(y) = 0. Hence, Î(x, y) = 0.
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For (x, y) ∈ C ×C ′, we similarly conclude that Î(x, y) = 0 using Equations (15)
and (14). This proves that (i) implies (ii).

Conversely, assume that (ii) holds. For y ∈ G′, we write Îy : G→ C, x 7→ Î(x, y).
This is a class function on G. We now write Î with respect to the C-basis Irr(B).
Thus, Equation (11) implies that for χ ∈ Irr(G) and y ∈ G′, we have

I(χ)(y) =
∑

θ∈Irr(B)

I(θ)(y)⟨ θ, χ ⟩G

= ⟨ Îy, χ ⟩G

=
1

|G|
∑
x∈G

Î(x, y)χ(x).

In particular, for any ψ ∈ C Irr(G) and y ∈ G′, we have

(16) I(ψ)(y) =
1

|G|
∑
x∈G

Î(x, y)ψ(x).

Let χ ∈ C Irr(B) and y ∈ G′. Applying Equation (16) to resC(χ), we obtain

I(resC(χ))(y) =
1

|G|
∑
x∈G

Î(x, y) resC(χ)(x) =
1

|G|
∑
x∈C

Î(x, y)χ(x).

Suppose that y ∈ C
′
. Then Î(x, y) ̸= 0 only if x ∈ C and the second equality

gives I(resC(χ))(y) = 0. Otherwise, if y ∈ C ′, then Î(x, y) = 0 for x /∈ C. In
particular, 1

|G|
∑
x∈C Î(x, y)χ(x) is equal to I(χ)(y) = resC′(I(χ))(y). This proves

that I satisfies Equation (12), whence is a generalized perfect isometry. □

Remark 2.16. Note that Equation (13) applied to B′ and Equation (14) imply
that

resC′ ◦I = I ◦ resC .

Corollary 2.17. Let G and G′ be two finite groups. We assume that Hypotheses
(1), (2) and (3) of Theorem 2.10 are satisfied, and we keep the same notation. If
I{1}(Z Irr(B)) = Z Irr(B′), then I{1} is a generalized perfect isometry.

Proof. Let (x, x′) ∈ G×G′. Write µ and µ′ for the type of x and x′. Suppose that
(x, x′) /∈ C×C ′ and (x, x′) /∈ C×C ′

. Then either µ = {1} and µ′ ̸= {1}, or µ ̸= {1}
and µ′ = {1}. Since σ({1}) = {1}, we deduce that µ′ ̸= σ(µ). Thanks to Lemma 2.6
and Equation (5), we have for every λ ∈ Λ0 and ϕ ∈ bCλ, either eλ(Φϕ)(x) = 0, or
l′σ(λ)(J

∗−1
λ (ϕ))(x′) = 0. In particular, Equation (7) gives Î{1}(x, x′) = 0, and the

result follows from Proposition 2.15. □

2.5. Broué’s isometries. In this subsection, we fix a prime number p and assume
that C and C ′ are the sets of p-regular elements (that is, elements whose order
is prime to p) of G and G′, respectively. Let B and B′ be a union of p-blocks of
G and G′. Denote by (K,R, k) a splitting p-modular system for G and G′. Let
I : C Irr(B) → C Irr(B′) be an isometry such that I(Z Irr(B)) = Z Irr(B′) and Î
defined in Equation (6) is perfect, that is

(i) For every (x, x′) ∈ G×G′, Î(x, x′) lies in |CG(x)|R ∩ |CG′(x′)|R.
(ii) Î satisfies property (ii) of Proposition 2.15.

We call such an isometry a Broué isometry.
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Remark 2.18. In fact, the perfect character µ : G × G′ → C defined by Broué
in [1] is not exactly Î, but µ(x, x′) = Î(x−1, x′). However, since the sets of p-regular
and p-singular elements are stable under g 7→ g−1, it follows that µ is perfect if and
only if Î is perfect.

Remark 2.19. Since the set of irreducible Brauer characters IBrp(G) is a Z-basis
of Z Irr(G)C which satisfies the conclusion of Proposition 2.14, Remark 2.13 and
Proposition 2.15 imply that a Broué isometry is a perfect generalized isometry (in
our sense and in the sense of Külshammer, Olsson and Robinson).

Theorem 2.20. Assume that G and G′ are two finite groups and that C and C ′ are
the sets of p-regular elements of G and G′, respectively. Suppose that the following
three conditions are satisified:

(i) The hypotheses of Theorem 2.10 hold.
(ii) For any λ ∈ Λ0, we have Iλ(Z Irr(Bλ)) = Z Irr(B′

σ(λ)).
(iii) For every g = gS · gC ∈ G and g′ = g′S′ · g′C′ ∈ G′, p does not divide |EλgS ,gC |

for any λ ∈ Λ, and p does not divide |Eλ′

g′S ,g
′
C′
| for any λ′ ∈ Λ′.

Then I{1} is a Broué isometry.

Proof. By Remark 2.19 and Corollary 2.17, I{1} satisfies Property (ii). We thus
only prove Property (i). For λ ∈ Λ0, we take bλ = IBrp(Bλ). In particular, Zb∨λ is
the set of projective characters of Bλ. By Assumption (ii), and Hypothesis (iii) of
Theorem 2.10, since Iλ is injective, one has

Iλ (Z Irr(Bλ) ∩ Cb∨λ) = Iλ (Z Irr(Bλ)) ∩ Iλ(Cb∨λ) = Z Irr(B′
σ(λ)) ∩ Cb′σ(λ).

Hence, Corollary 2.3 gives Jλ(Zb∨λ) = Zb′∨σ(λ), and it follows that J∗−1
λ (ϕ) ∈

Z IBrp(B
′
σ(λ)) for all ϕ ∈ Zbλ. Now, let bλ and bCλ be as in Remark 2.9. Let

ϕ ∈ bCλ. Let g ∈ G and g′ ∈ G′. Write g = gS · gC and g′ = g′S′ · g′C′ , and assume
that g is of type µ. Then by Lemma 2.6, one has eλ(Φϕ)(g) = 0 for λ ̸= µ and
eµ(Φϕ)(g) = |CG(g)|

∑
xC∈Eµ

gS,gC

Φϕ(xC)
|CGµ (xC)| . Furthermore, thanks to Equation (5)

and the fact that p does not divide |Eσ(µ)g′
S′ ,g

′
C′
|, we deduce that l′σ(µ)(J

∗−1
µ (ϕ))(g′) ∈ R.

Now, by Equation (7) and Theorem 2.10, we obtain

Î{1}(g, g
′)

|CG(g)|
=
∑
ϕ∈bC

µ

∑
xC∈Eµ

gS,gC

Φϕ(xC)

|CGµ(xC)|p
·
l′σ(µ)(J

∗−1
µ (ϕ))(g′)

|CGµ(xC)|p′
∈ R,

because 1/|CGµ(xC)|p′ ∈ R, and Φϕ(xC)/|CGµ(xC)|p ∈ R by [20, 2.21]. Similarly,
using Remark 2.12, we deduce that Î{1}(g, g′)/|CG′(g′)| ∈ R, as required. □

Remark 2.21. The proof of Theorem 2.20 shows that the condition (iii) can be
replaced by Iλ(C Irr(Bλ)(C)) = C Irr(Bσ(λ))(C′) for any λ ∈ Λ, where similarly to
Remark 2.9, C Irr(Bλ)(C) denotes the set of class functions of C Irr(Bλ) constant on
Eλxλ,y

for any y ∈ C ∩Gλ. Indeed, with this assumption, we have J∗−1
λ (Zbλ(C)) ⊆

Zbσ(λ)(C′), and Remark 2.7 gives that l′σ(λ)(J
∗−1
λ (ϕ))(g′) ∈ R for any ϕ ∈ bCλ and

g′ ∈ G′.
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3. Alternating groups

Let n be a positive integer and p be a prime. We denote by Pn (or P) the set of
partitions of n, by On (or O) the set of partitions of n whose parts are odd, and by
Dn (or D) the set of partitions of n whose parts are distinct. We also write ODn

(or OD) for On ∩Dn (respectively O ∩D). Moreover, for λ = (λ1, . . . , λr) ∈ P, we
write |λ| =

∑
λi and ℓ(λ) = r.

3.1. Notation. For any λ ∈ Pn, we write χλ for the corresponding irreducible
character of Sn, and λ∗ for the conjugate partition of λ. It is well-known that
χλ∗ = χλ⊗ ε, where ε denotes the sign character of Sn. The character χλ is called
self-conjugate when λ = λ∗. We denote by SCn (or SC) the set of self-conjugate
partitions of n. For any λ ∈ SCn, write λ ∈ ODn for the partition whose parts are
the diagonal hook lengths of λ (see [22, p. 4] for the definition of a hook and its
hook length. Recall that with the notation of [22], a diagonal hook is an (i, i)-hook
for some i), and define the map

(17) a : SCn −→ ODn, λ 7→ λ.

We remark that a is bijective, and that a−1(λ) is the self-conjugate partition whose
diagonal hooks have lengths the parts of λ.

Now, recall that ResSn

An
(χλ) is irreducible if and only if λ is a non self-conjugate

partition (i.e. λ ̸= λ∗). In this case, χλ and χλ∗ restrict to the same irreducible
character, which we denote by ρλ. Otherwise, when λ = λ∗, the restriction of χλ
to An is the sum of two irreducible characters ρ−λ and ρ+λ . Moreover, the conjugacy
class of Sn labeled by a(λ) splits into two classes a(λ)± of An, and following [12,
Theorem 2.5.13], the notation can be chosen such that ρ±λ (a(λ)

+) = xλ ± yλ and
ρ±λ (a(λ)

−) = xλ ∓ yλ with

(18) xλ =
1

2
(−1)

n−k
2 and yλ =

1

2

√
(−1)

n−k
2 h1 · · ·hk,

where a(λ) = (h1 > h2 > · · · > hk). Note that xλ = χλ(a(λ))/2, and if x ∈ An does
not belong to the class of Sn parametrized by a(λ), then ρ+λ (x) = ρ−λ (x) = χλ(x)/2.

Let q be a positive integer. To any λ ∈ Pn, we associate its q-core λ(q) and its
q-quotient λ(q) = (λ1, . . . , λq); see for example [22, p. 17]. Recall that the map

(19) λ 7→ (λ(q), λ
(q))

is bijective. Define

(20) λ(q)∗ =
(
(λq)∗, . . . , (λ1)∗

)
.

Then by [22, Proposition 3.5], the q-core and q-quotient of λ∗ are λ∗(q) and λ(q)∗

respectively. In particular,

(21) λ = λ∗ ⇐⇒ λ∗(q) = λ(q) and λ(q)∗ = λ(q).

3.2. p-blocks of An. The “Nakayama Conjecture” asserts that two irreducible
characters lie in the same p-block of Sn if and only if the partitions labeling them
have the same p-core; see [12, Theorem 6.1.21]. Hence, the p-blocks of Sn are
labeled by the p-cores of partitions of n. Such p-cores are called p-cores of n (or
of Sn). For a p-core γ of n, we denote by Bγ the corresponding p-block of Sn.
Moreover, we define the p-weight of γ (or of Bγ) by setting w = (n− |γ|)/p.
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Let γ be a p-core of n. Then γ∗ is also a p-core of n, and Irr(Bγ∗) = {χλ∗ ∈
Irr(Sn) |λ(p) = γ} = Irr(Bγ)

∗.
If γ ̸= γ∗, then Irr(Bγ) ∩ Irr(Bγ∗) = ∅ and Irr(Bγ) contains no self-conjugate

character. In particular, the p-blocks Bγ and Bγ∗ cover a unique p-block bγ,γ∗ of An,
which is such that Irr(bγ,γ∗) = {ρλ ∈ Irr(An) |λ(p) = γ} = {ρλ ∈ Irr(An) |λ(p) =
γ∗}.

Assume instead that γ = γ∗. Suppose that w > 0. By Equation (19), there is a
partition λ of n with p-core γ and p-quotient ((w), ∅, . . . , ∅). Furthermore, χλ ̸= χλ∗

by Equation (21) and χλ ∈ Irr(Bγ). Hence, χλ restricts irreducibly to An, and [20,
Theorem 9.2] implies that Bγ covers a unique p-block bγ of An.

If, on the other hand, w = 0, then Irr(Bγ) = {χγ} has defect zero. If n ≤ 1,
then An = Sn = {1}, and ργ = χγ is the trivial character. The case n = 2 does
not occur, because there are no self-conjugate partitions of size 2. If n ≥ 3, then
{ρ+γ } and {ρ−γ } are p-blocks of defect zero of An.

3.3. Broué perfect isometries. Let q be a positive integer. For λ ∈ Pn, we
denote by Mq(λ) the set of µ ∈ Pn−q such that µ is obtained from λ by removing
a q-hook. (The definition of q-hooks, and the process to remove a q-hook from a
partition, is for example given in [22, p. 4, 5, 6]). Note that, if µ ∈ Mq(λ), then
µ∗ ∈Mq(λ

∗).
For µ ∈Mq(λ), we denote by cλµ the q-hook of λ such that µ is obtained from λ

by removing cλµ. Define

(22) αλµ = (−1)L(c
λ
µ),

where L(cλµ) denotes the leglength of cλµ (see for example [22, p. 4] for the definition
of the leglength of a hook).

Lemma 3.1. If q is an odd integer, then αλµ = αλ
∗

µ∗ .

Proof. First, note that cλ
∗

µ∗ = (cλµ)
∗. In particular, the leg of cλ

∗

µ∗ is the arm of cλµ.
Hence, L(cλµ) + L(cλ

∗

µ∗) = q − 1. Since q is odd, the result follows. □

Lemma 3.2. Assume that q is odd, and that λ = λ∗. The set Mq(λ) contains a
self-conjugate partition if and only if q ∈ {λ1, . . . , λk}. In this case, Mq(λ) contains
a unique self-conjugate partition µ, and µ is such that µ = λ\{q}.

Proof. Since λ = λ∗, it follows from Equation (21) that λi = (λq−i+1)∗, where
λ(q) = (λ1, . . . , λq) is the q-quotient of λ. Moreover, by [22, Theorem 3.3] the
multipartitions of n − q obtained from λ(q) by removing any 1-hook are the q-
quotients of partitions of Mq(λ). In particular, µ ∈ Mq(λ) is self-conjugate if and
only if µi = λi for 1 ≤ i ≤ (q − 1)/2 and µ(q+1)/2 is a self-conjugate partition
obtained from λ(q+1)/2 by removing a 1-hook. However, when we remove a 1-hook
from a self-conjugate partition, the resulting partition is never a self-conjugate
partition, except if the removing box is a diagonal 1-hook. We now conclude with
the argument of the proof of [2, 3.4]. □

Assume λ = λ∗. In the case that Mq(λ) contains a (unique) self-conjugate
partition µ, then we write µλ = µ (which is well-defined by Lemma 3.2). Let
µ, µ′ ∈ Mq(λ). We write µ ∼ µ′ if and only if µ′ = µ∗, and we denote by M ′

q(λ)
a set of representatives modulo ∼. Finally, for λ ∈ Pn, we set α(λ) = 1 if λ ̸= λ∗

and α(λ) = 1
2 otherwise.
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Theorem 3.3. Let q an odd integer and λ ∈ Pn. If λ ̸= λ∗, then we write
ρλ = ρ+λ = ρ−λ . Let σ be a q-cycle with support {n − q + 1, . . . , n}. Then for
ϵ ∈ {±1} and g ∈ An−q, we have

ρϵλ(σg) =
∑

µ∈M′
q(λ)

µ̸=µ∗

a(ρϵλ, ρµ) ρµ(g) +
∑

µ∈Mq(λ)

µ=µ∗

(
a(ρϵλ, ρ

+
µ ) ρ

+
µ (g) + a(ρϵλ, ρ

−
µ ) ρ

−
µ (g)

)
,

where the complex numbers a(ρϵλ, ρ
η
µ) ( η ∈ {±1}) are defined as follows.

– If µ∗ ̸= µ and µ∗ ∈Mq(λ), then a(ρϵλ, ρµ) = α(λ)(αλµ + αλµ∗).
– If µ∗ ̸= µ and µ∗ /∈Mq(λ), then a(ρϵλ, ρµ) = α(λ)αλµ.
– If µ∗ = µ and µ ̸= µλ, then a(ρϵλ, ρ

η
µ) = α(λ)αλµ.

– If µ∗ = µ and µ = µλ, then a(ρϵλ, ρ
η
µλ

) = 1
2

(
αλµλ

+ ϵη
√
(−1)(q−1)/2q

)
.

Proof. This is a consequence of Clifford theory and the Murnaghan-Nakayama for-
mula in Sn. We only prove the last case for ϵ = +1. Assume that λ = λ∗ and that
σg has cycle type λ. By Lemma 3.2, g ∈ µλ

±. Now, if λ = (h1 > h2 > · · · > hk)
then

ρ+λ (σg) =
1

2

(
χλ(σg)±

√
(−1)

n−k
2 h1 · · ·hk

)
,

=
∑

{µ,µ∗}⊂Mq(λ)

µ̸=µ∗

1

2
(αλµ + αλµ∗)ρµ(g) +

∑
µ∈Mq(λ)

µ∗ /∈Mq(λ) µ̸=µ∗

1

2
αλµρµ(g)

+
∑

µ∈Mq(λ)

µ=µ∗

1

2
αλµ(ρ

+
µ (g) + ρ−µ (g))±

1

2

√
(−1)

n−k
2 h1 · · ·hk,

If we write λ\{q} = (h′1 > · · · > h′k−1), then√
(−1)

n−k
2 h1 · · ·hk =

√
(−1)

q−1
2 q ·

√
(−1)

(n−q)−(k−1)
2 h′1 · · ·h′k−1,

=

√
(−1)

q−1
2 q ·

(
ρ+µλ

(g)− ρ−µλ
(g)
)
.

The result follows. □
Remark 3.4. In the last proof, when λ = λ∗ and µ ∈ Pn−q is not self-conjugate and
satisfies {µ, µ∗} ⊂Mq(λ), then a(ρϵλ, ρµ) = αλµ, because, by Lemma 3.1, αλµ = αλµ∗ .

For q1, q2 multiples of p, we define

(23) Mq1,q2(λ) = {µ ∈Mq2(ν) | ν ∈Mq1(λ)},
and M ′

q1,q2(λ) denotes a set of representatives modulo ∼, where ∼ is defined in a
similar way as before Theorem 3.3. Moreover, for µ ∈ Mq1,q2(λ), we denote by
Pq1,q2λ⇝µ the set all of pairs (cλν , c

ν
µ), where ν ∈Mq1(λ) and µ ∈Mq2(ν).

Theorem 3.5. Assume that q1 and q2 are even multiples of p. Let σ = σ1σ2
be such that σi is a qi-cycle (for 1 ≤ i ≤ 2), and the supports of σ1 and σ2 are
{n−q1−q2+1, . . . , n−q2} and {n−q2+1, . . . , n}, respectively. Then for ϵ ∈ {±1}
and g ∈ An−q1−q2 ,

ρϵλ(σg) =
∑

µ∈M′
q1,q2

(λ)

µ̸=µ∗

a(ρϵλ, ρµ) ρµ(g)+
∑

µ∈Mq1,q2 (λ)

µ=µ∗

(
a(ρϵλ, ρ

+
µ ) ρ

+
µ (g) + a(ρϵλ, ρ

−
µ ) ρ

−
µ (g)

)
,
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where the complex numbers a(ρϵλ, ρ
η
µ) (η ∈ {±1}) are defined as follows: if µ∗ ̸= µ

and µ∗ ∈Mq1,q2(λ), then

a(ρϵλ, ρµ) = α(λ)

 ∑
(cλν ,c

ν
µ)∈Pq1,q2

λ⇝µ

(−1)L(c
λ
ν )+L(c

ν
µ) +

∑
(cλν ,c

ν
µ∗ )∈Pq1,q2

λ⇝µ∗

(−1)L(c
λ
ν )+L(c

ν
µ∗ )

 .

In all other cases, one has

a(ρϵλ, ρ
η
µ) = α(λ)

∑
(cλν ,c

ν
µ)∈Pq1,q2

λ⇝µ

(−1)L(c
λ
ν )+L(c

ν
µ).

Proof. Apply twice the Murnaghan-Nakayama formula in Sn and conclude with
Clifford theory. □

Let q be an integer. For λ ∈ Pn and µ ∈Mq(λ), we introduce the relative q-sign
δq(λ, µ) = δq(λ)δq(µ) as in [19, p. 62], where δq(λ) is the q-sign of λ (see [19, §2]).

Lemma 3.6. Assume that q is odd. For any λ ∈ Pn, one has δq(λ) = δq(λ
∗).

Proof. Let k be the q-weight of λ. We construct a sequence of q-hooks c1, . . . , ck
by choosing c1 to be a q-hook of λ and ci to be a q-hook of λ\{c1, . . . , ci−1} for
2 ≤ i ≤ k, such that λ\{c1, . . . , ck} = λ(q). Note that c∗1, . . . , c∗k is a sequence of
q-hooks from λ∗ to λ∗(q). So, by [19, Corollary 2.3], δq(λ) = δq(λ, λ

(q)) and [19,
Proposition 2.2] yields

(24) δq(λ) = (−1)L(c1)+···+L(ck) and δq(λ
∗) = (−1)L(c

∗
1)+···+L(c∗k).

Now, by the argument of Lemma 3.1, we deduce that L(ci) ≡ L(c∗i ) mod 2 for
1 ≤ i ≤ k, because q is odd. The result follows. □

Let γ and γ′ be two self-conjugate p-cores of Sn and Sm of the same p-weight
w > 0. We denote by bγ and bγ′ the corresponding p-blocks of An and Am,
respectively. Let λ ∈ Pn be such that λ(p) = γ. By Equation (19), there is a unique
partition Ψ(λ) ∈ Pm such that Ψ(λ)(p) = γ′ and Ψ(λ)(p) = λ(p). In particular, if we
denote by f the canonical bijection between the set of hooks of length divisible by
p in λ and the set of hooks in λ(p) as in [19, Proposition 3.1], then for any integer
q divisible by p and µ ∈Mq(λ), we have

(25) f
(
cλµ
)
= f

(
c
Ψ(λ)
Ψ(µ)

)
,

where Ψ : Pn−q → Pm−q is defined as above. Moreover, [19, Corollary 3.4] gives

(26) (−1)L(c
λ
µ) = (−1)L(f(c

λ
µ))δp(λ, µ).

Lemma 3.7. Let λ and Ψ(λ) be as above. For any multiple q of p and µ ∈Mq(λ)
such that µ ̸= µ∗, we have Ψ(µ) ̸= Ψ(µ∗). Moreover, µ∗ ∈ Mq(λ) if and only if
Ψ(µ∗) ∈Mq(Ψ(λ)). In this case, Ψ(µ∗) = Ψ(µ)∗.

Proof. This is a consequence of [19, Proposition 3.1] and of [22, Proposition 3.5]. □

Proposition 3.8. Assume p is odd and keep the notation as above. We have

δp(λ)δp(µ)a
(
ρ
ϵδp(λ)
λ , ρηδp(µ)µ

)
= δp(Ψ(λ))δp(Ψ(µ))a

(
ρ
ϵδp(Ψ(λ))

Ψ(λ) , ρ
ηδp(Ψ(µ))

Ψ(µ)

)
.
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Proof. Let Eγ be the set of partitions of n with p-core γ. Since γ is self-conjugate, by
Equation (21), λ ∈ Eγ is self-conjugate if and only if its p-quotient is self-conjugate.
The same holds for γ′ and Ψ(λ) ∈ Eγ′ . In particular, for λ ∈ Eγ , we have

α(λ) = α(Ψ(λ)).

Let q1 and q2 be even multiples of p. With the notation of Theorem 3.5, for any
partition µ ∈Mq1,q2(λ), if (cλν , cνµ) ∈ Pq1,q2λ⇝µ , then Equations (25) and (26) give

δp(λ, µ)(−1)L(c
λ
ν )+L(c

ν
µ) = δp(λ, µ)(−1)L(f(c

λ
ν ))+L(f(c

ν
µ))δp(λ, ν)δp(ν, µ)

= δp(λ)δp(µ)(−1)L(f(c
λ
ν ))+L(f(c

ν
µ))δp(λ)δp(ν)δp(ν)δp(µ)

= (−1)L(f(c
λ
ν ))+L(f(c

ν
µ))

= (−1)
L
(
f(c

Ψ(λ)

Ψ(ν)
)
)
+L

(
f(c

Ψ(ν)

Ψ(µ)
)
)

= δp(Ψ(λ),Ψ(µ))(−1)
L
(
c
Ψ(λ)

Ψ(ν)

)
+L

(
c
Ψ(ν)

Ψ(µ)

)
.

Now, using Lemmas 3.6 and 3.7, we deduce that, if µ ̸= µ∗ and µ∗ ∈ Mq1,q2(λ),
then

δp(λ, µ)a(ρ
±δp(λ)
λ , ρµ) = δp(Ψ(λ),Ψ(µ))a(ρ

±δp(Ψ(λ))

Ψ(λ) , ρΨ(µ)).

Note : Lemma 3.6 is used only when we apply the above computations to evaluate
δp(λ, µ)(−1)L(c

λ
ν )+L(c

ν
µ∗ ); at the second line, we get a term δp(µ)δp(µ

∗), which is
thus 1. In the same way, a term δp(Ψ(µ))δp(Ψ(µ)∗) disappears at the end.

We conclude similarly for the other cases appearing in Theorem 3.5 and for the
coefficients appearing in Theorem 3.3, except for λ = λ∗ and µ = µλ. In this last
case, first note that Ψ(µ) = µΨ(λ). Moreover,

a(ρϵλ, ρ
η
µλ

) =
1

2

(
αλµλ

+ ϵη
√
(−1)(q−1)/2q

)
= δp(λ)δp(µλ)δp(Ψ(λ))δp(Ψ(µλ))

1

2

(
α
Ψ(λ)
Ψ(µλ)

+δp(λ)δp(µλ)δp(Ψ(λ))δp(Ψ(µλ))ϵη
√
(−1)(q−1)/2q

)
= δp(λ)δp(Ψ(λ))δp(µλ)δp(Ψ(µλ))a

(
ρ
ϵδp(λ)δp(Ψ(λ))

Ψ(λ) , ρ
ηδp(µλ)δp(Ψ(µλ))

Ψ(µλ)

)
.

as required. □

Theorem 3.9. Let p be an odd prime. Assume that γ and γ′ are self-conjugate
p-cores of Sn and Sm respectively, and of same p-weight w > 0. Let bγ and bγ′ be
the corresponding p-blocks of An and Am. Define, for all λ ∈ Eγ and ϵ ∈ {±1},

(27) I : C Irr(bγ) → C Irr(bγ′), ρϵλ 7→ δp(λ)δp(Ψ(λ))ρ
ϵδp(λ)δp(Ψ(λ))

Ψ(λ) .

Then I is a Broué perfect isometry.

Proof. First, we prove that An has an MN-structure. Let S be the set of elements
of An with cycle decomposition σ1 · · ·σr (where we only indicate non-trivial cycles)
such that each σi is a cycle of length divisible by p. We remark that when σi has
even length, there is j ̸= i such that σj has even length (because σ1 · · ·σr ∈ An).
Moreover, S contains 1 and is stable by An-conjugation. Let C be the set of p-
regular elements of An. Now take any σ ∈ An. Using the cycle decomposition of
σ, there are unique elements σS ∈ S and σC ∈ C with disjoint support such that
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σ = σSσC = σCσS . In particular, Definition 2.5(1) and (2) hold. Denote by J
the support of σS , J = {1, . . . , n}\J and define GσS

= AJ . Then GσS
satisfies

Definition 2.5(3). Write Ω for the set of partitions of the form p · β such that

– There is some i ≤ n such that p · β is a partition of i.
– The number of even parts of β is even. In particular, we choose the notation

such that β = (β1, . . . , βk) with |β| = β1 + · · ·+ βk and there is 1 ≤ r ≤ k
with βi even for 1 ≤ i ≤ r and βi odd for i > r.

Note that each partition of Ω labels either one An-conjugacy class of S or two
classes. Denote by Λ the set of parameters for the An-classes of S obtained by
this process. The elements of Λ will be denoted p · β̂, with β̂ = β when p · β ∈ Ω

labels a unique class of S, and β̂ ∈ {β+, β−} when p · β labels two classes of S.
The notation is chosen as in Equation (18). For p · β̂ ∈ Λ, we assume that the
representative σβ̂ = σβ̂1

· · ·σβ̂k
of the An-class labeled by p · β̂ in An satisfies that

the cycle σβ̂i
has support {1+

∑
j<i pβj , . . . ,

∑
j≤i pβj}. Moreover, when p ·β labels

two classes of An, we assume that σβ+
i
= σβ−

i
for every 2 ≤ i ≤ k, and σβ+

1
and σβ−

1

are representatives of the Ap·β1 -classes labeled by p · β+
1 and p · β−

1 , respectively.
In particular, σβ̂i

has length p · βi and the support of σβ̂ is {1, . . . , p|β|}. Hence,
Gσ

β̂
= An−p|β|.

Now, we denote by Ω0 the subset of partitions p · β ∈ Ω such that |β| ≤ w,
and by Λ0 the corresponding subset of Λ. For p · β ∈ Ω0, define rβ̂ : C Irr(bγ) →
C Irr(bγ(An−p|β|)) by applying iteratively Theorem 3.3 with σ = σβ̂i

when βi is odd
and Theorem 3.5 with σ = σβ̂i

σβ̂i+1
when βi and βi+1 are even. By Theorems 3.3

and 3.5, Definition 2.5(4) holds. This proves that An has an MN-structure with
respect to bγ and the set of p-regular elements of An. Let λ ∈ Eγ . Then rβ̂(ρ±λ )(g) =
ρ±λ (σβ̂g), and for p · β̂ ∈ Λ\Λ0, the Murnaghan-Nakayama rule in Sn and Clifford
theory imply that ρ±λ (σβ̂g) = 0 except, maybe, when λ = λ∗ and σβ̂ g is in the class
of Sn labeled by a(λ). In this last case, λ has more than w diagonal hooks with
length divisible by p, contradicting the fact that λ has p-weight w. This proves
that, if p · β̂ /∈ Λ0, then rβ̂ = 0.

We define similarly an MN-structure for Am with respect to bγ′ and the set of
p-regular elements of Am. We denote by Ω′, Ω′

0, Λ′ and Λ′
0 the corresponding sets.

Note that Ω0 = Ω′
0.

There are two cases to consider. First, assume that |Λ0| = |Λ′
0|. In fact, this

case occurs if and only if Λ0 = Λ′
0, because Ω0 = Ω′

0.
Now, we will prove that Theorem 2.10(2) holds. Let p · β̂ ∈ Λ0. Write β =

(β1, . . . , βk) and r as above. Set qi = p|βi| for 1 ≤ i ≤ k. For i > r, write
xi = qi, and for 1 ≤ i ≤ r/2, write xi = {q2i−1, q2i}. We also set s = n − r/2.
For 1 ≤ i ≤ s, define Mx1,...,xi(λ) = {µ ∈ Mxi(ν) | ν ∈ Mx1,...,xi−1(λ)} (recall that
Mxi(ν) is defined as in Equation (23) when xi has two elements).

Let θ ∈ Irr(bγ). There are λ ∈ Eγ and ϵ ∈ {±1} such that θ = ρ
ϵδp(λ)
λ (with

the convention, as above, that if λ ̸= λ∗, then ρ+λ = ρλ = ρ−λ ). Then we set
δp(θ) = δp(λ) and Ψ(θ) = ρ

ϵδp(Ψ(λ))

Ψ(λ) ∈ Irr(bγ′). We have

(28) rβ̂(θ) =
∑

ϑ∈Irr(bγ(n−p|β|))

a(θ, ϑ)ϑ,
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where bγ(n− p|β|) denotes the union of p-blocks of An−p|β| covered by the p-block
Bγ of Sn−p|β| labeled by γ. By §3.2, bγ(n − p|β|) is a p-block of An−p|β|, except
when |γ| > 2 and |β| = w. In this last case, it is a union of two p-blocks {ρ+γ }
and {ρ−γ } of defect zero. Similarly, we denote by bγ′(m − p|β|) the union of p-
blocks of Am−p|β| covered by the p-block of Bγ′ of Sm−p|β| labeled by γ′. Define
Iβ : C Irr(bγ(n− p|β|)) → C Irr(bγ′(m− p|β|)) as in Equation (27). Note that

(29) a(θ, ϑ) =
∑

ϑ1,...,ϑs−1

a(ϑ0, ϑ1)a(ϑ1, ϑ2) · · · a(ϑs−1, ϑs),

where ϑ0 = θ, ϑs = ϑ, and the sum runs over the set of ϑ1, . . . , ϑs−1 such that for
each 1 ≤ i ≤ s, there are µi ∈ Mx1,...,xi(λ) and ϵi ∈ {±1} such that ϑi = ρ

ϵiδp(µi)

µi .
Since

δp(θ)δp(ϑ) = (δp(θ)δp(ϑ1)) · (δp(ϑ1)δp(ϑ2)) · · · (δp(ϑs−1)δp(ϑ)),

and thanks to Proposition 3.8, we deduce that

δp(θ)δp(ϑ)a(θ, ϑ) =
∑

δp(ϑ0)δp(ϑ1)a(ϑ0, ϑ1) · · ·
· · · δp(ϑs−1)δp(ϑs)a(ϑs−1, ϑs)

=
∑

δp(Ψ(ϑ0))δp(Ψ(ϑ1))a(Ψ(ϑ0),Ψ(ϑ1)) · · ·
· · · δp(Ψ(ϑs−1))δp(Ψ(ϑs))a(Ψ(ϑs−1),Ψ(ϑs))

= δp(Ψ(θ))δp(Ψ(ϑ))a(Ψ(θ),Ψ(ϑ)).

(30)

In particular, one has

δp(θ)δp(Ψ(θ))a(Ψ(θ),Ψ(ϑ)) = δp(ϑ)δp(Ψ(ϑ)) a(θ, ϑ),

and it follows that

rβ̂(I(θ)) = δp(θ)δp(Ψ(θ))rβ̂(Ψ(θ)),

=
∑

ϑ∈Irr(bγ(n−p|β|))

δp(θ)δp(Ψ(θ))a(Ψ(θ),Ψ(ϑ))Ψ(ϑ),

=
∑

ϑ∈Irr(bγ(n−p|β|))

δp(ϑ)δp(Ψ(ϑ))a(θ, ϑ)Ψ(ϑ),

=
∑

ϑ∈Irr(bγ(n−p|β|))

a(θ, ϑ) Iβ̂(ϑ),

= Iβ̂(r
β̂(θ)).

(31)

Note : Assume H is a normal subgroup of G and the MN-structure of H comes
from Clifford theory. Then the Eλxλ,y

for G have all size 1 and the Eλxλ,y
for H have

size dividing this size for G multiplied by [G : H]. Since here this index is 2, and
since p is odd, condition (iii) of Theorem 2.20 holds.

Note that the groups Gσ
β̂

and G′
σ′
β̂

have an MN-structure with respect to

(bγ(n− p|β|), C ∩Gσ
β̂
) and (b′γ′(m− p|β|), C ∩G′

σ′
β̂

),

respectively. Applying the previous computations to Gσ
β̂
= An−p|β| and G′

σ′
β̂

=

Am−p|β|, we conclude that the condition (2) of Theorem 2.10 holds for Iβ̂ . Now,
Remark 2.11 gives the condition (3) of Theorem 2.10 for I. On the other hand, by
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construction, assumption (ii) of Theorem 2.20 holds. The result then follows from
Theorems 2.10 and 2.20.

Assume now that |Λ0| ̸= |Λ′
0|. Without loss of generality, we can suppose that

|Λ0| > |Λ′
0|. This means that Λ′

0 = Ω0. Since Λ0 ≤ Ω0, there is p · β ∈ Ω0 such
that (p · β, 1|γ|) ∈ Dn ∩ On. This p · β also belongs to Λ′

0 and since Λ0 = Ω0, p · β
labels a unique conjugacy class of Am, i.e. (p · β, 1|γ′|) /∈ Dm ∩ Om. This happens
if and only if |γ′| ≥ 2. (In fact, |γ′| ≥ 3 because γ′ is self-conjugate.) Since γ′ is
self-conjugate, it labels two irreducible characters ρ+γ′ and ρ−γ′ of Am−pw. Similarly,
Λ0 ̸= Ω0 implies that |γ| ≤ 1. Note that in this case, although γ is self-conjugate,
the restriction of χγ from S1 (or S0) to A1 (or A0) is irreducible (because it is the
trivial character of the trivial group). Let p · β be in Ω0.

Suppose that |β| < w or that |β| = w and (p ·β, 1|γ|) /∈ Dn∩On. Then p ·β ∈ Λ0.
The same computation as in Equation (31) gives

(32) rβ̂ ◦ I = Iβ ◦ rβ̂ .

Suppose now that |β| = w and (p ·β, 1|γ|) ∈ Dn∩On. Then p ·β parametrizes two
classes of S and one class of S′. Moreover, | Irr(bγ(n− pw))| = 1 and | Irr(bγ′(m−
pw))| = 2. Denote by Gβ+ and Gβ− two copies of the trivial group, and set
Irr(Gβ±) = {1β±}. In particular, rβ

±
(Cbγ) = C Irr(Gβ±). Define Iβ : C Irr(Gβ+)⊕

C Irr(Gβ−) −→ C Irr(bγ′(m− wp)) by setting

(33) Iβ(1β+) = ρ+γ′ and Iβ(1β−) = ρ−γ′ .

Let κ be the self-conjugate partition of n whose diagonal hook lengths are the
parts of the partition (p · β, 1|γ|). By [2, 3.4], the p-quotient of κ satisfies κi = ∅
if i ̸= (p + 1)/2 and κ(p+1)/2 = β0, where β0 is the partition of w such that
a(β0) = β. By the definition of Ψ, the partition Ψ(κ) of m has the same p-quotient
as κ. Thus, the proof of [2, 3.4] also implies that Ψ(κ) has the same diagonal hook
lengths divisible by p as κ, and the other diagonal hooks of Ψ(κ) have p′-length. In
particular, a(Ψ(κ)) has p ·β as a subpartition (corresponding exactly to those of the
parts of a(Ψ(κ)) that are divisible by p). On the other hand, the Sm-class labeled
by a(Ψ(κ)) splits into two Am-classes with representatives σ′

βσ
+ and σ′

βσ
−, where

the cycle type of σ′
β is p·β, and the p-regular elements σ+ and σ− are representatives

of the split classes of Am−p|β| labeled by a(γ′)+ and a(γ′)−, respectively.
Let µ1 = κ, µℓ(β) = γ and the µi’s be partitions such that µ1 ⇝ µ2 ⇝ · · · ⇝

µℓ(β), where µi is obtained from µi−1 by removing the diagonal hook of length pβi.
Since L(cµi−1

µi ) = L(c
Ψ(µi−1)
Ψ(µi)

) for every 1 ≤ i ≤ ℓ(β) − 1, Equations (25) and (26)
give δp(µi, µi+1) = δp(Ψ(µi),Ψ(µi+1)) and it follows from [19, Corollary 2.3] that

(34) δp(κ) =

ℓ(β)−1∏
i=1

δp(µi, µi+1) =

ℓ(β)−1∏
i=1

δp(Ψ(µi),Ψ(µi+1)) = δp(Ψ(κ)).
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Now, by [7, Theorem 11], we have

rβ(χΨ(κ)) = rβ
(
δp(κ)δp(Ψ(κ))χΨ(κ)

)
= rβ ◦ I(χκ)

= I ◦ rβ(χκ)
= χκ(xβ)I(1{1})

= χκ(xβ)χγ′ ,

where xβ denotes a representative of the Sn-class labeled by (p · β, 1|γ|). Further-
more, Clifford theory gives

(35) rβ
(
ρ+Ψ(κ)

)
+ rβ

(
ρ−Ψ(κ)

)
= χκ(xβ)

(
ρ+γ′ + ρ−γ′

)
,

For 1 ≤ i ≤ ℓ(β), write qi = pβi. Then we have

(−1)
1
2 (n−ℓ((p·β,1

|γ|)) = (−1)
1
2 (pw−ℓ(β))

and the product of the parts of (p · β, 1|γ|) is q1 . . . qℓ(β). Thus, Theorem 3.3 gives

rβ(ρ+Ψ(κ))− rβ(ρ−Ψ(κ)) =
√
(−1)

1
2

∑
(qi−1)q1 · · · qℓ(β)

(
ρ+γ′ − ρ−γ′

)
= 2yκ

(
ρ+γ′ − ρ−γ′

)
,

(36)

because
∑

(qi − 1) = pw − ℓ(β). So, we deduce from Equations (35) and (36) that

(37) rβ(ρϵΨ(κ)) = (xκ + ϵyκ)ρ
+
γ′ + (xκ − ϵyκ)ρ

−
γ′ .

Furthermore, one has

(38) rβ
+

(ρϵκ) = (xκ + ϵyκ)1β+ and rβ
−
(ρϵκ) = (xκ − ϵyκ)1β− .

Hence, Equations (33), (34), (37) and (38) give

Iβ

(
rβ

+

(ρϵκ) + rβ
−
(ρϵκ)

)
= rβ (I(ρϵκ)) .

Let now λ ̸= κ be with p-core γ. Since ρϵλ(σβ±) = α(λ)χλ(xβ), we derive from [7,
Theorem 11] and Clifford theory that Iβ(rβ

+

(ρϵλ) + rβ
−
(ρϵλ)) = rβ(I(ρϵλ)). Finally,

we obtain

(39) Iβ ◦ (rβ
+

+ rβ
−
) = rβ ◦ I.

Using Equations (32) and (39), Remark 2.11 holds. Hence, the condition (2.b) of
Theorem 2.10 is automatic for Iβ̂ with |β| < w, and is true for Iβ with |β| = w

(because the characters 1β± and ρ±γ′ have defect zero). We remark that in the last
case, with the notation of Theorem 2.10, one has J∗

β
−1 = Iβ .

Write A and B for the sets of partitions β ∈ Ω0 such that β = β̂ and β ̸= β̂,
respectively. Now, following step by step the proof of Theorem 2.10, we obtain

Î(x, x′) =
∑
β∈A

∑
ϕ∈bβ

eβ(Φϕ)(x)l
′
β(J

∗
β
−1(ϕ))(x′)

+
∑
β∈B

∑
δ∈{+,−}

eβδ(1βδ)(x)l′β(J
∗
β
−1(1βδ)(x′),

(40)
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where bβ (for β ∈ A)) is the basis constructed from the set of irreducible Brauer
characters in the p-block bγ(n − p|β|) as in Remark 2.9. Since an analogue of
Remark 2.12 holds, we conclude as in Theorem 2.20. □

Theorem 3.10. Let p be an odd prime. Assume that γ and γ′ are non self-
conjugate p-cores of Sn and Sm respectively, of same p-weight w > 0. Let bγ,γ∗

and bγ′,γ′∗ be the corresponding p-blocks of An and Am. Let

I : C Irr(bγ,γ∗) → C Irr(bγ′,γ′∗), ρλ 7→ δp(λ)δp(Ψ(λ))ρΨ(λ).

Then I is a Broué perfect isometry.

Proof. The proof is similar to that of Theorem 3.9. We use the same MN-structure.
In a sense, this case is easier, because every irreducible character in Irr(bγ,γ∗) is the
restriction of a character of Sn. Hence, the Murnaghan-Nakayama rule for Sn

directly gives the result. □

Theorem 3.11. Let γ and γ′ be 2-blocks of An and Am of the same positive weight.
Then I defined as in Equation (27) is a Broué perfect isometry.

Proof. The MN-structure is defined as in the case where p is odd, and one always
has that Λ0 = Ω0 = Λ′

0. Note that I satisfies the assumption of Remark 2.21. Only
the situation of Theorem 3.5 occurs. The result of Proposition 3.8 still holds, but
the simplifications explained in the note within the proof are different. For any
2-hook c, one has L(c) + L(c∗) ≡ 1 mod 2. In particular, for any µ ∈ Mq1,q2(λ),
we deduce from Equation (24) that

δ2(µ)δ2(µ
∗) = (−1)r = δ2(Ψ(µ))δ2(Ψ(µ)∗),

where r is the number of 2-hooks to remove from µ to get to µ(2) (this is also the
number of 2-hooks we have to remove from Ψ(µ) to obtain Ψ(µ)(2)). The rest of
the proof is similar to that of Theorem 3.9. □

4. Double covering groups of the symmetric and alternating groups

In this section, we will consider the double covering group S̃n (for a positive
integer n) of the symmetric group Sn defined by

S̃n =
⟨
z, ti, 1 ≤ i ≤ n− 1 | z2 = 1, t2i = z, (titi+1)

3 = z, (titj)
2 = z (|i− j| ≥ 2)

⟩
.

The group S̃n and its representation theory were first studied by I. Schur in [26],
and, unless otherwise specified, we always refer to [26] for details or proofs.
We recall that we have the following exact sequence

1 → ⟨ z ⟩ → S̃n → Sn → 1.

We denote by θ : S̃n → Sn the natural projection. Note that for every σ ∈ Sn,
we have θ−1(σ) = {σ̃, zσ̃}, where σ̃ ∈ S̃n is such that θ(σ̃) = σ.
If we set

Ãn = θ−1(An),

then Ãn is the double covering group of the alternating group An.

Throughout this section, we fix an odd prime p.
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4.1. Conjugacy classes and spin characters of S̃n. If x, y ∈ S̃n are S̃n-
conjugate, then θ(x) and θ(y) are Sn-conjugate. Let σ, τ ∈ Sn. Choose σ̃, τ̃ ∈ S̃n

such that θ(σ̃) = σ and θ(τ̃) = τ . Suppose that σ and τ are Sn-conjugate. Then
τ̃ is S̃n-conjugate to σ̃ or to zσ̃ (possibly both). Hence, each conjugacy class C of
Sn gives rise to either one or two conjugacy classes of S̃n, according to whether
σ̃ and zσ̃ are conjugate or not (here, σ lies in C and σ̃ is as above). In the first
case, we say that the class is non-split , and, in the second case, that it is split. The
split classes of S̃n are characterized as follows. Recall that the conjugacy classes
of Sn are labeled by the set Pn of partitions of n. Write On for the set of π ∈ Pn
such that all parts of π have odd length, and Dn for the set of π ∈ Pn with distinct
parts. The partitions in Dn are called bar partitions. Denote by D+

n (respectively
D−
n ) the subset of Dn consisting of all partitions π ∈ Dn such that the number of

parts of π with an even length is even (respectively odd). Schur proved (see [26,
§7])

Proposition 4.1. The split conjugacy classes of S̃n are those classes C such that
θ(C) is labeled by On ∪ D−

n .

We set si = (i, i + 1) ∈ Sn. Then for every 1 ≤ i ≤ n − 1, we have θ(ti) = si.
For π = (π1, . . . , πk) ∈ Pn, write sπ for a representative of the class of Sn labeled
by π. If sπ = sπ1 · · · sπk

is the cycle decomposition (with disjoint supports) of sπ,
then we assume that the support of sπi is

(41)

1 +
∑
j<i

πj , . . . ,
∑
j≤i

πj

 .

Now, for any π ∈ Pn, we make the same choice of Schur [26, §11] for a repre-
sentative tπ ∈ S̃n such that θ(tπ) = sπ. So, when π ∈ On ∪ D−

n , the elements
tπ and ztπ are representatives of the two split classes of S̃n labeled by π. We
denote by C+

π (respectively C−
π ) the conjugacy class of tπ (respectively ztπ) in S̃n.

It will also sometimes be convenient to write t+π for tπ, and t−π for ztπ. When
π ∈ Pn \ (On ∪ D−

n ), the elements tπ and ztπ belong to the same conjugacy class
Cπ of S̃n. In all cases, an element g (or an S̃n-class C) is said to be of type π if
the Sn-class of θ(g) (respectively of θ(g) for any g ∈ C) is labeled by π.

Note that if π = (π1, . . . , πk) ∈ Pn, then the construction of [26, III p. 172]
implies that

(42) tπ = tπ1 · · · tπk
.

Convention 4.2. Let π = (π1, . . . , πk) ∈ Pn. In the following, we do not neces-
sarily assume as usual that π1 ≥ · · · ≥ πk. Instead, we assume that the parts of π
are ordered in such a way that π1 ≥ · · · ≥ πu and πu+1 ≥ · · · ≥ πk, where u is such
that πu+1, . . . , πk are exactly the odd parts of π which are divisible by p (if there is
no such part in π, then u = k).

We are now interested in the set of irreducible complex characters of S̃n. Any
irreducible (complex) character of S̃n with z in its kernel is simply lifted from an
irreducible character of the quotient Sn. Any other irreducible character ξ of S̃n

is called a spin character , and it satisfies ξ(z) = −ξ(1). In particular, for any spin
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character ξ and any π ∈ Pn, one has ξ(ztπ) = −ξ(tπ), which implies that ξ vanishes
on the non-split conjugacy classes of S̃n.

Define ε = sgn ◦ θ, where sgn is the sign character of Sn. Note that Ãn = ker(ε).
Then ε is a linear (irreducible) character of S̃n, and for any spin character ξ of S̃n,
ε⊗ ξ is a spin character (because ε⊗χ(z) = −ε⊗χ(1)). A spin character ξ is said
to be self-associate if εξ = ξ. Otherwise, ξ and εξ are called associate characters.
It follows that, if ξ is self-associate and π ∈ D−

n , then ξ(tπ) = 0 = ξ(ztπ).
In [26], Schur proved that the spin characters of S̃n are, up to association, labeled

by Dn. More precisely, he showed that every λ ∈ D+
n indexes a self-associate spin

character ξλ, and every λ ∈ D−
n a pair (ξ+λ , ξ

−
λ ) of associate spin characters. In this

case, we will sometimes write ξλ for ξ+λ , so that ξ−λ = εξλ.
For any partition λ = (λ1, . . . , λk) of n (where we don’t include 0 parts), we set

|λ| =
∑
λi and we define the length ℓ(λ) of λ by ℓ(λ) = k. If λ is furthermore

a bar partition (i.e. if the parts of λ are pairwise distinct), then we set σ(λ) =
(−1)|λ|−ℓ(λ). With this notation, we then have (see e.g. [22, p. 45])

(43) λ ∈ Dσ(λ)
n .

If σ(λ) = 1, then λ is said to be even; otherwise, it is said to be odd .
Schur proved in [26] that, whenever λ = (λ1, . . . , λk) ∈ D−

n , the labeling can be
chosen in such a way that, for any π ∈ D−

n , we have

(44) ξ+λ (tπ) = δπλi
n−k+1

2

√
λ1 . . . λk

2
.

Writing zλ for the product λ1 . . . λk, we therefore have, for any π ∈ D−
n ,

(45)

ξ+λ (tπ) = ξ−λ (ztπ) = δπλi
n−r+1

2

√
zλ
2

and ξ+λ (ztπ) = ξ−λ (tπ) = −δπλi
n−r+1

2

√
zλ
2
.

Finally, for any π ∈ On, we have

ξ+λ (tπ) = ξ−λ (tπ) and ξ+λ (ztπ) = ξ−λ (ztπ).

4.2. Conjugacy classes and spin characters of Ãn. We also write θ : Ãn → An

for the restriction of θ to Ãn. As above, the type of g ∈ Ãn is the partition encoding
the cycle structure of θ(g). As above, there is a notion of split classes with respect
to θ. Such classes will be called An-split in the following. On the other hand, since
Ãn is a subgroup of S̃n with index 2, every S̃n-class contained in Ãn is either a
single Ãn-class or a union of two Ãn-classes. In the second case, the Ãn-classes will
be called S̃n-split classes. By [26, p. 176], we have

Proposition 4.3. Assume n ≥ 2. The An-split classes of Ãn are the classes whose
elements have type π ∈ D+

n ∪ On.

Remark 4.4. Let t ∈ Ãn be with support contained in X = {k, k + 1, . . . , k + l}
for some 1 ≤ k < n and 1 ≤ l with k + l ≤ n. Let 1 ≤ i ≤ n − 1 be such that
{i, i + 1} ∩ X = ∅. Then t and ti commute. Indeed, since ε(t) = 1, there are
integers k ≤ j1, . . . , j2r ≤ k + l − 1 such that t = tj1 · · · tj2r . Furthermore, we have
|i− ju| ≥ 2 for all 1 ≤ u ≤ 2r. Hence, titu = ztu and tit = z2rt = t, as required.
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Assume n ≥ 2. Let π ∈ D+
n ∪On. If π /∈ D+

n ∩On, then π labels two classes D+
π

and D−
π of Ãn. We assume that tπ defined above lies in D+

π , so that representatives
for D+

π and D−
π are τ+π = tπ and τ−π = ztπ.

Otherwise, if π ∈ D+
n ∩On, then π labels four An-classes (that are An-split and

S̃n-split simultaneously). Write π = (π1, . . . , πk) with respect to Convention 4.2,

and oπ1 = z
π2
1−1

8 tπ1 . According to [26, footnote (*), p. 179], oπ1 has odd order.
Furthermore, we assume that the support of sπj is as in Equation (41). So, t1 ∈ S̃π1 .
Since π1 ∈ D+

π1
∩ Oπ1 , the elements oπ1 and t1oπ1 are not Ãπ1 -conjugate. Now, we

get τ++
π = tπk

· · · tπ2oπ1 and

(46) τ+−
π = t1τ++

π , τ−+
π = zτ++

π and τ−−
π = zτ+−

π .

So, τ++
π , τ−+

π , τ+−
π and τ−−

π belong to 4 distinct Ãn-classes, labeled D++
π , D−+

π ,
D+−
π and D−−

π respectively. Note that t1tπj = tπj for j > 1 by Remark 4.4. In
particular, one has τ+−

π = tπk
· · · tπ2

t1oπ1 .
We can now describe the irreducible complex characters of Ãn. These are given

by using Clifford’s Theory between S̃n and the subgroup Ãn of index 2. All the
irreducible components of the restrictions to Ãn of non-spin characters of S̃n have
z in their kernel, whence are non-spin characters of Ãn. They are exactly the
irreducible characters of Ãn lifted from those of An.

We now turn to spin characters (which are the irreducible components of the
restrictions to Ãn of the spin characters of S̃n).

First consider λ ∈ D−
n . Then λ labels two associated spin characters ξ+λ and ξ−λ

of S̃n, which have the same restriction to Ãn. The restriction

(47) ζλ = ResS̃n

Ãn
(ξ+λ ) = ResS̃n

Ãn
(ξ−λ )

is an irreducible spin character of Ãn, and its only non-zero values are taken on
elements of type belonging to On.

Now consider λ ∈ D+
n . Then λ labels a single spin character ξλ of S̃n, and

ResS̃n

Ãn
(ξλ) = ζ+λ +ζ

−
λ , where ζ+λ and ζ−λ are two conjugate irreducible spin characters

of Ãn. Throughout, the characters ζ+λ and ζ−λ are also called associate characters.
These only differ on elements of type λ. Following Schur [26, p. 236], we have,
writing ∆λ for the difference character of ξλ (which is not well-defined, but just up
to a sign), that

(48) ∆λ(t) =

{
±i

n−ℓ(λ)
2

√
zλ if t has type λ,

0 otherwise,

where zλ is defined after Equation (44).
We will now make the notation precise. We distinguish two cases. Suppose first

that λ ∈ D+
n \On. Then ζ+λ and ζ−λ are completely defined by setting ∆λ = ζ+λ −ζ−λ

and ∆λ(τ
+
λ ) = i

n−ℓ(λ)
2

√
zλ, where τ+λ is the representative of D+

λ as above. Note
that, using Equation (48) and τ−λ = zτ+λ , we deduce that ∆λ(τ

−
λ ) = −i

n−ℓ(λ)
2

√
zλ.

Since, for ϵ ∈ {−1, 1},

(49) ζϵλ =
1

2

(
ResS̃n

Ãn
(ξλ) + ϵ∆λ

)
,
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and ξλ(tλ) = 0 (because Cλ is a non-split class of S̃n), we obtain

(50) ζ+λ (τ
±
λ ) =

1

2
∆λ(τ

±
λ ) and ζ−λ (τ

±
λ ) =

1

2
∆λ(τ

∓
λ ) = −1

2
∆λ(τ

±
λ ).

And, on any element σ of type π ̸= λ of Ãn, we have

(51) ζ+λ (σ) = ζ−λ (σ) =
1

2
ξλ(σ).

Now suppose that λ ∈ D+
n ∩ On. Again, we completely define ζ+λ and ζ−λ by

setting ∆λ = ζ+λ − ζ−λ and ∆λ(τ
++
λ ) = i

n−ℓ(λ)
2

√
zλ. Note that this does define

∆λ, and thus ζ+λ and ζ−λ by Equation (49), since we have ∆λ(τ
−+
λ ) = −∆λ(τ

++
λ )

because τ−+
λ = zτ++

λ , and ∆λ(τ
+−
λ ) = −∆λ(τ

++
λ ) by Clifford theory, because the

elements τ+−
λ and τ++

λ are S̃n-conjugate, and ζ+λ and ζ−λ are S̃n-conjugate. Finally,
on any element σ of type π ̸= λ of Ãn, Equation (51) holds.

4.3. Combinatorics of bar partitions. We just saw that the spin characters of
S̃n and Ãn are labeled by the set Dn of bar partitions of n. We now present some
of the combinatorial notions and properties we will need to study the characters
and blocks of these groups. For all of these, and unless otherwise specified, we refer
to [22]. Note that, in this subsection and the next, where we only describe the
standard combinatorics associated to bar partition and spin blocks, the parts of
partitions and bar partitions are again ordered in decreasing order.

Let λ = (λ1, . . . , λr) ∈ Dn with λ1 > · · · > λr > 0. For 1 ≤ i ≤ r, consider the
set

Ji,λ = ({1, . . . , λi} ∪ {λi + λj | j > i}) \{λi − λj | j > i}.
The multiset B(λ) =

∪r
i=1 Ji,λ is the multiset of bar lengths of λ, which will play a

role analogous to that played by hook lengths for partitions.
The shifted tableau S(λ) of λ is obtained from the usual Young diagram of λ by

shifting the ith row i − 1 positions to the right, and writing in the nodes of the
ith row the elements of Ji,λ in decreasing order. The jth node in the ith row of
S(λ) will be called the (i, j)-node of S(λ). Write ai,j for the integer lying in the
(i, j)-node of S(λ). As in the case of hooks, we can associate to this node a bar bi,j
of λ whose length is ai,j . The construction goes as follows. If i + j ≥ r + 2, then
bi,j is the usual (i, j)-hook of S(λ). If i+ j = r+1, then bi,j is the ith row of S(λ).
Finally, if i+ j ≤ r, then bi,j is the union of the ith row together with the jth row
of S(λ). In all cases, one checks that ai,j is exactly the number of nodes in bi,j , and
is therefore called the bar length of bi,j . We can also define the leg length L(bi,j) of
the bar bi,j by setting

L(bi,j) =

{
|{k |λi > λk > λi − ai,j}| if i+ j ≥ r + 1,
λi+j + |{k |λi > λk > λi+j}| if i+ j ≤ r.

As for hooks, it is always possible to remove any bar b from S(λ). If b has bar
length a, then this operation produces a new bar partition, written λ \ b, of size
n− a.

Let q be an odd integer. We call q-bar (respectively (q)-bar) any bar b of λ
whose length is q (respectively divisible by q). Note that, for any positive integer
k, the removal of a kq-bar can be achieved by succesively removing k bars of length
q (this fails when q is even). By removing all the (q)-bars in λ, one obtains the
q̄-core λ(q̄) of λ. One can show that λ(q̄) is independent on the order in which one
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removes q-bars from λ. In particular, the total number wq̄(λ) of q-bars to remove
from λ to get to λ(q̄) is uniquely defined by λ and q, and called the q̄-weight of λ.
Note that wq̄(λ) is also equal to the number of (q)-bars in λ.

It is also possible to define the q̄-quotient λ(q̄) of λ, which contains the informa-
tion about all the (q)-bars in λ (see [22, p. 28]). We have λ(q) = (λ0, λ1, . . . , λe),
where e = (q− 1)/2, λ0 is a bar partition, and the λi’s are partitions for 1 ≤ i ≤ e.
For any integer k, we define a k-bar b′ of λ(q) = (λ0, λ1, . . . , λe) to be either a
k-bar of λ0, or a k-hook of λi for some 1 ≤ i ≤ e. The removal of b′ from λ(q̄) is
then defined accordingly, and the resulting q̄-quotient is denoted by λ(q̄) \ b′. The
leg length L(b′) is also defined in a natural manner. We then have the following
fundamental result (see [22, Proposition 4.2, Theorem 4.3])

Theorem 4.5. Let q be an odd integer. Then a bar partition λ determines and is
uniquely determined by its q-core λ(q) and its q-quotient λ(q). Moreover, there is a
canonical bijection g between the set of (q)-bars of λ and the set of bars of λ(q), such
that, for each integer k, the image of a kq-bar of λ is a k-bar of λ(q̄). Furthermore,
for the removal of corresponding bars, we have

(λ\b)(q) = λ(q)\g(b).

Note that the above theorem provides a (canonical) bijection between the set of
parts of λ with length divisible by q and the set of parts of λ0 (see [22, Corollary
(4.6)]).

Theorem 4.5 also implies that the q̄-weight wq̄(λ) of λ satisfies wq(λ) =
∑e
i=0 |λi|

(we say that λ(q̄) is a q̄-quotient of size |λ(q̄)| = wq̄(λ)), and that |λ| = |λ(q)|+qwq(λ)
(see [22, Corollary 4.4]). In addition, if we write, in analogy with bar partitions,
σ(λ(q)) = (−1)|λ

(q̄)|−ℓ(λ0) = (−1)wq(λ)−ℓ(λ0), then we obtain that

(52) σ(λ) = σ(λ(q))σ(λ
(q)).

When we introduce analogues of the Murnaghan-Nakayama rule for spin charac-
ters later on, we will also need to use the relative sign for bar partitions introduced
by Morris and Olsson in [19]. Given an odd integer q, one can associate in a canon-
ical way to each bar partition λ a sign δq̄(λ). If µ is a bar partition obtained from
λ by removing a sequence of q-bars, then we define the relative sign δq̄(λ, µ) by

(53) δq̄(λ, µ) = δq̄(λ)δq̄(µ).

It is then possible to prove the following results (see [19, Proposition (2.5), Corollary
(2.6), Corollary (3.8)]):

Theorem 4.6. Let λ and µ be bar partitions, and q be an odd integer.
(i) If µ is obtained from λ by removing a sequence of q-bars with leg lengths

L1, . . . , Ls, then
δq̄(λ, µ) = (−1)

∑s
i=1 Li .

In particular, the parity of
∑s
i=1 Li does not depend on the choice of q-bars

being removed in going from λ to µ.
(ii) If γ is a q̄-core, then δq̄(γ) = 1, so that

δq̄(λ) = δq̄(λ, λ(q̄)).
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(iii) If b is a (q)-bar in λ and µ = λ \ b, then

(−1)L(b) = (−1)L(g(b))δq̄(λ, µ),

where g is the bijection introduced in Theorem 4.5.

4.4. Spin blocks of S̃n and Ãn; Bijections. We now describe the blocks of irre-
ducible characters of S̃n and Ãn, as well as bijections between them. Throughout
this section, we assume that q is an odd prime (even though all the combinatorial
arguments hold for any odd q).

If B is any q-block of S̃n, then B contains either no or only spin characters. In
the former case, B coincides with a q-block of Sn; in the latter, we say that B is a
spin block . The distribution of spin characters into spin blocks was first conjectured
by Morris. It was first proved by J. F. Humphreys in [11], then differently by M.
Cabanes, who also determined the structure of the defect groups of spin blocks (see
[3]).

Similarly, any q-block B∗ of Ãn contains either no spin character, and coincides
with a q-block of An, or only spin characters, and is then called a spin block.

The spin blocks of S̃n and Ãn are described by the following:

Theorem 4.7. Let χ and ψ be two spin characters of S̃n, or two spin characters
of Ãn, labeled by bar partitions λ and µ respectively, and let q be an odd prime.
Then χ is of q-defect 0 (and thus alone in its q-block) if and only if λ is a q̄-core. If
λ is not a q̄-core, then χ and ψ belong to the same q-block if and only if λ(q̄) = µ(q̄).

One can therefore define the q̄-core of a spin block B and its q̄-weight wq̄(B),
as well as its sign σ(B) = σ(λ(q̄)) (for any bar partition λ labeling some character
χ ∈ B).

One sees that the spin q-blocks of positive weight (or defect) of S̃n can be paired
with those of Ãn. The spin characters in any such q-block of Ãn are exactly the
irreducible components of the spin characters of a q-block of S̃n.

We can now define bijections between different blocks of possibly different groups.
Let w > 0 be any integer, and let Qw be the set of q̄-quotients of size w. For any
q-core γ, we let Eγ,w be the set of bar partitions λ of length |γ|+qw with wq(λ) = w

and λ(q) = γ, and we denote by Bγ,w and B∗
γ,w the spin q̄-blocks of S̃|γ|+qw and

Ã|γ|+qw respectively labeled by γ. Note that the characters in Bγ,w and those in
B∗
γ,w are labeled by the partitions in Eγ,w. Note also that

Ψγ :

{
Eγ,w −→ Qw
λ 7−→ λ(q̄)

is a bijection. It provides us with the following:

Lemma 4.8. Let q be an odd prime, w > 0 be any integer, and γ and γ′ be any
q̄-cores. Define the bijection

Ψ = Ψ−1
γ′ ◦Ψγ : Eγ,w −→ Eγ′,w.

(i) If σ(γ) = σ(γ′), then Ψ induces bijections Ψ̃ between Bγ,w and Bγ′,w, and Ψ̃∗

between B∗
γ,w and B∗

γ′,w.
(ii) If σ(γ) = −σ(γ′), then Ψ induces bijections Ψ̃ between Bγ,w and B∗

γ′,w, and
Ψ̃∗ between B∗

γ,w and Bγ′,w.
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Proof. This follows easily from the definition of Ψ and formula (52), which gives
that, for any λ ∈ Eγ,w and µ ∈ Eγ′,w, we have σ(λ) = σ(γ)σ(Ψγ(λ)) and σ(µ) =
σ(γ′)σ(Ψγ′(µ)). We therefore have (taking µ to be Ψ(λ))

σ(Ψ(λ)) = σ(γ′)σ(Ψγ′(Ψ(λ)) = σ(γ′)σ(Ψγ′(Ψ−1
γ′ (Ψγ(λ)))) = σ(γ′)σ(Ψγ(λ)),

so that σ(Ψγ(λ)) = σ(γ′)σ(Ψ(λ)) and, finally,

σ(λ) = σ(γ)σ(γ′)σ(Ψ(λ)) for any λ ∈ Eγ,w.

This means that, if σ(γ) = σ(γ′), then any λ ∈ Eγ,w labels the same numbers
of spin characters in S̃|γ|+qw and Ã|γ|+qw as Ψ(λ) does in S̃|γ′|+qw and Ã|γ′|+qw
respectively. If, on the other hand, σ(γ) = −σ(γ′), then λ labels label the same
numbers of spin characters in S̃|γ|+qw and Ã|γ|+qw as Ψ(λ) does in Ã|γ′|+qw and
S̃|γ′|+qw respectively.

We obtain the following description for the bijections Ψ̃ and Ψ̃∗:
(i) If σ(γ) = σ(γ′), then, for any λ, µ ∈ Eγ,w with σ(λ) = 1 and σ(µ) = −1,

Ψ̃ :

{
ξλ 7−→ ξΨ(λ)

{ξ+µ , ξ−µ } 7−→ {ξ+Ψ(µ), ξ
−
Ψ(µ)}

and Ψ̃∗ :

{
{ζ+λ , ζ

−
λ } 7−→ {ζ+Ψ(λ), ζ

−
Ψ(λ)}

ζµ 7−→ ζΨ(µ)

(ii) If σ(γ) = −σ(γ′), then, for any λ, µ ∈ Eγ,w with σ(λ) = 1 and σ(µ) = −1,

Ψ̃ :

{
ξλ 7−→ ζΨ(λ)

{ξ+µ , ξ−µ } 7−→ {ζ+Ψ(µ), ζ
−
Ψ(µ)}

and Ψ̃∗ :

{
{ζ+λ , ζ

−
λ } 7−→ {ξ+Ψ(λ), ξ

−
Ψ(λ)}

ζµ 7−→ ξΨ(µ)

□
4.5. Morris’ Recursion Formula and MN-structures for S̃n and Ãn. First,
for the convenience of the reader, we prove the following useful lemma.

Lemma 4.9. Let ρ ∈ Sn be an element of odd order. Then the set θ−1(ρ) has an
element of odd order.

Proof. Let g ∈ θ−1(ρ), so that θ−1(ρ) = {g, zg}, and let d be the order of ρ. Since
θ(gd) = θ(g)d = ρd = 1, we obtain gd ∈ {1, z}. If gd = 1, then the order of g is
odd. Otherwise, gd = z, and (zg)d = zdgd = z2 = 1 because d is odd. Thus zg has
odd order, as required. □

In the following, if ρ ∈ Sn has odd order, then we denote by oρ the element of
θ−1(ρ) with odd order.

A. O. Morris was the first to prove a recursion formula, similar to the Murnaghan-
Nakayama Rule, for computing the values of spin characters of S̃n (see [17] and
[18]). This formula was then made more general by M. Cabanes in [3]. We have
the following:

Theorem 4.10. [3, Theorem 20] Let n ≥ 2 be an integer, q ∈ {2, . . . , n} be an
odd integer, and ρ a q-cycle of Sn with support {n− q + 1, . . . , n}. Let λ be a bar
partition of n. If σ(λ) = 1, then we write ξλ = ξ+λ = ξ−λ . Then x = oρ satisfies
CS̃n

(x) = S̃n−q × ⟨x⟩ and, for all g ∈ S̃n−q,

(54) ξ+λ (xg) =
∑

µ∈Mq(λ)

σ(µ)=1

a(ξ+λ , ξµ)ξµ(g)+
∑

µ∈Mq(λ)

σ(µ)=−1

(a(ξ+λ , ξ
+
µ )ξ

+
µ (g)+ a(ξ+λ , ξ

−
µ )ξ

−
µ (g)),

where Mq(λ) is the set of bar partitions of n − q which can be obtained from λ by
removing a q-bar, and a(ξ+λ , ξ

+
µ ), a(ξ

+
λ , ξ

−
µ ) ∈ C∗ are the following:
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– if σ(µ) = 1, then a(ξ+λ , ξµ) = (−1)
q2−1

8 αλµ,

– if σ(µ) = −1 and µ ̸= λ \ {q}, then a(ξ+λ , ξ
+
µ ) = a(ξ+λ , ξ

−
µ ) =

1
2 (−1)

q2−1
8 αλµ,

– if σ(µ) = −1 and µ = λ \ {q}, then a(ξ+λ , ξ
+
µ ) =

1
2 (−1)

q2−1
8 (αλµ + i

q−1
2
√
q)

and a(ξ+λ , ξ
−
µ ) =

1
2 (−1)

q2−1
8 (αλµ − i

q−1
2
√
q).

The αλµ’s are the coefficient found by Morris in his recursion formula (see [18,
Theorem 2]). They are given by

αλµ = (−1)L(b)2m(b),

where L(b) is the leg length of the q-bar b removed from λ to get µ, and

m(b) =

{
1 if σ(λ) = 1 and σ(µ) = −1,
0 otherwise.

Remark 4.11. Note that, with the notation of Theorem 4.10, since ξ−λ (xg) =

εξ+λ (xg), and since, with a slight abuse of notation, ε(xg) = ε(g) (as q is odd and
x = oρ), we can also write

(55) ξ−λ (xg) =
∑

µ∈Mq(λ)

σ(µ)=1

a(ξ−λ , ξµ)ξµ(g) +
∑

µ∈Mq(λ)

σ(µ)=−1

a(ξ−λ , ξ
+
µ )ξ

+
µ (g) + a(ξ−λ , ξ

−
µ )ξ

−
µ (g),

where, whenever σ(µ) = 1, a(ξ−λ , ξµ) = a(ξ+λ , ξµ), and, whenever σ(µ) = −1,
a(ξ−λ , ξ

+
µ ) = a(ξ+λ , ξ

−
µ ) and a(ξ−λ , ξ

−
µ ) = a(ξ+λ , ξ

+
µ ).

Lemma 4.12. Let q be an odd number, and a ∈ Ãn be of cycle type (q) such that
θ(a) has support I = {n− q + 1, . . . , n}. Let g and g′ be in Ãn−q such that ag and
ag′ are Ãn-conjugate and in an Ãn-class labeled by λ ∈ D+

n . Then g and g′ have
type µ = λ\{q} ∈ D+

n−q and are Ãn−q-conjugate.

Proof. With the assumption, it is clear that g and g′ have cycle type µ. Let t ∈ Ãn

be such that t(ag) = ag′. Then θ(t)(θ(a)θ(g)) = θ(a)θ(g′). Since θ(t)θ(a) is a q-cycle
of θ(a)θ(g′) and θ(a) is the unique q-cycle of θ(a)θ(g′) (because all the cycles of
this element are distinct), it follows that θ(t)θ(a) = θ(a). Thus, I is invariant by
θ(t). Set v := θ(t)|I ∈ SI . Then v ∈ CSn(θ(a)), and since the cycle type of θ(a) is
odd and distinct in AI , one has CSI (θ(a)) = CAI (θ(a)), and in particular, v ∈ AI .
Now, let ṽ ∈ ÃI be such that θ(ṽ) = v. By Remark 4.4, we have ṽg = g. Write
w = t ṽ−1 ∈ Ãn−q. Then wa = a or wa = za, and since a and za have distinct
order, we deduce that wa = a. It follows that awg = w(ag) = t(ag) = ag′, and
wg = g′ with w ∈ Ãn−q, as required. □

Remark 4.13. Let q be an odd multiple of p and λ = (λ1, . . . , λk = q) ∈ D+
n be

as in Convention 4.2 (in particular, q is the smallest odd part of λ divisible by p).
Assume that n− q ≥ 2 and write I = {n− q+1, . . . , n}. Let ρ be the q-cycle of SI

with respect to the choice of representatives given before Equation (41). Denote by
tρ the element of S̃I such that θ(tρ) = ρ with respect to the choice of Schur [26,
§11], and write µ = (λ1, . . . , λk−1) ∈ D+

n−q. With the choice of Equation (46), one
has τ±λ = tρτ

±
µ if λ /∈ On (note that µ /∈ On−q) and τ±±

λ = tρτ
±±
µ if λ ∈ On (in

this case, µ is automatically in On−q).
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We now obtain an analogue of Theorem 4.10 for Ãn. Let q be an odd number
such that n− q ≥ 2. Let ρ and tρ be as in Remark 4.13. According to [26, footnote

(*), p. 179], recall that oρ = z
q2−1

8 tρ.

Theorem 4.14. Let q be an odd integer such that n−q ≥ 2. We keep the notation of
Remark 4.13 and we set x := oρ = z

q2−1
8 tρ. In particular, x ∈ Ãn, and CÃn

(x) =

Ãn−q × ⟨x⟩. Assume that the choice for the labels of the classes (and thus for
the labels of the characters by §4.2) are as in Remark 4.13. Take any λ ∈ Dn,
ϵ ∈ {−1, 1} and g ∈ Ãn−q. When λ ∈ D−

n , we set ζ+λ = ζ−λ = ζλ. Finally, let π
be the cycle type of xg. Then, if λ ̸= π, or if λ = π and q is the last part of λ, we
have

ζϵλ(xg) =
∑

µ∈Mq(λ)

σ(µ)=−1

a(ζϵλ, ζµ)ζµ(g) +
∑

µ∈Mq(λ)

σ(µ)=1

(
a(ζϵλ, ζ

+
µ )ζ

+
µ (g) + a(ζϵλ, ζ

−
µ )ζ

−
µ (g)

)
,

where the coefficients are the following:

– if λ ∈ D−
n , then a(ζλ, ζηµ) = (−1)

q2−1
8 αλµ for all µ ∈Mq(λ) and η ∈ {−1, 1},

where αλµ is as in Theorem 4.10.

– if λ ∈ D+
n , then a(ζϵλ, ζµ) = 1

2 (−1)
q2−1

8 αλµ whenever σ(µ) = −1, and

a(ζϵλ, ζ
η
µ) =

1
2 (−1)

q2−1
8 (αλµ+ ϵηi

q−1
2
√
q) for η ∈ {−1, 1} whenever σ(µ) = 1.

Proof. First assume that λ ∈ D−
n . Then, by Equation (47), and Clifford theory

applied to Equation (54), we obtain the following. Whenever σ(µ) = −1, we have

a(ζλ, ζµ) = a(ξ+λ , ξ
+
µ ) + a(ξ+λ , ξ

−
µ ) =

1

2
(−1)

q2−1
8 αλµ +

1

2
(−1)

q2−1
8 αλµ = (−1)

q2−1
8 αλµ,

and, whenever σ(µ) = 1,

a(ζλ, ζ
+
µ ) = a(ζλ, ζ

−
µ ) = a(ξ+λ , ξµ) = (−1)

q2−1
8 αλµ,

as required.
We now consider the case where λ ∈ D+

n . By Equation (49) and Clifford theory
applied to Equation (54), we obtain

ζ+λ (xg) =
1

2
(ξλ(xg) + ∆λ(xg))

=
∑

µ∈Mq(λ)

σ(µ)=1

a(ξλ, ξµ)

2
(ζ+µ (g) + ζ−µ (g)) +

∆λ(xg)

2

+
∑

µ∈Mq(λ)

σ(µ)=−1

a(ξλ, ξ
+
µ ) + a(ξλ, ξ

−
µ )

2
ζµ(g).

(56)

We need to deal with the term ∆λ(xg)
2 . Recall that this is 0 unless xg has cycle

type π = λ. We start by noticing that, if xg does not have cycle type λ, then
g does not have cycle type µ for any µ ∈ Mq(λ) with σ(µ) = 1. Indeed, if µ is
obtained from λ by removing a bar b of odd length q, then, depending on the type
of b, we have ℓ(µ) = ℓ(λ), ℓ(µ) = ℓ(λ) − 2 or ℓ(µ) = ℓ(λ) − 1. In the first two
cases, we obtain σ(µ) = (−1)n−q−ℓ(λ) = −σ(λ). The last case can only happen
if b is a part of λ, in which case µ = λ \ {q} and σ(µ) = σ(λ). This has several
consequences. The first is that {µ ∈Mq(λ) |σ(µ) = 1} is either empty, or contains
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only the partition λ \ {q}. This in turn implies that xg has cycle type λ if and
only if {µ ∈ Mq(λ) |σ(µ) = 1} = {λ \ {q}} and g has cycle type λ \ {q}. Finally,
{µ ∈ Mq(λ) |σ(µ) = 1} is empty if and only if λ does not have a part of length q,
and, if this is the case, then ∆λ(xg)

2 = 0 for all g ∈ Ãn−q.

We therefore suppose that λ does have a part of length q, so that

{µ ∈Mq(λ) |σ(µ) = 1} = {λ \ {q}}.

We will show that, if µ = λ \ {q}, then, for all g ∈ Ãn−q, we have

(57) ∆λ(xg) = (−1)
q2−1

8 i
q−1
2
√
q∆µ(g).

If g does not have cycle type µ = λ \ {q}, then ∆µ(g) = 0, and xg does not have
cycle type λ, so that ∆λ(xg) = 0 and Equation (57) holds.

Now, assume that g has cycle type µ. Then xg has cycle type π = λ, so we
assume furthermore that q is the last part of λ. If λ ∈ On (resp. λ /∈ On), then
there are signs δ and η such that xg is Ãn-conjugate to τ δηλ (resp. to τ δλ). It

follows that tρz
q2−1

8 g and τ δηλ = tρτ
δη
µ (resp. τ δλ = tρτ

δ
µ) are Ãn-conjugate. By

Lemma 4.12, z
q2−1

8 g is Ãn−q-conjugate to τ δµµ (resp. to τ δµ), that is, g ∈ D
( q2−1

8 δ)η
µ

(resp. g ∈ D
q2−1

8 δ
µ ).

Now, using the values and properties we gave for the difference characters, we
obtain that, for xg ∈ D+

λ (or similarly for xg ∈ D++
λ ), we have

(58)

∆λ(xg) = ∆λ(D
+
λ ) = i

n−ℓ(λ)
2

√
zλ

= i
n−q+q−ℓ(µ)−1

2
√
q
√
zµ

= i
q−1
2
√
qi

n−q−ℓ(µ)
2

√
zµ

= i
q−1
2
√
q∆µ(D

+
µ )

= (−1)
q2−1

8 i
q−1
2
√
q∆µ(g).

Using the property ∆λ(D
−
λ ) = −∆λ(D

+
λ ), and its analogues for the classes D±±

λ ,
we easily deduce that Equation (57) does hold for all g ∈ Ãn−q.

Now, from Equations (56) and (57), and Theorem 4.10, we deduce that, for
µ ∈ Mq(λ), if σ(µ) = −1, then a(ζ+λ , ζµ) = 1

2 (−1)
q2−1

8 αλµ, and, if σ(µ) = 1, then

a(ζ+λ , ζ
+
µ ) =

1
2 (−1)

q2−1
8 (αλµ + i

q−1
2
√
q) and a(ζ+λ , ζ

−
µ ) =

1
2 (−1)

q2−1
8 (αλµ − i

q−1
2
√
q).

Our analysis of the term ∆λ(xg) also yields a similar formula for ζ−λ (xg), and
using Equation (55), we deduce the values of a(ξ−λ , ξ

η
µ) for all µ ∈ Mq(λ) and

η ∈ {−1, 1}. □

Remark 4.15. Let n and q be as above. Assume n = q or n = q + 1. Then
Ãn−q = Z2 and the only spin character is the non-trivial character ε of Z2, labeled
by µ = ∅ or µ = (1) whenever n = q or n = q + 1. Set π = (q) if n = q

and π = (q, 1) if n = q + 1. Then there are 4 classes of Ãn labeled by π with
representatives τ±±

π . Write o±π = τ+±
π . Let k ∈ {0, 1} and λ ∈ Dn be with q-core

µ. If λ ∈ D−
n , then ζλ(o

±
π z

k) = (−1)
q2−1

8 αλµε(z
k). If λ ∈ D+

n and λ ̸= π, then
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ζλ(o
±
π z

k) = 1
2 (−1)

q2−1
8 αλµε(z

k). Finally, for δ, η ∈ {−1, 1}, one has

(59) ζηπ(o
δ
πz
k) = ζηπ(o

δ
π)ε(z

k) =
(−1)

q2−1
8

2

(
απµ + ηδi

q−1
2
√
q
)
ε(zk).

We define CSn
to be the set of elements of Sn none of whose cycles has length

an odd multiple of p. We then let

(60) CS̃n
= θ−1(CSn) and CÃn

= CS̃n
∩ Ãn.

Finally, we let CS̃n
and CÃn

be the sets of (respectively S̃n- and Ãn-) conjugacy
classes in CS̃n

and CÃn
respectively.

From now on, if G is a finite group and C a union of conjugacy classes of G, then
C-blocks is meant in the sense of KOR-blocks (see Proposition 2.14).

We start by showing that the spin p-blocks of S̃n (respectively Ãn) are also
CS̃n

-blocks (respectively CÃn
-blocks). Recall that the p-blocks of S̃n are just the

S̃n,p′-blocks, where S̃n,p′ is the set of p-regular elements of S̃n. Similarly, the
p-blocks of Ãn are its Ãn,p′ -blocks. Note that, by definition, we have S̃n,p′ ⊂ CS̃n

and Ãn,p′ ⊂ CÃn
.

Lemma 4.16. The p-blocks and CS̃n
-blocks of spin characters of S̃n coincide, and

the p-blocks and CÃn
-blocks of spin characters of Ãn coincide.

Proof. Let χ and ξ be a non-spin and a spin character of S̃n, respectively. Since
χ is constant on the split classes, we deduce that ⟨χ, ξ ⟩C

S̃n
= 0. Thus, spin and

non-spin characters are never in the same CS̃n
-block.

Now, take any two spin characters ξ and ξ′ of S̃n, such that ξ′ ̸∈ {ξ, εξ}. Then
the only elements of CS̃n

\ S̃n,p′ , if any, on which ξ doesn’t vanish belong to
split conjugacy classes labeled by the partition labeling ξ (this is because any split
conjugacy class of CS̃n

labeled by a partition of On, and thus without even cycles,
must also belong to S̃n,p′). And since ξ′ ̸∈ {ξ, εξ}, we see that ξ′ vanishes on these
elements. In this case, we therefore have

(61) ⟨ξ, ξ′⟩C
S̃n

= ⟨ξ, ξ′⟩S̃n,p′
= ⟨εξ, ξ′⟩S̃n,p′

= ⟨εξ, ξ′⟩C
S̃n
.

Assume that ξ′ /∈ {ξ, εξ} lies in the same p-block as ξ. Then there are distinct spin
irreducible characters ξ′ = ξ1, . . . , ξs = ξ such that ξi ̸= ξ for 1 ≤ i ≤ s − 1 and
⟨ξi, ξi+1⟩S̃n,p′

̸= 0. We can assume that ξi ̸= εξ for all 1 ≤ i ≤ s. Indeed, let 2 ≤
i ≤ s be such that ξi = εξ. Since ⟨ξi−1, ξi⟩S̃n,p′

= ⟨ξi−1, εξ⟩S̃n,p′
= ⟨ξi−1, ξ⟩S̃n,p′

by Equation (61), we can take s = i. We also can assume that ξi+1 ̸= εξi for all
1 ≤ i ≤ s − 1. Otherwise, if there is 1 ≤ i ≤ s − 1 such that ξi+1 = εξi, then
i < s − 1, and since ξi+2 /∈ {ξi, ξi+1} = {ξi, εξi}, we deduce from Equation (61)
that ⟨ξi+1, ξi+2⟩S̃n,p′

= ⟨ξi, ξi+2⟩S̃n,p′
and we can remove ξi+1 from the chain.

Hence, Equation (61) gives ⟨ξi, ξi+1⟩S̃n,p′
= ⟨ξi, ξi+1⟩C

S̃n
for all 1 ≤ i ≤ s − 1,

and the characters ξ′ and ξ lie in the same CS̃n
-block.

By a similar argument, Equation (61) implies that if ξ′ /∈ {ξ, εξ} lies in the same
CS̃n

-block as ξ, then they are in the same p-block.
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Furthermore, if ξ ̸= εξ, then either ξ and εξ belong to the same p-block, or each
is alone in its respective p-blocks. In the first case, the p-block which contains ξ
and εξ also contains some spin character ξ′ such that ξ′ = εξ′ (this follows from [21,
(2.1)]). In particular, in the p-block of ξ, there is some irreducible ξ′′ /∈ {ξ, εξ} such
that ⟨ξ′′, ξ⟩S̃n,p′

̸= 0. Thus, by Equation (61), we obtain ⟨ξ′′, ξ⟩C
S̃n

= ⟨ξ′′, ξ⟩S̃n,p′
=

⟨ξ′′, εξ⟩C
S̃n

, and ξ and εξ belong to the same CS̃n
-block.

In the second case, ξ and εξ have p-defect zero. In particular, ξ and εξ are
labeled by a p-core λ ∈ D−

n , and λ is p-regular. Hence they both vanish identically
on p-singular elements, so also on CS̃n

\ S̃n,p′ , and they are each alone in their
respective CS̃n

-blocks as well. The result follows.
For the case of Ãn, the argument is similar. □

We can now define on S̃n and Ãn an MN-structure with respect to the set of
spin p-blocks of S̃n and Ãn, and the sets CS̃n

and CÃn
defined in Equation (60),

respectively. For this, we define SSn to be the set of elements σ ∈ Sn all of whose
cycles have length 1 or an odd multiple of p. By Lemma 4.9, we denote by oσ the
element of S̃n of odd order such that θ(oσ) = σ, and we let

(62) SS̃n
= {oσ |σ ∈ SSn} and SÃn

= SS̃n
∩ Ãn.

Note that, since p is odd, and since we only consider odd multiples of p, we have
SÃn

= SS̃n
∩ Ãn = SS̃n

.

Proposition 4.17. Let n > 0 be any integer, and p be an odd prime. Let Sp(S̃n)

and Sp(Ãn) be the sets of spin p-blocks of S̃n and Ãn respectively. Then S̃n has
an MN-structure (as defined in Definition 2.5) with respect to CS̃n

and Sp(S̃n),
and Ãn has an MN-structure with respect to CÃn

and Sp(Ãn).

Proof. First note that, by Lemma 4.16, Sp(S̃n) and Sp(Ãn) are indeed unions of
CS̃n

-blocks and CÃn
-blocks respectively.

To stick with the notation of Definition 2.5, we take G ∈ {S̃n, Ãn}, B = Sp(G),
C = CG and S = SG (as defined above). Properties 1 and 2 of Definition 2.5 are
immediate consequences of the definition of S and C. For xS ∈ S and xC ∈ C,
we have (xS , xC) ∈ A if and only if the non-trivial cycles of θ(xS) and θ(xC) are
disjoint (in particular, xS and xC commute).

Now take any xS ∈ S. If xS = 1, then G1 = G, B1 = B and r1 = id clearly
satisfy Properties 3 and 4. If, on the other hand, xS ̸= 1, then, by definition of S,
we have xS = oσ for some σ ∈ SSn . Write σ = σ1 · · ·σk, where, for each 1 ≤ i ≤ k,
σi is a qi-cycle for some odd multiple qi of p, and the σi’s are pairwise disjoint.
In particular, σi ∈ SSn and, since σi ∈ An, [26, III, p. 172] gives oσ = oσ1 · · · oσk

,
and CG(xS) has as a subgroup the group H = GxS

× ⟨oσ1⟩ × · · · × ⟨oσk
⟩, where

GxS
∼= S̃n−

∑k
i=1 qi

if G = S̃n, and GxS
∼= Ãn−

∑k
i=1 qi

if G = Ãn (and with the

convention that S̃0 = Ã0 = ⟨z⟩).
Property 3 now follows from the definition of A we gave above. Clearly, if

xC ∈ GxS
∩ C, then the non-trivial cycles of θ(xC) and θ(xS) are disjoint, so that

(xS , xC) ∈ A. Conversely, if (xS , xC) ∈ A, then one must have xC ∈ CG(xS). If
xC ∈ CG(xS) \H, then θ(xC) must permute (non-trivially) the (p)-cycles of θ(xS);
in particular, the non-trivial cycles of θ(xC) and θ(xS) cannot be disjoint, so that
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(xS , xC) ̸∈ A. Hence, if (xS , xC) ∈ A, then necessarily xC ∈ H. Now, in order for
xC to be disjoint from xS , we see that one must have xC ∈ GxS . This proves that
GxS

∩ C = {xC ∈ C | (xS , xC) ∈ A}.
Finally, we obtain Property 4 by iterating Theorem 4.10 and Theorem 4.14. By

considering (and removing) the “cycles” oσi (1 ≤ i ≤ k) one at a time, and in
increasing order of size, one sees that we can define rxS (χ) for any spin character
χ ∈ B. By construction, rxS (χ) does satisfy rxS (χ)(xC) = χ(xS · xC) for all
(xS , xC) ∈ A. Taking BxS to be the set of spin characters of GxS , and extending
rxS by linearity to C Irr(B), we obtain the result. □

4.6. Broué perfect isometries. Throughout this section, we denote by p an odd
prime number.

Let n, q and λ be as in Theorem 4.10. Suppose furthermore that q is an odd
multiple of p, and that wp̄(λ) > 0. Next consider any spin p-block B′, of S̃m say, of
the same weight and sign as the p-block B of ξ+λ , and the bijection Ψ described in
Lemma 4.8. In particular, Ψ preserves the parity of bar partitions. Now, since q is
a multiple of p, the removal of a q-bar can be obtained by removing a sequence of
p-bars, and one sees from Theorem 4.5 that Mq(Ψ(λ)) = Ψ(Mq(λ)). This is a slight
abuse of notation, as Ψ should only act on partitions of the same weight as λ, while
the elements of Mq(λ) have a smaller weight. But we see that Ψ is compatible with
the bijections gλ and gΨ(λ) given by Theorem 4.5, since everything goes through
the (common) p̄-quotient of λ and Ψ(λ). Also, thanks to Equation (52) one has
σ(Ψ(µ)) = σ(µ) for any µ ∈Mq(λ). We then have the following:

Proposition 4.18. Let the notation be as above. For any µ ∈Mq(λ), and for any
ϵ, η ∈ {1, −1}, we have

δp̄(λ)δp̄(µ)a(ξ
ϵδp̄(λ)
λ , ξηδp̄(µ)µ ) = δp̄(Ψ(λ))δp̄(Ψ(µ))a(ξ

ϵδp̄(Ψ(λ))

Ψ(λ) , ξ
ηδp̄(Ψ(µ))

Ψ(µ) ).

Proof. Let µ ∈ Mq(λ) be obtained by removing the q-bar b from λ. Then, by
definition of Ψ, we see, using Theorem 4.5, that Ψ(µ) ∈ Mq(Ψ(λ)) is obtained by
removing the q-bar Ψ(b) from Ψ(λ).

We start by comparing αλµ and αΨ(λ)
Ψ(µ). By definition, we have

(63) αλµ = (−1)L(b)2m(b) and α
Ψ(λ)
Ψ(µ) = (−1)L(Ψ(b))2m(Ψ(b)),

where

(64) m(b) =

{
1 if σ(λ) = 1 and σ(µ) = −1,
0 otherwise.

and

(65) m(Ψ(b)) =

{
1 if σ(Ψ(λ)) = 1 and σ(Ψ(µ)) = −1,
0 otherwise.

And, since Ψ preserves the parity of partitions, we see that m(b) = m(Ψ(b)).
Now L(b) is related to L(gλ(b)), where gλ is the bijection described in Theo-
rem 4.5. Similarly, L(Ψ(b)) is related to L(gΨ(λ)(Ψ(b))), but, as we remarked
above, gΨ(λ)(Ψ(b)) = gλ(b). We have, by Theorem 4.6(iii), applied to the (p)-bar b,

(66) (−1)L(b) = (−1)L(gλ(b))δp̄(λ, µ) = (−1)L(gλ(b))δp̄(λ)δp̄(µ)
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and similarly

(67) (−1)L(Ψ(b)) = (−1)L(gλ(b))δp̄(Ψ(λ))δp̄(Ψ(µ)),

whence

(68) δp̄(λ)δp̄(µ)(−1)L(b) = δp̄(Ψ(λ))δp̄(Ψ(µ))(−1)L(Ψ(b)).

If σ(µ) = 1, then ξ+µ = ξ−µ = ξµ and a(ξ+λ , ξµ) = a(ξ−λ , ξµ) = (−1)
q2−1

8 αλµ. We

also have σ(Ψ(µ)) = 1, so a(ξ+Ψ(λ), ξψ(µ)) = a(ξ−Ψ(λ), ξψ(µ)) = (−1)
q2−1

8 α
Ψ(λ)
Ψ(µ). Thus

Equation (68) immediately gives the result.
Suppose now that σ(µ) = −1. Then, by Remark 4.11, we have a(ξ−λ , ξ

+
µ ) =

a(ξ+λ , ξ
−
µ ) and a(ξ−λ , ξ

−
µ ) = a(ξ+λ , ξ

+
µ ). We need to distinguish between the cases

µ = λ \ {q} and µ ̸= λ \ {q}. If µ = λ \ {q}, this means b is a part of length q in λ.
Then, in Theorem 4.5, g(b) must be a part of length q/p in the first (bar) partition
of λ(q̄) (see [22, Theorem (4.3)]), and Ψ(b) is then a part of length q in Ψ(λ). We
thus have µ = λ \ {q} if and only if Ψ(µ) = Ψ(λ) \ {q}.

Suppose first that that µ ̸= λ\{q}, so that Ψ(µ) ̸= Ψ(λ)\{q}. Then, by Theorem
4.10 and Remark 4.11,

a(ξ+λ , ξ
+
µ ) = a(ξ+λ , ξ

−
µ ) = a(ξ−λ , ξ

+
µ ) = a(ξ−λ , ξ

−
µ ) =

1

2
(−1)

q2−1
8 αλµ

and

a(ξ+Ψ(λ), ξ
+
ψ(µ)) = a(ξ+Ψ(λ), ξ

−
ψ(µ)) = a(ξ−Ψ(λ), ξ

+
ψ(µ)) = a(ξ−Ψ(λ), ξ

−
ψ(µ)) =

1

2
(−1)

q2−1
8 α

Ψ(λ)
Ψ(µ),

so that Equation (68) gives the result.
Suppose, finally, that (σ(µ) = σ(Ψ(µ)) = −1 and) µ = λ \ {q}, so that Ψ(µ) =

Ψ(λ) \ {q}. This is the only case which is not straightforward. By Theorem 4.10,
we have

a(ξ+λ , ξ
+
µ ) =

1

2
(−1)

q2−1
8 (αλµ+i

q−1
2
√
q) and a(ξ+λ , ξ

−
µ ) =

1

2
(−1)

q2−1
8 (αλµ−i

q−1
2
√
q)

(and similar expressions for a(ξ+Ψ(λ), ξ
+
ψ(µ)) and a(ξ+Ψ(λ), ξ

−
ψ(µ))). Since, by Remark

4.11, a(ξ−λ , ξ
+
µ ) = a(ξ+λ , ξ

−
µ ) and a(ξ−λ , ξ

−
µ ) = a(ξ+λ , ξ

+
µ ), we deduce that, for any

ϵ ∈ {1, −1},

a(ξ
ϵδp̄(λ)
λ , ξδp̄(µ)µ ) =

1

2
(−1)

q2−1
8 (αλµ + ϵδp̄(λ)δp̄(µ)i

q−1
2
√
q)

(and a similar expression for a(ξϵδp̄(Ψ(λ))

Ψ(λ) , ξ
δp̄(Ψ(µ))

ψ(µ) )). Multiplying by δp̄(λ)δp̄(µ), we
obtain, using Equation (68),

δp̄(λ)δp̄(µ)a(ξ
ϵδp̄(λ)
λ , ξ

δp̄(µ)
µ ) = 1

2 (−1)
q2−1

8

(
δp̄(λ)δp̄(µ)α

λ
µ + ϵi

q−1
2
√
q
)

= 1
2 (−1)

q2−1
8

(
δp̄(Ψ(λ))δp̄(Ψ(µ))α

Ψ(λ)
Ψ(µ) + ϵi

q−1
2
√
q
)

= δp̄(Ψ(λ))δp̄(Ψ(µ))
1

2
(−1)

q2−1
8

(
α
Ψ(λ)
Ψ(µ) + ϵδp̄(Ψ(λ))δp̄(Ψ(µ))i

q−1
2
√
q
)
,

whence

δp̄(λ)δp̄(µ)a
(
ξ
ϵδp̄(λ)
λ , ξδp̄(µ)µ

)
= δp̄(Ψ(λ))δp̄(Ψ(µ))a

(
ξ
ϵδp̄(Ψ(λ))

Ψ(λ) , ξ
δp̄(Ψ(µ))

ψ(µ)

)
.
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Using Remark 4.11, this implies the last equality we have to prove:

δp̄(λ)δp̄(µ)a
(
ξ
ϵδp̄(λ)
λ , ξ

−δp̄(µ)
µ

)
= δp̄(λ)δp̄(µ)a

(
ξ
−ϵδp̄(λ)
λ , ξ

δp̄(µ)
µ

)
= δp̄(Ψ(λ))δp̄(Ψ(µ))a

(
ξ
−ϵδp̄(Ψ(λ))

Ψ(λ) , ξ
δp̄(Ψ(µ))

ψ(µ)

)
= δp̄(Ψ(λ))δp̄(Ψ(µ))a

(
ξ
ϵδp̄(Ψ(λ))

Ψ(λ) , ξ
−δp̄(Ψ(µ))

ψ(µ)

)
.

□

Now we consider p̄-cores γ and γ′, and a positive integer w. Let B and B′ be the
spin blocks of S̃n and S̃m of weight w and p̄-core γ and γ′ respectively, and let B∗

and B′∗ be the corresponding spin blocks of Ãn and Ãm. Suppose furthermore that
σ(γ) = −σ(γ′), so that, with the notation of Lemma 4.8(ii), Ψ is a sign inversing
bijection, and Ψ̃ gives a bijection between B and B′∗.

Proposition 4.19. Let the notation be as above, and assume m− q ≥ 2. For any
λ ∈ Dn with p̄-core γ and µ ∈Mq(λ), and for any η, ϵ ∈ {1, −1}, we have

δp̄(λ)δp̄(µ)a(ξ
ηδp̄(λ)
λ , ξϵδp̄(µ)µ ) = δp̄(Ψ(λ))δp̄(Ψ(µ))a(ζ

ηδp̄(Ψ(λ))

Ψ(λ) , ζ
ϵδp̄(Ψ(µ))

Ψ(µ) ).

Proof. First, assume that λ ∈ D+
n . Then by Lemma 4.8(ii), Ψ(λ) ∈ D−

m. Further-
more, by Theorem 4.10, for any µ ∈Mq(λ), we have a(ξλ, ξµ) = (−1)

q2−1
8 αλµ when-

ever σ(µ) = 1, and a(ξλ, ξ+µ ) = a(ξλ, ξ
−
µ ) =

1
2 (−1)

q2−1
8 αλµ whenever σ(µ) = −1.

As previously, we see that Ψ is compatible with the bijections gλ and gΨ(λ) given
by Theorem [22, Theorem (4.3)], whence it gives a sign inversing bijection between
Mq(Ψ(λ)) and Mq(λ). If µ ∈ Mq(λ) is obtained by removing the q-bar b from λ,
then Ψ(µ) ∈Mq(Ψ(λ)) is obtained by removing the q-bar Ψ(b) from Ψ(λ), so that
we want to compare αλµ and αΨ(λ)

Ψ(µ). For this, we use Equations (63), (64) and (65).

Since Ψ(λ) ∈ D−
m, we see that m(Ψ(b)) is always 0, so that αΨ(λ)

Ψ(µ) = (−1)L(Ψ(b)).
And, since λ ∈ D+

n , we see that m(b) = 1 and αλµ = (−1)L(b)2 whenever σ(µ) = −1,
while m(b) = 0 and αλµ = (−1)L(b) whenever σ(µ) = 1.

As in the proof of Proposition 4.18, L(b) is related to L(gλ(b)), and L(Ψ(b)) to
L(gΨ(λ)(Ψ(b))), and gΨ(λ)(Ψ(b)) = gλ(b). Thus, using Equations (66) and (67), we
see that Equation (68) holds. If σ(µ) = 1, then σ(Ψ(µ)) = −1, and we obtain

δp̄(λ)δp̄(µ)a(ξλ, ξµ) = (−1)
q2−1

8 δp̄(λ)δp̄(µ)α
λ
µ

= (−1)
q2−1

8 δp̄(λ)δp̄(µ)(−1)L(b)

= (−1)
q2−1

8 δp̄(Ψ(λ))δp̄(Ψ(µ))(−1)L(Ψ(b))

= (−1)
q2−1

8 δp̄(Ψ(λ))δp̄(Ψ(µ))α
Ψ(λ)
Ψ(µ)

= δp̄(Ψ(λ))δp̄(Ψ(µ))a(ζΨ(λ), ζΨ(µ)).

If, on the other hand, σ(µ) = −1, then σ(Ψ(µ)) = 1, and we obtain

δp̄(λ)δp̄(µ)a(ξλ, ξ
±
µ ) = (−1)

q2−1
8 δp̄(λ)δp̄(µ)

1
2α

λ
µ

= (−1)
q2−1

8 δp̄(λ)δp̄(µ)
1
22(−1)L(b)

= (−1)
q2−1

8 δp̄(Ψ(λ))δp̄(Ψ(µ))(−1)L(Ψ(b))

= (−1)
q2−1

8 δp̄(Ψ(λ))δp̄(Ψ(µ))α
Ψ(λ)
Ψ(µ)

= δp̄(Ψ(λ))δp̄(Ψ(µ)a(ζΨ(λ), ζ
±
Ψ(µ)).
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Assume now that λ ∈ D−
n . Then Ψ(λ) ∈ D+

m. Note that λ has a part of length
q, if and only if Ψ(λ) has one. If this is the case, then σ(λ \ {q}) = −1 and
{µ ∈ Mq(λ) |σ(µ) = −1} = {λ \ {q}}. Otherwise, {µ ∈ Mq(λ) |σ(µ) = −1} is

empty. By Theorem 4.10, we have a(ξ+λ , ξµ) = (−1)
q2−1

8 αλµ whenever σ(µ) = 1, and

a(ξ+λ , ξ
+
µ ) =

1

2
(−1)

q2−1
8 (αλµ+i

q−1
2
√
q) and a(ξ+λ , ξ

−
µ ) =

1

2
(−1)

q2−1
8 (αλµ−i

q−1
2
√
q),

whenever σ(µ) = −1 (and µ = λ \ {q}).
Furthermore, if σ(µ) = 1, then a(ξ−λ , ξµ) = a(ξ+λ , ξµ), and, if σ(µ) = −1, then

a(ξ−λ , ξ
+
µ ) = a(ξ+λ , ξ

−
µ ) and a(ξ−λ , ξ

−
µ ) = a(ξ+λ , ξ

+
µ ).

As in the previous case, Ψ gives a sign inversing bijection between Mq(λ) and
Mq(Ψ(λ)). If µ ∈ Mq(λ) is obtained by removing the q-bar b from λ, then Ψ(µ) ∈
Mq(Ψ(λ)) is obtained by removing the q-bar Ψ(b) from Ψ(λ). Note that σ(λ) = −1
and σ(Ψ(λ)) = 1, and for µ ∈ Mq(λ), we have σ(µ) = −σ(Ψ(µ)). In particular,
Equations (64) and (65) give m(b) = 0, and m(Ψ(b)) = 1 whenever σ(µ) = 1, and
m(Ψ(b)) = 0 otherwise.

If σ(µ) = 1, then m(Ψ(b)) = 1 and σ(Ψ(µ)) = −1. Thus Theorem 4.10, Theo-
rem 4.14, and Equations (63) and (68) give the result.

If σ(µ) = −1, then m(Ψ(b)) = 0 and σ(Ψ(µ)) = 1. Thus, using Theorem 4.10,
Theorem 4.14 and Equation (68), we conclude with a computation similar to that
at the end of the proof of Proposition 4.18. □
Remark 4.20. Note that, with the notation of Remark 4.15 (in particular we have
m ≤ q + 1 and Ψ(µ) ∈ {∅, (1)}), if Ψ(λ) ̸= π and if we set ζ+Ψ(µ) = ζ−Ψ(µ) = ε, then
Proposition 4.19 still holds.

We now can state the main result of this section. Let γ and γ′ be two p-cores, and
w be a positive integer. Write Eγ,w, Eγ′,w and Ψ : Eγ,w → Eγ′,w as in Lemma 4.8,
and set n = |γ|+pw and m = |γ′|+pw. If σ(γ) = σ(γ′), then Bγ,w and Bγ′,w denote
the p-blocks of p̄-weight w of G = S̃n and G′ = S̃m corresponding to γ and γ′

respectively. If σ(γ) = −σ(γ′), then Bγ,w and Bγ′,w denote the p-blocks of p̄-weight
w of G = Ãn and G′ = S̃m respectively. We write Irr(Bγ) = {Xϵ

λ |λ ∈ Eγ,w, ϵ ∈
{−1, 1}} and Irr(Bγ′) = {Y ϵλ |λ ∈ Eγ′,w, ϵ ∈ {−1, 1}}, with the convention that,
when Xλ or Yλ are self-associate, we set X+

λ = X−
λ = Xλ and Y +

λ = Y −
λ = Yλ.

Theorem 4.21. Let p be an odd prime. We keep the notation as above. Then the
isometry I : C Irr(Bγ,w) → C Irr(Bγ′,w) defined by

(69) I
(
X
ϵδp̄(λ)
λ

)
= δp̄(λ)δp̄(Ψ(λ))Y

ϵδp̄(Ψ(λ))

Ψ(λ) ,

where λ ∈ Eγ,w and ϵ ∈ {−1, 1}, is a Broué perfect isometry.

Proof. Consider the map Î corresponding to I as in Equation (6). We will prove
that Î satisfies Properties (i) and (ii) of a Broué isometry.

First, we use the MN-structures introduced in Proposition 4.17 for (CG, Bγ,w)
and (CG′ , Bγ′,w)). Let SG and SG′ be as in Equation (62). Write Ω for the set
of partitions π of i ≤ n such that p divides each part of π. Note that π ∈ Ω

parametrizes one or twoG-classes of elements of SG (always one class whenG = S̃n,
and two classes when G = Ãn and π ∈ On ∩ Dn). In the case where π labels two
classes, we denote the two parameters by π±. Let Λ be the set of parameters
obtained in this way. Then Λ labels the set of G-classes of SG. We will now define
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a precise set of representatives for these classes. Let π = (π1, . . . , πk) ∈ Ω. Note
that π and (π1), . . . , (πk) can all be viewed as labels of conjugacy classes of SSn

(by completing the partitions with parts of length 1).
In particular, the element sπ = sπ1 · · · sπk

defined before Equation (41) is a
representative for the class of SSn labeled by π, and sπ ∈ S|π|. For all 1 ≤ i ≤ k,
denote by oπi the element of odd order such that θ(oπi) = sπi (see Lemma 4.9)
and write oπ = oπ1 · · · oπk

. Furthermore, for π ∈ On ∩ Dn, we assume that the
representatives of the two An-classes labeled by π are sπ± = sπ±

1
· · · sπk−1

sπk
as

in the proof of Theorem 3.9. If o±π1
denotes the elements of odd order satisfying

θ(o±π1
) = sπ±

1
(see Lemma 4.9), then we set oπ± := o±π1

· · · oπk−1
oπk

. Therefore, if

G = S̃n, then the set of oπ for π ∈ Ω is a set of representatives of the G-classes
of SG. If G = Ãn, then the elements oπ (for π ∈ Ω and π /∈ On ∩ Dn) and oπ±

(for π ∈ Ω ∩ On ∩ Dn) form a system of representatives of the Ãn-classes of SÃn
.

Moreover, for any π̂ ∈ Λ (with π̂ ∈ {π+, π−} if π ∈ On∩Dn and G = Ãn, and π̂ = π
otherwise), we write Gπ̂ = Goπ̂ and rπ̂ = roπ̂ , where Goπ̂ and roπ̂ : C Irr(Bγ,w) →
C Irr(B(Gπ)) are defined in Proposition 4.17 (here B(Gπ) is one p-block or two
p-blocks of Gπ).

Now, we define Ω0 = {π ∈ Ω |
∑
πi ≤ pw} and Λ0 the set of parameters π̂ ∈ Λ

such that π ∈ Ω0. Then Ω0 = Λ0 whenever G = S̃n or G = Ãn with n /∈
{pw, pw + 1}.

Similarly, we define Ω′, Λ′, Ω′
0 and Λ′

0 for G′ and SG′ . Since G′ = S̃m, we
have Λ′ = Ω′ and Λ′

0 = Ω′
0 = Ω0. We write o′π for the representatives of the

G′-classes of SG′ (as described above for G) and, for π ∈ Ω′, we define G′
π and

r′
π
: C Irr(Bγ′,w) → C Irr(B(G′

π)) as above.
Using Theorems 4.10 and 4.14, we show that for any π ∈ Ω\Ω0 or π ∈ Ω′\Ω′

0,
one has rπ̂ = 0 and r′π̂ = 0.

Now we suppose that Λ0 = Ω0. Let π ∈ Ω0. If |π| < pw, then B(Gπ) and
B(G′

π) are just one p-block of Gπ and G′
π, respectively. If |π| = pw, then B(Gπ)

and B(G′
π) are one p-block with defect zero whenever G = S̃n and σ(γ) = 1

or G = Ãn and σ(γ) = −1, or are the union of two p-blocks with defect zero
otherwise. We define (and denote by the same symbol to simplify the notation)
I : Irr(B(Gπ)) → Irr(B(G′

π)) by Equation (69).
We assume that Convention 4.2 holds and that moreover, if π = (π1, . . . , πk) ∈

Pn has an odd part divisible by p, then there is some r ≤ r′ ≤ k such that πj
is divisible by p for all r′ ≤ j, and every odd πj with j < r is prime to p. So,
we can use Theorem 4.10 and 4.14 iteratively (see also Remark 4.13). Therefore,
using Propositions 4.18 and 4.19, we show as in the proof of Theorem 3.9 (see
Equations (29), (30) and (31)), that

(70) I ◦ rπ = r′
π ◦ I.

Thus, Theorem 2.10 holds (see Remark 2.11).
Suppose, on the other hand, that Λ0 ̸= Ω0. Then G = Ãn, n ∈ {pw, pw+1}, and

G′ = S̃m. In particular, σ(γ) = 1. Let π = (π1, . . . , πl) ∈ Ω0. If π /∈ On ∩Dn, then
we are in the same situation as above, and Equation (70) holds. Suppose instead
that π ∈ On ∩ Dn. Then π labels two classes with representatives oπ+ and oπ− of
SG, and Gπ+ and Gπ− are two copies of Z2, whose only spin p-block has defect
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zero, and consists of the (only) non-trivial character. Denote by {ϵ+} and {ϵ−} the
spin p-blocks of Gπ+ and Gπ− , respectively.

Now, even though σ(γ) = 1, γ labels just one p-block of Gπ+ (and of Gπ−).
Since σ(γ′) = −σ(γ) = −1, it follows that γ′ labels two p-blocks with defect zero
of G′

π. In particular, Irr(B(G′
π)) is the union of the p-blocks {ξ+γ′} and {ξ−γ′}.

We then define Iπ : C{ϵ+} ⊕C{ϵ−} −→ Irr(B(G′
π)) by setting Iπ(ϵ+) = ξ+γ′ and

Iπ(ϵ−) = ξ−γ′ . Let η, δ ∈ {−1, 1} and λ ∈ Eγ,w. We have rπ
δ

(ζηλ) = a(ζηλ , ϵδ)ϵδ, and
iterating Theorem 4.14, we obtain

a(ζηλ , ϵδ) =
∑
i1,...,il

a(ζ
βi0

λi0
, ζ
βi1

λi1
)a(ζ

βi1

λi1
, ζ
βi2

λi2
) · · · a(ζ

βil−1

λil−1
, ζ
βil

λil
),

where λi0 = λ, βi0 = η, ζβil

λil
= ϵδ, βij ∈ {−1, 1} for all 1 ≤ j ≤ l − 1, and ζ

βj

λij
is

obtained from ζ
βj−1

λij−1
by removing a πj-bar from λij−1 for all 1 ≤ j ≤ l. Similarly,

we have r′π(ξη
′

Ψ(λ)) = a(ξη
′

Ψ(λ), ξ
+
γ′)ξ

+
γ′ + a(ξη

′

Ψ(λ), ξ
−
γ′)ξ

−
γ′ with

a(ξη
′

Ψ(λ), ξ
δ
γ′) =

∑
i1,...,il

a(ξ
β′
i0

Ψ(λi0 )
, ξ
β′
i1

Ψ(λi1 )
)a(ξ

β′
i1

Ψ(λi1 )
, ξ
β′
i2

Ψ(λi2 )
) · · · a(ξ

β′
il−1

Ψ(λil−1
), ξ

β′
il

Ψ(λil
)),

where β′
ij
= δp(λij )δp(Ψ(λij ))βij for all 0 ≤ j ≤ l − 1, η′ = β′

i0
, and β′

il
= δ.

Write f = (π1) if n = pw or f = (π1, 1) if n = pw + 1. Note that λil−1
is a

partition of |f|, and if λil−1
̸= f, then for 1 ≤ j ≤ l, Theorem 4.19 and Remark 4.20

give that

a

(
ξ
β′
ij−1

Ψ(λij−1)
, ξ
β′
ij

Ψ(λij
)

)
= δp(λij−1)δp(Ψ(λij−1))δp(λij )δp(Ψ(λij ))a

(
ζ
βij−1

λij−1
, ζ
βij

λij

)
,

and it follows that

(71) a(ζηλ , ϵδ) = δp(λ)δp(Ψ(λ))a(ξ
ηδp(λ))δp(Ψ(λ))

Ψ(λ) , ξδγ′).

In particular, one has

Iπ

(
(rπ

+

+ rπ
−
)(ζηλ)

)
= a(ζηλ , ϵ+)ξ

+
γ′ + a(ζηλ , ϵ−)ξ

−
γ′

= δp(λ)δp(Ψ(λ))r′
π
(
ξ
ηδp(λ)δp(Ψ(λ))

Ψ(λ)

)
= r′

π (
I(ζδλ)

)
.

(72)

Furthermore, Equation (59), Theorem 4.10 and a computation similar to that in
the proof of Proposition 4.19 give

a(ζ±f , ϵδ) = δp(f)δp(Ψ(f))a
(
ξ
±δp(f)δp(Ψ(f))

Ψ(f) , ξδγ′

)
.

So, if λil−1
= f, then Equation (71) and thus Equation (72) also hold. In summary,

we have proved that
Iπ ◦

(
rπ

+

+ rπ
−
)
= r′

π ◦ I.

Finally, by the argument of the proof of Theorem 3.9, we obtain for Î a decompo-
sition as in Equation (40).

We now prove that Î satisfies property (ii) of a Broué isometry. Assume that
x ∈ G is p-singular and x′ ∈ G′ is p-regular. If x /∈ CG, then Î(x, x′) = 0 (see the
proof of Corollary 2.17). Otherwise, x ∈ CG, and without loss of generality, we can
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assume that x = zktβ for some β ∈ Pn and k ∈ {0, 1}. Note that zktβ ∈ CG means
that β has at least one part of length divisible by 2p. In particular, β /∈ On. If
β /∈ D−

n (when G = S̃n) or β /∈ D+
n (when G = Ãn), then Propositions 4.1 and 4.3

imply that X±
λ (z

ktβ) = 0 for all λ ∈ Eγ,w, and I(x, x′) = 0 by Equation (11).
Hence, we can suppose that β ∈ D−

n if G = S̃n, or that β ∈ D+
n if G = Ãn.

Therefore, X±
λ (z

ktβ) ̸= 0 if and only if λ = β. Furthermore, if we write β(p) =

(β 0, . . . , β (p−1)/2) for the p-quotient of β, then the parts of β divisible by p are the
parts of p · β 0 (see [22, p. 27]). Hence, the definition of Ψ gives β(p) = Ψ(β)(p),
and Ψ(β) has non-trivial parts divisible by p. It follows that Y +

Ψ(λ)(x
′) = Y −

Ψ(λ)(x
′),

because x′ is p-regular. Using Equation (11), we obtain

Î(x, x′) =
(
X+
β (z

ktβ) +X−
β (z

ktβ)
)
Y +
Ψ(β)(x) = 0

by Equations (45) and (50). Note that we derive from Remark 2.12 and a similar
computation that, if x is p-regular and x′ is p-singular, then Î(x, x′) = 0.

Finally, we show that Î satisfies property (i) of a Broué isometry. Note that the
E have size 1 or 2, and all the assumptions of Theorem 2.20 are satisfied.

First, we consider the case G = S̃n. Take Φ ∈ Zb∨γ,w, where bγ,w is a Z-basis of
Z Irr(Bγ,w)

C
S̃n as in Remark 2.9. By Corollary 2.3 and Proposition 4.1, for x ∈ Ãn,

we have Φ(x) ̸= 0 only if x is p-regular. Thus, again by Corollary 2.3 (applied to Ãn

with respect to the set of p-regular elements), ResS̃n

Ãn
(Φ) is a projective character

of Ãn. Let x be a p-regular element of Ãn. In particular, x = xC
S̃n

. Since

Φ(x) = ResS̃n

Ãn
(Φ)(x), it follows that Φ(x) is the value of some projective character

of Ãn.
Let π ∈ Ω0 and ϕ ∈ Zbπ, where bπ is a Z-basis of Z Irr(Bπ)

C
S̃n

∩Gπ as in
Remark 2.9. Now, we apply the previous computations to Gπ, G′

π and Iπ. We
conclude that the condition (2) of Theorem 2.10 holds for Iπ. Hence, Remark 2.11
gives the condition (3) of Theorem 2.10 for Iπ and we deduce as in the proof of
Theorem 2.20 that Jπ(Zb∨π ) = Zb′∨π . Hence, J∗−1

π (Zbπ) ⊆ Zb′π. Since E have size 1

or 2 and p is odd, we have l′π(J∗−1
π (ϕ))(x′) ∈ R for all x′ ∈ S̃m. We conclude with

the argument of the proof of Theorem 2.20 that Î(x, x′)/|CG(x)| ∈ R. Similarly,
because of Remark 2.12, if x′ ∈ Ãm, then Î(x, x′)/|CG′(x′)| ∈ R.

Assume now that x /∈ Ãn. By Equation (11) and Proposition 4.1, Î(x, x′) ̸= 0
only if x = zutβ and x′ = zvt′Ψ(β) with β ∈ D−

n and u, v ∈ {0, 1}. In this case,
Equation (44) gives

(73) Î(zutβ , z
vt′β′) = ±i

n+m−ℓ(β)−ℓ(β′)−2
2

√
β1 · · ·βkβ′

1 · · ·β′
k′ ,

where β = (β1, . . . , βk) and Ψ(β) = (β′
1, . . . , β

′
k′). However, we derive from the

proof of [22, Theorem 4.3] that νp(β1 · · ·βk)) = p|β
0|νp(prod(β

0)), where νp is the
p-valuation, β(p) = (β0, . . . , β(p−1)/2) is the p-quotient of β, and prod(β0) is the
product of the lengths of the parts of β0. Hence,

(74) νp(β1 · · ·βk)) = νp(β
′
1 · · ·β′

k′),
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Furthermore,

|CS̃n
(zutβ)| = 2

k∏
i=1

βi and |CS̃m
(zvt′β′)| = 2

k′∏
i=1

β′
i,

because β, β′ ∈ D−. By Equation (74), there are integers a and b prime to p such
that

∏
βi = νp(β1 · · ·βk)a and

∏
β′
i = νp(β1 · · ·βk)b. Therefore, Equation (73)

implies that
Î(zutβ , z

vt′β′)

|CS̃n
(tziβ)|

= ±i
n+m−ℓ(β)−ℓ(β′)−2

2

√
ab

2a
.

Since ±i
n+m−ℓ(β)−ℓ(β′)−2

2

√
ab ∈ R and 2a is prime to p, we deduce that

Î(zutβ , z
vt′β′)

|CS̃n
(zutβ)|

∈ R.

Similarly, we have
Î(zutβ ,z

vt′
β′ )

|C
S̃m

(zvtβ′ )| ∈ R.

Assume now that G = Ãn. Take Φ ∈ Zb∨γ,w, where bγ,w is a Z-basis of
Z Irr(Bγ,w)

CÃn as in Remark 2.9. By Corollary 2.3, there are integers aλ (for
λ ∈ Eγ,w with σ(λ) = −1) and a±λ (for λ ∈ Eγ,w with σ(λ) = 1) such that

(75) Φ =
∑

σ(λ)=−1

aλζλ +
∑

σ(λ)=1

(
a+λ ζ

+
λ + a−λ ζ

−
λ

)
,

and Clifford theory gives

(76) IndS̃n

Ãn
(Φ) =

∑
σ(λ)=−1

aλ
(
ξ+λ + ξ−λ

)
+
∑

σ(λ)=1

(a+λ + a−λ )ξλ.

Let x be a p-regular element of Ãn. Assume x = zktβ with β ∈ On and β /∈ D+
n .

In particular, one has x = xCÃn
, and for λ ∈ D+

n , we have

ξλ(x) = ζ+λ (x) + ζ−λ (x) = 2ζ+λ (x) = 2ζ−λ (x),

and it follows that

IndS̃n

Ãn
(Φ)(x) =

∑
σ(λ)=−1

aλ
(
ξ+λ (x) + ξ−λ (x)

)
+
∑

σ(λ)=1

(a+λ + a−λ )ξλ(x)

= 2

 ∑
σ(λ)=−1

aλζλ(x) +
∑

σ(λ)=1

(
a+λ ζ

+
λ (x) + a−λ ζ

−
λ (x)

)
= 2Φ(x).

By Equation (76), Proposition 4.1 and Corollary 2.3, IndS̃n

Ãn
(Φ) is a projective

character of S̃n and hence Ãn. Thus, 2Φ(x) is the value of a projective character
of Ãn, and we conclude as above, because 2 is not divisible by p.

Suppose now that x = zutβ with β ∈ On ∩ D+
n . By Lemma 4.9, we can assume

that x = zu
′
oβ for some non-negative integer u′. Write H for the centralizer of oβ±

in Ãn. Then H = ⟨ z ⟩ × ⟨ oβ±
1
⟩ × · · · × ⟨ oβk

⟩ contains no elements whose cycle

structure has even parts. In particular, ResÃn

H (Φ) is a projective character of H.
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Since x ∈ H, it follows that Φ(x) is the value of a projective character of H, and
we again conclude with the same argument as above.

Finally, it remains to show the property for β ∈ D+
n and β /∈ On. However,

Î(zu
′
oβ , x

′) ̸= 0 if and only if x′ = zvo′Ψ(β) for some non-negative integer v. In
particular, if β′ := Ψ(β) ∈ D−

m, then

Î(zu
′
oβ , z

vo′β′) = ±
√
2i

n+m−k−k′−1
2

√
β1 · · ·βk β′

1 · · ·β′
k′ ,

where β = (β1, . . . , βk) and β′ = (β′
1, . . . , β

′
k′). We conclude as above using Equa-

tion (74). □

Corollary 4.22. If p is an odd prime, if Bγ,w and Bγ′,w are p-blocks of Ãn and
Ãm respectively, and if σ(γ) = σ(γ′), then the isometry I defined by Equation (69)
is a Broué perfect isometry.

Proof. Let γ̃ be any p̄-core such that σ(γ̃) = −σ(γ). Denote by Bγ̃,w the p-block
of S̃|γ̃|+pw corresponding to γ̃. Since σ(γ′) = −σ(γ̃), by Theorem 4.21, there are
Broué perfect isometries I1 : Irr(Bγ,w) → Irr(Bγ̃,w) and I2 : Irr(Bγ′,w) → Irr(Bγ̃,w),
defined by Equation (69). Furthermore, we have

I = I−1
2 ◦ I1,

which proves the result. □

5. Some other examples

5.1. Notation. For any positive integers k and l, we denote by MPk,l the set of
k-tuples of partitions (µ1, . . . , µk) such that

∑
|µi| = l.

Let H be a finite group and w be a positive integer. We consider the wreath
product G = H ≀Sw, that is, the semidirect product G = Hw ⋊Sw where Sw acts
on Hw by permutation. Write N = | Irr(H)| and Irr(H) = {ψi | 1 ≤ i ≤ N}, and
denote by gi (1 ≤ i ≤ N) a system of representatives for the conjugacy classes of
H.

The irreducible characters of G are parametrized by MPN,w as follows. For
µ = (µ1, . . . , µN ) ∈ MPN,w, consider the irreducible character ϕµ of Irr(Hw)
given by

(77) ϕµ =

N∏
i=1

ψi ⊗ . . .⊗ ψi︸ ︷︷ ︸
|µi| times

,

which, by [12, p.154], can be extended to an irreducible character ϕ̂µ =
∏N
i=1 ψ̂

|µi|
i

of its inertia subgroup IG(ϕµ) =
∏N
i=1H ≀ S|µi|. The irreducible character of G

corresponding to µ is then given by

θµ = IndGIG(ϕµ)

(
N∏
i=1

ψ̂
|µi|
i ⊗ χµi

)
,

where χµi denotes the irreducible character of S|µi| corresponding to the partition
µi of |µi|.

Let (h1, . . . , hw;σ) ∈ G with h1, . . . , hw ∈ H and σ ∈ Sw. For any k-cycle
κ = (j, κj, . . . , κk−1j) in σ, we define the cycle product

g((h1, . . . , hw;σ); κ) = hjhκ−1j · · ·hκ−(k−1)j .
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If σ has cycle structure π, then we form the N -tuple of partitions (π1, . . . , πN ) from
π, where any cycle κ in π gives a cycle of the same length in πi if g((h1, . . . , hw;σ); κ)
is conjugate to gi in H. The N -tuple

(78) s(h1, . . . , hw;σ) = (π1, . . . , πN ) ∈ MPN,w
describes the cycle structure of (h1, . . . , hw;σ), and two elements of G are conjugate
if and only if they have the same cycle structure (see [12, 4.2.8]). In particular, the
conjugacy classes of G are labeled by MPN,w.

5.2. Isometries between symmetric groups and natural subgroups. Let n
be a positive integer and p be a prime. We denote by Pn the set of partitions of n.
Write χλ for the irreducible character of the symmetric group Sn corresponding
to the partition λ ∈ Pn. Recall that to every λ ∈ Pn, we can associate its p-core
λ(p) and its p-quotient λ(p) = (λ1, . . . , λp) (see for example [22, p. 17]). Moreover,
two irreducible characters χλ and χµ lie in the same p-block if and only if λ and
µ have the same p-core. For Bγ the p-block of Sn corresponding to a fixed p-
core γ, we define the p-weight w of Bγ by setting w = (n − |γ|)/p. Then Irr(Bγ)
is parametrized by MPp,w. Now, we set Gp,w = (Zp ⋊ Zp−1) ≀ Sw. We recall
that Irr(Zp ⋊ Zp−1) = {ψ1, . . . , ψp} with the following convention. If p is odd
(respectively p = 2), then put p∗ = (p + 1)/2 (respectively p∗ = 2). Then we can
choose the labeling such that ψi(1) = 1 for i ̸= p∗ and ψp∗(1) = p − 1. Fix now η
and ω generators of Zp−1 and Zp respectively. Write gi = ηi for 1 ≤ i ≤ p− 1 and
gp = ω. Then the elements gi ∈ Zp ⋊ Zp−1 form a system of representatives for
the conjugacy classes of Zp⋊Zp−1. As explained in §5.1, the irreducible characters
and conjugacy classes of Gp,w are labeled by MPp,w. As above, for µ ∈ MPp,w,
we write θµ for the corresponding irreducible character of Gp,w.

Theorem 5.1. We keep the notation as above, and define the linear map I :
C Irr(Bγ) → C Irr(Gp,w) by

I(χλ) = (−1)|λp∗ |δp(λ)θλ̃(p) ,

where λ̃(p) is obtained from the p-quotient λ(p) of λ replacing λp∗ by its conjugate,
and δp(λ) is the p-sign of λ. Then I is a generalized perfect isometry with respect to
the p-regular elements of Sn and the set C ′ of elements of Gp,w with cycle structure
π = (π1, . . . , πp) satisfying πp = ∅.

Proof. Let S be the set of elements of Sn with cycle decomposition σ1 · · ·σr (where
we omit trivial cycles), such that σi is a qip-cycle for some positive integer qi, and
let C be the set of p-regular elements of Sn. The sets S and C are unions of
Sn-conjugacy classes, and 1 ∈ S. Moreover, τ1 · · · τk is the cycle decomposition of
τ ∈ C if and only if τi has p′-length. Hence the cycle decomposition with disjoint
support in Sn proves that (1), (2) and (3) of Definition 2.5 hold with GσS

= SJ

whenever σ = σSσC with σS ∈ S and σC ∈ C, and J is the support of σS . Denote
by Λ the set of classes consisting of elements of S and define

Γ0 =
∪
b≤w

Pb.

Write Λ0 for the classes of S parametrized by p · Γ0. For each β ∈ Γ0, we choose
a representative sβ ∈ S in the class of Λ0 labeled by p · β with support in {n −
p|β| + 1, . . . , n}. Then Gsβ = Sn−p|β| ⊆ CSn(sβ). Denote by Irr(Bγ(Sn−p|β|))
the set of irreducible characters of Sn−p|β| labeled by partitions with p-core γ, and
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define rβ : C Irr(Bγ) → C Irr(Bγ(Sn−p|β|)) by applying [12, 2.4.7] to the cycles of
p · β. Then Sn has an MN-structure with respect to C and Bγ in the sense of
Definition 2.5.

Now, write S′ (respectively C ′) for the set of elements ofGp,w with cycle structure
(π1, . . . , πp) ∈ MPp,b for some b ≤ w (respectively(π1, . . . , πp) ∈ MPp,w), such
that π1 = · · · = πp−1 = ∅ (respectively πp = ∅). In particular, the classes of S′

are also parametrized by Γ0. Let s′β ∈ S′ be with cycle structure (∅, . . . , ∅, β) for
β ∈ Γ0. Assume that the support of s′β is {w − |β| + 1, . . . , w}. Then Gp,w−|β|
lies in CGp,w(s), and we define r′β : C Irr(Gp,w) → C Irr(Gp,w−|β|) by applying [24,
Theorem 4.4] to the cycles of β. Then Gp,w has an MN-structure with respect to
C ′ and Irr(Gp,w).

Let q = pa. Define the set Ma(λ
(p)) of p-multipartitions of w− a obtained from

λ(p) by removing an a-hook. Recall that the canonical bijection f (defined in [19,
Proposition 3.1]) induces a bijection Mq(λ) →Ma(λ

(p)), µ 7→ µ(p). Write

θ̃λ(p) = (−1)|λp∗ |θλ̃(p) ,

and assume β = (β1). Then

(79) rβ
(
θ̃λ(p)

)
=

∑
µ∈Mp|β1|(λ)

α′λ
µ θ̃µ(p) ,

where α′λ
µ = (−1)L(f(c

λ
µ)). See the proof of [10, Proposition 3.8] for more details.

For multiples q1, . . . , qk of p, define inductively the set Mq1,...,qk(λ) of partitions µ
of n−

∑
qi such that µ ∈Mqk(ν) for some ν ∈Mq1,...,qk−1

(λ). Let β = (β1 ≥ · · · ≥
βk) ∈ Γ0. Applying recursively formula (79) to the cycles of β, we obtain

(80) rβ
(
θ̃λ(p)

)
=

∑
µ∈Mp|β1|,...,p|βk|(λ)

a′(λ, µ) θ̃µ(p) .

Similarly, the Murnaghan-Nakayama rule in Sn gives

(81) rβ (χλ) =
∑

µ∈Mp|β1|,...,p|βk|(λ)

a(λ, µ)χµ.

Now, with the above notation, Equation (26) gives αλµ = δp(λ)δp(µ)α
′λ
µ, and by the

same argument as in the proof of Theorem 3.9, we obtain

a(λ, µ) = δp(λ)δp(µ)a
′(λ, µ).

It follows that

rβ (I(χλ)) = δp(λ)
∑
µ

a′(λ, µ)θ̃µ(p) ,

=
∑
µ

δp(λ)δp(µ)a
′(λ, µ)δp(µ)θ̃µ(p) ,

=
∑
µ

a(λ, µ)I(χµ),

= I
(
rβ(χλ)

)
.

The result now follows from Corollary 2.17. □
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Corollary 5.2. Assume furthermore that p > w. Then the isometry defined in
Theorem 5.1 is a Broué isometry. In particular, Broué’s perfect isometry Conjec-
ture holds for symmetric groups.

Proof. We apply Theorem 2.20. □

5.3. Osima’s perfect isometry. Using Theorem 2.10, we also can prove the fol-
lowing well-known result (see [15, Proposition 5.11]).

Theorem 5.3. Let n be an integer and p ≤ n be a prime. Let B be a p-block of
Sn labeled by the p-core γ. Assume that B has weight w. Then the map defined by

I(χλ) = δp(λ)θλ(p)

between B and Irr(Zp ≀Sw) induces a generalized perfect isometry with respect to the
p-regular elements of Sn and the set of elements x ∈ Zp ≀Sw with cycle structure
g(x) satisfying g(x)1 = ∅ (here, the first coordinate of g(x) correspond to the trivial
class).

Proof. The proof is analogue to that of Theorem 5.1. □

5.4. Isometries between blocks of wreath products. In this section, we fix
a positive integer l and a prime number p such that p does not divide l, and
we consider the groups Gn = Zl ≀ Sn, where n is any positive integer. Write
Zl = {ζ1, ζ2, . . . , ζl} and Irr(Zl) = {ψ1, . . . , ψl}.

Following [23, Theorem 1], we recall that two irreducible characters θµ and θµ′

corresponding to µ = (µ1, . . . , µl) and µ′ = (µ′
1, . . . , µ

′
l) ofGn lie in the same p-block

B if and only if, for every 1 ≤ i ≤ l, the partitions µi and µ′
i have the same p-core

γi and same p-weight bi. The tuple b = (b1, . . . , bl) (respectively γ = (γ1, . . . , γl))
is called the p-weight of B (respectively the p-core of B). We denote by Eγ,b the
set of l-multipartitions µ = (µ1, . . . , µl) such that (µi)(p) = γi and the p-weight of
µi is bi.

Theorem 5.4. Let n and m be any two positive integer. As above, we write
Irr(Gn) = {θµ; µ ⊩ n} and Irr(Gm) = {θµ′ ; µ ⊩ m} for the sets of irreducible
characters of Gn and Gm. Let B and B′ be two p-blocks of Gn and Gm, with
p-cores γ = (γ1, . . . , γl) and γ′ = (γ′1, . . . , γ

′
l) respectively. Assume that B and B′

have the same p-weight b = (b1, . . . , bl). Define

I(θµ) =

(
l∏
i=1

δp(µi)δp(Ψ(µi))

)
θψ(µ),

where Ψ is the map defined before Lemma 3.7, ψ(µ) = (Ψ(µ1), . . . ,Ψ(µl)), and
δp(µi) is the p-sign of µi. Then I induces a Broué perfect isometry between B and
B′.

Proof. First, we notice that ψ(Eγ,b) = Eγ′,b. Let g = (g1, . . . , gn;σ) ∈ Gn. Write
σ = σSσC , where all the cycles of σS have length divisible by p, and σC is a p-
regular element. Define gS = (gS,1, . . . , gS,n;σS) (resp. gC = (gC,1, . . . , gC,n;σC))
by setting gS,i = gi (respectively gC,i = gi) if i lies in the support of σS (respectively
of σC) and gS,i = 1 (respectively gC,i = 1) otherwise. Since σS and σC have disjoint
supports, we have the unique decomposition

g = gSgC = gCgS .
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Denote by S (respectively C) the set of elements g = (t;σ) such that all the
cycles of σ have length divisible by p (respectively prime to p). Let Λ be the
set of l-multipartitions (π1, . . . , πl) such that πi ∈ pP and

∑
|πi| ≤ n. Let

π = (π1, . . . , πl) ∈ Λ. Denote by I the set of integers 1 ≤ i ≤ l with πi ̸= ∅.
For i ∈ I, write uij =

∑
k<i |πk| +

∑
r<j πi,r, where πi = (πi,1, . . . , πi,ℓ(πi)). Con-

sider now the πi,j-cycle

σij = (n− u+ uij + 1, . . . , n− u+ uij + πi,j),

where u =
∑

|πi|. For 1 ≤ k ≤ n, set tij,k = 1 for k ̸= n − u + uij + 1 and
tij,n−u+uij+1 = ζi. Write tij = (tij,1, · · · , tij,n;σij) and define

(82) tπ =
∏
i∈I

ℓ(πi)∏
j=1

tij .

Then by §5.1 and Equation (78), the elements tπ with π ∈ Λ form a set of repre-
sentatives of the Gn-classes of S. Write Gπ = Gn−

∑
|πi|. Note that the support of

π is {n−
∑

|πi|+ 1, . . . , n}, and Gπ ⊆ CGn(tπ).

Example 5.5. For example, assume that l = 3, n = 6, and p = 2. Write ζ1 = 1
and consider π = (∅, (2), (2)) ∈ Λ. Then one has u = 4, I = {2, 3}, u21 = 0,
u31 = 2. So σ21 = (3 4), σ31 = (5 6) and

t21 = (1, 1, ζ2, 1, 1, 1; (3 4)) and t31 = (1, 1, 1, 1, ζ3, 1; (5 6)) .

Finally, tπ = t21t31 = (1, 1, ζ2, 1, ζ3, 1; (3 4)(5 6)) is a representative for the class
of Z3 ≀S6 labeled by π.

Assume that π = (k) ∈ Λ (so that, in particular, k is divisible by p). Then, for
all x ∈ Gπ and µ ∈ Eγ,b, [24, Theorem 4.4] gives

(83) θµ(tπx) =
l∑

s=1

ψs(ζl)
∑

ν∈Mk(µs)

(−1)L(c
µs
ν )θµs

(x),

where the partitions in µs are the same as those in µ, except the s-th one which
is equal to ν. Applying iteratively this process to the cycles of π, we define a
linear map rπ : C Irr(B) → C Irr(Bn−

∑
|πi|), where Bn−∑

|πi| denotes the union of
p-blocks of Gn−∑

|πi| with p-core γ and p-weight (a1, . . . , al) such that 0 ≤ ai ≤ bi
and

∑
(bi − ai) =

∑
|πi|. In particular, we have rπ(θµ)(x) = θµ(tπx) for all

x ∈ Gn−
∑

|πi|. This defines an MN-structure for Gn with respect to C and B.
Similarly, we define an MN-structure for Gm with respect to B′ and the set of

p-regular elements of Gm. Now, write w =
∑
bk, and denote by Λ0 the set of π ∈ Λ

such that
∑

|πk| ≤ w. By [24, Theorem 4.4], we have rπ(θµ) = rπ(θΨ(µ)) = 0 for
every µ ∈ Eγ,b and π ∈ Λ\Λ0.
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Let π ∈ Λ0 and c be a part of πt of length k. Then, by [24, Theorem 4.4] (see
also Equation (83)), we have

rc(I(θµ)) =
l∏
i=1

δp(µi)δp(Ψ(µi))
l∑

s=1

ψs(ζt)
∑

ν∈Mk(µs)

(−1)
L
(
c
Ψ(µs)

Ψ(ν)

)
θψ(µs)

=
l∑

s=1

ψs(ζt)
∑

ν∈Mk(µs)

(−1)
L
(
c
Ψ(µs)

Ψ(ν)

)
δp(µs)δp(Ψ(µs))

· δp(ν)δp(Ψ(ν))I(θµs
)

=

l∑
s=1

ψs(ζt)
∑

ν∈Mk(µs)

(−1)L(c
µs
ν )I(θµs

)

= I
(
rc(θµs

)
)
.

(84)

Using the argument of the proof of Theorem 3.9 (see Equations (29), (30) and (31)),
we conclude that rπ(I(θµ)) = I(rπ(θµ)) for all π ∈ Λ0 and µ ∈ Eγ,b.

Hence, the hypotheses of Theorem 2.20 are satisfied, and the result holds. □
Corollary 5.6. Let W1 and W2 be Coxeter groups of type B. Assume that p is odd.
Then two p-blocks of W1 and W2 with the same p-weight are perfectly isometric (in
the sense of Broué).

Proof. This is a direct consequence of Theorem 5.4, noting that a Coxeter group of
type Bn is isomorphic to Z2 ≀Sn. □
5.5. Isometries between blocks of Weyl groups of type D. Let n be a positive
integer and let W be a Weyl group of type Bn. We keep the notation of §5.4. Let
p be an odd prime number. We consider the linear character α = θ(∅,(n)) ∈ Irr(W ),
and denote by W ′ its kernel. Then W ′ is a Weyl group of type Dn, and one has that
g ∈ W belongs to W ′ if and only if its cycle structure s(g) = (π1, π2) is such that
ℓ(π2) is even. Furthermore, theW -class of such an element splits into twoW ′-classes
if and only if π2 = ∅ and π1 has only parts of even length (i.e. if π1 = 2 ·π for some
partition π of n/2); see [4, Proposition 25]. We fix representatives t±(2·π,∅) for theW ′-
classes whose elements have cycle structure (2 · π, ∅) as follows. If π = (π1, . . . , πr)
then write ui =

∑
j<i π

j , σi = (ui + 1 · · ·ui + 2πi), and ti = ((1, . . . , 1);σi). In
particular, t1 ∈ B2π1 . Let ρ ∈ B2π1\D2π1 . Set t+1 = t1 and t−1 = ρt1ρ

−1. Then t+1
and t−1 are representatives for the two split classes of D2π1 labeled by ((2π1), ∅).
Now, define

(85) t±(2·π,∅) = t±1 t2 · · · tr.

Since ρ ∈ Bn\Dn, and ρ commutes with t2, . . . , tr (because for 2 ≤ i ≤ r, the
supports of ρ and of ti are disjoint), we deduce that t−(2·π,∅) = ρt−(2·π,∅)ρ

−1. Hence,
t±(2·π,∅) are representatives of the two split classes of Dn labeled by (2 · π, ∅).

For every 2-multipartition (µ1, µ2) of n, one has α⊗ θ(µ1,µ2) = θ(µ2,µ1). By Clif-
ford theory, if µ1 ̸= µ2, then χµ1,µ2

= ResWW ′(θµ1,µ2
) = ResWW ′(θµ2,µ1

) is irreducible.
If µ = µ1 = µ2, then ResWW ′(θµ,µ) splits into two irreducible characters χ+

µ,µ and
χ−
µ,µ of W ′, which we can label so that (see [24, Theorem 5.1])

(86) χϵµ,µ

(
tδ(2·π,∅)

)
=

1

2

(
θ(µ,µ)(t

δ
(2·π,∅)) + ϵδ2ℓ(π)χµ(π)

)
,
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where δ, ϵ ∈ {−1, 1} and χµ is the character of the symmetric group Sn/2 corre-
sponding to µ.

The p-blocks of W ′ can be described as follows. Let B(b1,b2)
γ1,γ2 be a p-block of W

labeled by the p-cores γ1 and γ2 and with p-weight (b1, b2); see §5.4. If (b1, b2) ̸=
(0, 0) or γ1 ̸= γ2, then B

(b1,b2)
γ1,γ2 contains characters that are not self-conjugate.

By [20, Theorem 9.2], B(b1,b2)
γ1,γ2 covers a unique p-block b(b1,b2)γ1,γ2 of W ′. Furthermore,

when γ1 ̸= γ2 or b1 ̸= b2, B
(b1,b2)
γ1,γ2 and B

(b2,b1)
γ2,γ1 contain no self-conjugate character,

and b(b1,b2)γ1,γ2 = b
(b2,b1)
γ2,γ1 consists of the restrictions to W ′ of the irreducible characters

lying in B(b1,b2)
γ1,γ2 and B(b2,b1)

γ2,γ1 . If (b1, b2) = (0, 0), then B(0,0)
γ1,γ2 = {θ(γ1,γ2)} has defect

zero. If γ := γ1 = γ2, then b+γ = {χ+
γ,γ} and b−γ = {χ−

γ,γ} are two distinct p-blocks
of W ′ with defect zero, except when n = 0. In this last case, W = W ′ = {1} and
θ(∅,∅) = χ+

(∅,∅) = χ−
(∅,∅) = 1{1}.

Theorem 5.7. Assume p is odd. Let W ′
1 and W ′

2 be Coxeter groups of type D. Let
b
(b,b)
γ,γ and b(b,b)γ′,γ′ be p-blocks of W ′

1 and W ′
2 with the same p-weight (b, b). Then the

isometry defined by

I(χµ1,µ2) =

(
2∏
i=1

δp(µi)δp(Ψ(µi))

)
χΨ(µ1),Ψ(µ2) and I(χϵµ,µ) = χ

ϵδp(µ)δp(Ψ(µ))

Ψ(µ),Ψ(µ) ,

where the notation is as above, is a Broué perfect isometry between b(b,b)γ,γ and b(b,b)γ′,γ′ .

Proof. Assume that W ′
1 and W ′

2 are of type Dn and Dm, respectively. We denote
by S and C the intersections of W ′

1 with the sets S and C defined in the proof
of Theorem 5.4, and we write Ω (respectively Ω0) for the set of bipartitions π =
(π1, π2) with π1, π2 ∈ pP and ℓ(π2) even, such that |π1| + |π2| ≤ n (respectively
|π1| + |π2| ≤ 2pb). Denote by Λ the W ′

1-classes of elements of S. Note that Ω is
the set of cycle type of the classes in Λ. Furthermore, we write Λ0 for the set of
classes in Λ whose cycle type belong to Ω0. When n ̸= 2pb, the set Ω0 labels Λ0.
Otherwise, there are in Ω0 elements π that parametrize two W ′

1-classes denoted
by π+ and π−. In this case, π = (2 · π, ∅) ∈ Ω0 for some partition π of n/2, and
we denote by t+π and t−π representatives for the split classes as in Equation (85).
The two corresponding classes are denoted by π+ and π−. So, when n = 2pb, the
elements of Λ0 are denoted by π̂ with π̂ = π when π ∈ Ω0 labels one class, and
π̂ ∈ {π+,π−} otherwise. We also will write tπ+ = t+π and tπ− = t−π . Finally, for
π ∈ Ω0, we define Gtπ̂ = Dn−|π1|−|π2|.

We then take tπ as in Equation (82) for a representative of the class of S labeled
by π ∈ Ω0 whenever π̂ = π.

Assume that n is even. For any partition µ of n/2, we write ∆µ = χ+
µ,µ − χ−

µ,µ.
Let 1 ≤ k < n, and t = ((1, . . . , 1);σ) ∈ Dn, where σ = (n − k + 1 · · ·n). We will
prove that

(87) ∆µ(tx) = 2
∑

ν∈Mk(µ)

(−1)L(c
µ
ν )∆ν(x),

for all x ∈ Dn−k. Note that tx lies in a split class of Dn if and only if x lies
in a split class of Dn−k. So, to prove Equation (87), we can assume that x lies
in a split class of Dn−k. Suppose that tx is Dn-conjugate by g ∈ Dn to ty with
y ∈ Dn−k (in particular, y lies in a split class of Dn−k). Then x and y have the
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same cycle type, so they are Bn−k-conjugate, say by g0 ∈ Bn−k. Furthermore, g0
and t commute (because their have disjoint supports). It follows that g0(tx) = ty,
and the set of elements that conjugate tx and ty is g0 CBn(tx). Furthermore, since
tx lies in a split class, one has CBn(tx) = CDn(tx). So, there is h ∈ CDn(tx) such
that g = g0h. This proves that g0 ∈ Dn−k. Hence x and y are Dn−k-conjugate,
and Equation (87) now follows from Equation (86).

Furthermore, assume that k = n. Then Equation (86) gives ∆µ(t
δ
(k)) = δ2χµ((k))

for δ ∈ {+,−}. If µ is not a hook, then Mk(µ) = ∅. Otherwise, Mk(µ) = {∅}. Set-
ting ∆∅ = 1, and using the Murnaghan-Nakayama rule for the symmetric group,
we obtain

(88) ∆µ(t
δ
σ) = 2

∑
ν∈Mk(µ)

(−1)L(c
µ
ν )∆ν(1).

For π ∈ Ω0, we define rπ̂(∆µ)(x) = ∆µ(tπ̂x) for all x ∈ Gtπ̂ . Applying iteratively
Equation (87) and Equation (88) to the parts of tπ̂, we obtain

(89) rπ̂(∆µ) = 2ℓ(π)
∑
ν

a(µ, ν)∆ν ,

where the coefficients are those appearing in Equation (81).
Now, for µ = (µ1, µ2) ∈ E(γ,γ),(b,b) with µ1 ̸= µ2, we define rπ̂(χµ1,µ2) to be

the restriction to W ′
1 of rπ(θ(µ1,µ2)), where rπ is the map defined in the proof of

Theorem 5.4. For µ = (µ, µ) ∈ E(γ,γ),(b,b), define

(90) rπ̂(χϵµ,µ) =
1

2

(
ResW1

W ′
1
(rπ(θ(µ,µ)) + ϵrπ̂(∆µ)

)
.

It is then straightforward to show that, if bγ,γ(n−|π1|−|π2|) denotes the union of the
p-blocks of Gn−|π1|−|π2| with p-core (γ, γ) and p-weights (b1, b2) such that 0 ≤ bi ≤ b

and b1+b2 = |π1|+ |π2|, then the map rπ̂ : C Irr(b
(b,b)
γ,γ ) → C Irr(bγ,γ(n−|π1|−|π2|))

defines an MN-structure for W ′
1 with respect to the set of p-regular elements and

b
(b,b)
γ,γ . Similarly, we define an MN-structure for W ′

2 with respect to the set of p-
regular elements of W ′

2 and b
(b,b)
γ′,γ′ . As we showed in the proof of Theorem 5.4, if

µ1 ̸= µ2 and I is defined on Irr(bγ,γ(n− |π1| − |π2|)) by the same formula, then we
have

(91) I
(
rπ̂(χµ1,µ2)

)
= rπ̂ (I(χµ1,µ2)) .

For any µ ̸= ∅ with p-core γ, one has

∆µ = δp(µ)δp(Ψ(µ))
(
χδp(µ)δp(Ψ(µ))
µ,µ − χ−δp(µ)δp(Ψ(µ))

µ,µ

)
.

In particular,

(92) I(∆µ) = δp(µ)δp(Ψ(µ))∆Ψ(µ).

Therefore, we deduce from the fact that I(θ(µ,µ)) = θΨ(µ),Ψ(µ) and Equations (90),
(89), (25) and (26) that

(93) I
(
rπ̂(χϵµ,µ)

)
= rπ̂

(
I(χϵµ,µ)

)
.

Assume first that |Λ0| = |Λ′
0|. Then Equations (91) and (93) hold and we derive

from Theorem 2.20 (see also the note in the proof of Theorem 3.9) that I is a Broué
perfect isometry.
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Assume, on the other hand, that |Λ0| > |Λ′
0|. In particular, n is divisible by

2p, γ = ∅, and Λ′
0 = Ω0. Let π ∈ Ω0 be such that π̂ = π. If we define Iπ on

Gtπ̂ in the same way as I, then by Equations (91) and (93), we have Iπ̂ ◦ rπ̂ =

rπ̂ ◦ I. Let now π = (2 · π, ∅) be such that 2|π| = n. Then π̂ ∈ {π+,π−}, and
Gt+π and Gt−π are two copies of the trivial group. We set Irr(Gt+π ) = {1π+} and
Irr(Gt−π ) = {1π−}. Furthermore, Irr(bγ′,γ′(m − n)) = {χ+

γ′,γ′ , χ
−
γ′,γ′}. We define

Iπ : C Irr(Gt+π ) ⊕ C Irr(Gt−π ) → C Irr(bγ′,γ′(m − n)) by setting Iπ(1πδ) = χδγ′,γ′ .
Note that

(94) rπ
δ

(χϵµ,µ) = χϵµ,µ(t
δ
π)1πδ =

1

2

(
θ(µ,µ)(t

δ
π) + ϵδ2ℓ(π)a(µ, γ)

)
1πδ .

Moreover, by Equation (89), one has

rπ
(
δp(µ)δp(Ψ(µ))∆Ψ(µ)

)
= 2ℓ(π)δp(µ)δp(Ψ(µ))a(Ψ(µ), γ′)∆γ′

= 2ℓ(π)a(µ, γ)∆γ′ ,

because δp(γ) = δp(γ
′) = 1. Write ϵµ = δp(µ)δp(Ψ(µ)), and note that rπ(θµ,µ) =

θµ,µ(π)1{1}, I(rπ(θµ,µ)) = rπ(θΨ(µ),Ψ(µ)), and rπ ◦ ResW2

W ′
2
= ResW2

W ′
2
◦rπ. So we

obtain

rπ(I(χϵµ,µ)) = rπ
(
χ
ϵµϵ

Ψ(µ),Ψ(µ)

)
=

1

2

(
ResW2

W ′
2
(rπ(θΨ(µ),Ψ(µ))) + ϵµϵr

π(∆Ψ(µ))
)

=
1

2

(
θ(µ,µ)(tπ) + ϵ2ℓ(π)a(µ, γ)

)
χ+
γ′,γ′

+
1

2

(
θ(µ,µ)(tπ)− ϵ2ℓ(π)a(µ, γ)

)
χ−
γ′,γ′

= χϵµ,µ(t
+
π )χ

+
γ′,γ′ + χϵµ,µ(t

−
π )χ

−
γ′,γ′

= Iπ

(
rπ

+

(χϵµ,µ) + rπ
−
(χϵµ,µ)

)
.

Now, assume that µ1 ̸= µ2. Note that rπ
±
(χµ1,µ2) = θµ1,µ2(π)1π± . Thus,

Iπ(r
π+

(χµ1,µ2) + rπ
−
(χµ1,µ2)) = θµ1,µ2(π)(χ

+
γ′,γ′ + χ−

γ′,γ′)

= θµ1,µ2(π)Res
W2

W ′
2
(θγ′,γ′)

= ResW2

W ′
2
(I(θµ1,µ2(π)1{1}))

= ResW2

W ′
2
(I(rπ(θµ1,µ2)))

= ResW2

W ′
2
(rπ(I(θµ1,µ2)))

= rπ(I(χµ1,µ2))).

Hence, we have
rπ ◦ I = Iπ ◦ (rπ

+

+ rπ
−
),

and we conclude as in the proof of Theorem 3.9. □

Theorem 5.8. Assume p is odd. Let W ′
1 and W ′

2 be Coxeter groups of type D.
Assume that γ1 ̸= γ2 and γ′1 ̸= γ′2, or (γ1, γ2) = (γ′1, γ

′
2) and b1 ̸= b2. If the p-blocks

b
(b1,b2)
γ1,γ2 and b(b1,b2)γ′

1,γ
′
2

have the same p-weight (b1, b2), then they are perfectly isometric
in the sense of Broué.
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Proof. The isometry is the restriction to Irr(b
(b1,b2)
γ1,γ2 ) of that of Corollary 5.6. □

5.6. Isometries between alternating groups and natural subgroups. It
would be interesting to give an analogue of Osima’s perfect isometry between p-
blocks of the alternating groups and the “alternating” subgroup of Zp ≀ Sw. But
such perfect isometries do not exist, as we can show in the following example.

Example 5.9. Consider the principal 3-block b of A6. It contains 6 irreducible
characters. Note that b is covered by the principal 3-block B of S6 (which has 3-
weight 2 and contains 9 irreducible characters). Let G = Z3 ≀ S2. Then G has 9
irreducible characters and by Theorem 5.3, B and G are perfectly isometric. Now,
viewing G as a subgroup of S6, we can restrict the sign character ε : S6 → {−1, 1}
to a linear character (also denoted by ε) of G, whose kernel is the base group
H = Z2

3 of G. Define the regular elements of H to be the elements with cycle
structure (π1, π2, π3) and π1 = ∅. These elements are the products of 2 disjoint 3-
cycles contained in H, when H is viewed as a subgroup of S6, and there are 4 such
elements. Now, a straightforward computation gives that ⟨resreg(χ), resreg(1H)⟩ ∈ {-
2/9, 1/9, 4/9} for any χ ∈ Irr(H). So, we conclude by Remark 2.13 that Irr(H)
forms a reg-block, and since Irr(H) has 9 elements, b and Irr(H) are not perfectly
isometric.

However, when we replace Zp ≀ Sw by Gp,w (see §5.2 for the notation), we can
show that the p-blocks of An are perfectly isometric with the “alternating” subgroup
of Gp,w. In a way, we prove in this section an analogue of Osima’s isometries for
the alternating groups.

Throughout, we keep the notation of §5.2, and view Gp,w as a subgroup of
Spw. Moreover, we assume that p is odd, so that, in particular, p∗ = (p + 1)/2.
Furthermore, we view H = Zp ⋊Zp−1 as the normalizer of some Sylow p-subgroup
of Sp, and denote by εH the restriction of the sign character εSp to H. Note that
only the irreducible character of degree p − 1 of H is εH -stable. So we choose the
labeling of Irr(H) = {ψ1, . . . , ψp} so that ψ1 = εH , ψp = 1H , and ψi = ψp+1−i⊗εH
for any 1 ≤ i ≤ p (in particular, ψp∗(1) = p − 1). Recall that Irr(Gp,w) is labeled
by MPp,w, and, with the above choices, for every µ = (µ1, . . . , µp) ∈ MPp,w, we
have (see [9, Proposition 4D])

(95) εθµ = θµ∗ ,

where ε again denotes the restriction of the sign character of Spw to Gw,p, and
µ∗ = (µ∗

p, . . . , µ
∗
1) is as in Equation (20). Define the “alternating” subgroup of Gp,w

by setting
Hp,w = ker(ε : Gp,w → {−1, 1}).

Consider the set of partitions E (respectively OD) all of whose parts have even
length (respectively whose parts are distinct and of odd length). We recall that
(see for example [9, Lemma 4E]) the set

(96) T = {(π1, . . . , πp) ∈ MPp,w |π2i = ∅, π2i+1 ∈ E , πp ∈ OD}

labels the set of splitting classes of Gw,p with respect to Hw,p. We will now give
representatives for these classes. Let π = (π1, . . . , πp) ∈ T . For 1 ≤ i ≤ p, write
πi = (πi,1, . . . , πi,ℓ(πi)), and assume that there is some integer 1 ≤ ri ≤ ℓ(πi) such
that πi,j is prime to p for all j < ri and πi,j is divisible by p for j ≥ ri. Let tπ be
the element of Gp,w obtained in the same way as in Equation (82). Let 1 ≤ i ≤ p
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be such that πi ̸= ∅. Then with the notation of Equation (82), ti1 ∈ Gp,K , where
K is the support of ti1 and Gp,K = (Zp ⋊ Zp−1) ≀SK . In particular, viewed as an
element of Gp,K , the cyclic structure of ti1 is (∅, . . . , ∅, (πi,1), ∅, . . . , ∅). Since π ∈ T ,
either i < p is odd and πi ∈ E , and so also (πi,1), or i = p and (πi,1) ∈ ODπi,1 .
Hence, ti1 lies in a split class of Gp,K . Let ρK ∈ Gp,K\Hp,K . Set t+i1 = ti1 and
t−i1 = ρKt

+
i1ρ

−1
K . Write m for the minimum integer such that πm ̸= ∅. Using the

notation of Equation (82), we define

(97) rπ =

∏
i ̸=m

ℓ(π)∏
j=1

tij

∏
j ̸=1

tmj and t±π = rπt
±
m1.

Since ρK /∈ Hp,w and the supports of ρK and rπ are disjoint, the elements t+π and
t−π are representatives for the two split classes of Hp,w labeled by π.

Write S for the set of µ ∈ MPp,w such that µ∗ = µ. Now, following [9], we
define an explicit bijection a : S → T as follows. Let µ = (µ1, . . . , µp) ∈ S. Then
µ∗
p+1−i = µi for all 1 ≤ i ≤ p. In particular, µp∗ = µ∗

p∗ . Write µi =
∏
j j
pij

for 1 ≤ i < p∗, and recall the definition of a(µ) := (π1, . . . , πp) ∈ T from [9] by
setting πp = a(µp∗), π2i−1 =

∏
j(2j)

pij , and π2i = ∅, where a is the map defined
in Equation (17). Then a is a bijection. Indeed, if for (π1, . . . , πp) ∈ T , we define
µ = (µ1, . . . , µp) by setting µp∗ = a−1(πp), µi =

∏
j j
pij for 1 ≤ i < p∗, where

π2i−1 =
∏
j(2j)

pij , and µi = µ∗
p+1−i for p∗ < i ≤ p, then the map (π1, . . . , πp) 7→

(µ1, . . . , µp) is the inverse map of a.

Lemma 5.10. The conjugacy class of Gp,w labeled by (∅, . . . , ∅, 1w−k, β) ∈ MPp,w
(for k ≤ w) lies in Hp,w if and only if β has an even number of even parts.

Proof. Because of [9, Equation (4.1)], for every (h1, . . . , hw;σ) ∈ Gp,w with hi ∈ H
and σ ∈ Sw, we have

(98) ε(h1, . . . , hw;σ) = ε(σ)

w∏
i=1

εH(hi).

Write β = (β1, . . . , βr), and set σβ = σ1 · · ·σk, where σi is a cycle of length |βi|.
Let {j1, . . . , j|βi|} be the support of σi. Define hj1 = ω (the element ω is as in §5.2,
i.e. a generator of the Sylow p-subgroup of the base group of the wreath product
Gp,w) and hjl = 1 for 2 ≤ l ≤ |βi|. If l doesn’t belong to the support of any βi
then put hl = 1. Thus, the element xβ = (h1, . . . , hw;σβ) is a representative for
the class of Gp,w labeled by (∅, . . . , ∅, β). By Equation (98), ε(h1, . . . , hw;σβ) = 1
if and only if ε(σβ) = 1 (because εH(ω) = 1), as required. □

By Equation (95) and Clifford Theory, if µ /∈ S, then the restriction ϑµ =

Res
Gp,w

Hp,w
(θµ) = Res

Gp,w

Hp,w
(θµ∗) is irreducible. Otherwise, the restriction of θµ splits

into a sum of two irreducible characters of Hp,w, denoted ϑ+µ and ϑ−µ . In the last
case, such a θµ is called a split irreducible character of Gp,w.

Let µ = (µ1, . . . , µp) ∈ S. In order to distinguish ϑ+µ and ϑ−µ , we need to
introduce some notation. We associate to µ two multipartitions µ′ ∈ MPp,w−|µp∗ |
and µ′′ ∈ MPp,|µp∗ | by setting

µ′ = (µ1, . . . , µ(p−1)/2, ∅, µ(p+3)/2, . . . , µp) and µ′′ = (∅, . . . , ∅, µp∗ , ∅, . . . , ∅).
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Moreover, to µ′ and µ′′, we associate subgroups as follows. Write Eµ′ =
{1, . . . , n− |µp∗ |} and Eµ′′ = {n− |µp∗ |+ 1, . . . , n}, and define Gµ′ = H ≀S(Eµ′)
and Gµ′′ = H ≀S(Eµ′′). Note that µ′ and µ′′ are self-conjugate.

In particular, by §5.1, µ′ and µ′′ label split irreducible characters θµ′ and θµ′′

of Gµ′ and Gµ′′ respectively.
Since µ′′ is self-conjugate, a(µ′′) is a splitting class of Gµ′′ , and thus labels

two classes a(µ′′)± of Hµ′′ = ker(εGµ′′ ). Now, we make the same choices for the
labeling for the irreducible characters ϑ±µ′′ and for the classes a(µ′′)± of Hµ′′ as
in [9, Proposition 4F], so that yields

(99)
(
ϑ+µ′′ − ϑ−µ′′

)
(g) =

{
ϵ(
√
ϵpp)

d
√
ϵµp∗ ph(µp∗) if g ∈ a(µ′′)ϵ,

0 otherwise,

where ϵ ∈ {±1}, ϵp = (−1)(p−1)/2, d is the number of parts of a(µp∗), ϵµp∗ =

(−1)(|µp∗ |−d)/2, and ph(µp∗) denotes the product of the lengths of the parts of
a(µp∗).

Furthermore, fix any labeling for the irreducible characters ϑ±µ′ ofHµ′ = ker(εGµ′ ).
Labelings for µ′ and µ′′ being fixed as above, we can assume that the characters
ϑ±µ are parametrized as in [9, Proposition 4H(ii)], and we always make this choice
in the following. We can now show the following crucial result.

Lemma 5.11. Let c be a cycle of odd length k ≤ w. Let x = (t;σ) ∈ Gp,w have
cycle structure (∅, . . . , ∅, 1w−k, (k)), and be such that σ = (w − k + 1, . . . , w). Let
µ = (µ1, . . . , µp) ∈ MPp,w be such that µ = µ∗. If c is a cycle of a(µp∗), then for
any g ∈ Hp,w−k, we have(

ϑ+µ − ϑ−µ
)
(xg) =

√
(−1)(pk−1)/2pk

(
ϑ+µc

− ϑ−µc

)
(g),

where (µc)i = µi if i ̸= p∗, and (µc)p∗ is obtained from µp∗ by removing the diagonal
hook of length k.

Proof. By Lemma 5.10, one has x ∈ Hp,w. Furthermore, ϑ±µc
are irreducible char-

acters of Hp,w−k. Write µ′ and µ′′ for the multipartitions associated to µ as above.
By construction, we have µ′

c = µ′, and µ′′
c is obtained from µ′′ by removing the

diagonal hook of length k (this is possible because c is a cycle of a(µp∗)) at the
p∗-coordinate.

Let g ∈ Hp,w−k. Then by [9, (i) of Proposition 4H], either
(
ϑ+µ − ϑ−µ

)
(xg) = 0 =(

ϑ+µc
− ϑ−µc

)
(g) (and the claim is true), or there are y ∈ Hµ′

c
and z ∈ Hµ′′

c
such

that g = yz = zy and s(y)p = ∅. Since Hµ′′
c
⊆ Hµ′′ , the elements x and z lie in

Hµ′′ . On the other hand, x commutes with z and with y (because these elements
have disjoint supports). Hence, [9, Proposition 4H] implies that

(100)
(
ϑ+µ − ϑ−µ

)
(xg) = (ϑ+µ′ − ϑ−µ′)(y) (ϑ

+
µ′′ − ϑ−µ′′)(xz).

First, suppose that xz ∈ a(µ′′)ϵ. Without loss of generality, in the writing of ta(µ′′)

as in Equation (97), we can assume that x = tpℓ(πp). Hence, tϵa(µ′′) = xtϵa(µ′′
c )

. A
similar argument to that after Equation (87) shows that xz ∈ a(µ′′)ϵ if and only if
z ∈ a(µ′′

c )
ϵ. Note that Hµ′

c
= Hµ′ , ϑ+µ′

c
= ϑ+µ′ and ϑ−µ′

c
= ϑ−µ′ (because µ′

c = µ). Let
d be the number of parts of a(µp∗). Then a((µc)p∗) has (d−1) parts. Moreover, one
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has ϵµp∗ = (−1)(k−1)/2ϵ(µc)p∗
and ph(µp∗) = k ph((µc)p∗), so that Equations (99)

and (100) give(
ϑ+µ − ϑ−µ

)
(gx) =

(
ϑ+µ′ − ϑ−µ′

)
(y) ϵ(

√
ϵpp)

d
√
ϵµp∗ ph(µp∗)

=
(
ϑ+µ′

c
− ϑ−µ′

c

)
(y)
√
ϵppk(−1)(k−1)/2ϵ(

√
ϵpp)

d−1

·
√
ϵ(µc)p∗

ph((µc)p∗)

=
√
ϵppk(−1)(k−1)/2

(
ϑ+µ′

c
− ϑ−µ′

c

)
(y)

(
ϑ+µ′′

c
− ϑ−µ′′

c

)
(z)

=
√
ϵppk(−1)(k−1)/2

(
ϑ+µc

− ϑ−µc

)
(g).

Furthermore,

(−1)(pk−1)/2 =
(
(−1)(p−1)/2

)k
(−1)(k−1)/2 = ϵp(−1)(k−1)/2,

because k is odd. The result follows.
Now, if xz /∈ a(µ′′)±, then z /∈ a(µ′′

c )
±. We then have (ϑ+µ′′ − ϑ−µ′′)(xz) = 0 =

(ϑ+µ′′
c
− ϑ−µ′′

c
)(z) = 0 by Equation (99), and Equation (100) gives

(ϑ+µ − ϑ−µ)(gx) = 0 = (ϑ+µc
− ϑ−µc

)(g).

This proves the result. □

For λ ̸= λ∗ and µ ̸= µ∗, we write ρ+λ = ρ−λ = ρλ and ϑ+µ = ϑ−µ = ϑµ. Fur-
thermore, an element h ∈ Hp,w is said regular if its cycle structure s(h) satisfies
s(h)p = ∅.

Theorem 5.12. Let p be an odd prime number. Let γ be a self-conjugate p-core
of Sn of p-weight w > 0. Denote by bγ the corresponding p-block of An. Then the
linear map I : C Irr(bγ) → C Irr(Hp,w) defined, for ϵ ∈ {±1} and λ with p-core γ,
by

I(ρϵλ) = (−1)|λp∗ |δp(λ)ϑ
ϵδp(λ)

λ̃(p)
,

where the notation is as in Theorem 5.1, is a generalized perfect isometry with
respect to the p-regular elements of An and the regular elements of Hp,w (defined
as above).

Proof. First, we consider the case n = pw. In this case, one has γ = ∅. Let S and C
be the sets that define an MN-structure for the principal p-block of Apw with respect
to the set of p-regular elements of Apw. We denote by Ω0 and Λ0 the corresponding
sets of partitions (see the proof of Theorem 3.9). Write S′ and C ′ as in the proof of
Theorem 5.1 (but for elements of Hp,w). Then Λ0 labels the Hp,w classes of S′ by
p · β̂ ∈ Λ0 7→ tβ̂ , where by Equation (97), tβ± = t±(∅,...,∅,β) and tβ = t(∅,...,1w−|β|,β).
Hence, if we set Hβ = Hp,w−|β|, then Hβ satisfies Definition 2.5(3).

Now, for every partition λ of pw with trivial p-core, and any ϵ ∈ {−1, 1}, we
define

ϑ̃ϵλ(p) = (−1)|λp∗ |ϑϵ
λ̃(p) .

Let p · β ∈ Ω0 be such that β = (β1, . . . , βk). Assume that βk is odd. Then
tβ̂k

∈ Hp,w, and by Lemma 5.11, (ϑ̃+
λ(p) − ϑ̃−

λ(p))(tβ̂k
g) = 0 for g ∈ Hp,w−|β1|, except
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when (λ(p))p∗ contains a diagonal hook ck of length |βk|. In this case, we have.

(
ϑ̃+
λ(p) − ϑ̃−

λ(p)

)
(tβ̂k

g) = (−1)|β0|
√

(−1)(pβk−1)/2pβk
(
ϑ+
λ(p) − ϑ−

λ(p)

)
(s′
β̂1
g)

= −(−1)|β0\{ck}|
√

(−1)(pβk−1)/2pβk

(
ϑ+
λ(p)\{ck}

− ϑ−
λ(p)\{ck}

)
(g)

=
√
(−1)(pβk−1)/2pβk

(
ϑ̃−
λ(p)\{ck}

− ϑ̃+
λ(p)\{ck}

)
(g),

(101)

where λ(p)\{ck} is the multipartition with the same parts as λ(p), except the p∗-
part which is obtained from (λ(p))p∗ by removing the diagonal hook of length βk.
Therefore, Equations (79), (101) and Clifford theory give, for ϵ ∈ {±1} and g ∈
Hn−|βk|,

ϑ̃ϵλ(p)(tβ̂k
g) =

∑
µ∈M′

βk
(λ)

µ ̸=µ∗

b(ϑ̃ϵλ(p) , ϑ̃µ(p)) ϑ̃µ(p)(g) +
∑

µ∈Mβk
(λ)

µ=µ∗

(
b(ϑ̃ϵλ(p) , ϑ̃

+
µ(p)) ϑ̃

+
µ(p)(g)+

b(ϑ̃ϵλ(p) , ϑ̃
−
µ(p)) ϑ̃

−
µ(p)(g)

)
,

whereMβk
(λ) andM ′

βk
(λ) are defined as in §3.3, and the complex numbers b(ϑ̃ϵ

λ(p) , ϑ̃
η
µ(p))

satisfy the following:

– If µ∗ ̸= µ and µ∗ ∈ Mβ1(λ), then b(ϑ̃ϵ
λ(p) , ϑ̃µ(p)) = α(λ)(α′λ

µ + α′λ
µ∗) (see

Equation (79) for the definition of α′λ
µ).

– If µ∗ ̸= µ and µ∗ /∈Mβ1(λ), then b(ϑ̃ϵ
λ(p) , ϑ̃µ(p)) = α(λ)α′λ

µ.
– If µ∗ = µ and µ ̸= µλ, then b(ϑ̃ϵ

λ(p) , ϑ̃
η
µ(p)) = α(λ)α′λ

µ.

– If µ∗ = µ and µ = µλ, then b(ϑ̃ϵ
λ(p) , ϑ̃

η
λ(p)\{ck}

) = 1
2

(
α′λ
µλ

− ηϵ
√

(−1)(q−1)/2q
)
,

where q = pβk.

Note that, as in the proof of Theorem 5.1, we use that f induces a bijection
between Mpβk

(λ) and Mβk
(λ(p)).

Assume now that βk and βk−1 are even. Let µ ∈ Mβk,βk−1
(λ). We denote

by b(ϑ̃ϵ
λ(p) , ϑ̃

η
µ(p)) the hermitian product of the class function x → ϑ̃ϵ

λ(p)(tβk
tβk−1

x)

with ϑ̃η
µ(p) ∈ Z Irr(Hp,w−βk−βk−1

). Then, applying Equation (79) twice and Clif-
ford theory, we obtain an analogue of Theorem 3.5. For µ ∈ Mβk,βk−1

(λ) or
µ ∈ M ′

βk,βk−1
(λ), the coefficient b(ϑ̃ϵ

λ(p) , ϑ̃
η
µ(p)) is obtained from a(ρϵλ, ρ

η
µ) by re-

placing (−1)L(c
ν
µ) and (−1)L(c

λ
ν ) by (−1)L(f(c

ν
µ)) and (−1)L(f(c

λ
ν )) respectively.

Now, as in the proof of Theorem 3.9, if we suppose that β is labeled such that
there is some integer r with βi even for i ≤ r and βi odd for i > r, then, applying
iteratively the above process, as in the proof of Theorem 3.9, and using the fact
that the ϑ̃ϵ

λ(p) ’s give a basis of C Irr(Hp,w), we can define a linear map rβ̂ : CHp,w →
CHp,w−|β| such that rβ̂(χ)(x) = χ(tβ̂x) for all χ ∈ C Irr(Hp,w) and x ∈ Hp,w−|β|.
In particular, Irr(Hp,w) has an MN-structure in the sense of Definition 2.5 with
respect to C ′.
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Let p ·β ∈ Ω0. We define Iβ̂ : C Irr(bγ(n−p|β|)) → CHp,w−|β|, where bγ(n−p|β|)
is defined in §3.2, by setting

Iβ̂(ρ
η
µ) = (−1)|µp∗ |δp(µ)ϑ̃

ηδp(µ)(−1)ℓ(β)

µ̃(p) ,

where η ∈ {±1} and µ is a partition of p(w−|β|) with p-core γ. Note that I{1} = I.
Write b(ϑ̃ϵ

λ(p) , ϑ̃
η
µ(p)) = ⟨rβ̂(ϑ̃ϵ

λ(p)), ϑ̃
η
µ(p)⟩Hp,w−|β| . If either β̂ = β or β̂ = β±

and λ ̸= κ (where κ is the partition defined in the proof of Theorem 3.9), then a
straightforward computation (see the proofs of Theorem 3.9 and of Theorem 5.1)
gives

a
(
ρϵλ, ρ

η
µ

)
= b

(
I
(
ϑ̃ϵλ(p)

)
, Iβ

(
ϑ̃η
µ(p)

))
.

Hence, the only case to consider is β = (β1, . . . , βk) ∈ ODw and λ = κ. Write
(h1, . . . , hk) for the diagonal hooks of κ and assume that the hook length of hi is
pβi. Furthermore, define β(0) = {1} and β(i) = {β1, . . . , βi} for 1 ≤ i ≤ k (in
particular, p · β(i) ∈ Ω0). Note that ℓ(β(i)) = i.

Let 1 ≤ i ≤ k. Write ν = κ\{h1, . . . , hi−1} and µ = κ\{h1, . . . , hi}. Therefore,
if we set q = phi, then we have

b
(
Iβ̂(i−1)(ρ

ϵ
ν), Iβ̂(i)(ρ

η
µ)
)
= δp(ν)δp(µ)b

(
ϑ̃
ϵδp(ν)(−1)i−1

ν(p) , ϑ̃
ηδp(µ)(−1)i

µ(p)

)
,

= δp(ν)δp(µ)

(
α′ν
µ − ϵηδp(ν)δp(µ)(−1)2i−1

√
(−1)(q−1)/2q

)
,

=

(
ανµ + ϵη

√
(−1)(q−1)/2q

)
,

= a
(
ρϵν , ρ

η
µ

)
.

Thus, using an argument similar to Equations (29) and (30), we conclude that
b(I(ρϵκ), Iβ̂(ρ

η
µ)) = a(ρϵκ, ρ

η
µ). It follows that

rβ̂ ◦ I = Iβ̂ ◦ rβ̂

for every p · β̂ ∈ Λ0, and Corollary 2.17 gives the result.
Now we return to the general case, that is, γ is any self-conjugate p-core of

n with p-weight w. Let b′ be the principal p-block of Apw. We consider In :
C Irr(bγ) → C Irr(b′) the perfect isometry obtained in Theorem 3.9 and Ipw :
C Irr(b′) → C Irr(Hp,w) the perfect isometry obtained in the first part of the proof.
Then Ipw ◦ In : C Irr(bγ) → C Irr(Hp,w) is a perfect isometry. In order to prove the
result, it is sufficient to show that I = Ipw ◦ In. Let λ ∈ Pn be such that λ(p) = γ

and ϵ ∈ {±1}. Then using that the p-quotient of Ψ(λ) is λ(p), we derive that

Ipw ◦ In(ρϵλ) = Ipw

(
δp(λ)δp(Ψ(λ))ρ

ϵδp(λ)δp(Ψ(λ))

Ψ(λ)

)
,

= δp(λ)δp(Ψ(λ))δp(Ψ(λ))ϑ̃
εδp(λ)δp(Ψ(λ))δp(Ψ(λ))

λ(p) ,

= δp(λ)ϑ̃
εδp(λ)

λ(p) ,

= I(ρϵλ),

as required. □

Corollary 5.13. With the assumptions of Theorem 5.12, and if furthermore w < p,
then I is a Broué perfect isometry.
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