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Abstract 

This paper examines experimentally the effect of forcing and response amplitude on the 

variability of modal parameters of a bridge. An eleven-span motorway prestressed concrete 

off-ramp bridge was subjected to multiple dynamic tests with varying excitation levels by 

using eccentric mass shakers exerting forces in the vertical and lateral direction. The 

frequency sweeping technique with small increment steps in the vicinity of resonant 

frequencies was employed to construct frequency response functions at different shaking 

levels from which the natural frequencies, damping ratios and mode shapes were identified 

for several vertical, mixed vertical-torsional and lateral modes. Softening dynamic force-

displacement relationships were observed for all the modes, and the natural frequencies 

showed clear and consistent decreasing trends with increasing response amplitude. Modal 

damping ratios initially increased with increasing response amplitude, but later, for the modes 

where experimental data were available, stabilised at elevated levels. A finite element (FE) 

model of the bridge was also created and the experimental modal properties compared to the 

numerical ones. A good agreement was generally noticed for the lower modes but the higher 

modes had more error. The FE model was used to assess the likely levels of structural 

damage that would have a similar effect on the natural frequencies as the amplitude 

dependence. One numerical damage scenario indicated that a reduction of 20% of stiffness in 

the middle of the main span would cause larger frequency shifts of some modes but 

amplitude dependent effects will dominate in other modes. Another numerical damage 

scenario was a reduction by 50% of stiffness at the bottom of the highest pier, and it was 

shown this type of damage would result in only one third of the frequency drop caused by the 

amplitude effects in a single, most affected mode. 

 

Keywords: Full scale testing; system identification, modal testing; bridge; eccentric mass 

shaker; amplitude dependent modal parameters; finite element model 
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1. Introduction 

 

Bridge structures play a central role in modern economy, and many of them continue to be in 

service despite aging and the associated potential for damage accumulation. Consequently, 

efficient monitoring of the health of these structural systems becomes increasingly important. 

The commonly used methods for structural evaluation of bridges include visual inspections 

and localized experimental methods, e.g., acoustic emission, X-ray inspection, and ultrasonic 

and eddy current scanning [1-3]. However, many of these methods can be costly and time 

consuming, and require knowledge of, and direct access to, the structural problem location. 

The need for alternative means to assess the structural condition has led to the development 

of various monitoring techniques including vibration-based structure health monitoring 

(VBSHM) methods [4-7].  These are based on the well-known principle that structural 

damage changes the mechanical properties, such as stiffness, and thereby alters the dynamics 

of the structure and reveals itself in the measured dynamic responses and characteristics (e.g. 

modal properties). Despite the intuitive premise for the VBSHM methods, one of the major 

hindrances in their practical applications is that dynamic characteristics of a structure will 

often be significantly affected by changing environmental conditions (such as temperature) 

[8], and will also depend on response amplitude (directly related to the external excitation 

levels) [9, 10], which must be taken into account in VBSHM approaches. Thus, sound 

understanding of the variability in dynamic properties of a bridge structure due to typical 

environmental and loading level variations is required for using the VBSHM techniques 

reliably to discern the changes caused by actual structural damage or deterioration. Abundant 

literature concerned with the effects of temperature on modal parameters, quantitative 

relationships between temperature and modal properties, and data normalization to account 

for environmental variability exists [11-17]. However, comprehensive explorations of the 

influence of excitation force level on the variability in dynamic characteristics of bridge 

structures are limited, because this operational variable is difficult to precisely measure. In 

fact, concrete structures generally behave at least weakly nonlinearly even at moderate 

excitation levels due to the nature of reinforced concrete stress-strain relationship. With the 

increase in response amplitude, structural stiffness tends to deteriorate because of the material 

and structural nonlinearities and this stiffness reduction can be observed as a decrease in 

natural frequencies. Damping, on the other hand, represents energy dissipation in a vibrating 

structure,  and it plays a significant role in reducing structural response to a dynamic 

excitation near resonance. Experimental determination is currently the only reliable way of 
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quantifying damping [18], since an analytical evaluation from first principles is extremely 

difficult, if at all possible, due to the complicated damping mechanisms. A large volume of 

ambient excitation data for bridge structures have been collected and analysed by many 

researchers. However, Ren et al. [19] pointed out that the applicability of damping ratios 

identified through ambient vibration testing requires further evaluation using alternative 

identification techniques and other dynamic tests with large vibration amplitudes. Previous 

tests conducted under varying magnitude of excitation often reveal that both natural 

frequency and damping are strongly dependent on the magnitude of response even though the 

structure may behave elastically [20-27]. Zhang et al [28] found that the natural frequencies 

of a cable-stayed bridge can exhibit up to 1% variation within a day due to different vibration 

intensity under varying traffic conditions. Damping ratios were also reported as sensitive to 

the vibration amplitude, especially when the deck vibration exceeded a certain level. Cross et 

al. [29] reported that the first five modal frequencies of a deck had a tendency to decrease 

with the increased root-mean-square values of the vertical and lateral deck accelerations 

based on the analysis of three years of monitoring data of the Tamar suspension bridge. 

Fujino et al. [30] observed that the fundamental frequency of a suspension bridge reduced as 

the wind speed increased but a contrary trend was observed for damping ratio. Farrar et al. 

[31] noted there were significant changes in the damping ratios correlated with excitation 

amplitude in their tests on the Alamosa Canyon bridge. Ülker-Kaustell and Karoumi [32] 

found the first vertical bending mode natural frequency declined linearly with the increase of 

the vibrational amplitude in a ballasted, single span, concrete–steel composite railway bridge 

by analysing the free vibration response after a freight train passage. An opposite trend for the 

equivalent viscous modal damping ratio was observed. Gomez et al. [33] showed that in 

general larger earthquake intensities resulted in reduced vibration frequencies and higher 

damping ratios by analysing six seismic records of a three-span curved highway bridge. 

Although these observations help in gaining some insights into the influence of the excitation 

and response level on the variability in the dynamic characteristics of bridges,  a precise and 

quantitative understanding of the amplitude-dependent dynamic properties of bridge 

structures has not been achieved yet due to the relative lack of adequate response data under 

broadly varying force excitation levels, especially for multiple-span highway or motorway 

concrete bridges, many of which have been equipped with dynamic monitoring systems in 

recent years [34-36]. 

The objective and contribution of this paper is to provide further insights into the 

amplitude dependency of the natural frequencies and viscous modal damping ratios of bridge 
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structures in a broad vibration intensity range realised via forced vibration testing 

experiments. An eleven-span, post-tensioned concrete motorway bridge was tested as the 

case study. Frequency sweeping excitation at several forcing levels applied by rotating mass 

shakers was utilized to excite the bridge in the vertical and lateral direction. A series of 

frequency response functions (FRFs) at different levels of excitation were constructed, and 

natural frequencies and damping ratios were identified from these FRF curves for several 

vertical, mixed vertical-torsional and lateral modes. Softening relationships between the 

amplitude of dynamic forcing and response were observed. A consistent trend of decreasing 

modal frequencies with increasing forcing and response level was also clear for all the 

identified modes. Damping, on the other hand, initially increased, but later stabilised for 

those modes where testing continued into large response amplitude range. Quantitative 

relationships between modal parameters and response amplitude were obtained from 

available experimental data and used to describe the amplitude-dependent behaviour of the 

bridge in the tested amplitude ranges. The measured modal properties at the lowest forcing 

level were compared with the numerical results obtained from a finite element (FE) model 

and an overall good agreement was achieved, although higher modal frequencies and shapes 

showed larger differences. The FE model was then used for simulating two damage scenarios 

and comparing the frequency shifts due to damage and response amplitude effects. It was 

found that that even significant damage may cause modal frequency variability less 

noticeable than that due to the response level effects. The paper is organized as follows. 

Firstly, the bridge and the experimental programme are described, and then the results of 

modal system identification and their analyses and discussions are presented. This is followed 

by a description of the FE model and comparison of the numerical and experimental results. 

Finally, the numerical simulations of damage scenarios are conducted and observations about 

frequency shifts due to damage versus response amplitude are discussed. A set of conclusions 

rounds up the paper. 

 

2. Description of the bridge 

 

The structure under investigation is the Nelson St. off-ramp bridge located on the southern 

fringe of the Central Business District of Auckland, New Zealand, at a confluence of three 

major motorways. The bridge was built in 1976 and used for a number of years thereafter. 

Currently, it is closed to traffic and kept as a redundant link in the motorway junction for 

possible emergency and regular future uses. The closure of the bridge created an excellent 
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opportunity for a longer, undisturbed and comprehensive testing campaign, a part of which is 

the topic of this paper. Two views of the bridge appear in Fig. 1, while Fig. 2 is a sketch 

explaining the overall structural form and arrangement and showing major dimensions. The 

bridge has a horizontal as well as vertical curvature. Its total length is 272 m and it comprises 

11 post-tensioned concrete spans. The main span is 40 m long and the remaining spans vary 

in length between 18 and 26 m, with the majority of them 24 m long. The superstructure was 

built of a total of 137 precast single-cell box girder segments delivered to the site, placed in 

their final position on movable scaffolding and then post-tensioned. Two different precast 

cross-sections of heights 1.73 m and 1.09 m, respectively, were used and are shown in Fig. 3. 

The cantilevered extremities of the girder upper flange were precast separately and connected 

to the box section using reinforcement bars protruding from the box section. Steel guardrails 

were bolted to the cantilever slab of the girder on both sides along the whole length of the 

bridge, while a concrete channel was installed along one side of the girder cantilever slab for 

rainwater drainage. A  40 mm thick layer of mixed asphalt and crushed stone gravel or sand 

was used for the bridge roadway paving. 

Ten solid octagonal piers of height between 4.27 and 14.43 m and the maximum 

width and thickness of 2.85 m and 1.42 m, respectively, provide intermediate supports (refer 

to Fig. 2 for pier numbers). The North and South end of the bridge are supported by a pile-

bent type abutment and a gravity abutment, referred to as Abutment 1 and Abutment 2, 

respectively. Abutment 1 and Piers 1-3 are founded on piles whereas the remaining piers and 

Abutment 2 on footing type foundations. 

A pair of elastomeric bearings, separated by a distance of 1.93 m centre-to-centre, was 

installed at the top of each pier and abutment to support the superstructure. At Abutment 1, 

sliding type bearings, with sliding direction at an angle of 20.6° to the bridge longitudinal 

axis, were used. Shear keys were also installed at the top of Piers 2-10 to meet aseismic 

requirements by providing additional resistance for the superstructure should it undergo large 

lateral motion. 

There is a hinge in the girder located between Piers 4 and 5 at a distance of 9 m from 

Pier 4. The hinge is shown in Fig. 4. It consists of two steel cantilevered I-sections protruding 

from the girder segment on the one side of the hinge with a fixed pot bearing at the tip of 

each cantilever. The girder segment on the other side of the hinge rests on the bearings. The 

depth of the box section segments between Pier 4 and the hinge gradually varies between 

1.73 m to 1.09 m. 
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3. Equipment and experimental programme 

 

This paper is focused on frequency sweep forced-vibration tests using rotating mass 

shakers conduced on the bridge as a part of a wider experimental programme, whose 

remaining components will be reported on other occasions. The frequency sweep forced-

vibration method, when suitably large exciters are employed, can determine high quality 

dynamic characteristics of structures due to its capability of inducing strong responses in a 

wide frequency range [37, 38]. In the present study, two large capacity eccentric mass 

shakers (ANCO Model MK-140-10-50) were anchored with several M16 bolts to the bridge 

deck (Fig. 5a) to perform frequency sweeps in both the vertical and lateral direction in the 

frequency range of up to 10 Hz. Each shaker system consists of a dual-arm rotating adjustable 

eccentric mass, Danfoss VLT-5011 variable frequency drive controller, drive motor, timing 

belt speed reducer, and interconnecting three-phase cables [39]. The total mass of each shaker 

system is approximately 600 kg. The required 440 V electrical power for a shaker was 

supplied by a 60 kVA diesel generator located outside the bridge near Abutment 1 to avoid 

the effect of the generator on bridge vibrating responses. According to the manufacturer’s 

specifications, each mechanical vibrator has the maximum unidirectional frequency and force 

capacities of 30 Hz and 92 kN, respectively. The amplitude and frequency of the applied 

force is controlled by varying the rotational speed, and the magnitude and eccentricity of the 

attached masses. The force output generated by each shaker, P, can be expressed as: 

                                                         
2 2( ) 4 sin2P t f MR ft                                         (1) 

where MR  is the shaker mass-eccentricity (kg-m), f  is the frequency of rotation (Hz), and t 

is time (sec). By adjusting the number of the steel masses attached to the flywheels (Fig. 5b), 

unidirectional harmonic excitations with low, moderate and high amplitude can be generated. 

A total of 62 battery powered tri-axial Micro-Electro-Mechanical Systems (MEMS) 

accelerometers with an internal temperature gauge and data recording to a micro SD card 

(Data Concepts models X6-1A and X6-2) (Fig. 6) were used to capture the vibrational 

response. Before installation on a structure, the real time clock of each accelerometer is 

synchronized to a computer clock via a USB connection which is later also used for data 

download. These sensors offer a cost effective alternative to the traditional wired systems on 

the one hand and wireless platforms on the other. They provide sufficient data quality and 

reliability while avoiding time consuming and expensive cabling for the wired systems and 

vagaries of wireless systems such as the not infrequent data loss [40-42]. The 
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accelerometer/D-cell battery units were wrapped tightly onto small plywood blocks and 

attached to the bridge deck by using a silicone adhesive (Fig. 6). During testing, a 12-bit 

resolution was used, with resulting 1 mg resolution in the ±2 g range, and the sampling rate 

was set at 80 Hz. 

Both shakers were positioned on the longest span between Piers 2 and 3 at the 

location selected based on a preliminary FE modal analysis to avoid nodal points of the 

expected modes to be excited. The laterally configured shaker was positioned at the mid-span 

and at the centreline of the bridge deck and the vertical shaker at 1/3 of the span length and 

2.5 m off the centreline to provide also torsional forcing (Fig. 7). Figure 7 also explains the 

general principles of accelerometer setup, taking the longest span as an example. During 

vertical sweeping tests, the 62 accelerometers were arranged along both curbs of the bridge 

deck generally at 1/4, 1/2 and 3/4 of span-length (with the exception of two short spans at the 

North end that were only measured in the middle) and at the hinge location. During lateral 

sweeping tests, the accelerometers on the bridge deck were placed along the centreline of the 

bridge generally at 1/4, 1/2 and 3/4 of span-length (with the exception of two longest spans 

between Piers 2 and 4 that were additionally measured at 1/8, 3/8, 5/8 and 7/8 of their span 

length) and at the pier, abutment and hinge locations. Due to the availability of a large 

number of sensors, a single setup for each type of test sufficed to map the whole mode 

shapes. 

Taking advantage of the ability to control the excitation force, a testing program was 

designed to investigate the amplitude dependent modal properties of the bridge. To that end, 

several detailed frequency sweeps with varying forcing mass-eccentricity were conducted in 

the vicinity of the identified natural frequencies. To obtain initial estimates of the resonant 

frequencies each shaker was configured with one small mass (3.6 kg) and the rotation 

frequency was gradually increased from 0.0 to 10.0 Hz with an increment of 0.1 Hz, 20 

seconds hold time at each frequency increment, and a 5 seconds ramp-up time from one 

frequency value to the next. The resonant frequencies of the bridge were roughly determined 

by picking the peaks of the power spectral densities of the recorded data signals. Then, a 

series of tests with a much smaller step of 0.01 Hz and gradually increasing mass-eccentricity 

values were carried out by sweeping through narrow frequency bands centred at the 

previously identified resonant frequencies. At each frequency step, the excitation was held 

constant for approximately 60 seconds to allow the bridge response to attain the steady state 

condition. Because of the motor torque limit, for the vertically configured shaker the 

maximum number of masses that could be installed was 1 big mass (15.5 kg) plus 1 small 
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mass (3.6 kg). For the laterally configured shaker, up to 8 big masses were gradually added to 

each flywheel. For safety reasons (loosening of anchors and avoiding damage to the bridge), 

the output force of the shaker was limited to 60 kN. After the bridge experienced the highest 

dynamic force level, it was finally excited again by a shaker with 1 small mass to check 

whether the previous high force level testing had had any permanent effects on the dynamic 

characteristics. The testing programme for the vertical shaker is shown in Table 1 and for the 

lateral shaker in Table 2, respectively. 

The entire testing  campaign reported in this paper was completed within five days 

(23-27 May, 2013), during which the weather conditions were stable. This, together with the 

large thermal mass of concrete, is believed to largely alleviate any possible influence of 

variations in temperature and humidity on the dynamics. This assertion is supported by an 

analysis reported at the end of Section 5.  

 

4. Modal parameter identification 

 

The potential resonant frequencies within the 0.0-10.0 Hz frequency band of interest were 

identified by using the peak picking (PP) method from power spectra of responses from the 

quick sweeping tests with a shaker equipped with one small mass. Figure 8 displays typical 

quick sweeping vibration responses from the mid-span measuring stations located on the 

longest span (see Fig. 7) during the vertical and lateral sweeps. (Note these two types of 

sweeps were not conducted concurrently and are only superimposed in the figure to compare 

them and save space.) It can be seen in Fig. 8 how the sweeping excitation mobilizes each 

mode in turn. The averaged normalized power spectral density (ANPSD) plots were used to 

detect the resonant frequencies on site. The ANPSD is defined as [43]: 
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where kf  is the k -th discrete frequency (k=1, …, n), iPSD  is the auto-power spectrum of the 

i -th channel, and m is the total number of measurement channels. The ANPSD makes full 

use of the vibrational data from all the channels and, while averaging the spectra from 

different channels does not have clear physical meaning, it enables quick identification of 

modal frequencies – an attractive alternative to examining a large number of individual 

spectra. Figures 9a and b show the ANPSDs for the vertical and lateral response data, 
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respectively. From these plots, a total of six vertical, one mixed vertical-torsional and eight 

lateral modes were identified, indicated in the figure respectively by symbols V, V/T and L 

and the mode number. (Note that the majority of modes were identified on site immediately 

after testing. However, some other modes with less clearly discernible peaks in the ANPSD 

plots, namely V5, L4 and L5, were confirmed only after more careful examination conducted 

off site. Due to time limitations such detailed analyses had to be skipped on site and only the 

clearest modes were pursued in the subsequent detailed sweeps. It will be shown that a high 

degree of similarity exists between the behaviour of the identified modes, and so the 

exclusion of the modes less strongly excited in the preliminary tests will arguably have no 

consequences for the general conclusions of this research.) Table 3 lists all the modes 

identified from the preliminary tests. In addition to the natural frequencies, information on 

mode shapes is also included. This takes the form of the ratio of the maximum amplitudes in 

the vertical (V), torsional (T) and lateral (L) direction normalized with respect to the largest 

of the three components, and is referred to as mode coupling ratio. Note the values in Table 3 

were in fact determined from the detailed frequency sweeps using one small mass (i.e. the 

smallest force amplitude), except for modes V5, L4 and L5 where the preliminary sweep data 

was used, but are reported earlier for completeness. The vertical modal component was 

determined by averaging the values from two accelerometers on the opposite sides of the 

deck, whereas the torsional component by taking their difference and dividing by two. 

Because during the lateral sweeps there were no measurements at the deck edges to allow for 

torsional component determination, these values were extracted from a FE model of the 

bridge (described later) to complement the experimental information and are reported in 

parentheses. It can be seen from Table 3 that because the bridge is curved both vertically and 

horizontally, all the modes show some degree of coupling between the three components. 

Thus, while referring to the modes as, for example, ‘vertical’, it should be born in mind they 

are not purely vertical but rather ‘vertically dominant’. One mode, designated V7/T1, showed 

quite different pattern on one side of the hinge (vertical dominance) compared to the other 

side (torsional dominance) and hence was singled out and will be referred to as the mixed 

vertical-torsional mode. 

After the preliminary, quick testing, a series of detailed, small-step frequency sweeps 

at different excitation levels were performed in the vicinity of the identified frequencies to 

accurately quantify the amplitude-dependent dynamic behaviour (see Tables 1 and 2). Figure 

10 shows an example of steady-state acceleration response from a mid-span measuring 

station when sweeping around the frequency of mode V1 using a shaker with one big mass. 



11 
 

From Figure 10, a series of ladder-shaped steady state responses segments can be clearly 

observed. Around time 2000 sec, the excitation was very close to the resonant frequency. For 

each frequency step, an approximately 40 second long section of steady state, good quality 

acceleration response data was selected, and a sine wave was fitted to the experimental data 

using a nonlinear least square regression procedure [44]. The frequency and amplitude of 

response were then obtained from the fitted sine wave. The acceleration amplitudes were 

converted to displacement amplitudes by dividing them by 2 24 f . Furthermore, to account 

for the dependence of forcing amplitude on frequency (see Eq. 1) the displacement 

amplitudes were further divided by 2f . Standard FRFs in the displacement versus force 

format would require further division of the displacement amplitudes by 24 MR , however, 

this last normalization step was skipped in order to better accentuate graphically the changing 

response amplitudes and frequency shifts in the FRF figures, which would otherwise be too 

crowded for some modes. The displacement amplitudes obtained as explained above are 

plotted as functions of frequency in Figs. 11 and 12 for the vertical and lateral modes, 

respectively, using the data from the measuring station with the largest response for the 

corresponding mode to ensure the best signal-to-noise ratio and thus small identification 

errors. Note the displacement amplitudes for some modes are not shown because they were 

either not identified on site and therefore excluded from detailed testing as explained before 

(modes V5, L4 and L5), or poor quality data made reliable identification difficult (mode L3). 

Furthermore, for some other modes (L2, L6, L7 and L8) the testing programme had to be 

curtailed when strong bridge vibrations felt by the testing personnel led to concerns about 

inflicting damage to the bridge. 

In Figs. 11 and 12, clear peak shifts to the left can be observed in the response curves, 

which indicate the modal frequency of each vibration mode decreases with the rise in the 

shaking and response amplitude. However, compared with the vertical bending modes, the 

shifts in the lateral bending modes are clearer, since broader ranges of excitation forces were 

applied. Based on these response curves, the estimates of natural frequencies were obtained 

by fitting interpolating cubic splines [45] through the available experimental data points and 

finding the frequencies corresponding to the peak response magnitude of the interpolation 

curves. By analysing the experimental identification results statistically, it was found that the 

upper bound on the standard deviation of the error of natural frequencies can be assumed to 

be of an order of 3×10-3 Hz and for peak displacement amplitudes 5×10-5 mm. Damping 

ratios were determined by using the half-power method [18]. The simple half-power method 
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was deemed appropriate as the FRFs were obtained directly from the measured steady-steady 

sinusoidal response data in the time domain without any potential distortions associated with 

transformations into the frequency domain. Mode shapes were determined based on the 

normalized displacement amplitudes at the identified natural frequencies for all the 

measurement locations on the bridge. 

 

5. Amplitude-dependent modal properties 

 

Tables 4 and 5 show (respectively for the vertical and vertical-torsional, and lateral modes) 

further information of the detailed experimental programme for each mode. The columns on 

the left show the date and time of each detailed sweep together with the ambient air 

temperature. These temperatures were measured at 30 mins intervals with accuracy of 

±0.125ºC by 11 MEMS accelerometers located at mid-spans and average values across all the 

sensors are shown. The temperature data will be discussed later to assess the effect of 

environmental changes on the bridge dynamics. At this point, however, the reader’s attention 

is directed to the right hand side columns of Tables 4 and 5 that show the extracted values of 

forcing and response amplitudes and modal frequencies and damping ratios at different 

forcing and displacement levels. In order to visualise better the nonlinearity in the force-

displacement relationships, the amplitudes of displacement are plotted versus forcing 

amplitudes for the vertical and vertical-torsional modes in Fig. 13 and for the lateral modes in 

Fig. 14, respectively. Simple power formulas of the general form F=AdB, where F is the 

forcing amplitude in kN, d is the displacement amplitude in mm and A and B are constants, 

were adopted to interpolate the observed relationships and their coefficients calculated via 

least squares fitting; these are also displayed in Figs. 13 and 14. Note the power formulas 

respect the physical fact that there must be no displacement without forcing. It can be 

observed that for the vertical and vertical-torsional modes the trends depart from straight line 

even in the relatively narrow range of the forcing amplitudes applied. For lateral modes L1, 

L2 and L6, a clear departure from straight line can also be seen, and for modes L7 and L8, 

even with very limited testing points available, some departure can still be discerned. The 

relationships between the displacement amplitude and forcing amplitude indicate softening 

dynamic force-displacement characteristics of the structural system within the tested range. 

The trends in modal frequencies and damping ratios with increasing response 

amplitude are examined in Figs. 15 - 18. For vertical and vertical-torsional modes (see Fig. 

15), the natural frequencies decline practically linearly with displacement amplitude in the 



13 
 

tested range that varied between 0.030 mm and 0.858 mm. (While there are only three data 

points available for each mode to draw trend lines, the required slopes at the right hand side 

end suggest straight lines rather than concave curves used later for lower lateral modes). For 

the lower modes V1, V2, V3 and V4, the total frequency drops are small, around 0.01 Hz (i.e. 

less than 0.35%). However, the higher modes V6 and V7/T1 exhibit larger total frequency 

drops in the tested response range of 0.041 Hz (0.6%) and 0.155 Hz (1.9%), respectively. 

These different sensitivities of modal frequencies to response amplitude are also visible in the 

linear formulas quantifying the dependence of frequencies on response amplitude, where the 

negative slopes vary between 0.02 Hz/mm and 0.43 Hz/mm and increase as one moves from 

the lower to higher modes. 

For the lateral bending modes (see Fig. 16), the decrements of the natural frequency 

with the increasing response amplitude are more noticeable and the trends are generally non-

linear. The range of displacement amplitudes varied between 0.008 mm and 1.660 mm, i.e. it 

was wider but still of the same order as for the vertical response range. The total decreases in 

frequency for modes L1, L2, L6, L7 and L8 were 0.09 Hz (4.8%, or when expressed in 

relation to the total response amplitude change 0.06 Hz/mm), 0.114 Hz (3.7%, 0.09 Hz/mm), 

0.133 Hz (2.0%, 0.57 Hz/mm), 0.019 Hz (0.25%, 0.73 Hz/mm) and 0.021 Hz (0.22%, 0.24 

Hz/mm), respectively, within the tested response range. The comparison between different 

modes is the most meaningful when looking at the frequency changes in relation to the 

response amplitude changes. For modes L1, L2, L6 and L7, these values are between 0.06 

Hz/mm and 0.73 Hz/mm and have an increasing trend as one moves from the lower to higher 

modes. Also, compared to the corresponding values for the vertical and vertical-torsional 

modes they are between two and three times larger. However, mode L8 has a lower value of 

0.24 Hz/mm, which is also approximately in the middle of the values for the vertical and 

vertical-torsional modes. Another obvious observation is that the frequencies of modes L1, 

L2 and L6 initially decrease faster but subsequently the rates of decreasing gradually become 

slower with the increasing response amplitude. On the other hand, the interpolating curves 

become closer to straight lines as one moves from mode L1 to L2 to L6, as confirmed by both 

visual inspection of the plots as well as the power coefficients of the frequency-displacement 

curves that gradually approach 1. 

The damping ratios for the vertical and vertical-torsional modes are shown in Fig. 17. 

All the values are within the 0.55% to 1.85% range, and there is an increasing trend for larger 

response amplitudes. The fundamental vertical bending mode V1 has the largest increment 

and the damping ratio for the response amplitude of 0.86 mm increased by 0.66% in absolute 
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terms compared to the initial value. On the other hand, damping ratio of mode V4 remains 

constant. The other vertical and vertical-torsional modes have intermediate absolute 

increments of around 0.15%. Linear trends were used to interpolate between the available 

limited numbers of experimental data, and these have slopes between 0 and 1.1%/mm, with 

the majority of modes having slopes of 0.2 – 0.5%/mm. 

Similarly to the frequencies, there are more data points available for the damping 

ratios of the lower lateral modes (see Fig. 18). The rising damping levels with increasing 

response amplitude are obvious and the maximum increment for the lateral modes is 0.36%, 

1.52%, 0.56%, 0.25% and 0.15% for modes L1, L2, L6, L7 and L8, respectively. However, 

for modes L1 and L2, the damping ratio only rises for lower response amplitudes less than 

approximately 0.25 mm, while keeping practically constant afterwards. Bilinear relationships 

were used to fit the available data points with the slopes of the initial parts being 1.4%/mm 

and 3.4%/mm for L1 and L2, respectively. For mode L6, the damping ratio grows 

continuously and linearly with the response amplitude (slope 2.6%/mm), but experimental 

results are only available up to approximately 0.25 mm. While there is no direct experimental 

evidence, it can by hypothesised, on the one hand, that the linear trend for low amplitudes 

actually observed for L6 confirms the similar linear trends assumed for L1 and L2, and, on 

the other hand, that it can be expected that mode L6 damping ratio would also plateau for 

larger response amplitudes. Modes L7 and L8 were only tested at two, relatively small, 

values of response amplitude and linear interpolation was used. Mode L8 had an average 

slope of 1.7%/mm but mode L7 had the largest overall slope of 9.7%/mm. Given that for 

these modes the response amplitudes were small, it can be hypothesised that the available 

data points are within the linear damping ratio-response amplitude range observed for the 

remaining lateral modes. 

The question arises as to how the observed changes can be physically explained. Both 

material and structural nonlinearities can be involved. The decreasing stiffness, which 

manifest itself in the softening dynamic force-displacement relationships (Figs. 13 and 14) 

and falling natural frequencies (Figs. 15 and 16), can be a result of the similar well-known 

nonlinear force-displacement characteristic of concrete and fixed elastomeric bearings. 

Furthermore, at elevated response levels resistance in the hinge and sliding bearings can be 

gradually overcome, resulting in a ‘looser’ structural system. Likewise, the observed 

increases in damping ratios (Figs. 17 and 18) can be a result of increased energy dissipation 

through friction at the hinge and bearings. In the case of damping, however, after a certain 

level of damping is reached no further increase occurs, likely because all frictional 
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mechanisms are already activated. It is important to recognize that the softening dynamic 

stiffness indicates in fact even larger decreases in the static stiffness. This is because the 

relationship between the modal displacement amplitude, q, modal force amplitude, f, modal 

damping ratio, , and modal static stiffness, k, is [18]: 

                                                                     
1

2

q

f k
                                                      (3) 

As can be seen in Figs. 17 and 18 and Tables 4 and 5, the modal damping ratios never 

decreased and in some cases increased by as much as approximately 70%, the 

corresponding modal static stiffness drops had to overcome with a certain margin these 

effects of elevated damping. 

After having experienced the highest level of excitation, the bridge was again shaken 

using only one small mass attached to the shaker. The natural frequency and damping for 

each mode, and broadly the entire FRFs were found to be practically identical to those 

registered when the bridge was initially tested at the same level of excitation (see Tables 4 

and 5 and Figs. 11 and 12 where this case is indicated as ‘1 small mass (final)’). This shows 

that the identified amplitude dependent nonlinearities do not relate to any irrecoverable 

damage to the bridge as a result of testing. The potential variability of mode shapes at 

different forcing levels has also been checked  by calculating the Modal Assurance Criterion 

(MAC) [46] with respect to the lowest excitation level case, and MAC values are listed in 

Tables 3 and 4. A MAC value equal to 1 represents a perfect correlation (i.e. linear 

dependence) between two mode shapes, whereas modes which are completely orthogonal 

(i.e. linearly independent) have a 0 MAC value. It is found that MACs are all larger than at 

least 0.995, which means the mode shapes stayed constant regardless of the level of 

excitation. 

It is well known that ambient conditions, mostly temperature, effect structural 

properties and response mechanisms. It is thus necessary to assess and discuss to what extent 

the reported experimental dynamic properties could have been affected. It has to be 

recognized first that Nelson St. off-ramp bridge is a massive concrete structure with 

considerable thermal inertia. Thus changes in the bridge structural temperature will lag 

behind the changes in ambient conditions and for short lived changes in the latter (such as the 

diurnal temperature cycle) will have considerably smaller amplitude as observed in previous 

studies on similar structures [47, 48]. The modal properties will thus not be strongly affected 

by only small changes in bridge structural temperature. This can be seen in our own data 
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presented in Tables 4 and 5. Recall that for each mode included in the tables, the bridge was 

first tested using one small mass and then retested at the same forcing level several hours 

later and at a different ambient temperature. The smallest of the temperature changes between 

the two tests was for mode V6, 0.5°C, and the largest for mode L1, 6.5°C. The differences 

between modal frequencies identified at the same forcing level using one small mass but at 

different temperatures were in both cases equal to 0.001 Hz. On the other hand, the largest 

such frequency difference was 0.004 Hz for mode L8, and corresponded to 1°C change in the 

air ambient temperature. It is noted that these frequency changes are of the order of accuracy 

of the identification of 0.006 Hz mentioned before. Further assessments of the likely effects 

of temperature can be made with the help of results reported in literature. A study on a cell 

box girder, three span, 235 m long concrete bridge by Fu and De Wolf [49] reports that for 

the period of time between 7:00 am and 5:00 pm (i.e. the same time generally as in our tests), 

a change of 1°C in the ambient air temperature resulted in only 0.06°C change in bridge 

structural temperature. Further, Liu and De Wolf [47] estimated from long-term bridge 

monitoring results that modal frequencies did not change more than 0.8% per 1°C change in 

structural temperature. Taking the most extreme ambient air temperature variation observed 

in our testing, i.e. 6.5°C for mode L1, and the above estimates from [47] and [49], suggests 

the maximum change in the frequency of mode L1 caused by temperature variation to be 

approximately 0.006 Hz. This value is of an order smaller than the difference of 0.09 Hz 

measured at the two corresponding forcing levels (see Table 5) and of the same order as the 

accuracy of frequency identification. Overall, it can thus be concluded that temperature 

changes had only very small effects on the reported results and frequency shifts can be 

confidently attributed to the differences in response amplitudes. 

 

6. Comparison of experimental and numerical modal parameters 

 

One of the main benefits of field vibration testing can be validation of numerical models to be 

used for structural performance and condition evaluation. On the other hand, correlating the 

experimental results with the eigenvalue/eigenvector pairs calculated from a mathematical 

model helps in the interpretation of, and increases the confidence in, the modal properties 

identified from tests. Thus, physical testing and numerical modelling should go hand in hand 

whenever practical and inform each other. This section discusses the development of a three-

dimensional (3D) linear elastic FE model of the Nelson St. off-ramp bridge and comparison 

of the natural frequencies and mode shapes identified experimentally at the lowest excitation 
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level (shaker with one small mass) with their counterparts derived from the FE model. (Note, 

precise model tuning, or updating, is not an objective of the study reported herein and will be 

a subject of future investigations; only manual adjustments of the FE model were deemed 

sufficient for the current study.) 

The FE model is constructed using the ANSYS FE code [50] adopting the geometry 

and structural and material properties indicated in the bridge design documentation and 

confirmed visually on site. The main structural components, such as the box girder and 

hexagonal piers, are modelled using 2-node 3D elastic beam elements (Beam188). The values 

of material parameters used for the main components of the FE model are as follows: 

Young’s modulus of girder concrete is 35 GPa and for the piers and cantilever girder 

extremities it is 30 GPa, density of girder concrete is 2,550 kg/m3 and for the piers and 

cantilever girder extremities it is 2,450 kg/m3. The stiffness of non-structural members, such 

as steel rails, asphalt layer and concrete rainwater channel, are ignored but their masses are 

accounted for as 208 kg per 1 m length of the bridge in the longitudinal direction and 

modelled by point mass elements (Mass21) including the corresponding rotary inertia along 

the longitudinal axis of the deck. 

Appropriate modelling of boundary and connectivity conditions always plays a 

significant role in accurately representing the actual structural dynamic behaviour. The hinge 

in the girder was modelled as an ideal one, i.e. with no rotational stiffness. This was based on 

trying a range of rotational springs and observing the resulting frequencies and mode shapes. 

The lateral and longitudinal stiffness of a single bearing of the type used at the pier was 

assumed to be 0.2 GN/m, rotations associated with vertical bending were assumed free, and 

vertical displacements as well as torsion fully restrained. At Abutment 1, the sliding type 

bearings were additionally assumed to provide no translational restraint in the direction of 

sliding but a full perpendicular restraint. At Abutment 2, the bearings were assumed to 

provide full fixity, except for rotations associated with vertical bending, which were assumed 

free. Shear keys were assumed to remain unengaged for the relatively small motions induced 

by shakers. All the piers were modelled as fully fixed at the base.  The bridge girder was 

discretized into 0.1 m long elements and piers into 0.2 m long elements. The FE model 

comprises 3,920 nodes and 3,488 elements (3,314 beam elements, 143 mass elements and 30 

spring elements) and is shown in Fig. 19. The shifted Block-Lanczos method [51] in ANSYS 

was used to extract the eigenvalue/eigenvector pairs. 

A comparison between the experimental and numerical modal frequencies and mode 

shapes (MACs) is conducted in Table 6. Additionally, for easy visualisation of the results the 
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numerical frequencies are plotted against experimental frequencies Fig. 20 shows. For a 

perfect match between the two, all points would be located of the diagonal reference line; 

conversely, departures from the line indicate the degree of error. The mode shapes are 

displayed in Figs. 21 and 22. From Table 6 and Fig. 20, a general trend for the natural 

frequency and mode shape differences between the experimental and numerical results can be 

seen to be relatively small for the lower modes but to increase for the higher modes; this is 

particularly evident for the lateral modes. This demonstrates that much bigger difficulty 

exists in estimating higher modes from either measurements (even employing large 

mechanical eccentric shakers providing strong excitation) or FE predictions. The reasons 

include the fact that higher modes may involve more complex vibration mechanisms 

governed by local material and structural characteristics, nonlinearities, and larger 

measurement errors [52]. The vertical modes have relatively lower frequency errors, less than 

2.5%, compared to the vertical-torsional and lateral modes (up to 23.6%), which indicates 

that the FE model captures better the mass and stiffness distribution influencing vertical 

vibrations. This stiffness is overwhelmingly dependent on the girder stiffness and does not 

pose significant challenges in modelling. However, there are larger errors for the vertical-

torsional and lateral modes. Discounting the higher lateral modes L6-L8, which have 

noticeable errors between 10.8% and 23.6%, even the lower modes still have errors up to 

6.6%. Modelling of the lateral displacements generally entails considering the stiffness of 

bearings, piers, and even foundations and soil, and is considerably more challenging and 

riddled with uncertainties. 

The MACs of the first three vertical modes V1-V3, vertical mode V6 and lateral 

mode L1 are above 0.90, which shows a reasonably good agreement. Amongst the remaining 

modes, V4, L2, L4-L6 still have the MAC values above 0.80, but V5, V7/T1, L3, L7 and L8 

have MACs of only between 0.47 and 0.66 indicating a less satisfactory numerical modelling 

outcome. The varying degrees of alignment between the experimental and numerical mode 

shapes can also be visually confirmed in Figs. 21 and 22. Notable discrepancies include much 

larger experimental displacements North of the hinge for modes V2-V5, L5 and L7. However, 

because dynamic responses of bridge structures due to external excitation, such as 

earthquakes or traffic, are generally dominated by the lowest modes, the good agreement 

between the experimental results of the lowest few modes and their numerical counterparts 

shows that the FE model can be considered adequate for practical engineering applications. 
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7. Influence of amplitude dependent natural frequencies on damage detectability 

 

Since the amplitude dependence of modal properties has a similar qualitative influence on the 

modal frequencies as structural damage, i.e. both are associated with drops in frequencies, it 

may make detecting true damage more challenging. Both false negative and false positive 

damage detection errors are possible if an accurate model for the amplitude dependent effects 

is unavailable. It is thus of interest to explore quantitatively how the detectability of different 

types and extents of damage can be affected. To that end, the FE model developed in the 

previous section is used to simulate the following two simple damage scenarios shown 

schematically in Fig. 23: 

 Scenario 1: A 20% reduction in the static vertical bending stiffness of a 2 m long 

girder segment in the middle of the longest span (between Piers 2 and 3); this type of 

numerical damage scenario could simulate cracking due to traffic overload or effect of 

advanced corrosion. 

 Scenario 2: A 50% reduction in the static lateral bending stiffness of 1.5 m long 

segments at the bottom of the highest Pier 3; this type of numerical damage scenario 

could simulate pier damage due to seismic excitation. 

Table 7 shows the results of the simulations where the frequency drops caused by damage 

Scenarios 1 and 2 are compared to those due to the amplitude dependence of modal 

frequencies. Note that only the vertical and vertical-torsional modes were considered for 

Scenario 1 as the lateral modes were not strongly affected by the type of damage assumed in 

the scenario, and, for a similar reason, only lateral modes were considered for Scenario 2. The 

frequency drops related to the amplitude dependency were those corresponding to the largest 

level of response. It is beyond the scope of this preliminary assessment to ascertain if the 

bridge will indeed develop the levels of vibration, when subjected to the typical excitations 

(such as traffic or micro tremors) it would normally be monitored under, that would cause 

those maximum frequency drops. Also, the influence of larger variations in temperature or 

humidity and other factors is ignored, as is the effect of measurement noise on system 

identification results. 

With these limitations in mind, it can be seen that the level of damage assumed in 

Scenario 1 would only cause frequency shifts in modes V1 and V3 with a margin of a factor 

of 2 or 1.5, respectively, compared to the amplitude dependent variations, whereas it would 

be less than the amplitude dependent changes for modes V2, V4, V6 and V7/T1. In Scenario 
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2, only the damage related change in the frequency of mode L1 is 66% of the drop due to 

amplitude dependence. The other lateral modes have damage related frequency shifts 

significantly smaller than those due to the amplitude dependence. Thus, it can be concluded 

that the amplitude dependent frequency changes are, if not properly modelled, of such an 

order as to make even significant damage challenging to discern. However, more detailed 

quantitative studies are required to explore this type of challenge in damage detection. 

 

8. Conclusions 

 

The patterns of amplitude-dependent modal properties of a multi-span prestressed concrete 

bridge have been experimentally studied by imparting a series of vertical and lateral 

frequency sweep excitations at different forcing levels using large-capacity eccentric mass 

shakers. Frequency response functions were constructed from the acquired vibration data and 

several vertical, mixed vertical-torsional and lateral modes were identified. In the tested 

forcing and response amplitude ranges all the identified vertical, mixed vertical-torsional and 

lateral modes exhibit amplitude-dependent behaviour. The relationships between the dynamic 

forcing amplitude and response amplitude were found to have a softening character for all the 

identified modes. A general trend of decreasing natural frequencies with response magnitudes 

was also clearly identified and quantified. The rate of decrease of natural frequencies was 

observed to be generally higher for higher modes. Modal damping ratios were shown to 

increase initially with increasing response amplitudes. For several modes it was possible to 

continue the tests into a larger amplitude range, and then damping ratios stabilized at an 

elevated level. There was no clear pattern in the rate of damping ratio changes between 

modes. 

An FE model of the bridge was created based on design specifications and drawings 

and on-site inspections. The model numerical frequencies and mode shapes were compared 

with their experimental counterparts and a good agreement was noted for the lower modes, 

however, more marked discrepancies occurred for the higher modes. The FE model was used 

in simple simulations to assess if the observed amplitude dependence of modal frequencies 

would pose a challenge for the application of modal based damage detection techniques. The 

first numerical damage scenario assumed a 20% reduction of stiffness in the middle of the 

main span and indicated that damage related frequency shifts of some vertical modes will be 

larger than those due to the amplitude effects but for other vertical modes the amplitude 

dependence will mask frequency drops due to damage. The second numerical damage 
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scenario was a 50% reduction of stiffness at the bottom of the highest pier. This type and 

extent of damage caused only up to 50% of the frequency drop due to amplitude dependence 

in the most strongly affected first lateral mode. Thus the amplitude dependent effects can be 

seen to be able to influence the bridge dynamics to a similar or even larger extent as 

important and marked damage. 

From the point of view the completeness of the experimental results, it will be useful 

to extend the testing programme to the several modes that were identified only later off-site 

and therefore not subjected to detailed frequency sweeps with varying forcing magnitude. 

This will help to establish a fuller picture of the phenomena studied. For a similar reason, the 

vertical and vertical-torsional modes could be tested beyond the rather narrow range of 

forcing magnitudes, however, this will depend on the capacity of exciters and safety of the 

structure. 

Future studies should also continue several lines of inquiry which were only briefly 

covered in this paper to make practical use of the experimental results. Systematic updating 

of an FE model should be undertaken. The updating philosophy need take into account the 

observed trends in modal frequencies and reflect them in the model. This can help to evaluate 

which of the structural elements are responsible for the observed behaviour. The updated 

model can then be used for more realistic assessment of the bridge performance under 

important loading scenarios, such as traffic or earthquake. 

Other sources of dynamic parameter variability, notably temperature, should be 

investigated. While environmental effects were not important in the presented testing 

programme, they may be become such for assessing long term performance of the structure 

exposed to a wider range of temperatures. Appropriate data should be collected via periodic 

or continuous monitoring of ambient and structural temperatures and its effects and a joint 

model for bridge dynamics under the varying loading and response levels and environmental 

effects established. Such a model can then be used for detailed studies on the detectability of 

different realistic damage scenarios where both amplitude and environmental effect can make 

detectability more challenging. 
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Table 1. Testing programme for vertical shaker. 

Excitation 
direction 

Frequency 
range 
(Hz) 

Number of masses 
per shaft 

Mass-eccentricity 
(kg-m) 

Frequency 
increment 

(Hz) 

Holding 
time 
(s) 

Preliminary fast, wide band, large step sweep 
Vertical 0.0-10.0 1 small mass 0.245 0.1 20 

Series of detailed, narrow band, small step sweeps 
Vertical 2.80-3.40 1 small mass 0.245 0.01 60 
Vertical 2.80-3.40 1 big mass 0.918 0.01 60 

Vertical 2.80-3.40 
1 big plus 1 small 

mass 
1.041 0.01 60 

Vertical 2.80-3.40 1 small mass 0.245 0.01 60 
Similar series of detailed tests for frequency ranges 3.56-3.96 Hz, 4.00-4.40 Hz, 4.50-4.90Hz, 

6.90-7.30 Hz, and 7.60-8.20 Hz 
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Table 2. Testing programme for lateral shaker. 

Excitation 
direction 

Frequency 
range 
(Hz) 

Number of masses 
per shaft 

Mass-
eccentricity 

(kg-m) 

Frequency  
increment 

(Hz) 

Holding 
time 
(s) 

Preliminary fast, wide band, large step sweep 
Lateral 0.0-10.0 1 small mass 0.245 0.1 20 

Series of detailed, narrow band, small step sweeps 
Lateral 1.60-1.95 1 small mass 0.245 0.01 60 
Lateral 1.60-1.95 1 big mass 0.918 0.01 60 
Lateral 1.60-1.95 2 big masses 1.633 0.01 60 
Lateral 1.60-1.95 3 big masses 2.296 0.01 60 
Lateral 1.60-1.95 4 big masses 2.806 0.01 60 
Lateral 1.60-1.95 5 big masses 3.316 0.01 60 
Lateral 1.60-1.95 6 big masses 3.724 0.01 60 
Lateral 1.60-1.95 7 big masses 4.286 0.01 60 
Lateral 1.60-1.95 8 big masses 4.592 0.01 60 
Lateral 1.60-1.95 1 small mass 0.245 0.01 60 

Similar series of detailed tests for frequency ranges 2.20-2.90 Hz, 3.20-3.9Hz, 6.20-6.80 
Hz, 7.4-8 Hz and 9-9.9 Hz 
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Table 3. Modes identified from preliminary sweeps and peak picking. 

Mode 
Frequency 

(Hz) 
Mode coupling ratio 

V T L 
Vertical modes 

V1 3.18 1 0.03 0.08 
V2 3.91 1 0.03 0.08 
V3 4.19 1 0.16 0.07 
V4 4.79 1 0.17 0.13 
V5 5.66 1 0.41 0.35 
V6 7.15 1 0.06 0.09 

Mixed vertical-torsional mode 

V7/T1 7.92 

North of hinge 
1 0.09 0.21 

South of hinge 
0.02 0.57 0.08 

Lateral modes 
L1 1.86 0.26  (0.11)* 1 
L2 2.56 0.21 (0.20) 1 
L3 3.65 0.27 (0.08) 1 
L4 4.54 0.13 (0.15) 1 
L5 5.57 0.45 (0.33) 1 
L6 6.61 0.32 (0.15) 1 
L7 7.61 0.42 (0.24) 1 
L8 9.32 0.48 (0.17) 1 

* Values in () from FE model. 
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Table 4. Dependence of modal frequencies and damping ratios on forcing and response amplitude for vertical and vertical-torsional modes. 

Mode 
Date 

(dd/mm/yy)
Start-end time 

(hh:mm:ss) 

Mean 
ambient 

temperature 
(°C) 

Mass per shaft 
Force 

amplitude 
(kN) 

Displacement 
amplitude 

(mm) 

Modal 
frequency 

(Hz) 

Damping 
ratio 
(%) 

MACa 

V1 23/05/13 08:15:34-08:40:15 18.00 1 small  0.952 0.202 3.171 0.99 − 
  08:50:40-09:22:12 18.00 1 big 3.550 0.757 3.161 1.63 0.999 
  09:31:39-10:02:16 18.25 1 big + 1 small 4.021 0.858 3.160 1.65 0.998 
  10:15:48-10:41:32 19.50 1 small (final) 0.954 0.192 3.173 1.05 0.998 

V2 23/05/13 10:55:24-11:23:49 20.50 1 small  1.406 0.118 3.852 0.66 − 
  11:35:18-12:10:31 21.00 1 big 5.248 0.562 3.843 0.79 0.997 
  12:20:36-12:51:09 22.00 1 big + 1 small 5.937 0.659 3.840 0.79 0.996 
  13:03:51-13:32:29 23.50 1 small (final) 1.404 0.128 3.850 0.71 0.998 

V3 23/05/13 13:43:47-14:16:17 23.50 1 small 1.643 0.082 4.164 0.56 − 
  14:30:27-15:05:09 23.50 1 big 6.138 0.396 4.156 0.65 0.998 
  15:16:37-15:48:34 23.50 1 big + 1 small 6.948 0.466 4.154 0.63 0.998 
  15:56:19-16:28:26 22.00 1 small (final) 1.643 0.096 4.164 0.57 0.998 

V4 24/05/13 07:25:31-07:50:58 18.50 1 small 2.138 0.030 4.750 0.56 − 
  08:01:34-08:32:54 19.00 1 big 7.985 0.164 4.741 0.56 0.997 
  08:40:15-09:08:24 20.00 1 big + 1 small 9.043 0.190 4.739 0.56 0.998 
  09:20:30-09:42:12 21.00 1 small (final) 2.140 0.036 4.753 0.55 0.998 

V6 24/05/13 12:42:36-13:11:53 22.50 1 small 4.831 0.102 7.140 1.46 − 
  13:26:51-14:01:24 22.50 1 big 17.957 0.530 7.109 1.59 0.998 
  14:12:44-14:52:08 23.00 1 big + 1 small 20.291 0.612 7.099 1.63 0.998 
  15:03:21-15:36:17 23.00 1 small (final) 4.829 0.098 7.139 1.50 0.997 

V7/T1 24/05/13 15:44:39-16:15:48 22.00 1 small 5.933 0.071 7.913 1.67 − 
  16:28:50-16:55:18 21.00 1 big 21.668 0.353 7.809 1.76 0.997 
  17:04:54-17:39:09 20.50 1 big + 1 small 24.480 0.407 7.759 1.85 0.996 
  17:51:35-18:29:06 19.50 1 small (final) 5.931 0.077 7.912 1.70 0.996 

a With respect to the lowest excitation level 
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Table 5. Dependence of modal frequencies and damping ratios on forcing and response amplitude for lateral modes. 

Mode 
Date 

(dd/mm/yy) 
Start-end time 

(hh:mm:ss) 

Mean ambient 
temperature 

(°C) 
Mass per shaft 

Force 
amplitude 

(kN) 

Displacement 
amplitude 

(mm) 

Modal 
frequency 

(Hz) 

Damping ratio 
(%) 

MACa 

L1 25/05/13 07:31:06-07:56:19 17.00 1 small 0.330 0.077 1.866 0.82 − 
  08:12:40-08:50:28 17.25 1 big 1.202 0.308 1.839 1.13 0.999 
  09:05:24-09:40:16 17.50 2 big 2.069 0.531 1.810 1.16 0.999 
  09:52:32-10:31:29 18.75 3 big 2.869 0.785 1.797 1.12 0.998 
  10:43:05-11:21:37 20.00 4 big 3.483 1.003 1.791 1.11 0.999 
  11:30:14-12:09:46 21.00 5 big 4.100 1.198 1.788 1.13 0.998 
  12:17:33-12:45:57 21.50 6 big 4.581 1.366 1.783 1.16 0.998 
  12:56:39-13:41:08 22.00 7 big 5.233 1.573 1.777 1.13 0.997 
  13:52:55-14:33:43 24.00 8 big 5.604 1.660 1.776 1.18 0.998 
  14:43:29-15:18:25 23.50 1 small (final) 0.330 0.084 1.865 0.88 0.998 

L2 26/05/13 07:48:19-08:28:37 17.00 1 small 0.619 0.054 2.556 1.27 − 
  08:41:26-09:21:42 17.25 1 big 2.267 0.223 2.526 1.85 0.999 
  09:34:53-10:16:07 18.00 2 big 3.926 0.469 2.493 1.82 0.999 
  10:28:09-11:10:15 19.00 3 big 5.489 0.719 2.486 1.74 0.996 
  11:24:47-12:08:14 20.50 4 big 6.700 0.853 2.484 1.82 0.995 
  12:25:03-13:02:49 21.00 5 big 7.852 1.068 2.474 1.83 0.998 
  13:18:59-14:01:36 21.50 6 big 8.726 1.148 2.461 2.03 0.997 
  14:14:48-14:56:24 21.75 1 small (final) 0.620 0.052 2.559 1.32 0.998 

L6 27/05/13 08:16:27-08:54:46 18.00 1 small 4.129 0.010 6.602 1.88 − 
  09:09:14-09:51:32 19.00 1 big 15.293 0.051 6.561 1.98 0.998 
  10:07:18-10:53:21 19.25 2 big 26.924 0.101 6.536 2.16 0.997 
  11:04:00-11:43:52 20.00 3 big 37.634 0.151 6.515 2.32 0.999 
  11:55:09-12:38:47 21.50 4 big 45.264 0.200 6.484 2.41 0.997 
  12:47:53-13:25:34 21.50 5 big 53.530 0.242 6.469 2.44 0.996 
  13:37:58-14:18:40 22.00 1 small (final) 4.127 0.008 6.600 1.91 0.997 

L7 25/05/13 15:32:55-16:04:58 23.50 1 small 5.560 0.008 7.660 1.74 − 
  16:18:36-16:56:37 23.00 1 big 20.745 0.034 7.641 2.00 0.995 
  17:11:51-17:48:07 22.00 1 small (final) 5.556 0.011 7.658 1.75 0.997 

L8 26/05/13 15:05:31-15:43:34 22.50 1 small 8.425 0.019 9.430 2.30 − 
  15:53:53-16:32:42 22.00 1 big 31.452 0.108 9.409 2.45 0.996 
  16:41:04-17:17:34 21.50 1 small (final) 8.418 0.018 9.426 2.31 0.996 

a With respect to the lowest excitation level 
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Table 6. Correlation between experimental and numerical modal parameters. 

Mode Frequency MAC 
Test 
(Hz) 

FE model 
(Hz) 

Errora 
(%) 

Vertical modes 
V1 3.171 3.169 -0.1 0.988 
V2 3.852 3.946 2.4 0.937 
V3 4.164 4.169 0.1 0.932 
V4 4.750 4.806 1.2 0.871 
V5 5.640 5.548 -1.6 0.580 
V6 7.140 7.153 0.2 0.908 

Mixed vertical-torsional mode 
V7/T1 7.913 8.433 6.6 0.472 

Lateral modes 
L1 1.866 1.869 0.2 0.967 
L2 2.556 2.592 1.4 0.841 
L3 3.638 3.641 0.1 0.655 
L4 4.487 4.337 -3.3 0.886 
L5 5.570 5.914 6.2 0.833 
L6 6.602 7.430 12.5 0.837 
L7 7.660 8.484 10.8 0.572 
L8 9.430 11.654 23.6 0.639 

a With respect to experimental frequency 
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Table 7. Natural frequency change due to damage vs. due to response level and damage 

detectability. 

Mode 

Frequency drop 
(Hz) 

Damage detection 
(Y/N) 

Scenario 1 Scenario 2 
Amplitude 
dependent 

Scenario 1 Scenario 2 

Vertical modes
V1 0.021 − 0.011 Y − 
V2 0.008 − 0.012 N − 
V3 0.014 − 0.010 Y − 
V4 0.005  − 0.011 N − 
V6 0.033 − 0.041 N − 

Mixed vertical-torsional mode
V7/T1 0.026 - 0.155 N − 

Lateral modes
L1 − 0.033 0.090 − N 
L2 − 0.013 0.114 − N 
L6 − 0.011 0.133 − N 
L7 − 0.002 0.020 − N 
L8 − 0.005 0.021 − N 
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a)  

 

b)  

 

Figure 1. Nelson St. off-ramp bridge: aerial view looking South (bridge indicated by arrow), 

and b) side view of the longest span looking North. 
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Figure 2. General structural arrangement of Nelson St. off-ramp bridge (all dimensions in m). 
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Figure 3. Two typical cross-sections (all dimensions in m; refer to Fig. 2 for their location). 
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Figure 4. Hinge. 
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a)  

 

b)  

 

Figure 5. Eccentric mass shakers: a) anchored to the bridge deck (shaker in the front is for 

vertical and shaker at the back is for lateral excitation), and b) inside of shaker showing 

rotating masses on flywheels. 
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Figure 6. MEMS tri-axial accelerometers on the bridge deck (inset: accelerometer/D-cell 

battery unit). 
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Figure 7. Instrumentation layout on the longest span (all dimensions are in m). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chen et al. 

  



41 
 

 

 

 

Figure 8. Vertical and lateral acceleration responses recorded during preliminary, fast 

frequency sweeps. 
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a)  

 

b)  

 

Figure 9. Averaged normalized power spectral densities: a) vertical response, and b) lateral 

response. 
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Figure 10. Response due to detailed sweeping test around mode V1. 
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Figure 11. Displacement amplitudes as functions of frequency for vertical and vertical-

torsional modes. 
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Figure 12. Displacement amplitudes as functions of frequency for lateral modes. 
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Figure 13. Displacement amplitude vs. forcing amplitude for vertical and vertical-torsional 

modes. 
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Figure 14. Displacement amplitude vs. forcing amplitude for lateral modes. 
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Figure 15. Modal frequencies vs. displacement amplitudes for vertical and vertical-torsional 

modes. 
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Figure 16. Modal frequencies vs. displacement amplitudes for lateral modes. 
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Figure 17. Damping ratios vs. displacement amplitudes for vertical and vertical-torsional 

modes. 
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Figure 18. Damping ratios vs. displacement amplitudes for lateral modes. 
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Figure 19. Numerical model of the bridge. 
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Figure 20. Graphical comparison of experimental and numerical frequencies. 
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Figure 21. Experimental and FE model vertical and vertical-torsional mode shapes. 
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Figure 22. Experimental and FE model lateral mode shapes. 
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Figure 23. Numerical damage scenarios. 
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