PERFECT ISOMETRIES AND MURNAGHAN-NAKAYAMA
RULES

OLIVIER BRUNAT AND JEAN-BAPTISTE GRAMAIN

ABsTrRACT. This article is concerned with perfect isometries between blocks
of finite groups. Generalizing a method of Enguehard to show that any two
p-blocks of (possibly different) symmetric groups with the same weight are
perfectly isometric, we prove analogues of this result for p-blocks of alternating
groups (where the blocks must also have the same sign when p is odd), of
double covers of alternating and symmetric groups (for p odd, and where we
obtain crossover isometries when the blocks have opposite signs), of complex
reflection groups G(d,1,n) (for d prime to p), of Weyl groups of type B and
D (for p odd), and of certain wreath products. In order to do this, we need
to generalize the theory of blocks, in a way which should be of independent
interest.

1. INTRODUCTION

Perfect isometries, introduced by M. Broué in [1], are the shadow, at the level of
characters, of very deep structural correspondences between blocks of finite groups
(such as derived equivalences, or splendid equivalences). The existence of such
equivalences is at the heart of Broué’s Abelian Defect Conjecture, which predicts
that any p-block of a finite group G with abelian defect group P and its Brauer
correspondent in N (P) are derived equivalent.

Recently, there has been considerable progress in the construction of equivalences
between blocks, especially using a method, introduced and developed by J. Chuang
and R. Rouquier in [5], and based on sly-categorification. As a consequence of
their work, they show that two p-blocks of (possibly different) symmetric groups
with isomorphic defect groups are splendidly equivalent; see [5, Theorem 7.2]. This
explains the result [7, Theorem 11| of M. Enguehard, which is an analogue of [5,
Theorem 7.2], but at the level of characters, that is, the existence of Broué perfect
isometries between such blocks.

For p-blocks of (possibly different) double covers of the symmetric and alternat-
ing groups, it has been conjectured by M. Schaps and R. Kessar that, with some
additional assumptions, a similar result holds. There are partial results in this
direction, for example [13], [14] and [16]. However, even at the level of characters,
the existence of perfect isometries between these p-blocks was yet unproved.

This article dicusses perfect isometries. Besides suggesting the existence of a
derived equivalence between blocks, any perfect isometry between two p-blocks of
finite groups provides an isomorphism between their centres, and an isomorphism
between the Grothendieck groups of their module categories. In particular, perfectly
isometric p-blocks have the same numbers of ordinary and of modular characters,
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and their Cartan matrices and decomposition matrices have the same invariant
factors.

Furthermore, the weaker version of Broué’s Abelian Defect Conjecture (that
is, Broué’s conjecture at the level of characters) gives, in the abelian defect case,
deep insight into more numerical conjectures, such as the Alperin, Knérr-Robinson,
Alperin-McKay and Dade conjectures (see for example [6]).

In this paper, we generalize Enguehard’s method (see [7]) based on the Murnaghan-
Nakayama rule in the symmetric group (which gives a way to compute iteratively
the values of irreducible complex characters). We will prove that similar results hold
for many classes of groups where some analogues of the Murnaghan-Nakayama rule
are available.

For this, we extract the properties of the Murnaghan-Nakayama rule needed in
Enguehard’s method, which we axiomatize in the concept of an MN-structure for
a finite group. In some cases, for example when the analogue of the Murnaghan-
Nakayama rule for the considered groups do not give information on the whole
group, but only on certain conjugacy classes (this happens for the double covers
of the symmetric and alternating groups), we need to replace the set of p-regular
elements of the group by an arbitrary union of conjugacy classes. We then develop
a generalized modular theory, and define generalized blocks and generalized per-
fect isometries. Note that the notion of generalized blocks and generalized perfect
isometries introduced by B. Kiilshammer, J. B. Olsson and G. R. Robinson in [15] is
not exactly the same as ours. In some way, our notion is more general, because any
Kiilshammer-Olsson-Robinson isometry or Broué isometry is a generalized perfect
isometry in our sense.

The article is organized as follows. In Section 2 we generalize the theory of
blocks of characters. Note that §2.1 is of independent interest, because it in partic-
ular gives a natural framework to use the techniques of the usual modular p-block
theory for the theory of Kiishammer, Olsson and Robinson. The main result of this
section (Theorem 2.10) provides the bridge necessary to compare blocks and spaces
of class functions of (possibly distinct) groups which have similar MN-structures.
This combinatorification of the ideas in [7] can in turn be used to exhibit perfect
isometries between blocks of these groups (see Corollary 2.17 and Theorem 2.20).

The remaining sections are devoted to describing MN-structures in several fam-
ilies of finite groups, and using our methods to build explicitly perfect isometries
between their blocks.

More precisely, we prove in Section 3 that two p-blocks of (possibly different)
alternating groups with same weight, (and the same signature type when p is odd)
are perfectly isometric (see Theorems 3.9, 3.10 and 3.11).

Then, in Section 4, we study the case of spin blocks of the double covers of
the symmetric and alternating groups, and we prove the perfect isometry version
of the Kessar-Schaps conjecture. We show that, when p is odd, any two spin p-
blocks with the same weight and sign are perfectly isometric (see Theorem 4.21
and Corollary 4.22). As is to be expected in these groups (see [14]), we also obtain
crossover isometries, relating a p-block in “the symmetric case” to a p-block in
“the alternating case”. Note that, in the proof of these results, even though the
isometries we obtain are Broué isometries, we crucially need the generalized theory
introduced in Section 2.



In the last section, we examine the case of certain wreath products. Applying
our method, we give in §5.2 and §5.3 a new and more uniform construction of the
isometries appearing in Broué’s Abelian Defect Conjecture for symmetric groups,
isometries introduced by M. Osima, and the generalized perfect isometry considered
in [2] in order to show the existence of p-basic sets for the alternating group (see
Theorem 5.1, Theorem 5.3 and Corollary 5.2). Even though these results are not
new, they give explicit isometries, and considerably simplify the calculations (for
example, note that the initial proof of Rouquier [25] of Broué’s perfect isometries
Conjecture for symmetric groups (see [25]) is not constructive, and is based on a
strong result of Fong and Harris in [8] on perfect isometries in wreath products).

In §5.4, we apply our method to p-blocks of complex reflection groups G(d,1,n)
with d prime to p, and obtain in Theorem 5.4 an analogue of Enguehard’s result
for these groups. In particular, this gives the result for p-blocks (with p odd) of
(possibly different) Weyl groups of type B (see Corollary 5.6). In §5.5, we also
prove the result for p-blocks (with p odd) of (possibly different) Weyl groups of
type D (Theorems 5.7 and 5.8). All of these are new results.

Finally, in §5.6, we give an analogue of the generalized perfect isometry of [2,
Thoerem 3.6] for p-blocks (with p odd) of alternating groups (see Therorem 5.12). In
a certain sense (see Example 5.9), this is a natural analogue of Osima’s isometry for
alternating groups. When the p-block of the alternating group has abelian defect,
our result gives an alternative proof of Broué’s perfect isometries Conjecture first
obtained by Fong and Harris in [9] (see Corollary 5.13).

We hope that our results, and in particular the fact that the Broué perfect
isometries constructed here are explicit, will help to prove that the corresponding
p-blocks are in fact derived equivalent.

2. GENERALITIES

In this section, G denotes a finite group and C a set of conjugacy classes of G.
We set

(1) C = U c.
ceC

We write Irr(G) for the set of irreducible characters of G over the complex field C,
and (, )¢ for the usual hermitian product on CIrr(G). For x € G, we denote by
2% the conjugacy class of  in G. Define resc : CIrr(G) — CIrr(G) by setting, for
any class function ¢ € ClIrr(G),

resc(¢)(g) = { plg) ifgeC,

0 otherwise.

For B C CIrr(G), we set B¢ = {resc(x) | x € B}.

2.1. Generalized modular theory. Let b be a Z-basis of the Z-module Z Irr(G)°.
For every x € Irr(G), there are uniquely determined integers d, ., such that

(2) resc(x) = Zdw%
p€Eeb

We denote by bV the dual basis of b with respect to { , }g, i.e. the unique C-basis
bW = {®,|p € b} of CIrr(G)€ such that (®,,9) = by, for all J € b.



4 OLIVIER BRUNAT AND JEAN-BAPTISTE GRAMAIN

Proposition 2.1. Let C be a set of conjugacy classes of G. Suppose that b is a Z-
basis of ZIrr(G)C, and denote by b¥ = {®, | ¢ € b} the dual basis of b with respect
to (, e (as above). Then:

(i) For every ¢ € b, we have

(3) Py = Z dyoX = Z dyp resc(x),
xE€Irr(G) x€Irr(G)
where the dy,’s are the integers defined in Equation (2).
(i) We have
ZTIrr(G) N ZTir(G)¢ = ZbY.

Proof. Let ¢ € b. We have @, € CIrr(G)C. It follows that ( ®,, X )¢ = ( @y, resc(x) )
for all x € Irr(G). Using Equation (2), we deduce that

<(I)<an>G = deﬁ<q)<pa79>G
€D
= dyp.
This proves (i).
By (i), we clearly have Zb¥ C ZTrr(G) N ZIrr(G)C. Conversely, suppose that )
is a generalized character vanishing on the elements x such that & ¢ C. Then

1/J:Z<T/)7%0>G‘I’w

p€eb

Since b C ZIrr(G)C, for every ¢ € b, there are integers a,, (not necessarily unique)
such that
¥ = Z Ay resc(X)-
x€lrr(G)
Define
Yy = Z apyX € ZIrr(G).
x€Irr(G)
Then resc(1,) = ¢. Moreover, 1 € ZIrr(G)€. It follows that

(¥, 0)a = (¥,% )
which is an integer because ¢ € ZIrr(G) and (ii) holds. O

Now, we introduce a graph as follows. The vertex set is Irr(G) and two vertices
x and x’ are linked by an edge, if there is ¢ € b such that d,, # 0 and d,-, # 0.
The connected components of this graph are called the C-blocks of G.

Remark 2.2. Note that the C-blocks of G depend on the choice of the Z-basis b
of ZTrr(G)C.

If B is a union of C-blocks of G, we write Irr(B) for the subset of Irr(G) corre-
sponding to the vertices of B, and bg for the set of elements of b which give edges
in B. We set by = {®, |¢ € bp}. Note that b} is the dual basis of bp (when bp is
viewed as a basis of the C-vector space Cbp) with respect to ( , )q.

We may (and do) order the elements of Irr(G) and b in such a way that, if the
rows and columns of D = (dy,)yecnn(a),pep are ordered correspondingly, then D

is a block-diagonal matrix, and each (diagonal) block Dg of D corresponds to a
C-block B of G.
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Corollary 2.3. With the notation as above, for every C-block B of G, we have
O, = > dyex forallp €bp, and
x€lrr(B)
ZTrr(B) N ZIrr(G)C = Zb}.

Corollary 2.4. With the above notation, let x, ¥ € Irr(G) and p, ¥ € b be such
that (,0)c #0 and dyy # 0 # dyy. Then x and ¢ lie in the same C-block.

Proof. Let ¢, 6 € b. By Proposition 2.1(i), we have

0p0 = (P, 0)c = Z dye(resc(x),0)a
x€lrr(G)

= Z dewdxn (n,0)c

x€lrr(G) \ neb

= Z Z dypdyn | (n,0)c-

neb \ x€lrr(G)

Now, if we write K = ({¢,0)G)p,0cb, then the preceding equation gives I ="DDK.
Thus, K is invertible and K ! =!DD. Furthermore, D is a block-diagonal matrix.
Hence, K~ also has a block-diagonal structure. More precisely, the blocks of K !
are the ‘DpDp’s for all C-blocks B of G. It follows that K has the same block-
diagonal structure as K. In particular, if (¢,0)g # 0, then ¢ and @ lie in the
same C-block of G.

Our assumption that { p,9)g # 0 therefore implies that ¥ and ¢ lie in a common
C-block B of G. By the definition of C-blocks, this means that ¢ and ¥ correspond to
some subsets ¢, and cy of edges in a connected component B of the graph previously
introduced. Moreover, x (respectively v) is a vertex of some edge in ¢, (respectively
in ¢y), because dy, # 0 (respectively dyy # 0). Therefore x, 1) € B. O

2.2. MIN-Restriction. We fix a set of G-conjugacy classes C and a union of C-
blocks B of G, and denote by C the corresponding set of elements as in Equation (1).

Definition 2.5. We say that G has an MN-structure with respect to C and B, if
the following properties hold.

1. There is a subset S C G containing 1 and stable under G-conjugation.
2. There is a bijection between a subset A C S x C and G (the image of
(zs,zc) € A will be denoted by xs - x¢ ), such that for (xs,zc) € A
Hzs - xzc) = zg) - (Jxc) and zs- -0 =T5TC = TOXS.

Moreover, for allzs € S and x¢ € C, we have (zg,1) € A and (1,z¢) € A.
3. For xg € S, there is a subgroup G4 < Cg(xg) such that

st NnC = {l‘c eC | (ﬂ;‘s,l'c) S A}

Forxzg € 5, we denote by C,4 the set of G, -conjugacy classes of Gz NC.
4. Forxgs €S, there is a union of Cy o -blocks By, of G5 and a homomorphism
r®s : Clrr(B) — CIrr(B,,) satisfying

S (x)(zc) = x(xs - xzc) for all x € Clrr(B) and (zg,z¢) € A.

Moreover, we assume that G1 = G, B1 = B and r! =1id.
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In the rest of this subsection, we suppose that G has an MN-structure. For
rs € S, we define a homomorphism d,, : CIrr(B) — ClIrr(B,,) s by setting

(4) dys(x) =rescor®(x) for x € Irr(B).

The C-basis of CIrr(B,4)%s used to define the union of Czg-blocks B, of G
(see Remark 2.2) is denoted by b, and we write

exs : Cby, — Chrr(B)

for the adjoint map of d,, with respect to ( , ).

Take any y = ys - yo € G with yg € ZCg For any t € G such that tys = 235,
one has tyc € G, by Definition 2.5(3), and the set X of elements ‘yc with t € G
such that 'ys = xg is stable under G, 4-conjugation (because G, C Cg(zs)). We

denote by £7¢ a set of representatives of the G, -classes of X.

Lemma 2.6. With the notation above, for any ¢ € (Cb;/s and (ys,yc) € A, we

have
P(zc) )
| Calys - yco)l Z Co. (o] if y§ =a$,
Cas (@) (ys -ye) = Tc€EYS yo Gas 170
0 otherwise.

Proof. We denote by 1¢,, the indicator function of the conjugacy class of z in G.
We have
exs(B)(ys -yc) = [Calys - yo)l{ews(d), loysye )a
= [Calys yo)( b, dus(1a,ysye) )Gy
because d,, and e, are adjoint. Moreover, by Definition 2.5(3),we deduce that
dzs (1G,ys-yc) = Z leS,Ic
xcGS,mS

s el

if y§ = 2§ and 0 otherwise. This implies in particular that e, (¢)(ys - yc) = 0
whenever yg # xg Now, suppose that yg = xg Then

s (@) (s -yc) = [Calys yo)l Z (6. 1G, 00 )Gag
a:cef,';g)yc
¢(zc)
= C . — 7,
[Colus 30) 2, (g o
mc€5ys,yc
as required. O

By Definition 2.5(1), S = [Jycp A, where each A € A is a conjugacy class of
G. For each A € A, we choose a representative ) € A, and we let Gy = G,,,
By =B,,, =1, C\ = Crg and dy = dg, .

Let ¢ = gs - g¢ € G. In the following, we say that g is of type X if gg € A.
Furthermore, we set EL;\S’gc =E2 9o

Now, we set

dg : CIrr(B) — GB(CIrI"(B>\)C’\7 X — Z dx(x)-
AEA AEA



For A € A, we define [ : CIrr(G)“* — CIrr(G) by setting

1
P if ¢§ =\
(5) (W) (g) = ‘ gs;gc' xcefzgs 9 (we) 1 7 )

0 otherwise

and put
I - @Chr(Gy) = Chir(G), > a = Y (W)

A€A A€EA A€EA

Remark 2.7. Let ¢ € CIrr(G,)¢*, and suppose that 1 is constant on 5£\A y for

every y € C' N Gyx. Then I5(1)(g) = 0 except when gs € A. In this case, we have

I\(¥)(9) = ¥(xc), where z¢ is any element of £, .
Lemma 2.8. The homomorphism dq is injective, and the map lgodq is the identity
on CIrr(B).

Proof. Let x € G. Then by Definition 2.5(2), « is G-conjugate to z - z¢ for some
A€ A and z¢ € C, and for any y € CIrr(B), we then have
)

x(@) = x(@zrze) = () (x (by Definition 2.5(4))

= resc(r*(x))(zc)
= dx(x)(zc) (by definition of dy).

Now, fix x € CIrr(B) such that dg(x) = 0. Then, for every A’ € A, we have
dx(x) = 0. In particular, dx(x)(z¢) = 0, and it follows that x(z) = 0. Thus dg is

injective.
Note that
lgoda =Y lyody.
AeA
Hence, for every x € ClIrr(B), we have
lgoda(x Zl,\/od,\f (x).
NeA

By Equation (5), if A # X, then I/ (dx (x))(x) = 0. On the other hand, since dy(x)
is constant on S>‘ for any y € C'N G, Remark 2.7 implies

Lody(X)(z) = 1y o da(x)(mazc) = dr(x)(zc) = resc (r(x)) (zc) = x(),
as required. O

For A € A, we set by = b;, and ey = e;,. The dual of @AGACIIT(B)\)C‘TS is
@ e CbY and the homomorphism

eqg - @CbV%CIH Z(b)\'—)Ze)\ (b)\
AEA AEA AEA
is the adjoint of dg.

Remark 2.9. Write Zby(C) for the submodule of Zby consisting of class functions
constant on &) , for any y € C N Gy. Let K = rky(Zby(C)). By the invariant

XY
factor decomposition theorem, there are a Z-basis by = {b1,...,bny} of Zb) and
positive integers my, ..., mg such that mq|ms|---|mg and {m1b1,... ,mgbr} is
a Z-basis of Zby(C). Let 1 < i < K and y € C N G,. Then for any ¢t € Ej‘k ”»

one has m;b;(t) = m;b;(y) because m;b; € Zbx(C). Since m; # 0, we deduce that
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bi(t) = bi(y). Thus, b; € Zbx(C) and m; = 1. In the following, we will write
b = {b1,...,bx} for the Z-basis of Zby(C) coming from such a construction.

2.3. Isometries. Let G and G’ be two finite groups. We fix C (respectively C’) a
set of conjugacy classes of G (respectively G'), and B (respectively B’) a union of
C-blocks of G (respectively C’-blocks of G'). As above, we write

C’:Uc and C':Uc'.
cec crec
We consider the isomorphism
Chr(B) ® Clrr(B’) — End(CIrr(B),CIrr(B’))
: { Do X®X — (w = ZX,X/MY}cx’)

Note that, if we write f = O~ 1(f) for any f € End(CIrr(B),CIrr(B’)), then
(6) F=>el @ fle),
i=1

where e = (eq,...,e,) is any C-basis of CIrr(B) with dual basis e = (eY,...,e))
with respect to ( , )¢-.

Theorem 2.10. Let G and G’ be two finite groups. Suppose that

(1) The group G (respectively G') has an MN-structure with respect to C and
B (respectively C' and B'). We keep the same notation as above, and the
object relative to G' are denoted with a ‘prime’.

(2) Assume there are subsets Ag C A and Ay C A’ such that :

(a) For every A € A with A\ & Ag (respectively X' € N with N ¢ Aj), we
have ™ = 1"\ = 0.

(b) There is a bijection o : Ag — A{ with o({1}) = {1} and for A € Ao,
an isometry Iy : CIrr(By) — Clrr(B] ) such that

IA (@] ’[“A = ’[“/U()\) 0] I{l}
3) For X € Ay, we have I(CbY) = C'Y . We write Jy = Ix|cpy -
A o(N) X
Then for all x € G, ' € G, we have

(7) Tny(ea) = 30 ex(@a) @)l (J5 1)),

AE€Ao peb§

where by and 6§ are as in Remark 2.9, and by = {®4| ¢ € b} is the dual basis of
by as in §2.1.

Proof. First, we remark that, for A € Ag, the adjoint of the inclusion i : Cby —
CIrr(B,) is i* = res¢. Moreover, Hypothesis (3) implies that the following diagram
is commutative:

I

Cby, CV yx)

j |

CIrr(By) — b .c Irr(By(x))



Dualizing, we obtain the following commutative diagram:

/
Cby 7 Cb' 5
I’eScT I‘esc/T
CIrr(By) ~ Clir(Bg(y))

A

(The bottom arrow is indeed I, ' because we identified CIrr(B)) and CIrr(B,y))
with their duals.) Thus, we have res¢ 01;1 = J¥ orescv, which implies that J;_l o
resc = resgr oly, and we obtain

J:\k_l orescor® = rescsolyor?
Ji7hody = rescr or’@X) oIy
(8) Jihody = dyy oIy,

where the second equality comes from Hypothesis (2).

Write Zby(C) as in Remark 2.9. We have dy(CIrr(B)) C Cby(C). Define by, b§
as in Remark 2.9, and set Vy = [, (Cb§) and V3, =1}, ((Cb’ci).

Now, the assumption (2.a) implies that de = 3,5, dr and if we again write
lg for the restriction of Ig to @xea,CIrr(G))®* to simplify the notation, then
Lemma 2.8 gives that g o dg is the identity on CIrr(B) (the same is true for

I ody). In particular, [y is surjective. Furthermore, for X € Ag such that A # X/,
one has dy olx(¢) =0 for all ¢ € Cbx(C). Indeed, for every x € C' NGy, one has

dy o 1x(9)(x) = resc orY (Ix(9))(z) = r (In(¢) (x) = Ix(¢) (zx) =0,

because A # A'. It follows that CIrr(B) = @xep, Vi (the same is true for CIrr(B’)).
Thus, by Equation (8), the following diagram is commutative:

Iy

(9) CIrr(B) Chrr(B')
ldc ld,c;/
®J; ,
@)\GAO (Cb/\ @AGAO (Cba'(/\)
|- e
Tiay ,
69/\61\0 Va ®A6Ao Va(A)

Let A € Ag and ¢ € Cby(C). Then dy oly(¢) € Cbr(C). Let x € Gx. If x ¢ C,
then ¢(x) = 0 = dy o l\(¢)(z). Assume that © € C. Then € G, N C. So, by
Definition 2.5(3), (zx,x) € A, and by Definition 2.5(4) and Remark 2.7 we have

dx 0 la(¢)(x) = r* o lx(9)(x) = In(9)(2x - ).

Therefore, Remark 2.7 gives dy o Ix(¢)(xz) = ¢(x). So, this proves that for every
¢ € Cby(C), we have

(10) dxolx(¢) = ¢.
Consider

e=|J (@)oo}

AEAQ
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By Equation (10), for A € Ag, the family {I,(¢)|¢ € b} is linearly independent,
and since [y is surjective, it is a basis of V). Hence, it follows that e is a basis of
Clrr(B).

Now, we claim that

e’ = | {ex(®y)| ¢ €65}

AEAo
Indeed, if A, u € Ag with A # p, then for any ¥ € b§ and ¢ € bﬁ, we have
1 -
(ex(®v). lu(8))c = 1€l > ex(@9)(9) 1u(9)(9) = 0,

geG
by Equation (5) and Lemma 2.6. Furthermore, if ¢, ¢ € b$, then Equation (10)
gives
(ex(®y) In(@) )a = ( Py, dr 0 In(8) )ar = (P, @) = g,
and the result follows. Thus, writing IA{l ) with respect to the basis e, we obtain
Iy = > Y ea(®g) @1 (T3 (),
AEAq pEDy

as required. (I
Remark 2.11. Note that the assumption (2) of the theorem implies that the
assumption (3) of the theorem holds for A = {1}. Indeed, for ¢ € CIrr(B), we have
Q€ (Cb¥1} if and only if resz(¢) = 0, where C = G\C. However, z € G lies in C if
and only if its type A is non-trivial. Thus, Definition 2.5(4) implies that ¢ € (be{/l}

if and only if 7*(¢) = 0 for all A # {1}. Let ¢ € (Cb¥1}- Then for any {1} # X € Ay,

"N (113(9) = I (@) = 0.
Since ¢ is a bijection with o({1}) = {1}, we deduce that I1}(¢) € (Cb;\/()\). To
obtain the reverse inclusion, we apply this argument to [ {_11}

In particular, if for any A € Ag, the group G has an MN-structure with respect
to C N Gy and B, then the assumption (3) of Theorem 2.10 is automatically
satisfied.

Remark 2.12. Suppose that (Iy : Chrr(Bx) — Clrr(B,)))ren, are isome-

tries such that properties (1), (2) and (3) of Theorem 2.10 hold. Then I;' :
(CIrr(B;()\)) — CTIrr(B,) also satisfies the hypotheses of the theorem (for o~* :

Al — Ag). Moreover, writing T with respect to the self-dual C-basis Irr(B) of
CIrr(B), we have

(11) I= Y xeIW.
x€lrr(B)
It follows that

I= Z I71(x') ® X' = conj Z I'(x)® X' | = conj (I/—\loT),
x'€lrr(B’) x'€Irr(B’)

where 7 : G x G — G' x G, (x,2') — (a/,x) and conj denotes the complex
conjugation.
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2.4. Generalized perfect isometries. An isometry [ : CIrr(B) — Clrr(B’)
with respect to the scalar products (, )¢ and (, )g/ is said to be a generalized
perfect isometry if I(ZIrr(B)) = Z(Irr(B’)) and

(12) I oresg =resgr ol.

Remark 2.13. Following Kiilshammer, Olsson and Robinson (see [15]), we say that
an isometry I : CIrr(B) — CIrr(B’) is a KOR-isometry if I(Z(Irr(B)) = ZIrr(B’)
and for all y, ¢ € Irr(B), one has

(resc(x),resc(¥) )a = (rescr (1(x)) ,rescr (1(¢)) )

Note that the argument in the proof of [2, Proposition 2.2] shows that the KOR-
isometries are precisely the isometries that satisfy Equation (12). For the conve-
nience of the reader, we now prove this fact. Before this, we recall that the notion
of blocks in [15] is not the same as ours. The KOR-blocks are the equivalence
classes for the equivalence relation on Irr(G) obtained by extending by transitivity
the relation defined by (resc(x),resc(¥))a # 0. First, we will show that Irr(B) is
a union of KOR-blocks. Since the KOR-blocks are a partition of Irr(G), it is clear
that Irr(B) is contained in a union of KOR-blocks. It is sufficient to show that if
X € Irr(B) and ¢ € Irr(G) are such that (resc(x),resc(¢) )a # 0, then ¢ € Irr(B).
Let x € Irr(B) and ¢ € Irr(G) be such that (resc(x),resc(¥) )a # 0, that is

Z dyedyo (e, V) # 0.
@, 9€b

In particular, there exists some ¢, ¥ € b such that dy,dyg(p,¥)c # 0. Hence,
dyy # 0 # dyy and (p,¥)g # 0. Thanks to Corollary 2.4, we conclude that 1) lies
in the C-block of x.

Now suppose I : CIrr(B) — CIrr(B’) is a generalized perfect isometry. Let
X, ¥ € Irr(B). Then

(resor (1(x)) s rescr (1)) )a = (I (resc(x)), 1 (resc(¥)) )a = (reso(x), resc(¥) )

because I is an isometry.
Conversely, assume that I is a KOR-isometry. Let x € Irr(B). We have

Iesc(x) = I| > (resc(x)¥)av

Pelrr(G)

— Z (resc(x),resc(¥) )l (y)

Yelrr(B)

= Z (rescr (I(x)),rescr (I(2))) )ar 1 ()

Ypelrr(B)
= D (reso(I00).1(®)e 1(¥)
Yelrr(B)
= rescr(I(X)),
proving the claim.
Proposition 2.14. Suppose that {B; |1 < i < r} is the set of KOR-blocks of G

with respect to a set of classes C. Then there is a Z-basis b of ZIrr(G)C such that
the B;’s are the C-blocks of G with respect to b.
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Proof. By definition of the KOR-blocks, the sets Irr(B;)¢ and Irr(B;)¢ for i # j
are orthogonal with respect to ( , )¢, implying that

ZIrr(G)° = @ ZTrx(B;)C.
i=1

Choose any Z-basis b; of ZIrr(B;)¢ and write by for the dual basis of b; in the
C-space CIrr(B;)¢ with respect to {, )g. Define b = by U...Ub,.. Then b is a
Z-basis of ZIrr(G)¢. Moreover, since by C CIrr(B;)¢, and since the KOR-blocks
are orthogonal, we deduce that b¥ = bY U...Ub) is the dual basis of b. Now, for
© € b;, we have

O, =resc(P,) = Z Z dy,resc(x) = Z dy resc (),

Jj=1 x€lrr(By) x€lrr(B;)
because @, € CIrr(B;)¢. Hence, for X’ ¢ Irr(B;), we have
dye = (o, X o= D dyp(reso(x),resc(x))a = 0.
x€Irr(B;)

This proves that B; is a union of C-blocks. Furthermore, we have seen in Re-
mark 2.13 that conversely, the C-blocks are unions of KOR-blocks. The result
follows. 0

Proposition 2.15. Let I : CIrr(B) — CIrr(B’) be an isometry, and assume that
I(ZTrr(B)) = ZIrr(B'). The following assertions are equivalent

(i) I is a generalized perfect isometry.

(ii) If I(z,y) # 0, then either (x,y) € Cx C", or (x,y) € CxC , where C = G\C

and C' = G\C'.
Proof. Suppose that I is a generalized perfect isometry. Note that Clrr(B)“+ =
ClIrr(B)¢ and
(13) Clrr(B) = CIrr(B)¢ ® CIrr(B)C.
Moreover, for any ¢ € CIrr(B’), there is x € CIrr(B) such that I(x) = ¢ (because
I is an isometry). Thanks to Equation (12), we have resc/ (¢) = I(resc(x)). Hence,
the restriction I : CIrr(B)¢ — ClIrr(B')C" is surjective, and yet bijective (because
I is injective). Since I is an isometry, we have
I((Chr(B)°)*) = I (Ch(B)°)" = (CIrx(B)°)*.

It follows that
(14) I(CIre(B)C) = CIre(B))C .
Now, we choose a C-basis b of ClIrr(B) with dual basis b and a C-basis b of

C IH(B)6 with dual basis b . Therefore, thanks to Equation (13), bUb is a C-basis
of CIrr(B) with dual basis b ub’. Writing I with respect to this basis, we obtain

(15) I=Y avel(a)+Y BV eI(p).
acb BEb

Now, let (z,y) € C x C’. Then Equation (15) gives I(z,y) = >aes @V (@) () (y).
But I(a) € CIrr(B')”, implying that I(a)(y) = 0. Hence, I(z,y) = 0.
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For (z,y) € C x C’, we similarly conclude that I(z,y) = 0 using Equations (15)
and (14). This proves that (i) implies (ii).
Conversely, assume that (ii) holds. Fory € G’, we write [, : G — C, z — I(z,y).

This is a class function on G. We now write I with respect to the C-basis Irr(B).
Thus, Equation (11) implies that for x € Irr(G) and y € G’, we have

)W) = > 100X

oclrr(B)
= <I’LJ7Y>G

|G‘ley

zeG

In particular, for any ¢ € CIrr(G) and y € G, we have
(16) )(y) T, )
\GI 21

Let x € CIrr(B) and y € G'. Applying Equation (16) to resc(x), we obtain

I(resc(x))(v) |G|ZI=’E3JI"€SCX |G|foy
zeG zeC
Suppose that y € C'. Then I (r,y) # 0 only if + € C and the second equality
gives I(resc(x))( ) = 0. Otherwise, if y € C’, then I(z,y) = 0 for z ¢ C. In
particular, ‘G‘ Y owec I(x,y)x(z) is equal to I(x )(y) =resc/(I(x))(y). This proves
that I satisfies Equation (12), whence is a generalized perfect isometry. ]

Remark 2.16. Note that Equation (13) applied to B’ and Equation (14) imply
that
resg ol = I oresg.

Corollary 2.17. Let G and G’ be two finite groups. We assume that Hypotheses
(1), (2) and (3) of Theorem 2.10 are satisfied, and we keep the same notation. If
Iy (ZIre(B)) = ZIrr(B'), then Iy} is a generalized perfect isometry.

Proof. Let (z,2') € G x G'. Write p and ' for the type of z and z’. Suppose that

') ¢ CxC"and (x,2') ¢ C xC'. Then either y = {1} and p/ # {1}, or p # {1}
and ¢/ = {1}. Since o({1}) = {1}, we deduce that p’ # U( ). Thanks to Lemma 2.6
and Equation (5), we have for every A € Ag and ¢ € b, either e)(®,)(z) = 0, or
oy (I3~ L(#))(2z') = 0. In particular, Equation (7) gives I{l}(x,x') = 0, and the
result follows from Proposition 2.15. O

2.5. Broué’s isometries. In this subsection, we fix a prime number p and assume
that C' and C’ are the sets of p-regular elements (that is, elements whose order
is prime to p) of G and G’, respectively. Let B and B’ be a union of p-blocks of
G and G’'. Denote by (K,R,k) a splitting p-modular system for G and G’. Let
I:CIrr(B) — CIrr(B’) be an isometry such that I(ZIrr(B)) = ZIrr(B’) and T
defined in Equation (6) is perfect, that is

(i) For every (z,2') € G x G, I(z,2’) lies in | Cq(z)|R N | Cer ()| R.

(ii) T satisfies property (ii) of Proposition 2.15.
We call such an isometry a Broué isometry.
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Remark 2.18. In fact, the perfect character u : G x G’ — C defined by Broué
in [1] is not exactly T, but p(z,2') = I(z~1,2'). However, since the sets of p-regular
and p-singular elements are stable under g — g1, it follows that p is perfect if and
only if Tis perfect.

Remark 2.19. Since the set of irreducible Brauer characters IBr,(G) is a Z-basis
of ZTrr(G)® which satisfies the conclusion of Proposition 2.14, Remark 2.13 and
Proposition 2.15 imply that a Broué isometry is a perfect generalized isometry (in
our sense and in the sense of Kiilshammer, Olsson and Robinson).

Theorem 2.20. Assume that G and G’ are two finite groups and that C and C' are
the sets of p-reqular elements of G and G, respectively. Suppose that the following
three conditions are satisified:

(i) The hypotheses of Theorem 2.10 hold.
(it) For any A € Ao, we have I\(ZIrr(By)) = ZIrr(B ).
(iii) For every g = gs-gc € G and g = g, - go € G', p does not divide |E) 9s.gc|
for any A € A, and p does not divide |Egg7g,0/| for any N € A'.

Then Ity is a Broué isometry.

Proof. By Remark 2.19 and Corollary 2.17, Ify satisfies Property (ii). We thus
only prove Property (i). For A € Ay, we take by = IBr,(B)). In particular, Zby is
the set of projective characters of By. By Assumption (ii), and Hypothesis (iii) of
Theorem 2.10, since I is injective, one has

I\ (ZTrr(By) NCbY) = I (ZTrr(By)) N I, (ChY) = ZIrr(B(’T()\)) n (Cb;o\).

Hence, Corollary 2.3 gives Jy(ZbY) = Zb’(\,/()\), and it follows that J; '(¢) €
ZIBrp(B(;(A)) for all ¢ € Zbx. Now, let by and b§ be as in Remark 2.9. Let
¢ € b5. Let g € G and ¢’ € G'. Write g = g5 - gc and ¢’ = g% - i, and assume
that g is of type p. Then by Lemma 2.6, one has ex(®4)(g) = 0 for A # p and
en(®s)(9) = |Cal9)l Xy cer —2o(zc) _  Fyrthermore, thanks to Equation (5)

95.90 1Ca,(zc)l”

and the fact that p does not divide \50(“) |, we deduce that I, (J;;~ L)) (g') € R.
Now, by Equation (7) and Theorem 5. 10 we obtain

I{l} 9.9 Z Z Dy () ‘lfy(u)((};*l(ﬁf?))(g') cR
|Calyg | e S |Ca, (zc)lp |Ca, (zc)lpy

because 1/|Cg, (zc)|y € R, and ®4(zc)/| Ca, (xc)lp € R by [20, 2.21]. Similarly,
using Remark 2.12, we deduce that f{l}(g, d)/1Ca(g")] € R, as required. O

Remark 2.21. The proof of Theorem 2.20 shows that the condition (iii) can be
replaced by Iy(CIrr(By)(C)) = Clrr(By())(C’) for any A € A, where similarly to
Remark 2.9, CIrr(B,)(C) denotes the set of class functions of C Irr(BA) constant on
&) , for any y € C'N Gy. Indeed, with this assumption, we have J; ! (Zby(C)) C

XY

Zby(»)(C'), and Remark 2.7 gives that ZU(A (J37H(¢)(g") € R for any ¢ € bS and
g ed.
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3. ALTERNATING GROUPS

Let n be a positive integer and p be a prime. We denote by P,, (or P) the set of
partitions of n, by O,, (or O) the set of partitions of n whose parts are odd, and by
D,, (or D) the set of partitions of n whose parts are distinct. We also write OD,,
(or OD) for O,, ND,, (respectively O ND). Moreover, for A = (A1,...,\.) € P, we
write [A\| = > \; and 4(A) = 7.

3.1. Notation. For any A € P,, we write x, for the corresponding irreducible
character of &,, and A* for the conjugate partition of A. It is well-known that
Xax = X ® ¢, where € denotes the sign character of &,,. The character y is called
self-conjugate when A = A\*. We denote by SC,, (or SC) the set of self-conjugate
partitions of n. For any A € SC,,, write A € OD,, for the partition whose parts are
the diagonal hook lengths of A (see [22, p.4] for the definition of a hook and its
hook length. Recall that with the notation of [22], a diagonal hook is an (¢, ¢)-hook
for some ), and define the map

(17) a:8C, — OD,, A A\

We remark that a is bijective, and that a=1()\) is the self-conjugate partition whose
diagonal hooks have lengths the parts of .

Now, recall that Resi: (xa) is irreducible if and only if X is a non self-conjugate
partition (i.e. A # A*). In this case, x» and x)~ restrict to the same irreducible
character, which we denote by py). Otherwise, when A = A\*, the restriction of x
to A, is the sum of two irreducible characters p, and pj\'. Moreover, the conjugacy
class of &,, labeled by a(\) splits into two classes a(\)* of A, and following [12,
Theorem 2.5.13], the notation can be chosen such that pi(a(\)*t) = x\ £ y» and

pE(a(N)7) =\ F yx with

1 n—k 1 e
(18) xxzi(—l) z  and y’\:§\/(_1) gkhl...hm

where a(A) = (hy > he > -+ > hy). Note that z) = xa(a(N))/2, and if x € A,, does

not belong to the class of &,, parametrized by a()), then p (z) = py (z) = xa(2)/2.
Let g be a positive integer. To any A € P, we associate its g-core A, and its

g-quotient A = (A,... \9); see for example [22, p. 17]. Recall that the map

(19) A= (A, A9)
is bijective. Define
(20) AD* = (\)*, ... (AH*).

Then by [22, Proposition 3.5|, the g-core and g-quotient of \* are )\?q) and A9~
respectively. In particular,

(21) A=X =\, =Xy and D" =),

3.2. p-blocks of A,. The “Nakayama Conjecture” asserts that two irreducible
characters lie in the same p-block of &,, if and only if the partitions labeling them
have the same p-core; see [12, Theorem 6.1.21]. Hence, the p-blocks of &,, are
labeled by the p-cores of partitions of n. Such p-cores are called p-cores of n (or
of &,,). For a p-core v of n, we denote by B, the corresponding p-block of &,
Moreover, we define the p-weight of v (or of B,) by setting w = (n — |v|)/p.
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Let v be a p-core of n. Then ~* is also a p-core of n, and Irr(B,~) = {xx+ €
Irr(&,) [ Ay =7} = Irr(B,)*.

If v # ~*, then Irr(B,) N Irr(B4+) = 0 and Irr(B,) contains no self-conjugate
character. In particular, the p-blocks B, and By~ cover a unique p-block b .« of A,
which is such that Irr(by ,+) = {px € Irr(An) [ Ay = 7} = {px € Iir(An) [ Ay =
7'}

Assume instead that v = v*. Suppose that w > 0. By Equation (19), there is a
partition A of n with p-core v and p-quotient ((w), @, ..., ). Furthermore, x5 # X~
by Equation (21) and x» € Irr(B,). Hence, x» restricts irreducibly to A,,, and |20,
Theorem 9.2] implies that B, covers a unique p-block b, of A,,.

If, on the other hand, w = 0, then Irr(B,) = {x,} has defect zero. If n < 1,
then A,, = &,, = {1}, and py = x5 is the trivial character. The case n = 2 does
not occur, because there are no self-conjugate partitions of size 2. If n > 3, then
{p?} and {p7 } are p-blocks of defect zero of A,,.

3.3. Broué perfect isometries. Let ¢ be a positive integer. For A\ € P,, we
denote by M,()) the set of u € P,,_4 such that p is obtained from A by removing
a g-hook. (The definition of g-hooks, and the process to remove a g-hook from a
partition, is for example given in [22, p.4,5,6]). Note that, if u € M,()), then
p* € My(A").

For p € M,()), we denote by c,’) the g-hook of X such that y is obtained from A
by removing cf;. Define

c)\
(22) ay = (=1)H,

where L(c),) denotes the leglength of ¢, (see for example [22, p. 4] for the definition
of the leglength of a hook).

Lemma 3.1. If q is an odd integer, then af; = af‘tz,

Proof. First, note that cﬁ: = (cf‘t)* In particular, the leg of cf;: is the arm of cf;.

Hence, L(c}) + L(c).) = q — 1. Since q is odd, the result follows. O

Lemma 3.2. Assume that q is odd, and that A = \*. The set M,(\) contains a
self-conjugate partition if and only if ¢ € {M, ..., Ax}. In this case, My(X\) contains
a unique self-conjugate partition p, and p is such that @ = X\\{q}.

Proof. Since A = \*, it follows from Equation (21) that A = (A?7*T1)* where
M@ = (X1 ... \9) is the g-quotient of \. Moreover, by [22, Theorem 3.3] the
multipartitions of n — ¢ obtained from A(@ by removing any 1-hook are the g¢-
quotients of partitions of My(X). In particular, p € My(X) is self-conjugate if and
only if u* = X for 1 < i < (¢ — 1)/2 and pl9tD/2 is a self-conjugate partition
obtained from A(4+1)/2 by removing a 1-hook. However, when we remove a 1-hook
from a self-conjugate partition, the resulting partition is never a self-conjugate
partition, except if the removing box is a diagonal 1-hook. We now conclude with
the argument of the proof of 2, 3.4]. O

Assume A = A*. In the case that M,(\) contains a (unique) self-conjugate
partition p, then we write puy = p (which is well-defined by Lemma 3.2). Let
py " € My(X). We write p ~ ' if and only if ¢/ = p*, and we denote by M, ())
a set of representatives modulo ~. Finally, for A € P,,, we set a(\) = 1if A £ \*
and a()\) = 1 otherwise.
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Theorem 3.3. Let q an odd integer and A € P,. If X # \*, then we write
Pr = p}f = py\. Let o be a g-cycle with support {n —q + 1,...,n}. Then for
e € {£1} and g € An—q, we have

pieg) = > alpf.p)eul@+ D (alps. o) o (9) +alph pp) i (9)) 5

HEMJ(X) HEMg(X)
wEL* p=p*

where the complex numbers a(pS, p}}) (1 € {£1}) are defined as follows.
~ If w* # poand p* € My(X), then a(pS, pp) = a(N)(a) + ag).
~ If pt # poand p* ¢ My(N), then a(pS, pu) = a(N)ay.

~ If gt = poand p # pa, then a(ps, pfl) = a(Nag.

~ If p* = p and p = py, then a(ps, pjl,) = 5 (afu + 6?7\/(*1)(‘1*1)/2(1)'

Proof. This is a consequence of Clifford theory and the Murnaghan-Nakayama for-
mula in &,,. We only prove the last case for e = +1. Assume that A = \* and that
og has cycle type X. By Lemma 3.2, g € fix—. Now, if X\ = (hy > hy > --- > hy)
then

px(og) = ;(XA(Ug)i\/(l)Whlmhk),

1 3 1
{p,m*}CMg(X) weMg(N)
nFEP* pEEMg(N) ptp*
1 — ]- n—=k
DL 3o (9) o (9) £ 5\/(4) = hy -,
HEMg(N)
n=p*

If we write A\{q} = (b} > --- > h},_,), then
n— q— (n—q)—(k—1)
VED b = )T g () g,

= VDT g (o, (9) =y (9)) -
The result follows. O

Remark 3.4. In the last proof, when A = A* and p € P,,_, is not self-conjugate and

satisfies {u, u*} C My(X), then a(p, pu) = a;, because, by Lemma 3.1, oy = ..

For ¢1, g2 multiples of p, we define
(23) My, q5(A) = {p € Mg, (v) |V € Mg, (M)},

and M, .. (\) denotes a set of representatives modulo ~, where ~ is defined in a
similar way as before Theorem 3.3. Moreover, for p € My, 4,(\), we denote by

P the set all of pairs (c), ct,), where v € Mg, (A) and pu € Mg, (v).

Theorem 3.5. Assume that q1 and g2 are even multiples of p. Let 0 = o109
be such that o; is a g;-cycle (for 1 < i < 2), and the supports of o1 and o9 are
{n—qg—q+1,...,n—q} and {n—qa+1,...,n}, respectively. Then for e € {+1}
and g € An—q,—go>

pilog) = > alpp)eul@t+ Y. (ales.pt) o) (9) + a(ps. o) pp (9)) 5

REMY oo (V) HEMqy g5 (N)

HFEp* p=p*
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where the complex numbers a(pS, pj}) (n € {1}) are defined as follows: if u* # p
and p* € My, 4,(N), then

o v A .
a(pS, pu) = a(X) o (ke 4 3 (= 1) HeD+L(E)

A q1,92 A v q1,:492
(e, e)EPLL (2.l ) EPYLIA

In all other cases, one has

A v
alp, o)) =a(h) Y (—DHeTEE),

(e,e)ePiti?

Proof. Apply twice the Murnaghan-Nakayama formula in &,, and conclude with
Clifford theory. (I

Let ¢ be an integer. For A € P,, and p € M,(\), we introduce the relative g-sign
Og(A, 1) = 04(N)0q(1) as in [19, p. 62], where §4(N) is the ¢g-sign of X (see [19, §2]).

Lemma 3.6. Assume that q is odd. For any A € P, one has d4(X) = d4(\*).

Proof. Let k be the g-weight of \. We construct a sequence of g-hooks cy,...,ck
by choosing ¢; to be a g-hook of A and ¢; to be a g-hook of A\\{ey,...,¢;—1} for
2 < i < k, such that A\{c1,...,cr} = A(g. Note that cj,...,c} is a sequence of
g-hooks from A* to A7,. So, by [19, Corollary 2.3], §,(\) = 54N, A9 and [19,

Proposition 2.2] yields
(24) 5q()\) _ (—1)L<C1)+"'+L(C’“) and (5(]()\*) _ (_1)L(c;)+..A+L(Cz).

Now, by the argument of Lemma 3.1, we deduce that L(c¢;) = L(c¢}) mod 2 for
1 <i <k, because ¢ is odd. The result follows. ([

Let v and ~ be two self-conjugate p-cores of &,, and &,,, of the same p-weight
w > 0. We denote by b, and b, the corresponding p-blocks of A, and A,,,
respectively. Let A € P, be such that A\(,) = v. By Equation (19), there is a unique
partition W()\) € Py, such that ¥()\),) =+ and ¥(A)®) = \P). In particular, if we
denote by f the canonical bijection between the set of hooks of length divisible by
p in A and the set of hooks in A(®) as in [19, Proposition 3.1], then for any integer
g divisible by p and p € M,(\), we have

A\ T(X)
(25) f (Cu) =f (C‘I’(H)) )
where ¥ : P,,_; — Pp—q is defined as above. Moreover, [19, Corollary 3.4] gives
(26) (—1)H) = (=) M Dg, (A, ).

Lemma 3.7. Let A and ¥(\) be as above. For any multiple ¢ of p and p € My(\)
such that p # p*, we have ¥(u) # ¥(u*). Moreover, pu* € My(X) if and only if
V() € Mg(¥(N)). In this case, U(u*) = ¥(p)*.

Proof. This is a consequence of [19, Proposition 3.1] and of [22, Proposition 3.5]. O

Proposition 3.8. Assume p is odd and keep the notation as above. We have

€dp (A €dp(T(A 5p (T
5p(N)d,(p)a (pA ( )’pzép(u)) = 6,(T(N))0, (T(1))a (Pwm() ( ))ml(ﬂ() m)))_
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Proof. Let £, be the set of partitions of n with p-core «y. Since 7 is self-conjugate, by
Equation (21), A € &, is self-conjugate if and only if its p-quotient is self-conjugate.
The same holds for 4" and ¥(\) € £,/. In particular, for A € £,, we have

a(\) = a(TN)).

Let ¢; and g2 be even multiples of p. With the notation of Theorem 3.5, for any

partition p € My, q,(X), if (¢}, ¢4) € Py, then Equations (25) and (26) give

Bp (A ) (=DM =5, (A, ) (- ) I TIN5, (X, )6, (v, 1)
= 0Ny () (=) DTGNS, (X)3, ()8, ()8, (1)
_(CHIEe) ()
IRUSENAI GG
) o (v)
= 6p<w>,w<u>><—1>L<%<~>>“(Cw>>.
Now, using Lemmas 3.6 and 3.7, we deduce that, if p # p* and p* € My, 4,(N),
then s, \
5p (0 )alpy "™, pu) = 0, (TN, ())alpig 5" ™, puy).
Note : Lemma 3.6 is used only when we apply the above computations to evaluate
A v
Op( A, ) (1)KLl at the second line, we get a term 8, (1)d,(u*), which is
thus 1. In the same way, a term 0, (¥ (u))d,(¥(u)*) disappears at the end.
We conclude similarly for the other cases appearing in Theorem 3.5 and for the

coefficients appearing in Theorem 3.3, except for A = \* and g = py. In this last
case, first note that W(u) = pug(x). Moreover,

1
a(p: Ply) = Q(Qﬁﬂren (—1)(q‘1>/2q)

= BN ) ()3, (E(nr)) g ()

+0p(A)3p (122)0p (W (X)) (W (121) )€ (—1)(‘11)/2(1)

A)6, (T(A Sp(12)8, (T
= SN2 (W () (pigp) 7 YO, b 00200
as required. ([l

Theorem 3.9. Let p be an odd prime. Assume that v and ~' are self-conjugate

p-cores of &, and &, respectively, and of same p-weight w > 0. Let b, and b, be

the corresponding p-blocks of A,, and A,,. Define, for all A € £, and € € {£1},
€8, (M), (T(A

(27) I:ClIrr(by) = Clrx(by), p§ = 0,(N3,(T(N)pgry) .

Then I is a Broué perfect isometry.

Proof. First, we prove that A, has an MN-structure. Let S be the set of elements
of A,, with cycle decomposition o7 - - - 0,. (where we only indicate non-trivial cycles)
such that each o; is a cycle of length divisible by p. We remark that when o; has
even length, there is j # i such that o; has even length (because oy ---0, € A,,).
Moreover, S contains 1 and is stable by A,-conjugation. Let C' be the set of p-
regular elements of A,,. Now take any o € A,,. Using the cycle decomposition of
o, there are unique elements og € S and o¢ € C with disjoint support such that
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o = 0g0c = ocog. In particular, Definition 2.5(1) and (2) hold. Denote by J
the support of og, J = {1,...,n}\J and define G,, = A5. Then G, satisfies
Definition 2.5(3). Write Q for the set of partitions of the form p - 8 such that

— There is some i < n such that p - 8 is a partition of 4.

— The number of even parts of 3 is even. In particular, we choose the notation
such that 5 = (B1,...,08;) with |8] = 81 + -+ + Bk and thereis 1 <r <k
with 3; even for 1 < i <r and f; odd for i > 7.

Note that each partition of €2 labels either one A,-conjugacy class of S or two
classes. Denote by A the set of parameters for the A, -classes of S obtained by
this process. The elements of A will be denoted p - B, with B = whenp-p €
labels a unique class of S, and B € {87,587} when p - 3 labels two classes of S.
The notation is chosen as in Equation (18). For p - B € A, we assume that the
representative o5 = 05 ---05, of the A,,-class labeled by p - B in A,, satisfies that
the cycle o3, has support {1 +Zj<ipﬂj, ce, ngipﬂj}. Moreover, when p- 3 labels
two classes of A,,, we assume that Og+ = 0p- for every 2 < ¢ < k, and Tt and 04
are representatives of the A,.3,-classes labeled by p - 87 and p - 8, respectively.
In particular, o5 has length p - ; and the support of o7 is {1,...,p|8|}. Hence,
Goy = Anpis|-

Now, we denote by €y the subset of partitions p - 5 € 2 such that || < w,
and by Ag the corresponding subset of A. For p- 8 € g, define B CIrr(b,) —
Clrr(by (A, —pjs))) by applying iteratively Theorem 3.3 with o = o3, when ; is odd
and Theorem 3.5 with o = 95,95, when S; and ;41 are even. By Theorems 3.3
and 3.5, Definition 2.5(4) holds. This proves that .4, has an MN-structure with
respect to b, and the set of p-regular elements of A,,. Let A € &,. Then 77 (pF)(g) =
pf (Uag), and for p - E € A\Ap, the Murnaghan-Nakayama rule in &,, and Clifford
theory imply that pf(ogg) = 0 except, maybe, when A = \* and 059 is in the class
of &, labeled by a(\). In this last case, A has more than w diagonal hooks with
length divisible by p, contradicting the fact that A\ has p-weight w. This proves
that, if p - E ¢ Ay, then B =0.

We define similarly an MN-structure for A,, with respect to b,, and the set of
p-regular elements of A,,. We denote by ', ), A’ and A{, the corresponding sets.
Note that Qg = €.

There are two cases to consider. First, assume that |[Ag| = |Aj|. In fact, this
case occurs if and only if Ag = Af), because Qo = €.

Now, we will prove that Theorem 2.10(2) holds. Let p - B\ € Ay. Write 8 =
(B1,...,0k) and r as above. Set q; = p|G;| for 1 < i < k. For i > r, write
x; = ¢;, and for 1 <4 < r/2, write z; = {q2i—1,q2:}. We also set s = n —r/2.
For 1 <i < s, define My, ., (A) ={p € My,(v)|v € My, .. 2, ,(A)} (recall that
M, (v) is defined as in Equation (23) when z; has two elements).

Let 6 € Irr(b,). There are A € £, and € € {£1} such that = pi\apo‘) (with
the convention, as above, that if A # A*, then p)f = px = py). Then we set

0p(8) = 0p(\) and ¥(0) = pf;(")gp(’\)) € Irr(by/). We have

.....

(28) 3(9) = 3 a(,9) 9,

d€lrr(by (n—p|B]))
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where b, (n — p|B|) denotes the union of p-blocks of A, covered by the p-block
B, of &,_, 3 labeled by v. By §3.2, b,(n — p|3|) is a p-block of A,_, 3, except
when |y| > 2 and |[3] = w. In this last case, it is a union of two p-blocks {p7}
and {p7} of defect zero. Similarly, we denote by b..(m — p|3|) the union of p-
blocks of A,,_p 5 covered by the p-block of B,/ of &,,_, 5 labeled by 7. Define
Is : CIrr(by(n — p|B|)) — ClIrr(b, (m — p|B|)) as in Equation (27). Note that

(29) a(0,9) = Y a(o,¥1)a(dr,¥2) - a(We1,7,),
F1,.0,05-1
where 99 = 0, ¥s = 1, and the sum runs over the set of 9J1,...,95_1 such that for

each 1< < s, there are j1; € M,, () and ¢ € {£1} such that v; = p""").
Since

0p(0)0p(9) = (0p(0)0p(91)) - (3p(91)8p(D2)) - - - (6p(Vs-1)dp(¥)),
and thanks to Proposition 3.8, we deduce that
5,(0)3, Za (90)0,(¥1)a(Vo, V1) - -
( ) ( s)a(Ps-1,9s)
(30) = 5,((0))6, (¥ (91))a(T (Do), ¥(91)) - - -
5p(¥ (195,1))51,( (9s))a(¥(Ps-1), U(Vs))
= 0p(W(0)) 3, (¥ (0))a(¥(8), ¥(9)).
In particular, one has
6p(0)0,(¥(0))a(¥(0), ¥(9)) = 0,(9)6,(¥ (V) a(8, ),
and it follows that
P (1(0))

=2

5,(0)8,(¥ () (¥ (9)),

= Gp(0)0p(W(0))a(W(0), ¥ (V) ¥(d),
Yelrr(by (n—p|Bl))

!
g

(31) = Ip(0)0p (¥ (9))a(8,9) W(9),
IElT (b, (n—p|A1))

a(6,9) I3(9),
—plB))
= I ﬁw».

I
MM

O€Irr (b,

Note : Assume H is a normal subgroup of G and the MN-structure of H comes
from Clifford theory. Then the 59)7‘A7y for G have all size 1 and the 5Qw for H have
size dividing this size for G multiplied by [G : H]|. Since here this index is 2, and
since p is odd, condition (iii) of Theorem 2.20 holds.

Note that the groups Ggg and G' have an MN-structure with respect to

(by(n = pIBI),CNGoy)  and (b (m—plB]),CNG,),

respectively. Applying the previous computations to G"B = A,_pp and G, =
B

Apm—p|a|> We conclude that the condition (2) of Theorem 2.10 holds for IE' Now,
Remark 2.11 gives the condition (3) of Theorem 2.10 for I. On the other hand, by
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construction, assumption (ii) of Theorem 2.20 holds. The result then follows from
Theorems 2.10 and 2.20.

Assume now that |Ag| # |Aj]. Without loss of generality, we can suppose that
|Ag| > |A{]. This means that Aj = Q. Since Ag < Qo, there is p- 8 € Qg such
that (p-3,17) € D,, N O,,. This p- B also belongs to A} and since Ag = Qo, p - 3
labels a unique conjugacy class of A,,, i.e. (p-f, 1|”f/|) ¢ D,, N Op,. This happens
if and only if |4/| > 2. (In fact, |y'| > 3 because 7' is self-conjugate.) Since 7/ is
self-conjugate, it labels two irreducible characters pj, and ey of Ay pw. Similarly,
Ao # Qo implies that |y| < 1. Note that in this case, although ~ is self-conjugate,
the restriction of x, from &; (or &) to A; (or Ayp) is irreducible (because it is the
trivial character of the trivial group). Let p- /3 be in Q.

Suppose that |8] < w or that |3] = w and (p-3,1"1) ¢ D,,NO,,. Then p-B € A,.
The same computation as in Equation (31) gives

(32) TEOIZIBO’/‘E.

Suppose now that |3| = w and (p-3,17) € D,NO,,. Then p- 3 parametrizes two
classes of S and one class of S’. Moreover, |Irr(b,(n — pw))| =1 and |Irr(b, (m —
pw))| = 2. Denote by G+ and Gg- two copies of the trivial group, and set
Irr(Gp+) = {14+ }. In particular, rﬁi(Cbﬂ,) = CIrr(Gp=x). Define Ig : Clrr(Gp+ ) ®
ClIrr(Gg-) — Clrr(by (m — wp)) by setting

(33) Is(lg+) = p3, and Ig(1s-) = p-

Let k be the self-conjugate partition of n whose diagonal hook lengths are the
parts of the partition (p - 38, 11"1). By [2, 3.4], the p-quotient of x satisfies k! = {)
if i # (p+ 1)/2 and k®P*Y/2 = By where fy is the partition of w such that
a(By) = . By the definition of ¥, the partition ¥(x) of m has the same p-quotient
as k. Thus, the proof of [2, 3.4] also implies that ¥ (k) has the same diagonal hook
lengths divisible by p as x, and the other diagonal hooks of ¥ (k) have p’-length. In
particular, a(¥(k)) has p- 3 as a subpartition (corresponding exactly to those of the
parts of a(¥(x)) that are divisible by p). On the other hand, the &,,-class labeled
by a(¥(k)) splits into two A,,-classes with representatives oo™ and oo™, where
the cycle type of 023 is p-3, and the p-regular elements o+ and o~ are representatives
of the split classes of A,,_p g labeled by a(y')* and a(y’)~, respectively.

Let p1 = &, pygy = v and the p;’s be partitions such that pg ~ pg ~ -+~
He(g), Where p; is obtained from p; 1 by removing the diagonal hook of length pj3;.

Since L(cji™") = L(cggz)‘l)) for every 1 < i < ¢(58) — 1, Equations (25) and (26)
give 0p (s, tit1) = 0p (U (17), ¥(wiy1)) and it follows from [19, Corollary 2.3] that

L(B)—1 (B)—-1
(34)  Op(k) = H Op (i, priv1) = H Op (W (i), W(piv1)) = 0p(¥(k)).
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Now, by [7, Theorem 11|, we have

P (xuwy) = 7 (6p(K)6p(¥(K)Xw(e))
= F OI(X}-@)
= Tor’(x)
= Xul(zg)(1{1y)
= Xu(Ts)Xy

where 25 denotes a representative of the &,,-class labeled by (p- 3, 11). Further-
more, Clifford theory gives

For 1 <1 < ¢(B), write ¢; = pf;. Then we have
(—1)2(n=@B171) = (_1)3(w—B)

and the product of the parts of (p- 8,11) is ¢ ... qe(p)- Thus, Theorem 3.3 gives
o)~ D) =V (CDEDE g g (5h - 03)

= 2 (ol =03,

because > (¢; — 1) = pw — £(B). So, we deduce from Equations (35) and (36) that

(36)

(37) (05 my) = (@ + €y )pds + (@ — eyi)p2-

Furthermore, one has

(38) () = (antep)lge and (o)) = (an — eyl
Hence, Equations (33), (34), (37) and (38) give

1 (77 (o) + 17 (02)) = (1(55)

Let now A # x be with p-core 7. Since p§(og+) = a(A)xx(2g), we derive from |7,
Theorem 11] and Clifford theory that Ig (rf" (p5) + 77 (p5)) = rP(I(pS)). Finally,
we obtain

(39) Ilgo(rﬁ++rﬁ_):rﬁ01.

Using Equations (32) and (39), Remark 2.11 holds. Hence, the condition (2.b) of
Theorem 2.10 is automatic for Iz with |3] < w, and is true for Is with |3] = w
(because the characters 15+ and p$ have defect zero). We remark that in the last
case, with the notation of Theorem 2.10, one has Jg_l = Is.

Write A and B for the sets of partitions 8 € Qg such that § = B and  # B,
respectively. Now, following step by step the proof of Theorem 2.10, we obtain

=3 ea(@y) (@) (T3 (9)) ()

BEA ¢€bg

303 ens (L) (@) (T3 (1gs) (2),

BEBse{+,—}

(40)
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where bg (for 8 € A)) is the basis constructed from the set of irreducible Brauer
characters in the p-block b,(n — p|5|) as in Remark 2.9. Since an analogue of
Remark 2.12 holds, we conclude as in Theorem 2.20. ([l

Theorem 3.10. Let p be an odd prime. Assume that v and ~' are non self-
conjugate p-cores of &, and &, respectively, of same p-weight w > 0. Let by =
and b 4+ be the corresponding p-blocks of A, and A,,. Let

1: Clrr(b%.y*) — (CII"I‘(b»Y/’—y/*), Px — 5p(/\)5p(\11()\))p\p(,\).
Then I is a Broué perfect isometry.

Proof. The proof is similar to that of Theorem 3.9. We use the same MN-structure.
In a sense, this case is easier, because every irreducible character in Irr(b, -) is the
restriction of a character of &,,. Hence, the Murnaghan-Nakayama rule for &,
directly gives the result. O

Theorem 3.11. Let v and ' be 2-blocks of A, and A, of the same positive weight.
Then I defined as in Equation (27) is a Broué perfect isometry.

Proof. The MN-structure is defined as in the case where p is odd, and one always
has that Ag = Q¢ = A{. Note that I satisfies the assumption of Remark 2.21. Only
the situation of Theorem 3.5 occurs. The result of Proposition 3.8 still holds, but
the simplifications explained in the note within the proof are different. For any
2-hook ¢, one has L(c) + L(¢*) = 1 mod 2. In particular, for any u € My, 4,(N),
we deduce from Equation (24) that

d2(p)oa(p") = (=1)" = 02( (1)) 02 (¥ (1)),

where 7 is the number of 2-hooks to remove from x to get to pu(2) (this is also the
number of 2-hooks we have to remove from W(u) to obtain W(u)(2)). The rest of
the proof is similar to that of Theorem 3.9. O

4. DOUBLE COVERING GROUPS OF THE SYMMETRIC AND ALTERNATING GROUPS

In this section, we will consider the double covering group én (for a positive
integer n) of the symmetric group &,, defined by

Gn={(2ti, 1<i<n—1|22=1,8 =2, (titi1)* = 2, (t:t;)> =z (i — j| > 2)).

The group én and its representation theory were first studied by I. Schur in [26],
and, unless otherwise specified, we always refer to [26] for details or proofs.
We recall that we have the following exact sequence

1—><z>—>(§n—>6n—>1.

We denote by 6 : S, — &, the natural projection. Note that for every o € Gy,
we have §71(0) = {7,205}, where 7 € &,, is such that §(5) = 0.
If we set
-/Zlvn = 9_1(An>7
then A, is the double covering group of the alternating group A,,.

Throughout this section, we fix an odd prime p.
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4.1. Conjugacy classes and spin characters of én If 2,y € én are G~5~n—
conjugate, then 6(z) and 0(y) are &,,-conjugate. Let o, 7 € &,,. Choose 7, T € &,,
such that 6(c) = o and 6(7) = 7. Suppose that o and 7 are &,-conjugate. Then
T is én-conjugate to & or to zo (possibly both). Hence, each conjugacy class C' of
&, gives rise to either one or two conjugacy classes of én, according to whether
o and zo are conjugate or not (here, o lies in C' and & is as above). In the first
case, we say that the class is non-split, and, in the second case, that it is split. The
split classes of &,, are characterized as follows. Recall that the conjugacy classes
of &,, are labeled by the set P,, of partitions of n. Write O,, for the set of m € P,
such that all parts of 7 have odd length, and D,, for the set of m € P,, with distinct
parts. The partitions in D,, are called bar partitions. Denote by D, (respectively
D, ) the subset of D,, consisting of all partitions 7= € D,, such that the number of
parts of m with an even length is even (respectively odd). Schur proved (see [26,

§7])

Proposition 4.1. The split conjugacy classes of én are those classes C such that
0(C) is labeled by O, UD,, .

We set s; = (i, + 1) € &,,. Then for every 1 < i < n — 1, we have 0(t;) = s;.
For m = (m1,...,7) € Pp, write s, for a representative of the class of &,, labeled
by m. If 85 = Sy, -+ Sx,, is the cycle decomposition (with disjoint supports) of s,
then we assume that the support of s, is

(41) 14 ) 7

J<i J<i

Now, for any w € P, we make the same choice of Schur [26, §11] for a repre-
sentative t, € én such that 6(t;) = s;. So, when © € O, UD, , the elements
t. and zt, are representatives of the two split classes of én labeled by 7. We
denote by CI (respectively C) the conjugacy class of ¢, (respectively zt,) in &,,.
It will also sometimes be convenient to write ¢} for ¢, and ¢, for zt,. When
m € Pp\ (O, UD, ), the elements t, and zt, belong to the same conjugacy class
C of &,. In all cases, an element g (or an &,-class C) is said to be of type m if
the &,,-class of 0(g) (respectively of 8(g) for any g € C) is labeled by .

Note that if 7 = (71,...,7) € Pp, then the construction of [26, III p.172]
implies that

(42) tr =tn, -ty

Convention 4.2. Let 7 = (m1,...,7m) € Ppn. In the following, we do not neces-
sarily assume as usual that w1 > -+ > m. Instead, we assume that the parts of
are ordered in such a way that my > -+ > my, and w41 > - -+ > Tk, where u is such
that Tyy1, - .., T are exactly the odd parts of ™ which are divisible by p (if there is
no such part in 7, then u = k).

We are now interested in the set of irreducible complex characters of én Any
irreducible (complex) character of S, with z in its kernel is simply lifted from an
irreducible character of the quotient &,,. Any other irreducible character £ of én
is called a spin character, and it satisfies £(z) = —&(1). In particular, for any spin
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character € and any 7 € P,,, one has £(zt,) = —&(t,), which implies that £ vanishes
on the non-split conjugacy classes of én

Define £ = sgn o 6, where sgn is the sign character of &,,. Note that A,, = ker(¢).
Then ¢ is a linear (irreducible) character of én, and for any spin character & of én,
e ®¢ is a spin character (because € ® x(z) = —e ® x(1)). A spin character ¢ is said
to be self-associate if €€ = £. Otherwise, £ and €€ are called associate characters.
It follows that, if € is self-associate and m € D,,, then £(t,) = 0 = {(ztr).

In [26], Schur proved that the spin characters of én are, up to association, labeled
by D,,. More precisely, he showed that every A\ € D, indexes a self-associate spin
character &, and every A € D, a pair (5;{, &) ) of associate spin characters. In this
case, we will sometimes write £, for f;\r, so that £, = &€,

For any partition A = (A1,..., Ax) of n (where we don’t include 0 parts), we set
|IA| = >°A; and we define the length £(\) of A by ¢(A\) = k. If A is furthermore
a bar partition (i.e. if the parts of A are pairwise distinct), then we set o(A) =
(—1)M=¢N) | With this notation, we then have (see e.g. [22, p. 45])

(43) AeDeW,

If o(M\) =1, then X is said to be even; otherwise, it is said to be odd.
Schur proved in [26] that, whenever A = (A1,...,A\;) € D,,, the labeling can be
chosen in such a way that, for any 7 € D, , we have

(44) 5 () = i ™ [ R

Writing zy for the product A; ... Ay, we therefore have, for any m € D,
(45)

_ n—r+1 z _ n—r+1 z
&5 (tn) = &5 (2tr) = Onri T \/E and &5 (2tr) = & (tx) = —6ani o

Finally, for any m € O,,, we have
G (tr) =& (tn)  and ] (stx) = &5 (2tx).

4.2. Conjugacy classes and spin characters of A,. We also write 6 : A, — A,
for the restriction of 6 to A,,. As above, the type of g € A, is the partition encoding
the cycle structure of 6(g). As above, there is a notion of split classes with respect
to 0. Such classes will be called A,,-split in the following. On the other hand, since
An is a subgroup of 6 with index 2, every (‘5 -class contained in An is either a
single Ap- class or a union of two A,-classes. In the second case, the A,,-classes will
be called &,-split classes. By [26, p. 176], we have

Proposition 4.3. Assumen > 2. The A, -split classes ofjn are the classes whose
elements have type m € D;F U O,,.

Remark 4.4. Let t € A, be with support contained in X = {k,k+1,...,k+1}
forsome 1 <k <nand 1l <[withk+1<n. Let 1 <i¢<n—1 be such that
{i,t+1}NX = 0. Then ¢t and t; commute. Indeed, since e(¢t) = 1, there are
integers k < j1,...,Jor < k+1—1such that t =¢; ---t;,, Furthermore we have
li — ju| > 2 for all 1 <u < 2r. Hence, 'it, = zt, and tlt = ert = t, as required.
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Assume n > 2. Let 7 € D UO,,. If 7 ¢ D} N O, then 7 labels two classes D}
and D of .Zn. We assume that t, defined above lies in D, so that representatives
for D} and D are 7.7 = t, and 7 = zt,.

Otherwise, if 7 € DF N O, then 7 labels four A,-classes (that are A,-split and
én—split simultaneously). Write m = (71, ..., ) with respect to Convention 4.2,

2
and oy, = zﬁs—ltm. According to [26, footnote (*), p. 179, o, has odd order.
Furthermore, we assume that the support of s, is as in Equation (41). So, t; € éﬁ.
Since my € Df, N Oy, the elements o, and "o, are not .Km—conjugate. Now, we
get 7T =t - tr,0r and

(46) o=ttt ot =t and 70T =2l
So, 7T, 7—* 71~ and 7.~ belong to 4 distinct A,-classes, labeled DI+, D~

Df~ and D7~ respectively. Note that tlt,rj = tn; for j > 1 by Remark 4.4. In
particular, one has 77~ =t -t Or, .

We can now describe the irreducible complex characters of A,,. These are given
by using Clifford’s Theory between &,, and the subgroup A, of index 2. All the
irreducible components of the restrictions to A, of non- spin characters of S, have
z in their kernel, whence are non-spin characters of A,. They are exactly the
irreducible characters of A, lifted from those of A,,.

We now turn to spin characters (which are the irreducible components of the
restrictions to A, of the spin characters of &,,).

First consider A € D,,. Then A labels two associated spin characters £, and &5
of én, which have the same restriction to /~ln The restriction

(47) O = ResS (€f) = Res T (€7)

is an irreducible spin character of ./Tm and its only non-zero values are taken on
elements of type belonging to O,,. N
Now consider A € D;f. Then A labels a single spin character £, of &,,, and

Res 7" (&) = (¥ +¢;, where ¢ and ¢ are two conjugate irreducible spin characters

of jn Throughout, the characters C; and ¢, are also called associate characters.
These only differ on elements of type A. Following Schur [26, p. 236], we have,
writing A for the difference character of £x (which is not well-defined, but just up
to a sign), that

—£( .
(48) A(t) = +i 2 \/K if ¢ has' type A,
0 otherwise,

where z is defined after Equation (44).
We will now make the notation precise. We distinguish two cases. Suppose first
that A € D\ O,,. Then @T and ¢, are completely defined by setting Ay = Cj —(y

IEYTEN . .
and Ay(1y¥) =i~ 2  /z», where 7, is the representative of D} as above. Note
n=t()

that, using Equation (48) and 7, = 27y, we deduce that A\(7y ) = —i" 2 /Zx.
Since, for € € {—1,1},

(49) ¢ = (Res m(EN) + eAA>

w\H



28 OLIVIER BRUNAT AND JEAN-BAPTISTE GRAMAIN

and &, (ty) = 0 (because C is a non-split class of &,,), we obtain

(0) GO =gMEE)  and  GR) = 5ANT) = 5 M)
And, on any element o of type m # X of .,Zn, we have

(51) & (0) = G (0) = 36a(0).

Now suppose that A € D;f N O,,. Again, we completely define C;r and ¢y by
setting Ay = ¢(f — ¢ and A\(ry ) = = V/Zx. Note that this does define
Ay, and thus ¢, and ¢, by Equation (49), since we have Ay(7y 7) = —Ay (7 T)
because 7, T = 27y, and Ay (17 7) = —A\ (77 T) by Clifford theory, because the

elements T;—_ and T/{H' are G,,-conjugate, and C;\" and ¢, are &,-conjugate. Finally,

on any element o of type ™ # A of A,,, Equation (51) holds.

4.3. Combinatorics of bar partitions. We just saw that the spin characters of
én and .,Zln are labeled by the set D,, of bar partitions of n. We now present some
of the combinatorial notions and properties we will need to study the characters
and blocks of these groups. For all of these, and unless otherwise specified, we refer
to [22]. Note that, in this subsection and the next, where we only describe the
standard combinatorics associated to bar partition and spin blocks, the parts of
partitions and bar partitions are again ordered in decreasing order.

Let A= (A1,...,A) € Dy, with Ay > -+- > A, > 0. For 1 <i < r, consider the
set

Ji,)\ = ({1,,)\1}U{>\1+/\J|j > Z})\{)\L—)\]|] >i}.
The multiset B(A) = |J;_, Ji,x is the multiset of bar lengths of A, which will play a
role analogous to that played by hook lengths for partitions.

The shifted tableau S(\) of X is obtained from the usual Young diagram of A by
shifting the ith row i — 1 positions to the right, and writing in the nodes of the
ith row the elements of .J; y in decreasing order. The jth node in the ith row of
S(A) will be called the (4, j)-node of S(X). Write a;; for the integer lying in the
(i,7)-node of S(A). As in the case of hooks, we can associate to this node a bar b; ;
of A whose length is a; ;. The construction goes as follows. If ¢ 4+ j > r 4 2, then
b; ; is the usual (4, j)-hook of S(A). If i+ j = r+1, then b; ; is the ith row of S(\).
Finally, if ¢ + j < r, then b; ; is the union of the ith row together with the jth row
of S(X). In all cases, one checks that a; ; is exactly the number of nodes in b; ;, and
is therefore called the bar length of b; ;. We can also define the leg length L(b; ;) of
the bar b; ; by setting

L(bi,) = kA > Ak > A — ai i} ifi+j>r+1,
ne >‘i+j + |{k‘)\z > A\ > )\i+j}| ifiJrj <r.

As for hooks, it is always possible to remove any bar b from S(\). If b has bar
length a, then this operation produces a new bar partition, written A\ b, of size
n—a.

Let ¢ be an odd integer. We call g-bar (respectively (g)-bar) any bar b of A
whose length is ¢ (respectively divisible by ¢). Note that, for any positive integer
k, the removal of a kg-bar can be achieved by succesively removing k bars of length
g (this fails when ¢ is even). By removing all the (g)-bars in A, one obtains the
G-core Ag) of A. One can show that A4 is independent on the order in which one
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removes g-bars from A. In particular, the total number wz(A) of g-bars to remove
from A to get to A¢g) is uniquely defined by A and ¢, and called the g-weight of A.
Note that wz(A) is also equal to the number of (g)-bars in .

It is also possible to define the g-quotient A(@ of X\, which contains the informa-
tion about all the (g)-bars in A (see [22, p. 28]). We have A(@ = (A0 AL, ... \°),
where e = (¢ — 1)/2, A\° is a bar partition, and the A\¥’s are partitions for 1 <i <.
For any integer k, we define a k-bar b’ of A@ = (X°, X1 ...  \°) to be either a
k-bar of A%, or a k-hook of \* for some 1 < i < e. The removal of ¥ from A\ is
then defined accordingly, and the resulting g-quotient is denoted by A(@ \ ¥’. The
leg length L(b') is also defined in a natural manner. We then have the following
fundamental result (see [22, Proposition 4.2, Theorem 4.3|)

Theorem 4.5. Let g be an odd integer. Then a bar partition A determines and is
uniquely determined by its g-core A\ and its g-quotient XD Moreover, there is a
canonical bijection g between the set of (q)-bars of A and the set of bars of XD | such
that, for each integer k, the image of a kq-bar of X is a k-bar of XD . Furthermore,
for the removal of corresponding bars, we have

(AN\0)@ = AD\g(b).

Note that the above theorem provides a (canonical) bijection between the set of
parts of A with length divisible by ¢ and the set of parts of \° (see [22, Corollary

(16)).

Theorem 4.5 also implies that the g-weight wg(\) of X satisfies wg(X) = >°5_ [\
(we say that A(@ is a g-quotient of size |\@ | = wg(\)), and that [A| = |Aq)|+qwg())
(see [22, Corollary 4.4]). In addition, if we write, in analogy with bar partitions,
o(\@) = (—1)"\(4”_6@0) = (=1)wsM—=¢(X") then we obtain that

(52) o(\) = a()\@)o()\@).

When we introduce analogues of the Murnaghan-Nakayama rule for spin charac-
ters later on, we will also need to use the relative sign for bar partitions introduced
by Morris and Olsson in [19]. Given an odd integer ¢, one can associate in a canon-
ical way to each bar partition A a sign d7(X). If u is a bar partition obtained from
A by removing a sequence of g-bars, then we define the relative sign d7(X, ) by

(53) dg(A, ) = 0g(X)dg(1)-

It is then possible to prove the following results (see [19, Proposition (2.5), Corollary
(2.6), Corollary (3.8)]):

Theorem 4.6. Let A and p be bar partitions, and q be an odd integer.

(i) If p is obtained from X by removing a sequence of q-bars with leg lengths
Ly, ..., L, then
3100 ) = ()b
In particular, the parity of Zle L; does not depend on the choice of q-bars
being removed in going from A to .
(i1) If v is a g-core, then 65(7y) =1, so that

dg(A) = d0g(A, Ag)-
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(iii) If b is a (q)-bar in X and p = A\ b, then

(,1)L(b) - (,1)L(9(b))5q(/\7 1),
where g is the bijection introduced in Theorem 4.5.

4.4. Spin blocks of 6 and .An, Bijections. We now describe the blocks of irre-
ducible characters of 6 and .An, as well as bijections between them. Throughout
this section, we assume that ¢ is an odd prime (even though all the combinatorial
arguments hold for any odd gq).

If B is any g-block of én, then B contains either no or only spin characters. In
the former case, B coincides with a g-block of &,; in the latter, we say that B is a
spin block. The distribution of spin characters into spin blocks was first conjectured
by Morris. It was first proved by J. F. Humphreys in [11], then differently by M.
Cabanes, who also determined the structure of the defect groups of spin blocks (see
3)). )

Similarly, any g-block B* of A,, contains either no spin character, and coincides
with a ¢-block of A,,, or only spin characters, and is then called a spin block.

The spin blocks of &,, and A, are described by the following:

Theorem 4.7. Let x and ¢ be two spin characters of én, or two spin characters
of /Tn, labeled by bar partitions A and p respectively, and let ¢ be an odd prime.
Then x 1is of g-defect 0 (and thus alone in its q-block) if and only if X is a g-core. If
A is not a q-core, then x and 1 belong to the same q-block if and only if A\(g) = fu(q)-

One can therefore define the g-core of a spin block B and its G-weight wg(B),
as well as its sign o(B) = 0(\(g)) (for any bar partition A labeling some character
X € B).

One sees that the spin g-blocks of positive weight (or defect) of S,, can be paired
with those of A,. The spin characters in any such g-block of A, are exactly the
irreducible components of the spin characters of a g-block of S

We can now define bijections between different blocks of possibly different groups.
Let w > 0 be any integer, and let Q,, be the set of g-quotients of size w. For any
g-core v, we let E, ,, be the set of bar partitions A of length |y|+qw with wgz(\) = w

a~nd A@@ = 7, and we denote by B, ., and B, the spin g-blocks of éI'YH-qw and
Ajy|4+quw respectively labeled by +. Note that the characters in B, , and those in
B, are labeled by the partitions in E, ,,. Note also that
. - E%w — Qw
v A 2@
is a bijection. It provides us with the following:
Lemma 4.8. Let q be an odd prime, w > 0 be any integer, and v and v be any
q-cores. Define the bijection
U = \Il;,l oW, By — By .
(i) If o(v) = o(y'), then U induces bijections ¥ between B, . and By, and P
between B, and BJ,
(i) If o(y) = —a(’y) then U induces bijections ¥ between B, and B,

U* between B ., and By .

2w and
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Proof. This follows easily from the definition of ¥ and formula (52), which gives
that, for any A\ € E, ,, and g € E ,,, we have o(A) = o(7)o(¥,())) and o(p) =
(v )o (¥, (1)). We therefore have (taking p to be W(\))
a(¥(N) = o (7)o (T (T(N) = o (7)o (T (U1 (T4 (V) = (7)o (T4 (V)
so that o(¥,(\)) = (7)o (¥(N)) and, finally,
o(A) =ca(v)o(¥)o(T(N))  forany A € E, .
This means that, if o(y) = o(v'),

of spin characters in &[4, and A|7|+qw as U(\) does in 6\7 |+qw and A\'y ' 4quw
respectively. If, on the other hand, o(y) = —o(7), then A labels label the same

then any A € E,,, labels the same numbers

numbers of spin characters in 6|7|+qw and -A|~/\+qw as ¥(A) does in "ZW'HL]U} and
le |+qu Tespectively.
We obtain the following description for the bijections U and U*:
) If a( )= ( '), then, for any A\, p € E, ,, with o(X\) =1 and o(p) = —1,

T f\If \) Tk . { {C,\ ) Q} — {C\;()\)a C\;(A)}
v { 5 }o— {fq, ) Su } and Cu — Cu ()

(ii) If 0( )= ( ), then for any A, p € E, ,, with o(A) =1 and o(p) = —1,
~ Co(n) A { {CA O {f\;(}\)a 5\1_;()\)}
v { /1, ) 5/1. } — {C\p ) C\;(#)} and W7 CN — 6\11(/,4,)

O

4.5. Morris’ Recursion Formula and MN-structures for én and .Zn First,
for the convenience of the reader, we prove the following useful lemma.

Lemma 4.9. Let p € &,, be an element of odd order. Then the set 0~1(p) has an
element of odd order.

Proof. Let g € 06~ 1(p), so that 0=1(p) = {g, zg}, and let d be the order of p. Since
0(g?) = 0(g)¢ = p? = 1, we obtain g? € {1,z}. If g¢ = 1, then the order of g is
odd. Otherwise, g% = z, and (z9)? = z9g? = 22 = 1 because d is odd. Thus zg has
odd order, as required. (I

In the following, if p € &,, has odd order, then we denote by o, the element of
6~1(p) with odd order.

A. O. Morris was the first to prove a recursion formula, similar to the Murnaghan-
Nakayama Rule, for computing the values of spin characters of &,, (see [17] and
[18]). This formula was then made more general by M. Cabanes in [3]. We have
the following:

Theorem 4.10. [3, Theorem 20] Let n > 2 be an integer, ¢ € {2, ..., n} be an
odd integer, and p a q-cycle of &, with support {n —q+1, ..., n}. Let X be a bar
partition of n. If o(X) = 1, then we write §, = S\r =&, . Then © = o, satisfies
Cs, (@) = &g x (x) and, for all g € &,

(54) & (xg) = > algh &)&ula)+ D (al&h. &g (9) +al&l. 6)& (9),

WEMg(X) HEMg(X)
o(p)=1 o(p)=-1

where My(X) is the set of bar partitions of n — q which can be obtained from X\ by
removing a q-bar, and a(fj\r,ﬁj) a(ér ;&) € C* are the following:
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i o(u) = 1, then a(&f, &) = (~1)"Fa), )

- Zfo(u) —1 and p# M\ {q}, then a(&F, &) = (&, ;) = 3(—1)° s’laz,
—ifo(p) = -1 and p = )\2\ {q}, then a(&7,61) = 5(— 1) = 1(oz +i'T \/6)
and a(&5, &) = $(=1)" () = i7" /3.

The aﬁ ’s are the coefficient found by Morris in his recursion formula (see [18,
Theorem 2|). They are given by

a)\ — (_1)L(b)2m(b),

n
where L(b) is the leg length of the q-bar b removed from A to get p, and
m(b) = { 1 ifo(A)=1ando(pn) = —1,

0 otherwise.

Remark 4.11. Note that, with the notation of Theorem 4.10, since &, (zg) =
sfj\'(:cg), and since, with a slight abuse of notation, £(zg) = £(g) (as ¢ is odd and
x = 0,), we can also write

(55) & (ag)= > alr &G0+ 3 al&rENE (9) +aler & )6 (9),

nwEMg(X) HEMg(N)
o(u)=1 o(p)=—1
where, whenever o(u) = 1, a(§,,&,) = a(fj\',fﬂ), and, whenever o(u) = —1,

(5)\ 5€+) - a(f)\ 7£ ) and a’(f)\ v§ ) - a(f;f,—f)

Lemma 4.12. Let q be an odd number, and a € A, be of cycle type (q) such that
0(a) has support I = {n—q+1,...,n}. Let g and ¢’ be in .,Zn_q such that ag and
ag’ are A -conjugate and in an A -class labeled by A\ € D}. Then g and g’ have
type = A\{q} € D;}_, and are Ay _q-conjugate.

Proof. With the assumption, it is clear that g and ¢’ have cycle type u. Let ¢t € Ap
be such that *(ag) = ag’. Then ?®(0(a)0(g)) = 0(a)d(g'). Since Vf(a) is a g-cycle
of 8(a)f(g’) and O(a) is the unique g-cycle of 8(a)f(g’) (because all the cycles of
this element are distinct), it follows that W@ (a) = 0(a). Thus, I is invariant by
0(t). Set v :=6(t)|; € S;. Then v € Cg,(0(a)), and since the cycle type of 6(a) is
odd and distinct in Ay, one has Cg, (0(a)) = C4,(0(a)), and in particular, v € A;.
Now, let v € A; be such that 0(v) = v. By Remark 4.4, we have "g = g. Write
w=tv '€ .Zn,q. Then Ya = a or Ya = za, and since a and za have distinct
order, we deduce that “a = a. It follows that a*¥g = “(ag) = t(ag) = ag’, and
wg =g with w € ,Zn,q, as required. O

Remark 4.13. Let ¢ be an odd multiple of p and A = (A1,...,A\x = q) € D;} be
as in Convention 4.2 (in particular, ¢ is the smallest odd part of A divisible by p).
Assume that n — ¢ > 2 and write I = {n—¢+1,...,n}. Let p be the g-cycle of &
with respect to the choice of representatives given before Equation (41). Denote by
t, the element of S such that 6(t,) = p with respect to the choice of Schur [26,
§11], and write g = (A1,..., A\k—1) € Drf_q. With the choice of Equation (46), one
has 75 = t,m if X ¢ Oy, (note that pu ¢ O,_) and it = t,miE if X € Oy (in
this case, p is automatically in O,,_,).
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We now obtain an analogue of Theorem 4.10 for A,. Let q be an odd number
such that n —¢ > 2. Let p and ¢, be as in Remark 4.13. According to [26, footnote

2_
(*), p- 179], recall that o, = z%tp.

Theorem 4.14. Let q be an odd integer such that n—q > 2. We keep the notation of

2_ ~
Remark 4.18 and we set x := o0, = qultp. In particular, x € A,, and Cz. (x) =
.Zn_q x {(x). Assume that the choice for the labels of the classes (and thus for
the labels of the characters by §4.2) are as in Remark 4.15. Take any A € D,,
e€{-1,1} and g € A,—q. When X\ € D;;, we set ( = ¢ = (. Finally, let 7
be the cycle type of xg. Then, if X # w, or if A =7 and q is the last part of \, we
have

Glg) = D allule) + > (ales ¢NGH9) +alls, ¢ )G (9)) »

weMqg(X) WEMg(N)
o(p)=—1 o(p)=1

where the coefficients are the following:

~ifAe Dy, then a(Cx,Cl) = (—1)*

apy for all € My(X) and n € {-1,1},

where af) is as in Theorem 4.10.
2_
—if A € Dy, then a((5,¢u) = %(—1)q81a;\t whenever o(p) = —1, and

a?-1 .q—1
(CA,C”) = %(f ) s (a:} +eni~z \/q) forn € {—1,1} whenever o(u) = 1.
Proof. First assume that A\ € D, . Then, by Equation (47), and Clifford theory
applied to Equation (54), we obtain the following. Whenever o(u) = —1, we have

aCr, o) = ale &) +al&f &) = 5(-1)

al): +
and, whenever o(u) = 1,

a(Cn, CF) = a(Cn, ) = alEf, ) = (—1) 50,

as required.
We now consider the case where A € D;". By Equation (49) and Clifford theory
applied to Equation (54), we obtain

5 (29) = 5 (Ex(ng) + Daleg))

-y —“(5;5“)<c;(g>+c;<g>>+A*(”)
(56) wEMg(N)

o(p)=1

N Z a(éx, &) +alén. &, )Cu()

nEMq(X)
o(p)=-1

We need to deal with the term w. Recall that this is 0 unless xg has cycle
type m = A. We start by noticing that, if xg does not have cycle type A, then
g does not have cycle type p for any p € My(\) with o(p) = 1. Indeed, if p is
obtained from A by removing a bar b of odd length ¢, then, depending on the type
of b, we have £(u) = £(N\), (un) = €(A) —2 or £(u) = £(A) — 1. In the first two
cases, we obtain o(p) = (—=1)""9 ™) = —g()\). The last case can only happen
if b is a part of A, in which case p = A\ {¢q} and o(u) = o(\). This has several
consequences. The first is that {u € My(\) |o(n) = 1} is either empty, or contains
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only the partition A\ {¢}. This in turn implies that xg has cycle type X if and

only if {u € My(N)|o(p) =1} = {A\ {q}} and g has cycle type A\ {¢}. Finally,
{n € My(X\)|o(n) =1} is empty if and only if A does not have a part of length g,

and, if this is the case, then w =0 forall g € /~ln,q.
We therefore suppose that A does have a part of length ¢, so that

{ne My(N)[o(p) =1} = {A\{g}}.

We will show that, if 1 = X\ {q}, then, for all g € .Zn_q, we have

(57) Ax(zg) = (—1) T VgAu(9)-

If g does not have cycle type pr = A\ {¢}, then A,(g) = 0, and g does not have
cycle type A, so that Ay(zg) = 0 and Equation (57) holds.

Now, assume that g has cycle type u. Then xg has cycle type @ = A, so we
assume furthermore that ¢ is the last part of \. If A € O, (resp. A ¢ O,), then
there are signs (5 and 1 such that zg is A, -conjugate to T)\ (resp. to T)(\S). It

follows that tpz 5 g and 7')\ = tpT‘ST’ (resp. 79 = tpT ) are .An—conjugate By
C===

2
Lemma 4.12, 2" g is A,_ q-conjugate to 75“ (resp. to T, ) that is, g € D,

a?-1
(resp. gED 0 6).

Now, using the values and properties we gave for the difference characters, we
obtain that, for zg € D;\r (or similarly for zg € D/J\H'), we have
n—~0(\)

Ax(zg) =Ax(DY) = i = =

.n—qtq—Lt(p)—1

= 1 2 1/\(/(?\/@
(58) = 9 &= fzw S \/TL
= T \fA (D)

= (_)QSZQ\[AM()

Using the property Ay(Dy) = —AA(D;F), and its analogues for the classes Df\ci,
we easily deduce that Equation (57) does hold for all g € A,,_,.
Now, from Equations (56) and (57), and Theorem 4.10, we deduce that, for

q

2_
pe My(\), if o(u) = —1, then a(¢f,¢,) = L(—1)"5 a), and, if o(u) = 1, then
a?-1 .a—1 _ a®—1 .q—1
alCX.¢h) = 3(-1)"% (ap +i"7 /q) and a((y,¢) = (1) (ap —i77 /q).
Our analysis of the term Ajx(zg) also yields a similar formula for ¢, (zg), and

using Equation (55), we deduce the values of a(¢,,])) for all p € M,()\) and
ne{-1,1}. O

Remark 4.15. Let n and ¢ be as above. Assume n = g or n = ¢+ 1. Then
.Zn,q = Z- and the only spin character is the non-trivial character ¢ of Zs, labeled
by p = 0 or 4 = (1) whenever n = gqorn = g+ 1. Set 7 = (¢) if n = ¢
and 7 = (q,1) if n = ¢+ 1. Then there are 4 classes of A, labeled by m with
representatives 72+, Write of = 7%, Let k € {0,1} and A\ € D,, be with g-core

2_
p. If X € D, then (y(oF2F) = (=1)* 10[26(2’“). If A € D} and A\ # 7, then
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2
Cn(of2k) = %(fl)q 5 aﬁs(zk). Finally, for 6, n € {—1,1}, one has

G9)  Clolt) = lode(y = T

2 4

(a; + ot \/a) e(zh).

We define Cg,, to be the set of elements of G,, none of whose cycles has length
an odd multiple of p. We then let

(60) Cg =0"'(Cs,) and Cz =Cg N A,

Finally, we let Cz and C; be the sets of (respectively S,.- and .Zn—) conjugacy
classes in Cén and C 1, respectively.

From now on, if G is a finite group and C a union of conjugacy classes of G, then
C-blocks is meant in the sense of KOR-blocks (see Proposition 2.14).

We start by showing that the spin p-blocks of &, (respectively A,) are also
Cg, -blocks (respectively Cz -blocks). Recall that the p-blocks of S, are just the
6n p'-blocks, where S, n.p' is the set of p-regular elements of G Similarly, the
p-blocks of A, are its A, p-blocks. Note that, by definition, we have Sn » CCg

and An,p/ cCx

Lemma 4.16. The p-blocks and Cé’L-blocks of spin characters of én coincide, and
the p-blocks and C;n-blocks of spin characters of A, coincide.

Proof. Let x and & be a non-spin and a spin character of én, respectively. Since
X is constant on the split classes, we deduce that (x,& )an = 0. Thus, spin and
non-spin characters are never in the same Cén—block.

Now, take any two spin characters € and & of &, such that ¢ & {¢,e£}. Then
the only elements of Cén \én,p’a if any, on which ¢ doesn’t vanish belong to
split conjugacy classes labeled by the partition labeling £ (this is because any split
conjugacy class of Cg labeled by a partition of Oy, and thus without even cycles,

must also belong to én’pr). And since ¢’ & {£, &£}, we see that £’ vanishes on these
elements. In this case, we therefore have

(61) (€ €)oq, = 6808, , = 685, , = (E6,E)cq, -

Assume that & ¢ {£,2£} lies in the same p-block as €. Then there are distinct spin
irreducible characters & = &;,...,& = & such that & # £for 1 <i < s—1 and
(§i,&ir1)g , # 0. We can assume that & # &f for all 1 < i < s. Indeed, let 2 <
1 < s be buch that & = e£. Since (§;—1,&i)g = (61,88 = (&1,
by Equation (61), we can take s = i. We also can assume that @H # g&; for all
1 < i < s—1. Otherwise, if there is 1 < ¢ < s — 1 such that &1 = €§;, then
i < s—1, and since &2 & {&,&i+1) = {&, <&}, we deduce from Equation (61)
that (§1+1, Siva)a ., = (&, &ir2)e ~, and we can remove §;1 from the chain.

Hence, Equatlon (61) gives (§Z,§Z+1> <§1,§,+1>CN forall 1 <i<s-—1,
and the characters £’ and £ lie in the same C~ -block.

By a similar argument, Equation (61) lmpheb that if & ¢ {£, &£} lies in the same
Cx n—block as &, then they are in the same p-block.
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Furthermore, if £ # €&, then either £ and €€ belong to the same p-block, or each
is alone in its respective p-blocks. In the first case, the p-block which contains &
and &£ also contains some spin character £’ such that & = &£’ (this follows from [21,
(2.1)]). In particular, in the p-block of £, there is some irreducible £” ¢ {£, £} such
that (£”, 5)@ , # 0. Thus, by Equation (61), we obtain <§”,§>C§" = (5”7@@” L=
&, Ef>C~ , and ¢ and €€ belong to the same Cg -block. '

In the second case, & and &£ have p-defect zero. In particular, £ and e are
labeled by a p-core A € D, and A is p- regular Hence they both vanish identically
on p-singular elements, so also on Cg \ Gn p'» and they are each alone in their
respective Cg blocks as well. The result follows.

For the case of A,, the argument is similar. O

We can now define on 6 and A an MN-structure with respect to the set of
spin p-blocks of S, and A, and the sets Cg and Cjz defined in Equation (60),
respectively. For this, we define Sg,, to be thg set of elements o € 6, all of whose
cycles have length 1 or an odd multiple of p. By Lemma 4.9, we denote by o, the
element of én of odd order such that 6(o,) = o, and we let

(62) Sz ={os|o€Ss,} and Sz =S5 NA,.

Note that, since p is odd, and since we only consider odd multiples of p, we have
Sj = Sé NA, =

Pr0p051t10n 4.17. Let n > 0 be any integer, and p be an odd prime. Let Sp(G )
and Sp(A ) be the sets of spin p-blocks of S, and A, respectively. Then S, has
an MN-structure (as defined in Definition 2.5) with respect to Cg —and Sp(Sn,),

and .Zn has an MN-structure with respect to C;n and Sp(./Tn).

Proof. First note that, by Lemma 4.16, Sp(én) and Sp(A‘n) are indeed unions of
Cén—blocks and C 1, -blocks respectively.

To stick with the notation of Definition 2.5, we take G € {én, A}, B = Sp(@),
C =C¢ and S = Sg (as defined above). Properties 1 and 2 of Definition 2.5 are
immediate consequences of the definition of S and C. For g € S and z¢ € C,
we have (rg, z¢) € A if and only if the non-trivial cycles of 6(zg) and 6(x¢) are
disjoint (in particular, xg and x¢ commute).

Now take any zg € S. If x5 = 1, then G; = G, By = B and r! = id clearly
satisfy Properties 3 and 4. If, on the other hand, xg # 1, then, by definition of S,
we have xg = o, for some 0 € Sg,,. Write 0 = 07 - - - 0%, where, for each 1 <17 <k,
o; is a g;-cycle for some odd multiple ¢; of p, and the o;’s are pairwise disjoint.
In particular, o; € Sg, and, since o; € A,, [26, 111, p.172] gives 0, = 04, * * * 0, s
and Cg(zs) has as a subgroup the group H = Gay X (06,) X -+ X (0g,), Where
Gy = Gn s g G = S, and Ggg = JZ(’”/_Z,]L-C:lq'i if G = A, (and with the
convention that 60 = Ay = (2)).

Property 3 now follows from the definition of A we gave above. Clearly, if
xc € Gz4 N C, then the non-trivial cycles of 8(x¢) and (xg) are disjoint, so that
(zs, xc) € A. Conversely, if (zg, x¢) € A, then one must have x¢ € Cg(zg). If
zc € Cg(xs)\ H, then 0(x¢) must permute (non-trivially) the (p)-cycles of 6(zg);
in particular, the non-trivial cycles of 8(z¢) and 6(xzg) cannot be disjoint, so that
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(xs, xc) € A. Hence, if (zg, z¢) € A, then necessarily ¢ € H. Now, in order for
¢ to be disjoint from xg, we see that one must have zc € G,4. This proves that
Gz NC ={zc € C|(xs, zc) € A}.

Finally, we obtain Property 4 by iterating Theorem 4.10 and Theorem 4.14. By
considering (and removing) the “cycles” o,, (1 < i < k) one at a time, and in
increasing order of size, one sees that we can define r*$(x) for any spin character
X € B. By construction, r%9(x) does satisfy r*S(x)(zc) = x(zs - z¢) for all
(xs, zc) € A. Taking B, to be the set of spin characters of G, and extending
7S by linearity to CIrr(B), we obtain the result. (]

4.6. Broué perfect isometries. Throughout this section, we denote by p an odd
prime number.

Let n, ¢ and A be as in Theorem 4.10. Suppose furthermore that ¢ is an odd
multiple of p, and that w;(\) > 0. Next consider any spin p-block B’, of &,,, say, of
the same weight and sign as the p-block B of §;f, and the bijection W described in
Lemma 4.8. In particular, ¥ preserves the parity of bar partitions. Now, since ¢ is
a multiple of p, the removal of a g-bar can be obtained by removing a sequence of
p-bars, and one sees from Theorem 4.5 that M, (¥(A)) = U (Mg (N)). This is a slight
abuse of notation, as ¥ should only act on partitions of the same weight as A, while
the elements of M, () have a smaller weight. But we see that ¥ is compatible with
the bijections gx and gg(y) given by Theorem 4.5, since everything goes through
the (common) p-quotient of A and W¥(A). Also, thanks to Equation (52) one has
o(U(u)) = o(p) for any p € My(A). We then have the following:

Proposition 4.18. Let the notation be as above. For any p € My(X), and for any
e, n € {1, =1}, we have
€dp(A . b5 (T (A Op (¥ (p
Sp(NGp()a(es’ ™™, 1 1)) = 5,(W ()55 (@ (u))a(eg iy N, €nrs ).
Proof. Let u € M,()\) be obtained by removing the g-bar b from A. Then, by
definition of ¥, we see, using Theorem 4.5, that W(u) € M, (¥ (X)) is obtained by
removing the g-bar ¥(b) from WU(\).

We start by comparing aﬁ and 0438; By definition, we have

(63) aﬁ _ (71)L(b)2m(b) and aigi; _ (71)L(\I/(b))2m(\ll(b))7
where
[ 1 ifo(A)=1lando(u) =—-1,
(64) m(b) = { 0 otherwise.
and

1 ifo(¥(N) =1and o(¥(u)) = -1,
0 otherwise.

(65) m(W (b)) = {

And, since ¥ preserves the parity of partitions, we see that m(b) = m(¥(b)).
Now L(b) is related to L(gx(b)), where gy is the bijection described in Theo-
rem 4.5. Similarly, L(¥(b)) is related to L(gg(x)(¥(b))), but, as we remarked
above, gy (x)(¥(b)) = gr(b). We have, by Theorem 4.6(iii), applied to the (p)-bar b,

(66) (—DFO = (~)HPOg(A, p) = (=1) X 55(N) 5 (1)
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and similarly

(o7 (FDHOD = (1) DG, (3))3p(¥ (1),
whence
(68) 5p(N)65 (1) (—1)2®) = 55 (W(A)) 55 (W (12)) (—1) ¥ OD,

If o(p) = 1, then & = &, = &, and a(£],8,) = a(éy . &) = (- 1) ap. We
a2 A)
(1)

8
also have o(¥(p)) = 1, so a(fq,(/\),fw ) = (g Eu) = (=1 T ag (). Thus
Equation (68) immediately gives the result.

Suppose now that o(u) = —1. Then, by Remark 4.11, we have a(gg,,g;) =
a(fi‘,f;) and a(§y,§,) = a(fA, +). We need to distinguish between the cases
w=A\{q} and p # A\ {¢}. If p = A\ {¢}, this means b is a part of length ¢ in .
Then, in Theorem 4.5, g(b) must be a part of length ¢/p in the first (bar) partition
of A@ (see [22, Theorem (4.3)]), and W(b) is then a part of length ¢ in W()\). We
thus have p = A\ {q¢} if and only if ¥(u) = T(N) \ {¢}.

Suppose first that that p # A\ {q}, so that U(u) # U(A)\{q}. Then, by Theorem
4.10 and Remark 4.11,

a(€, &) = al&, &) = al&y &) = al&) &) =

and
- - - - Looy2=t vy
(Eainy Eon) = a0y ) = W€y &) = ®ainy €pn) = 5D ag ),

so that Equation (68) gives the result.

Suppose, finally, that (o(p) = o(¥(n)) = —1 and) = A\ {¢}, so that ¥(u) =
W(A) \ {¢}. This is the only case which is not straightforward. By Theorem 4.10,
we have

N 1 a?-1 A La—1 + e 1 a?-1 A Lg—1
a(€y &) = 5(=1) T (au+i7 Va) and a(§y,€,) = 5(-1)F (o —1F V/q)
(and similar expressions for a(fjpr(A),g&#)) and a(g‘;j()\),f;(#))). Since, by Remark
411, a(&y,&7) = a(€l,€,) and a(€y,€,) = a(&, &), we deduce that, for any
ee {1, -1},

€™, €07) = 2 (—1) (@) + 55350 V)

5p(¥(N)

(and a similar expression for a(f,lj \D(“)))). Multiplying by 65(A)d5(1), we

) 5"/’(
obtain, using Equation (68),

5p(NSp()a(es™ ™, gty = 1(—1)=F (5_(A)5ﬁ(u)aﬁ+ei%\@)
L (RS el + a5 )

q—1

= 0T N))I(W ()5 (—1) 5 (ay ) + b (W)W ()T va) .

whence

55N 3p()a (€577, €)= 35w ()W () (g5 M €5 ) -
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Using Remark 4.11, this implies the last equality we have to prove:

SN (€767 ) = s (Na(u)a (6, )

05(T(N))65(¥(1))a 5\;3 5(T(N) ’56 5( (1))

= 5;5(\11()\))(51,( (u)a 6\61,5()\(\1/()\ ,6_6 (,1, )

O

Now we consider p-cores v and 7/, and a positive mteger w. Let B and B’ be the
spin blocks of 6 and Gm of weight w and p-core v and ~" respectively, and let B*
and B’* be the corresponding spin blocks of A, and A, . Suppose furthermore that
o(y) = —o(v’), so that, with the notation of Lemma 4.8(ii), U is a sign inversing
bijection, and T gives a bijection between B and B'*.

Proposition 4.19. Let the notation be as above, and assume m — q > 2. For any
A € D,, with p-core v and p € My(N), and for any n, € € {1, —1}, we have

5p(NGp()a(€l" ™ €51 1) = 6, (W) (W (1))a(Clor ¥, a0y,

Proof. First, assume that A € D;F. Then by Lemma 4.8(11), U(\) € D,,. Further-
2,
more, by Theorem 4.10, for any pu € My (A), we have a(€y,§,) = (-1)*F o) when-

w
ever o(u) = 1, and a(éy,&F) = a(ér, &) = %(—1)(1 glaﬁ whenever o(u) = —1.

As previously, we see that ¥ is compatible with the bijections gy and gy (y) given
by Theorem [22, Theorem (4.3)], whence it gives a sign inversing bijection between
M,(T(X)) and My(X). If p € My(X) is obtained by removing the g-bar b from A,
then ¥(u) € My(¥(N)) is obtained by removing the g-bar ¥(b) from ¥(\), so that

wi- For this, we use Equations (63), (64) and (65).

Since U(A) € D, we see that m(¥(b)) is always 0, so that O‘gg;};; = (1)@,
And, since A € D, we see that m(b) = 1 and o), = (—1)£®2 whenever o(u) = —1,
while m(b) = 0 and o)), = (—1)=® whenever o(u) = 1.

As in the proof of Proposition 4.18, L(b) is related to L(gx(b)), and L(¥(d)) to
L(gw ) (¥(b))), and gy(x) (¥(b)) = ga(b). Thus, using Equations (66) and (67), we
see that Equation (68) holds. If o(u) = 1, then o(¥(u)) = —1, and we obtain

we want to compare a;, and «

5(A)0p(1)alSx, &) (—1) 5 6, (\) 35 )ach
(= 1)"5 55(\)3p () (—1)L®)
= () (B () (1) )
= (D) T (TS (T () org )
= 05(¥(N))dp

(W(m))a(Cwn) Swu))-
) 1

If, on the other hand, o(u) = —1, then o (¥ (u , and we obtain
2

Sp(Ndp(m)a(én, &) =
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Assume now that A € D,;. Then ¥U(A\) € D;}.. Note that A has a part of length
q, if and only if U(\) has one. If this is the case, then o(A\ {¢}) = —1 and

{n € My(N)]o(u) = ~1} = {A\ {q}}. Otherwise, {u € My(A)[o(n) = ~1} is
empty. By Theorem 4.10, we have a(£Y,€,) = (—1)* o

a6, 6 = 5D T @M+ VD) and al€, ) = 5 (<) T (ad—i"T Va),

2
whenever o(u) = —1 (and = A\ {¢}).

Furthermore, if o(p) = 1, then a(&;,€,) = a(&F,€,), and, if o(u) = —1, then
a(€y. &) = al€], &) and a(€5,€,) = a(6], 1)

As in the previous case, ¥ gives a sign inversing bijection between M,()\) and
M,(T(X)). If u € My(X) is obtained by removing the g-bar b from A, then ¥(p) €
M, (¥ (X)) is obtained by removing the g-bar ¥(b) from ¥(\). Note that o(\) = —1
and o(¥(A)) = 1, and for p € My(X), we have o(pu) = —o(¥(p)). In particular,
Equations (64) and (65) give m(b) = 0, and m(¥ (b)) = 1 whenever o(u) = 1, and
m(¥ (b)) = 0 otherwise.

If o(u) = 1, then m(¥(d)) = 1 and o(¥(n)) = —1. Thus Theorem 4.10, Theo-
rem 4.14, and Equations (63) and (68) give the result.

If o(u) = —1, then m(¥(b)) = 0 and o(¥(u)) = 1. Thus, using Theorem 4.10,
Theorem 4.14 and Equation (68), we conclude with a computation similar to that
at the end of the proof of Proposition 4.18. O

), whenever o(p) = 1, and

Remark 4.20. Note that, with the notation of Remark 4.15 (in particular we have
m<q+1and ¥(u) € {0,(1)}), if ¥(\) # 7 and if we set C\;F(M) = Cy(y) = € then
Proposition 4.19 still holds.

We now can state the main result of this section. Let v and 7’ be two p-cores, and
w be a positive integer. Write E, ,,, By, and ¥ : E, , — E 4, as in Lemma 4.8,
and set n = |y|+pw and m = |¥'|+pw. If 6(y) = o(v’), then B, ,, and B,/ ,, denote
the p-blocks of p-weight w of G = S, and G/ = &,, corresponding to v and ~/
respectively. If o(y) = —o(7’), then B, ., and B, ,, denote the p-blocks of p-weight
w of G = A, and ' = &,, respectively. We write Irr(By) = {X5|A € B, u, € €
{-1,1}} and Irr(By) = {Y{ | X € Ey 4, € € {—1,1}}, with the convention that,
when X, or Y, are self-associate, we set X;' =X, =X, and Y)\+ =Y, =Y.\

Theorem 4.21. Let p be an odd prime. We keep the notation as above. Then the
isometry I : CIrr(By ) = CIrr(By ) defined by

€dp(A €55 (T (A
(69) 1(X37 ) = 6085w Va5 ™,

where X\ € E, ., and € € {—1,1}, is a Broué perfect isometry.

Proof. Consider the map T corresponding to I as in Equation (6). We will prove
that I satisfies Properties (i) and (ii) of a Broué isometry.

First, we use the MN-structures introduced in Proposition 4.17 for (Cg, By,w)
and (Cgr, By ). Let Sg and S be as in Equation (62). Write Q for the set
of partitions 7 of ¢ < n such that p divides each part of m. Note that 7 € €2
parametrizes one or two G-classes of elements of S¢ (always one class when G = &,,,
and two classes when G = ./Tn and 7 € O, ND,). In the case where 7 labels two
classes, we denote the two parameters by 7%. Let A be the set of parameters
obtained in this way. Then A labels the set of G-classes of Sg. We will now define
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a precise set of representatives for these classes. Let m = (mq,...,m) € Q. Note
that = and (71),..., () can all be viewed as labels of conjugacy classes of Sg,
(by completing the partitions with parts of length 1).

In particular, the element s; = sr, --- S5, defined before Equation (41) is a
representative for the class of Sg, labeled by 7, and s, € &. For all 1 <7 <k,
denote by o, the element of odd order such that 6(or,) = sx, (see Lemma 4.9)
and write o = 0, -+ 0x,. Furthermore, for 7 € O,, N D,,, we assume that the
representatives of the two A,-classes labeled by 7 are s,+ = St Smyp_y Smy A8

in the proof of Theorem 3.9. If offl denotes the elements of odd order satisfying

6(of) = St (see Lemma 4.9), then we set 0,+ = 0% -0, ,0r,. Therefore, if

G = én, then tlie set of o, for m € Q is a set of representatives of the G-classes
of S¢. If G = A,, then the elements o, (for 7 € Q and 7 ¢ O, N D,,) and o0 +

(for m € QN O, ND,) form a system of representatives of the ,Zn—classes of S A,
Moreover, for any 7 € A (with7 € {x*, 7~ }if 7 € O,ND, and G = A, and 7 = 7
otherwise), we write Gz = G,. and 7™ = r°%, where G,. and r°7 : CIrr(B, ,,) —
Chir(B(Gy)) are defined in Proposition 4.17 (here B(G) is one p-block or two
p-blocks of G).

Now, we define Qo = {m € Q| D m; < pw} and Ay the set of parameters 7 € A
such that @ € Qg. Then Q¢ = Ay whenever G = én or G = ./Zn with n ¢
{pw, pw +1}. B

Similarly, we define ', A’, Q) and A} for G’ and S¢/. Since G' = &,,, we
have A’ = Q" and A = Q) = Qp. We write o], for the representatives of the
G'-classes of Sg (as described above for G) and, for 7 € ', we define GJ. and
'™ CIrr(By ) — CIrr(B(GY)) as above.

Using Theorems 4.10 and 4.14, we show that for any 7 € Q\Qg or 7 € Q'\,
one has 7™ = 0 and 7" = 0.

Now we suppose that Ag = Qp. Let 7 € Qo. If |7] < pw, then B(G,) and
B(GY,) are just one p-block of G and G, respectively. If |7| = pw, then B(G)
and B(G.) are one p-block with defect zero whenever G = &, and o(y) = 1
or G = A, and o(y) = —1, or are the union of two p-blocks with defect zero
otherwise. We define (and denote by the same symbol to simplify the notation)
I:Trr(B(Gr)) — Irr(B(G%)) by Equation (69).

We assume that Convention 4.2 holds and that moreover, if 7 = (m1,...,7) €
P, has an odd part divisible by p, then there is some r < 7 < k such that 7;
is divisible by p for all + < j, and every odd 7; with j < r is prime to p. So,
we can use Theorem 4.10 and 4.14 iteratively (see also Remark 4.13). Therefore,
using Propositions 4.18 and 4.19, we show as in the proof of Theorem 3.9 (see
Equations (29), (30) and (31)), that

(70) Tor™=1""ol.

Thus, Theorem 2.10 holds (see Remark 2.11).

Suppose, on the other hand, that Ag # Q. Then G = A,, n € {pw,pw+1}, and
G' =6, In particular, o(y) = 1. Let 7 = (71,...,m) € Q. If 7 ¢ O,, N D,,, then
we are in the same situation as above, and Equation (70) holds. Suppose instead
that # € O, N D,,. Then 7 labels two classes with representatives o,+ and o,- of
Sg, and G+ and G- are two copies of Zs, whose only spin p-block has defect
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zero, and consists of the (only) non-trivial character. Denote by {e;} and {e_} the
spin p-blocks of G+ and G-, respectively.

Now, even though o(v) = 1, v labels just one p-block of G+ (and of G,-).
Since o(v') = —o(y) = —1, it follows that 4" labels two p-blocks with defect zero
of G!.. In particular, Irr(B(G%)) is the union of the p-blocks {@J{r,} and {7/}

We then define I : C{e;} & C{e_} — Irr(B(G%)) by setting I;(ey) = f;r, and
Ii(e-) =&, Let n, 0 € {~1,1} and A € E, ,,. We have ™ (1) = a(C), es)es, and
iterating Theorem 4.14, we obtain

a(C;\]aﬁé) = Z a( )\:(?7 >\:11 Ja( ,\:113 AZ) -a( Alj 117 Az;)v
(ST 1]

where \;, = A, B;, = f’ =e5, fi; € {—1,1} forall 1 <j <1—1, and ij is
obtained from ¢ /\J ! by removing a 7;-bar from A;;_, for all 1 < j </[. Similarly,

we have 7’ (fqz(x)) = (fqlo\yft)f-t +a(§\1’(>\)7£ /)f » with

/ 5 5
a(fg@)»ﬁg/) = Z ( 75\1;()\ ) (
il,...,ll
where ;= 05(A;;)05(¥(A;;))Bi, forall 0 < j <1—1,7" = f], and i, = 4.
Write f = (m1) if n = pw or f = (m,1) if n = pw + 1. Note that \;_, is a
partition of |f|, and if \;,_, # f, then for 1 < j <[, Theorem 4.19 and Remark 4.20
give that

a (giig;; ey )) SNy D035 (0, (505
and it follows that
(71) a(CY e5) = (N IR(L(A))a(€gims 7Y €2y,

In particular, one has
L (77 +17)(Q) = alClh e)Eh +al¢f e )e;
(72) = 55(N)Sp(T(M\)r'" ( gﬁ@%(m»)
=" (1(¢) -

Furthermore, Equation (59), Theorem 4.10 and a computation similar to that in
the proof of Proposition 4.19 give

alGF, e5) = G(PIR(T()a (g0 "D el ).
So, if \;

ir_, = f, then Equation (71) and thus Equation (72) also hold. In summary,
we have proved that

i 6:
,5\1,()\ ) (5‘11(1)\11’ 1)7 \P(l/\il))7

I.o (’I‘ﬂ+ +7‘”7) =r"ol.

Finally, by the argument of the proof of Theorem 3.9, we obtain for Ta decompo-
sition as in Equation (40).

We now prove that T satisfies property (ii) of a Broué isometry. Assume that
x € G is p-singular and 2’ € G’ is p-regular. If x ¢ Cg, then I(z,z’) = 0 (see the
proof of Corollary 2.17). Otherwise, x € C, and without loss of generality, we can
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assume that x = z¥t4 for some 3 € P, and k € {0,1}. Note that z*t53 € C; means
that 8 has at least one part of length divisible by 2p. In particular, 8 ¢ O,,. If
B¢ Dy (when G =&,) or 8 ¢ D; (when G = A,), then Propositions 4.1 and 4.3
imply that Xi(2%tg) = 0 for all A\ € E,,, and I(z,2’) = 0 by Equation (11).
Hence, we can suppose that § € D, if G = S, or that B e DfifG= A,
Therefore, Xf(zktg) # 0 if and only if A = 8. Furthermore, if we write 3 =
(B°,...,3P=1/2) for the p-quotient of 3, then the parts of 3 divisible by p are the
parts of p- 89 (see [22, p. 27]). Hence, the definition of ¥ gives 3P = W(3)®),
and ¥() has non-trivial parts divisible by p. It follows that YJ()\) (z') = Y\I,_(/\)(x’),

because z’ is p-regular. Using Equation (11), we obtain

o~

I(z,2') = (X;(zktﬁ) + X;(zktﬁ)) Yy (@) =0

by Equations (45) and (50). Note that we derive from Remark 2.12 and a similar
computation that, if z is p-regular and 2’ is p-singular, then f(;v, ') =0.

Finally, we show that T satisfies property (i) of a Broué isometry. Note that the
& have size 1 or 2, and all the assumptions of Theorem 2.20 are satisfied.

First, we consider the case G = én Take ® € be,w, where b, ,, is a Z-basis of
Z Irr(B%w)an as in Remark 2.9. By Corollary 2.3 and Proposition 4.1, for z € jn,
we have ®(z) # 0 only if z is p-regular. Thus, again by Corollary 2.3 (applied to A,

with respect to the set of p-regular elements), Res%”((b) is a projective character
of A,. Let z be a p-regular element of A,. In particular, x = zc. . Since

O(x) = Res%"(cb)(x), it follows that ®(z) is the value of some projective character
of ,Zn

Let m € Qo and ¢ € Zb,, where b, is a Z-basis of ZIIT(B.,T)anmG" as in
Remark 2.9. Now, we apply the previous computations to G, G, and I,. We
conclude that the condition (2) of Theorem 2.10 holds for I.. Hence, Remark 2.11
gives the condition (3) of Theorem 2.10 for I, and we deduce as in the proof of
Theorem 2.20 that J,(ZbY) = Zb.Y. Hence, J~1(Zb,) C Zb.. Since £ have size 1
or 2 and p is odd, we have I (J:~(¢))(z') € R for all 2’ € &,,. We conclude with

the argument of the proof of Theorem 2.20 that I(z,2')/| Cg(z)| € R. Similarly,
because of Remark 2.12, if 2’ € A,,, then I(z,2")/| Ce/(2')] € R.

Assume now that z ¢ A,. By Equation (11) and Proposition 4.1, I(z,2’) # 0
only if z = z"tg and o’ = 2"ty 5 with 8 € D and u, v € {0,1}. In this case,
Equation (44) gives

~ ntm—e(B)—e(8)—2

(73) I(2"tg,2"t) = izf\/ﬁl o PrbBr e B

where 8 = (f1,...,0%) and U(8) = (Bi,...,0;,). However, we derive from the
proof of [22, Theorem 4.3] that v,(B1---Bx)) = pwo‘yp(prod(ﬁo)), where v, is the
p-valuation, P = (3°,...,3P=1)/2) is the P-quotient of 8, and prod(B°) is the
product of the lengths of the parts of 5°. Hence,

(74) vp(Br-++Br)) = vp(Bi -+ B,
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Furthermore,

k I
|Cs. (z"tp)| =2]]B: and |Cg ("t =2]] 5
=1 i=1

because 3, 8’ € D~. By Equation (74), there are integers a and b prime to p such

that [[8; = vp(B1---Br)a and [[ B = vp(B1--- Br)b. Therefore, Equation (73)
implies that

~

I(z"tg, 2"t} ) wem—t()—r(s)-2 Vab
— - =4y —_—
‘ Cén (tzlﬂ” 2a
Since 4 Vab € R and 2a is prime to p, we deduce that
T(z% , 2V,
et 2*ty) _ ) R,
|Cg, (z"5)]
L. f(z”tg,z”t;g,)
Similarly, we have TCs_ i, eER.
Assume now that G = A,. Take ® € Zby ,, where b,, is a Z-basis of

ZTrr(B, ) 4 as in Remark 2.9. By Corollary 2.3, there are integers ay (for
\ € B, with o(\) = —1) and af (for A € B, ,, with o(\) = 1) such that

(75) o= > ai+ Y, (af¢ +aydy),
oc(A)=-1 o(N)=1
and Clifford theory gives
(76) md$ (@)= Y an(&+&)+ Y (af +ay)én
oc(A)=-1 o(A)=1
Let x be a p-regular element of A,. Assume z = ZFt5 with 8 € O,, and 8 ¢ D;f.

In particular, one has = z¢; , and for A € D, we have

ax(z) = ¢ (2) + ¢ (@) = 2¢ (2) = 2¢; (),
and it follows that

md$ (®)(z) = Y ax (@ +& @)+ Y (af +ay)éale)

o(A)=-1 oc(AN)=1

=2 Y aa@+ Y (@@ +ad @)

o(A)=-1 o(N)=1
= 2%(x).

By Equation (76), Proposition 4.1 and Corollary 2.3, Indiﬂ(fb) is a projective

character of én and hence .Zn Thus, 2®(x) is the value of a projective character
of .Zn, and we conclude as above, because 2 is not divisible by p.

Suppose now that x = z%tg with 8 € O,, N D;}. By Lemma 4.9, we can assume
that x = Z“IOg for some non-negative integer u’. Write H for the centralizer of o+
in A,. Then H = (z) x <0ﬂli ) X --- X {o0g, ) contains no elements whose cycle

structure has even parts. In particular, Resﬁ”(@) is a projective character of H.
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Since x € H, it follows that ®(x) is the value of a projective character of H, and
we again conclude with the same argument as above.

Finally, it remains to show the property for 8 € D} and 8 ¢ O,. However,
f(z“/057x’) = 0 if and only if 2/ = z”ofl,(ﬁ) for some non-negative integer v. In
particular, if 8’ := ¥(8) € D, then

=~ ntm—k—k—1
I(z" 05,2"03) = £V/2i 2 \/ﬁl"'ﬁkﬁi"'ﬁ/’a )

where 8 = (f1,...,0k) and B’ = (B1,...,B;,). We conclude as above using Equa-
tion (74). O

Corollary 4.22. If p is an odd prime, if By, and By, are p-blocks of Xn and

A, respectively, and if o(v) = o(v'), then the isometry I defined by Equation (69)
is a Broué perfect isometry.

Proof. Let 5 be any p-core such that o(y) = —o(y). Denote by B, the p-block
of émﬂ,w corresponding to 7. Since o(v') = —o(7), by Theorem 4.21, there are
Broué perfect isometries Iy : Irr(B,,) — Irr(By ) and I : Irr(By o) — Irr(By,.),
defined by Equation (69). Furthermore, we have

I=1I;'0o1,

which proves the result. O

5. SOME OTHER EXAMPLES

5.1. Notation. For any positive integers k and [, we denote by MP,; the set of
k-tuples of partitions (p1, ..., p) such that > |u;| = 1.

Let H be a finite group and w be a positive integer. We consider the wreath
product G = H1S,,, that is, the semidirect product G = HY x &,, where G, acts
on H" by permutation. Write N = |Irr(H)| and Irr(H) = {¢; |1 < i < N}, and
denote by g; (1 <14 < N) a system of representatives for the conjugacy classes of
H.

The irreducible characters of G are parametrized by MPy ,, as follows. For
po= (p1,...,4n) € MPn,y, consider the irreducible character ¢, of Irr(H™)
given by

N
(77) Op = P @ ... Q Yy,
mllee on

|pei| times

which, by [12, p.154], can be extended to an irreducible character qASM = vazl z/Jy”l

of its inertia subgroup Ig(¢,) = Hfil H 1 6),,|. The irreducible character of G
corresponding to u is then given by

N _—_
O = Ind?c(d’u) (H wlml ® XM) )

i=1
where x,,, denotes the irreducible character of &, corresponding to the partition
pi of [p].
Let (h1,...,hyw;0) € G with hy,...,h, € H and 0 € &,,. For any k-cycle
k= (j,kj,...,5F"15) in o, we define the cycle product

g((hl, . .,hw;O'); H) = hjhﬁf1j cee hn—(k—l)j.
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If o has cycle structure 7, then we form the N-tuple of partitions (y,...,7x) from
7, where any cycle « in 7 gives a cycle of the same length in 7; if g((hq, ..., hy;0); K)
is conjugate to ¢g; in H. The N-tuple

(78) s(hi,...,hy;0) = (m1,...,7N) € MPNw

describes the cycle structure of (hy, ..., hy; o), and two elements of G are conjugate

if and only if they have the same cycle structure (see [12, 4.2.8]). In particular, the
conjugacy classes of G are labeled by MPy 4.

5.2. Isometries between symmetric groups and natural subgroups. Let n
be a positive integer and p be a prime. We denote by P,, the set of partitions of n.
Write x for the irreducible character of the symmetric group &,, corresponding
to the partition A € P,. Recall that to every A € P,, we can associate its p-core
A(p) and its p-quotient AP = (Aq,..., Ap) (see for example [22, p.17]). Moreover,
two irreducible characters x and yx, lie in the same p-block if and only if A and
p have the same p-core. For B, the p-block of &,, corresponding to a fixed p-
core vy, we define the p-weight w of B, by setting w = (n — |7|)/p. Then Irr(B,)
is parametrized by MP,_,. Now, we set Gp o = (Zp X Zp—1) 1 &, We recall
that Irr(Z, X Zp—1) = {t1,...,%p} with the following convention. If p is odd
(respectively p = 2), then put p* = (p + 1)/2 (respectively p* = 2). Then we can
choose the labeling such that v;(1) = 1 for ¢ # p* and ¢,+(1) = p — 1. Fix now 7
and w generators of Z,_; and Z, respectively. Write g; = ni for 1 <i<p—1and
gp = w. Then the elements g; € Z, x Z,_; form a system of representatives for
the conjugacy classes of Z, X Z,_1. As explained in §5.1, the irreducible characters
and conjugacy classes of Gy, ,, are labeled by MP,, ,,. As above, for p € MP, 4,
we write 6, for the corresponding irreducible character of G, .

Theorem 5.1. We keep the notation as above, and define the linear map I :
ClIrr(By) = CIrr(Gp,w) by

I(x)) = (=) 16,(N) 05,

where AP) is obtained from the p-quotient \?) of \ replacing Ap= by its conjugate,
and 0,(A) is the p-sign of \. Then I is a generalized perfect isometry with respect to
the p-regular elements of &,, and the set C' of elements of G ., with cycle structure
= (m,...,mp) satisfying mp, = 0.

Proof. Let S be the set of elements of &,, with cycle decomposition o1 - - - o, (where
we omit trivial cycles), such that o; is a g;p-cycle for some positive integer ¢;, and
let C' be the set of p-regular elements of &,,. The sets S and C are unions of
&,,-conjugacy classes, and 1 € S. Moreover, 7y - - - 7 is the cycle decomposition of
7 € C if and only if 7; has p’-length. Hence the cycle decomposition with disjoint
support in &,, proves that (1), (2) and (3) of Definition 2.5 hold with G4 = &5
whenever ¢ = ogo¢ with g € S and o¢ € C, and J is the support of og. Denote
by A the set of classes consisting of elements of S and define

Lo = |J P
b<w
Write Ag for the classes of S parametrized by p - I'g. For each § € 'y, we choose
a representative sz € S in the class of Ay labeled by p - 8 with support in {n —
p‘,@l +1,.. .,n}. Then GSB = Gn—p\m - CGW(Sﬂ)- Denote by II‘I‘(B,Y(Gn_mm))
the set of irreducible characters of &,,_, 5 labeled by partitions with p-core ~, and
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define r? : CIrr(B,) — CIrr(B,(6,,_,5)) by applying [12, 2.4.7] to the cycles of
p - B. Then &,, has an MN-structure with respect to C' and B, in the sense of
Definition 2.5.

Now, write S’ (respectively C”) for the set of elements of G, ., with cycle structure
(71,...,mp) € MP,, for some b < w (respectively(my,...,m,) € MP,,,), such
that m = -+ = mp,_1 = 0 (respectively 7, = 0)). In particular, the classes of S’
are also parametrized by T'g. Let s € S" be with cycle structure (0,...,0,3) for
B € I'p. Assume that the support of S/B is {w—|B] +1,...,w}. Then G g
lies in Cg, , (s), and we define 7'# : CIrr(Gp,.y) = CIrr(G), ) by applying [24,
Theorem 4.4] to the cycles of 5. Then G, ., has an MN-structure with respect to
C’ and Irr(Gp w)-

Let ¢ = pa. Define the set Ma()\(p)) of p-multipartitions of w — a obtained from
A?) by removing an a-hook. Recall that the canonical bijection f (defined in [19,
Proposition 3.1]) induces a bijection My(\) — M,(A®)), > p®). Write

Orn = ()P 105,
and assume 3 = (f1). Then
(79) r’ (5,\@)) = Z ali gwp)y

HEMp 5, (N

where a'f; = (fl)L(f(Cﬁ)). See the proof of [10, Proposition 3.8] for more details.
For multiples ¢, ..., gk of p, define inductively the set Mg, 4. (\) of partitions p
of n— )" ¢; such that p € M, (v) for some v € My, g4 (A). Let 8= (51 > - >
Br) € T'o. Applying recursively formula (79) to the cycles of 3, we obtain

(80) r’ (anm) = > a' (A, 1) 0,
HEMpigy1,....pl5, 1 (X)
Similarly, the Murnaghan-Nakayama rule in &,, gives

(81) P (XA) = Z a()‘v /~L) X+

HEMp|a,|,..., p\Bk\(A)

Now, with the above notation, Equation (26) gives a;, = (5p()\)5p(p)a’2, and by the
same argument as in the proof of Theorem 3.9, we obtain

a(\, p1) = 6p(N)dp(p)a’ (A, ).
It follows that

rﬁ (I(Xk)) 5P(A) Za/(AaM)gu(Ph

m

= 5N ()a (O, 1)8, (1),

m

Za()‘vﬂ)I(Xu)v

= I(r’(x»).

The result now follows from Corollary 2.17. (]
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Corollary 5.2. Assume furthermore that p > w. Then the isometry defined in
Theorem 5.1 is a Broué isometry. In particular, Broué’s perfect isometry Conjec-
ture holds for symmetric groups.

Proof. We apply Theorem 2.20. O

5.3. Osima’s perfect isometry. Using Theorem 2.10, we also can prove the fol-
lowing well-known result (see [15, Proposition 5.11]).

Theorem 5.3. Let n be an integer and p < n be a prime. Let B be a p-block of
S, labeled by the p-core v. Assume that B has weight w. Then the map defined by

I(X/\) = 611(/\)0)\(17)

between B and Irr(Z,1S,,) induces a generalized perfect isometry with respect to the
p-regular elements of &,, and the set of elements x € Z, 1 &, with cycle structure
g(x) satisfying g(x)1 = 0 (here, the first coordinate of g(x) correspond to the trivial
class).

Proof. The proof is analogue to that of Theorem 5.1. (]

5.4. Isometries between blocks of wreath products. In this section, we fix
a positive integer | and a prime number p such that p does not divide I, and
we consider the groups G,, = Z; ! &,,, where n is any positive integer. Write
7y = {ClaCQ7 s ,Cl} and II'I'(Z[) = {wh s awl}'

Following [23, Theorem 1], we recall that two irreducible characters 6,, and 6,
corresponding to pt = (p1,. .., ) and p' = (u, ..., p;) of Gy, lie in the same p-block
B if and only if, for every 1 <4 <, the partitions p; and p} have the same p-core
~; and same p-weight b;. The tuple b = (by1,...,b;) (respectively v = (y1,...,7))
is called the p-weight of B (respectively the p-core of B). We denote by &, the
set of [-multipartitions o = (p1, ..., ) such that (1)) = v: and the p-weight of
i is bi.

Theorem 5.4. Let n and m be any two positive integer. As above, we write
Irr(Gp) = {0u; p Ik n} and Irr(Gr,) = {0u; p IF m} for the sets of irreducible
characters of G, and G,,. Let B and B’ be two p-blocks of G, and G, with
p-cores v = (y1,...,m) and v = (V1,...,7]) respectively. Assume that B and B’
have the same p-weight b = (b1,...,b;). Define

l
1(9”) = (H (Sp(ﬂi)ép(\l’(,ui))) ew(u)y

where U is the map defined before Lemma 3.7, Y(p) = (¥(p1),...,¥(w)), and
0p (i) is the p-sign of p;. Then I induces a Broué perfect isometry between B and
B'.

Proof. First, we notice that ¢(Eyp) = Eyp. Let g = (g1,...,9n;0) € Gp,. Write
o = osoc, where all the cycles of og have length divisible by p, and o¢ is a p-
regular element. Define gs = (gs.1,--.,9sn;0s) (resp. gc = (9c.1,---,90n;0¢))
by setting gs; = g; (vespectively go; = g;) if @ lies in the support of og (respectively
of o¢) and gg,; = 1 (respectively gc; = 1) otherwise. Since og and o¢ have disjoint
supports, we have the unique decomposition

g =9sgc = gcgs-
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Denote by S (respectively C') the set of elements g = (¢;0) such that all the
cycles of o have length divisible by p (respectively prime to p). Let A be the
set of [-multipartitions (my,...,m) such that m;, € pP and > |m| < n. Let
™ = (m,...,m) € A. Denote by I the set of integers 1 < ¢ < [ with m; # 0.
For i € I, write u;; = >, ; |7x| + ZKj T, Where m; = (i 1,...,T; g(r,)). Con-
sider now the m; j-cycle

aij:(n—u—&—uij—l—l,...,n—u+uij+7ri7j),

where u = > |m|. For 1 < k < n, set t;;, = 1 for k # n —u+ u;; + 1 and
tij7n_u+ui]‘+1 = Ci Write tij = (tij,ly e ,tij,n;cr,-j) and deﬁne

(i)
(82) te = H H tij'
iel j=

1

Then by §5.1 and Equation (78), the elements ¢, with 7 € A form a set of repre-
sentatives of the G,-classes of S. Write G = G,_s~|r,|- Note that the support of
mis{n—>|m|+1,...,n}, and G C Cq, (tx).

Example 5.5. For example, assume thatl =3, n =6, and p = 2. Write (1 =1
and consider w = (0,(2),(2)) € A. Then one has u = 4, I = {2,3}, ua; = 0,
U31:2. So 0'21:(3 4), 031:(5 6) and

t21 = (17 1;C27 ]-7 ]-7 17 (3 4)) and t31 = (1a ]-7 ]-7 17C3a ]-’ (5 6)) .

Finally, tx = to1ts1 = (1,1,(2,1,(3,1;(3 4)(5 6)) is a representative for the class
of Z3 1 S¢ labeled by .

Assume that w = (k) € A (so that, in particular, & is divisible by p). Then, for
all z € G and p € &, [24, Theorem 4.4] gives

l

(83) Oulter) =D s(G) Y. (-1)H0, (),

s=1 vEMy (ps)

where the partitions in g, are the same as those in p, except the s-th one which
is equal to v. Applying iteratively this process to the cycles of 7, we define a
linear map ™ : Clrr(B) — Clrr(B,,_s~ |r,|), Where B,,_s~ |, denotes the union of
p-blocks of Gy,_s~|x,| With p-core v and p-weight (a,...,a;) such that 0 < a; < b;
and > (b; —a;) = > |m|. In particular, we have r™(6,)(x) = 0,(txz) for all
x € Gy_3|x;|- This defines an MN-structure for Gy, with respect to C' and B.

Similarly, we define an MN-structure for G,, with respect to B’ and the set of
p-regular elements of G,,,. Now, write w = > b, and denote by Ag the set of m € A
such that ) || < w. By [24, Theorem 4.4], we have r™(0,) = r™ (0w (y)) = 0 for
every p € Eyp and ™ € A\Ag.
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Let m € Ag and ¢ be a part of 7 of length k. Then, by [24, Theorem 4.4] (see
also Equation (83)), we have
! !

r(10,)) = [[ )o@ S vnc) 3 ()M gy,
i=1 s=1 V€ My (1s)
! (ps
S 0@ S M) 6 (06, (W ()
(84) s=1 vEMp(1s)
Sy (1), (T )T (O )
l
=3 (G > (=DMEII,,)
s=1 vEMy (ps)
=1 (TC(GHS)) .

Using the argument of the proof of Theorem 3.9 (see Equations (29), (30) and (31)),
we conclude that r™(1(0,)) = I(r™(6,)) for all m € Ag and p € & .
Hence, the hypotheses of Theorem 2.20 are satisfied, and the result holds. (]

Corollary 5.6. Let Wy and W5 be Cozeter groups of type B. Assume that p is odd.
Then two p-blocks of W1 and Wy with the same p-weight are perfectly isometric (in
the sense of Broué).

Proof. This is a direct consequence of Theorem 5.4, noting that a Coxeter group of
type B, is isomorphic to Z21 &,,. O

5.5. Isometries between blocks of Weyl groups of type D. Let n be a positive
integer and let W be a Weyl group of type B,,. We keep the notation of §5.4. Let
p be an odd prime number. We consider the linear character a = g, () € Irr(W),
and denote by W' its kernel. Then W’ is a Weyl group of type D,,, and one has that
g € W belongs to W’ if and only if its cycle structure s(g) = (my,m2) is such that
{(m) is even. Furthermore, the W-class of such an element splits into two W’-classes
if and only if mo = () and m; has only parts of even length (i.e. if m; = 2- 7 for some
partition 7 of n/2); see [4, Proposition 25]. We fix representatives téﬁ_@) for the W'-
classes whose elements have cycle structure (2 - 7, ) as follows. If 7 = (7%, ... 7")
then write u; = Zj<i7rj, o = (uj +1---u; +27%), and t; = ((1,...,1);04). In
particular, t; € Boy1. Let p € Bogi\Doy1. Set tf‘ =ty and t; = pt1p~ . Then tf
and t] are representatives for the two split classes of Dy,1 labeled by ((271),0).
Now, define

+ +
(85) thp) = tita - b
Since p € Bp\D,, and p commutes with to,..., ¢, (because for 2 < ¢ < r, the

supports of p and of ¢; are disjoint), we deduce that té-w,@) = pté,mmp_l. Hence,
té-rr,@) are representatives of the two split classes of D,, labeled by (2 -, 0).

For every 2-multipartition (u1, u2) of n, one has o ® 0,1, 1) = 04y, By Clif-
ford theory, if p11 # o, then x,, i, = Resir Oy ) = Reslys (0,1, 4, ) is irreducible.

If u = w1 = peo, then Res%, (0,,,,.) splits into two irreducible characters X;f’ , and

X of W', which we can label so that (see [24, Theorem 5.1])

€ 1 s
(86) X (t?Zm@)) ) (9(%#) (t(gzw,@)) + €52 )Xu(ﬂ)> )
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where d,e € {—1,1} and x,, is the character of the symmetric group &,/ corre-
sponding to u.

The p-blocks of W’ can be described as follows. Let Bgﬁ:f’f) be a p-block of W
labeled by the p-cores 71 and 7, and with p-weight (b1, b2); see §5.4. If (by,bs) #
(0,0) or 41 # 79, then B,(ylifiybf) contains characters that are not self-conjugate.
By [20, Theorem 9.2], B.(Ylil,—’y?) covers a unique p-block bgybll,lff) of W’. Furthermore,
when 71 # 75 or by # bo, B.(ﬁf,’,?) and BSYZ?Z;?) contain no self-conjugate character,
and bgblflf;) = b(vl;r",;bf) consists of the restrictions to W’ of the irreducible characters
lying in B0 and B2 1f (b1, b2) = (0,0), then B9, = {0, ,,)} has defect
zero. If oy := 71 = 7, then b = {x7_} and b = {x; ,} are two distinct p-blocks
of W’ with defect zero, except when n = 0. In this last case, W = W' = {1} and
00.0) = X(p.9) = X(.0) = L1}

Theorem 5.7. Assume p is odd. Let W| and W4 be Cozeter groups of type D. Let
bs,lj’f) and b(;i”l:/), be p-blocks of W{ and W3 with the same p-weight (b,b). Then the
isometry defined by

2
€ €5y ()0, (¥
T(Xpu1p12) = (H 5p(u¢)5p(‘1/(m))> XuGu ey and T(X5,) = Xgio a7,
i=1

where the notation is as above, is a Broué perfect isometry between bsjf) and bgb,’:)/,

Proof. Assume that W] and W9 are of type D,, and D,,, respectively. We denote
by S and C' the intersections of W/ with the sets S and C defined in the proof
of Theorem 5.4, and we write Q (respectively ) for the set of bipartitions w =
(71, m2) with 71, mo € pP and £(m2) even, such that |m1| + |m2| < n (respectively
|m1| + |m2| < 2pb). Denote by A the Wi-classes of elements of S. Note that Q is
the set of cycle type of the classes in A. Furthermore, we write Ay for the set of
classes in A whose cycle type belong to €g. When n # 2pb, the set Qg labels Ay.
Otherwise, there are in €y elements 7 that parametrize two Wj-classes denoted
by ™ and w~. In this case, w = (2 - 7, 0) € Qq for some partition 7 of n/2, and
we denote by ¢t} and ¢, representatives for the split classes as in Equation (85).
The two corresponding classes are denoted by ™ and w~. So, when n = 2pb, the
elements of Ay are denoted by 7 with @ = w when 7 € )y labels one class, and
7 e {mt, 7w} otherwise. We also will write t,+ = ¢t and t,- = t_. Finally, for
7 € (o, we define Gy, = Dy, |~ |mo|-

We then take t. as in Equation (82) for a representative of the class of .S labeled
by w € ¢ whenever 7 = 7.

Assume that n is even. For any partition p of n/2, we write A, = X;“ — Xy
Let 1 <k <mn,and t = ((1,...,1);0) € D,,, where c = (n —k+1---n). We will
prove that

(87) Aute) =2 > (=D)MDA,(2),

vE M, (1)

for all z € D,_j. Note that tx lies in a split class of D,, if and only if x lies
in a split class of D,_. So, to prove Equation (87), we can assume that x lies
in a split class of D,,_j. Suppose that tx is D,-conjugate by g € D,, to ty with
y € D,,_j (in particular, y lies in a split class of D,,_j). Then = and y have the
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same cycle type, so they are B, _i-conjugate, say by go € B, _x. Furthermore, go
and ¢ commute (because their have disjoint supports). It follows that 9 (tz) = ty,
and the set of elements that conjugate tx and ty is go Cp, (tz). Furthermore, since
tx lies in a split class, one has Cp (tz) = Cp, (tz). So, there is h € Cp, (tz) such
that g = goh. This proves that go € D,,_;. Hence x and y are D,,_g-conjugate,
and Equation (87) now follows from Equation (86).

Furthermore, assume that k& = n. Then Equation (86) gives A, (t‘(sk)) = 02x,((k))
for § € {+,—}. If p is not a hook, then My (u) = 0. Otherwise, My () = {0}. Set-
ting Ay = 1, and using the Murnaghan-Nakayama rule for the symmetric group,
we obtain

(88) Aulty) =2 > (-1)HHA),
veEMy (1)
For € Qq, we define 7™ (A,,)(z) = A, (tzz) for allz € Gy. Applying iteratively
Equation (87) and Equation (88) to the parts of ¢z, we obtain

(89) r’?(AH) = 2t(m) Za(ﬂ, V)A,,

where the coeflicients are those appearing in Equation (81).

Now, for p = (p1,p2) € Ey ) b6 With 1 # po, we define 7™ (x,, 4,) to be
the restriction to W{ of 7™ (6(,, u,)), where r™ is the map defined in the proof of
Theorem 5.4. For g = (i, 1) € E(4,4),(b,p), define

T/ € 1 1/ T Fid
(90) I () = 5 (Rest (™ (O) + ™ (A,))

It is then straightforward to show that, if b, - (n—|m1|—|m2|) denotes the union of the
p-blocks of Gy, |, ||, With p-core (7, ) and p-weights (b1, b2) such that 0 < b; < b
and by +by = |m |+ |m2|, then the map 7 : (Clrr(bgjii))) — ClIrr(by (n—|mi| —|m2]))
defines an MN-structure for W{ with respect to the set of p-regular elements and
biﬁlf). Similarly, we define an MN-structure for WJ with respect to the set of p-
regular elements of W3 and bfyb/:z;),. As we showed in the proof of Theorem 5.4, if
p1 # po and I is defined on Irr(b., (n — |m1| — |m2|)) by the same formula, then we
have

(91) I (T%(Xm,uz)) = 7" (I(Xp1,12)) -

For any u # () with p-core v, one has
A, = 6,(1) 0, (T (1) (Xipfﬂ)é"(q’(”)) - X*%(u)%@(ﬂ))) )

)

In particular,

(92) I(Aw) = 0p (1) 0p (¥ (1) Aw(p)-
Therefore, we deduce from the fact that (0, .)) = 0w(u),w(w) and Equations (90),
(89), (25) and (26) that

(93) (7™ 0G)) =™ (106u) -

Assume first that [Ag| = |Aj]. Then Equations (91) and (93) hold and we derive
from Theorem 2.20 (see also the note in the proof of Theorem 3.9) that I is a Broué
perfect isometry.
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Assume, on the other hand, that |Ag| > |A{|. In particular, n is divisible by
2p, v = 0, and Aj = Qo. Let m € Q be such that # = w. If we define I; on
G in the same way as I, then by Equations (91) and (93), we have Iz or™ =
7™ o 1. Let now = (2 -7, 0) be such that 2|7| = n. Then 7 € {n*, 7"}, and
G+ and G- are two copies of the trivial group. We set Irr(G\+) = {1r+} and
Irr(G,-) = {1x-}. Furthermore, Irr(by (m — n)) = {Xj,ﬁ,,x;,ﬁ,}. We define
I : Clrr(Gyx) @ Chr(Gy-) = Chir(by o (m — n)) by setting Ir(lys) = X'éy/,’y"
Note that

‘l'l'J € € 1 s
90 ™ () = X)L = 5 (B (1) + €62 Pa(11,7)) 1o
Moreover, by Equation (89), one has
T (S (1)0p (U () Aw(y) = 2976, ()8, (¥ ())a(¥ (1), 7) Ay

= 2™ a(ps 7) Ay

because ,(7) = 6,(7") = 1. Write €, = ,(1t)d,(¥ (1)), and note that r"(@u,u) =
Oup(m)1ay, I(r™(Opp)) = ™ (Ow(w),w(w)), and 77 o Res%‘? = Resw, or™. So we
obtain

" (Xwﬂm (s >>
(RGS%Z (™ (Ow (), o)) + euer"(A\I,(M)))
(0000 ) + €2 @i, 1)) X s

1 i )
5 (O (1) = 2 Pa(n1) x5,
= Xpu G+ X ()X

xt € T €

= L (7 (G ™ ()

Now, assume that pq # po. Note that P (Xp1,po) = Opy o (7)1, Thus,

(X)) =

r
1
2
1
2

Le(r™ (i) 77 (i) = Operois (M) + X )
= Ouy pp () ReS%Z (C)
= Respy2 (1 (0 0 () 111))
= Reswz (I(r™(Ouy )

= RGS%Z (r™(L(0py ,05)))

= T (X ps2)))-

Hence, we have
,rﬂ' o] = Iﬂ- ° (r‘rrJr +T‘7r7)’
and we conclude as in the proof of Theorem 3.9. ([

Theorem 5.8. Assume p is odd. Let W| and W3 be Cozeter groups of type D.
Assume that v1 # Y2 and vy # 4, or (v1,72) = (71, 7%) and by # by. If the p-blocks
bgblllff) nd I)(Z)ILYb2 have the same p-weight (b1, by), then they are perfectly isometric

in the sense of Broué.
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Proof. The isometry is the restriction to Irr(b(vbll”ﬁf’j)) of that of Corollary 5.6. [
5.6. Isometries between alternating groups and natural subgroups. It
would be interesting to give an analogue of Osima’s perfect isometry between p-
blocks of the alternating groups and the “alternating” subgroup of Z, { &,,. But
such perfect isometries do not exist, as we can show in the following example.

Example 5.9. Consider the principal 3-block b of Ag. It contains 6 irreducible
characters. Note that b is covered by the principal 3-block B of &g (which has 3-
weight 2 and contains 9 irreducible characters). Let G = Z3 1 Sy. Then G has 9
irreducible characters and by Theorem 5.3, B and G are perfectly isometric. Now,
viewing G as a subgroup of Sg, we can restrict the sign character ¢ : S — {—1,1}
to a linear character (also denoted by ) of G, whose kernel is the base group
H = 7% of G. Define the regular elements of H to be the elements with cycle
structure (m,m2,73) and w1 = (. These elements are the products of 2 disjoint 3-
cycles contained in H, when H is viewed as a subgroup of Gg, and there are 4 such
elements. Now, a straightforward computation gives that (resyeg(X), resreg(1m)) € {-
2/9,1/9,4/9} for any x € Irr(H). So, we conclude by Remark 2.13 that Irr(H)
forms a reg-block, and since Irr(H) has 9 elements, b and Irr(H) are not perfectly
1sometric.

However, when we replace Z, 1 &,, by Gp,. (see §5.2 for the notation), we can
show that the p-blocks of A,, are perfectly isometric with the “alternating” subgroup
of Gy . In a way, we prove in this section an analogue of Osima’s isometries for
the alternating groups.

Throughout, we keep the notation of §5.2, and view G, as a subgroup of
Spw. Moreover, we assume that p is odd, so that, in particular, p* = (p + 1)/2.
Furthermore, we view H = Z, x Z,_, as the normalizer of some Sylow p-subgroup
of &,, and denote by eg the restriction of the sign character es, to H. Note that
only the irreducible character of degree p — 1 of H is eg-stable. So we choose the
labeling of II‘I‘(H) = {’(/)1, ey ¢p} so that ¥y = eqg, ¥ = 1g, and ¥; = Vpt1—i DEH
for any 1 <14 < p (in particular, ¢,+(1) = p — 1). Recall that Irr(G). ) is labeled
by MP, ., and, with the above choices, for every p = (p1,. .., tp) € MPp 4, We
have (see [9, Proposition 4D])

(95) O = Ope

where ¢ again denotes the restriction of the sign character of &,, to Gy, and
n* = (i, ..., 1) is as in Equation (20). Define the “alternating” subgroup of G,
by setting
H,w=ker(e: Gy — {-1,1}).
Consider the set of partitions &£ (respectively OD) all of whose parts have even
length (respectively whose parts are distinct and of odd length). We recall that
(see for example [9, Lemma 4E]) the set

(96) T= {(7T1,...,7Tp) S Mpp,w |7T2i = @, Toi+1 € g,ﬂ'p S OD}

labels the set of splitting classes of Gy, , with respect to H,, ,. We will now give
representatives for these classes. Let m = (mq,...,m,) € T. For 1 < i < p, write
Ty = (Ti1s -+ Ti(n,)), and assume that there is some integer 1 < r; < £(m;) such
that ; ; is prime to p for all j < r; and m; ; is divisible by p for j > r;. Let t; be
the element of G}, ., obtained in the same way as in Equation (82). Let 1 <i <p
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be such that m; # (). Then with the notation of Equation (82), t;1 € Gp i, where
K is the support of ¢;1 and Gp xk = (Zp x Zp—1) 1 Sk. In particular, viewed as an
element of G), x, the cyclic structure of ¢;1 is (0,...,0, (m;1),0,...,0). Since w € T,
either 4 < p is odd and 7; € £, and so also (7;,1), or @ = p and (1) € ODx, ;.
Hence, t;; lies in a split class of G, k. Let px € Gp k\Hp, k. Set tj'l = t;; and
t, = pKt;Epi}l. Write m for the minimum integer such that m,,, # @. Using the
notation of Equation (82), we define

£(m)
(97) e = H H tij H tmj and tf_ = Tﬂ-t?’:ﬂ.
i#m j=1 j#£1

Since pg ¢ Hp,. and the supports of px and 7, are disjoint, the elements ¢} and
t,. are representatives for the two split classes of H,, ,, labeled by .

Write S for the set of p € MP,,, such that p* = p. Now, following [9], we
define an explicit bijection a : & — T as follows. Let g = (p1,...,4p) € S. Then
Ppt1—i = p for all 1 < ¢ < p. In particular, pp« = py.. Write p; = Hj gPi
for 1 <4 < p*, and recall the definition of a(p) := (m1,...,mp) € T from [9] by
setting m, = a(pp~), m2i—1 = Hj (27)Pii, and mo; = 0, where a is the map defined
in Equation (17). Then a is a bijection. Indeed, if for (m,...,7m,) € T, we define
p= (p1,...,1p) by setting p,- = a=(mp), u; = [[; 7 for 1 < i < p*, where
Toi_1 = Hj(2j)pij, and p; = 5,4 _; for p* < i < p, then the map (my,...,m) =
(f1, - - ., ptp) is the inverse map of a.

Lemma 5.10. The conjugacy class of Gy, labeled by (0,...,0,1°7% B) € MP, .,
(for k < w) lies in Hy ., if and only if 5 has an even number of even parts.

Proof. Because of [9, Equation (4.1)], for every (hq,...,hy;0) € Gy with h; € H
and o € 6,,, we have

(98) e(hy,. .. huio) = (o) [ [ en ().

Write § = (f1,...,08), and set og = o1 - - oy, where o0; is a cycle of length |3;|.
Let {j1,...,J3,|} be the support of ;. Define hj, = w (the element w is as in §5.2,
i.e. a generator of the Sylow p-subgroup of the base group of the wreath product
Gpw) and h;, = 1 for 2 < < |f;|. If | doesn’t belong to the support of any f;
then put h; = 1. Thus, the element x3 = (h1,...,hy;08) is a representative for
the class of G, ,, labeled by (0,...,0,3). By Equation (98), e(hq,...,hy;05) =1
if and only if e(0g) =1 (because e (w) = 1), as required. O

By Equation (95) and Clifford Theory, if i ¢ S, then the restriction ¥, =
Resg’; " (Ou) = Resg‘; " (0+) is irreducible. Otherwise, the restriction of 6, splits
into a sum of two irreducible characters of H, ., denoted 9, and 9,,. In the last
case, such a 6, is called a split irreducible character of G .

Let o = (pt1,--.,44p) € S. In order to distinguish 19;‘; and J,,, we need to
introduce some notation. We associate to g two multipartitions ' € MP
and p" € MP, |, .| by setting

Pyw—|pip |

ll‘l = (;ula cee 7”(p—1)/2)®7ﬂ(p+3)/27 cee 7[1’]0) and “H = (Q)v . -,wvﬂp*vma .. 70)



56 OLIVIER BRUNAT AND JEAN-BAPTISTE GRAMAIN

Moreover, to p' and p”, we associate subgroups as follows. Write E,, =
{1,...,n— |pp+|} and Eyv = {n — |pp+| +1,...,n}, and define G, = H1S(E)
and G = HUGS(Ey). Note that p’ and p' are self-conjugate.

In particular, by §5.1, ' and p” label split irreducible characters 6, and 6,
of G, and G, respectively.

Since p” is self-conjugate, a(p”) is a splitting class of G, and thus labels
two classes a(p”)* of Hyn = ker(eg,, ). Now, we make the same choices for the

labeling for the irreducible characters 193, and for the classes a(u”)* of H,» as
in [9, Proposition 4F], so that yields

(99) (79:’;,, - ) (9) = { 6(\/@)‘1 €pupe ph(u,-) if g € a(u),

l—"// .
0 otherwise,

where ¢ € {£1}, ¢, = (=1)?~Y/2] ¢ is the number of parts of a(u,-), €y =
(—=1)UspI=d)/2 " and ph(u,-) denotes the product of the lengths of the parts of
alppe)-

Furthermore, fix any labeling for the irreducible characters ﬂﬁ, ofH, = ker(sgu, ).
Labelings for p’ and p” being fixed as above, we can assume that the characters
ﬁﬁ are parametrized as in [9, Proposition 4H(ii)], and we always make this choice
in the following. We can now show the following crucial result.

Lemma 5.11. Let ¢ be a cycle of odd length k < w. Let x = (t;0) € Gp have
cycle structure (0, ...,0,1°=% (k)), and be such that o0 = (w — k+1,...,w). Let
= (p1,...,pp) € MPyp, be such that p = p*. If ¢ is a cycle of a(uy~), then for
any g € Hy w—1, we have

(9= 93) ) = [ Ok (5]~ 9,,) o),

where (p,); = w; if i # p*, and (p.)p- is obtained from py« by removing the diagonal
hook of length k.

Proof. By Lemma 5.10, one has x € H,,,. Furthermore, ﬁ;itc are irreducible char-
acters of Hy, ,,—. Write g/ and g’ for the multipartitions associated to p as above.
By construction, we have p., = g/, and p! is obtained from p” by removing the
diagonal hook of length & (this is possible because ¢ is a cycle of a(pu,+)) at the
p*-coordinate.

Let g € Hp -k Then by [9, (i) of Proposition 4H], either (9 — ;) (zg) =0 =

(19;'[0 - 19;0) (9) (and the claim is true), or there are y € H, and z € Hy» such

that g = yz = zy and s(y), = 0. Since H,» C Hyr, the elements x and z lie in
H,». On the other hand,  commutes with z and with y (because these elements
have disjoint supports). Hence, [9, Proposition 4H] implies that

(100) (V% = 95) (9) = (95 = 9,) (W) O — I (@2).

First, suppose that 2z € a(u”)¢. Without loss of generality, in the writing of 5,
as in Equation (97), we can assume that x = t,y(, ). Hence, oy = Tla(ur): A
similar argument to that after Equation (87) shows that zz € a(u”)€ if and only if

z € a(u ). Note that H,,, = H,, 19:, = 19::, and ¥, =1, (because pu;, = p). Let

c

d be the number of parts of a(up+). Then a((p,)p+) has (d—1) parts. Moreover, one
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has €ppe = (_1)(1671)/26(‘%)
and (100) give

(0 = 94) (92)

. and ph(u,+) = kph((p.)p+), so that Equations (99)

P

(95 = 90) W) e(V/@p)*\feu, Ph(1e)

(955, = ) () \Jepph(=1) =1 2e(fp)
/€, PR((12)p)

= epk(=)E072 (9, =07 ) () (0, V) )

euph(=1)80/2 (95—, ) (9)-

Furthermore,
k
(—1)@k=1/2 — <(_1)(p—1)/2) (—1)*=D/2 = ¢ (—1)k=D/2,

because k is odd. The result follows.
Now, if zz ¢ a(u”)*, then z ¢ a(u!)*. We then have (19:,/ —)(z2) =0 =
(19:;,, —¥U,)(2) = 0 by Equation (99), and Equation (100) gives

(9% = 9,)(g2) = 0= (I, — 3, )(9)-
This proves the result. (I

For A # \* and p # p*, we write p;\r = p, = pxr and 19,*; =4, =V, Fu-
thermore, an element h € Hp,, is said regular if its cycle structure s(h) satisfies

s(h), = 0.

Theorem 5.12. Let p be an odd prime number. Let v be a self-conjugate p-core
of &, of p-weight w > 0. Denote by b, the corresponding p-block of A,,. Then the
linear map I : CIrr(by) — ClIrr(H, ) defined, for e € {£1} and A with p-core v,

by
€dp(X)

I(p}) = (_1)‘>\p*|5p()‘) X
where the notation is as in Theorem 5.1, is a generalized perfect isometry with
respect to the p-reqular elements of A, and the regular elements of Hp., (defined
as above).

Proof. First, we consider the case n = pw. In this case, one has v = ). Let S and C
be the sets that define an MN-structure for the principal p-block of A,,, with respect
to the set of p-regular elements of A,,,. We denote by €2y and A the corresponding
sets of partitions (see the proof of Theorem 3.9). Write S” and C’ as in the proof of
Theorem 5.1 (but for elements of Hy,,). Then Ay labels the Hp ,, classes of S” by
p- B € Ag — tz, where by Equation (97), tgx = t%ﬂ,.»-,ﬂ,ﬁ) and tg = (g, . 1w-181 g)-
Hence, if we set Hg = H,, ,,_ ||, then Hp satisfies Definition 2.5(3).

Now, for every partition A of pw with trivial p-core, and any € € {—1,1}, we
define

W = (_1)‘/\”*‘196}(@)’
Let p- 8 € Qo be such that 8 = (B1,...,8k). Assume that S is odd. Then

3, € Hpw, and by Lemma 5.11, N Uyw)(t,9) = 0for g € Hy oy |p,), except

ta
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when (A(P)),- contains a diagonal hook ¢y, of length |y|. In this case, we have.

(101)
({f\r(p) 19,\(;»)) (t3 Iﬁo‘\/ )#OD2pBy (030, = Vi) (55 535,9)

|,80\{ck}|\/ (pﬂk 1)/2pﬂk ( AP\ {ci} 19;(?>\{Ck}) (g)

:\/(’ i 1/21’5’“( A@\{ex} %w\{ck}) (9),

where AP\ {c,} is the multipartition with the same parts as A(P), except the p*-
part which is obtained from ()\(p))p* by removing the diagonal hook of length [y.
Therefore, Equations (79), (101) and Clifford theory give, for € € {£+1} and ¢ €

Hy i,

FKnltz,0) = D 05w T (@) + > (60500 050) T (9)+
ueMék(A) HEMpg, (X)
nFEP* n=p*

b(’&i(lj) ) 19;(1)) ) ﬂ;(p) (g)> )

where Mg, (\) and M (A) are defined as in §3.3, and the complex numbers b(@;m ) 52(1,))
satisfy the following;:

— If p* # p and p* € Mg, (N), then b(gi\(pw{;u(m) = a()\)(a’ﬁ + 0/2*) (see
Equation (79) for the definition of a’)‘)

~ If u* # pand p* ¢ Mg, ()\), then b(ﬂ)\<p),19u<p>) =a(\)a').

— If p* = p and pu # py, then b(ﬁ)\(p),ﬂmp)) a(A)a'},.

— If u* = pand p = py, then b(ﬂw,ﬂm\{%}) =1 (O/A — e (71)@,1)/211)’
where ¢ = pfk.

Note that, as in the proof of Theorem 5.1, we use that f induces a bijection
between M,s, (\) and Mg, (A\(P)).
Assume now that Bj and Si_1 are even. Let p € Mg, g, _ 1(/\). We denote

by b(J
with ﬁu@) € ZIrr(Hpw—pgu—p,_,). Then, applying Equation (79) twice and Clif-
ford theory, we obtain an analogue of Theorem 3.5. For p € Mg, 5, ,(A) or

)\<p)719 (») the hermitian product of the class function x — 19>\(p) (ZR7)

poe Mp g, (A), the coefficient b(ﬂ,\(m’ﬂ () is obtained from a(p5, p}}) by re-

placing (—1)%(%) and (— )L(Cv) by (—1)*((€)) and (—1) L(£(e) respectively.
Now, as in the proof of Theorem 3.9, if we suppose that /3 is labeled such that

there is some integer r with §; even for i < r and f3; odd for ¢ > r, then, applying

1terat1vely the above process, as in the proof of Theorem 3.9, and using the fact

that the J¢ S 'S give a basis of CIrr(H, ), we can define a linear map B CHpw —
CH,, || such that 7 (x)(z) = x(t ) for all x € Chrr(Hp,w) and © € Hy, |5/

In particular, Irr(Hp,,) has an MN-structure in the sense of Definition 2.5 with
respect to C’.
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Let p-3 € Qo. We define I : CIrr(by(n—p|B[)) = CH, -5, Where by (n—p|B])
is defined in §3.2, by setting

* Anop () (—1

I3(pp) = (=1)r° 3, () 2o
where n € {£1} and y is a partition of p(w —[3]) with p-core 7. Note that Iy} = I.
Write b(ﬂi\(m,ﬁz(p)) = (rﬁ(ﬁi(p)L192<p>>prw_W. If either B = B or f = B+
and A\ # k (where k is the partition defined in the proof of Theorem 3.9), then a
straightforward computation (see the proofs of Theorem 3.9 and of Theorem 5.1)

gives
a(p5orp) =b (1 (T ) 15 (7))

Hence, the only case to consider is 8 = (81,...,8,) € OD,, and A = k. Write
(h1,-..,hx) for the diagonal hooks of x and assume that the hook length of h; is
pPi. Furthermore, define 8(0) = {1} and B(i) = {f1,...,0:} for 1 < i < k (in
particular, p - 8(i) € Qo). Note that £(8(i)) = i.

Let 1 <i < k. Write v = &\{h1,...,hi—1} and p = k\{hy,..., h;}. Therefore,
if we set ¢ = ph;, then we have

€ Fe0p(v)(—1 -1~ Op —1)¢
b (15(1-71)(91/)7[3(1-)(/)2)) = 0p(v)dp(1)b (19,,(;))( =y aﬁZ(m(#)( ) ) )

= 8,(v)0p(1) (Oé/: — end, (V)6 () (—1)% 1 (_1)(q—1)/2q) ,

- (ol

=a(p.p)) -
Thus, using an argument similar to Equations (29) and (30), we conclude that
b(I(p;),IE(pZ)) = a(p, pj})- 1t follows that

)Z(ﬁ)
)

’I"EOI:IEOT’E

for every p - B € Ay, and Corollary 2.17 gives the result.

Now we return to the general case, that is, v is any self-conjugate p-core of
n with p-weight w. Let &’ be the principal p-block of A,,. We consider I, :
CIrr(by) — CIrr(b') the perfect isometry obtained in Theorem 3.9 and Ip, :
CIrr(b') — CIrr(Hp,.) the perfect isometry obtained in the first part of the proof.
Then I, 0 I, : CIrr(b,) — CIrr(H, ) is a perfect isometry. In order to prove the
result, it is sufficient to show that I = I,,, o I,,. Let A € P, be such that AP) = y
and € € {£1}. Then using that the p-quotient of ¥()\) is A(?), we derive that

. €5 (N)3p (W (A
Tpw OIn(pA) = L (5p()‘)6p(‘ll()‘))pq;(>§)) (e ))) )
= (N0 (T(N))F, (W(N) 5 Vo (TN E )
€0 (A
= 5,
= I(p}),
as required. O

Corollary 5.13. With the assumptions of Theorem 5.12, and if furthermore w < p,
then I is a Broué perfect isometry.
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