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The present paper introduces a new technique for simultaneously optimising the topology and

continuous material distribution of a structure. Topology optimisation offers great potential for

novel, improved structural designs and is an ideal design tool for additive manufacturing (AM)

techniques. Level set based topology optimisation produces solutions with clear, smooth

boundaries that can be directly fabricated using AM. Further benefits of AM may be realised by

also optimising the material distribution within the structure. The sequential linear programming

level set method is used to include material distribution design variables in the topology optim-

isation problem. This allows the topology and continuous material distribution to be optimised

simultaneously. Several compliance minimisation problems are used to demonstrate the pro-

posed approach.
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Introduction
Modern additive manufacturing (AM) techniques can
make designs with highly complex geometries and
removes many conventional manufacturing con-
straints.1–4 During the design process, the addition of
manufacturing constraints usually results in a reduction
of the design space, potentially leading to designs with

lower performance compared with an unconstrained

design.5 Thus, the expanded design space offered by AM
opens up new possibilities for optimised designs.

The rapid increase in computer performance in recent
decades has seen the rise in many powerful computational
tools that aid engineers in achieving better, more efficient
designs. This is particularly evident when advanced com-
putational analysis tools are combined with powerful op-
timisation methods. Structural design is an area that has
benefitted from this paradigm, where the finite element
(FE) method is combined with a variety of optimisation
techniques.6 Structural optimisation methods can be
classified into three categories,7 as shown in Fig. 1. Sizing
optimisation is usually performed on a mature structure,
where the main layout and geometry have already been
decided. Shape optimisation allows more freedom, as only
the general layout is usually predetermined and the exact
position and size of features are to be optimised. Topology
optimisation methods allow the greatest freedom, as they
usuallymake no assumptions on the layout, shape or sizing
of the structure, which are all subject to optimisation.

The complexity and computational cost of structural op-
timisation methods generally increases as the design space
increases from sizing optimisation, with 10s or 100s of
design variables, to topology optimisation, with 1000s of
variables, or more.

Additive manufacturing offers greater freedom to a
designer and can make parts with complex geometry.
Topology optimisation explores the largest design space,
and the resulting geometries are often complex. Thus,
there is a synergy betweenAMand topology optimisation
that offers a new paradigm for the design and manu-
facture of efficient structural components.1–4

Furthermore, the realisation of topology optimisation
designs using conventional manufacturing methods
requires additional constraints8–11 or post-proces-
sing,12,13 which adds complexity and time into the design
process. Thus, the freedom enabled by AM can result in a
simpler andquicker designprocess. Examples of the direct
realisation of complex topological optimum designs via
AM include bone implant scaffolds manufactured by
selective laser melting,14 multimaterial compliant mech-
anisms made using PolyJet three-dimensional (3D)
printing,15 microstructures with extreme properties16,17

and lightweight aerospace components.2,18

Topology optimisation is often defined as a discrete
problem, where the goal is to decide at each point in the
design domain whether material should be present or not.
If the design space is discretised using FEs, the topology
optimisation problem is then to decide if each element
should containmaterial or not.7 Approaches based on this
idea are sometimes called element based methods.
In practice, the discrete problem is difficult to solve, so it is
often relaxed such that the amount of material present in
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each element can range continuously from 0 (void) to 1
(solid).19,20 To approximate the true discrete problem,
the material properties of elements with an intermediate
amount of material are often penalised to encourage
elements to become either completely solid or completely
void. In the popular solid isotropic material with penali-
sation (SIMP) approach to topology optimisation,
a power law penalisation is used. However, other penali-
sation schemes can also be used, and methods based on
homogenisation of microstructures have also been devel-
oped.20 There are also element based methods that do not
use penalisation and work directly with the 0–1 discrete
problem formulation. Bidirectional evolutionary struc-
tural optimisation uses heuristic criteria to progressively
remove or add material from the design by changing
elements from solid to void, or void to solid respectively.21

Element based methods often required further tech-
niques to avoid numerical issues such as the formation
of checkerboard patterns and mesh dependent sol-
utions.22 Element based methods have been successful in
solving a wide range of engineering topology optimis-
ation problems. However, solutions obtained with
penalisation methods often contain unclear ‘fuzzy’
boundaries that require some form of post-processing to
produce designs that can be manufactured, even by AM
techniques.12,13 Bidirectional evolutionary structural
optimisation results also require post-processing, as they

often possess jagged boundaries due to the discrete 0–1

formulation.23 Post-processing procedures are not
straightforward and do not ensure that the optimality of
the structure is preserved.

To overcome the issues with element based methods
and produce clear, smooth boundary solutions, bound-
ary based topology optimisation methods have been
developed. Early attempts focused on extending spline
based shape optimisation methods to include hole
insertion.24,25 However, these approaches are often
complex and require many specific techniques to handle
topological changes, such as hole insertion or merging,
and to ensure that an accurate description of the
boundary is maintained during optimisation.26 Interest
has grown over the last 15 years in topology
optimisation using implicit functions and level set
methods. The key idea of the level set approach is that
the structural boundary is described by an implicit
function discretised at points in the design domain. If the
implicit function at a point is positive, then that point is
inside the structure; a negative value indicates that the
point is outside the structure; and a zero value means
that the point is on the boundary of the structure.
Therefore, the boundary is defined as the zero level set of
an implicit scalar function. The implicit boundary
description naturally handles topological changes, and
solutions have clear, smooth boundaries. There are
several forms of level set based topology optimisation,
and the interested reader is referred to some recent
review papers for further details.27–29 In the context of
AM, level set based methods offer the potential to
directly build an optimised design with no post-proces-
sing, which preserves the optimality of the solution and
reduces the complexity and time of the design process
compared with element based methods.

(a)

(b)

(c)

a sizing; b shape; c topology optimisation
1 Categories of structural optimisation
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A further benefit of some AM techniques is the
ability to build single components from more than one
material.2 This idea has been applied to many areas of
design, including compliantmechanism that use amixture
of stiff and flexible material,15,30,31 composite micro-
structures with tuned elastic and thermal properties32–34

and stiff structures.35,36 Topology optimisation methods
have been extended to take advantage of multimaterial
manufacturing techniques by includingmaterial choice as
part of the design space. This approach allows the opti-
miser to choose not only whether material should be
present at a point but also whatmaterial it should be. This
expansion of the design space can produce more efficient
designs compared with uniform material solutions. Most
methods developed for combined topology and material
optimisation treat material choice as a discrete problem
and obtain solutions where each point is part of a distinct
material phase. The SIMP method has been extended for
two material optimisation using two variables per
element.32One variable determines if the element contains
material, and the other determines the material type.
To obtain distinct material phases, the material type
design variable can be penalised using a power law,33 or a
material model based on the Hashin–Shtrikman bounds
can be used.37 Another interesting approach is projection
topology optimisation, which can project discrete phases
of materials onto the design space allowing for combined
material and topology optimisation.15,38 Approaches for
material phase optimisation have also been developed for
level set basedmethods usingmultiple level set functions36

or a modified Cahn–Hilliard phase field model.35

Advances in AM processes are enabling an alternative
to the material phase design approach, where material

can be continuously graded from one phase to another,

a so-called functionally graded material (FGM).

Metallic FGM structures have been produced using

electron beam freeform fabrication,39 where multiple

feedstock wires are used to create the grading. Laser

powder deposition can also create graded metals by

varying the feedrate of two powered materials.40 The

PolyJet 3D AMmethod can create structures made from

two different photopolymer materials,15 which can be

combined to create materials with properties ranging

between the two extremes. These fabrication processes

can achieve a continuous grading of material properties,

such as elastic modulus, tensile strength and hardness.
There is little work optimising the material distri-

bution for a metallic FGM. Paulino et al.34 optimised
the material distribution in a microstructure to obtain
extreme properties, such as a zero shear modulus or
negative Poisson’s ratio. Dunning et al.41 explored the
use of FGM for aeroelastic tailoring using a genetic
algorithm. The original extension of SIMP for two
materials did not penalise the material type design
variables, allowing for simultaneous optimisation of
topology and the continuous distribution of two
materials.32 However, to the author’s knowledge, there
are no other examples where topology and continuous
material distribution are optimised simultaneously.

The novel contribution of the present paper is to
introduce a method for simultaneously optimising the
topology and material distribution of a structure using a
level set method to take full advantage of advanced
multimaterial AM techniques. The sequential linear
programming (SLP) level set method,42 previously

developed by the authors, is extended to include material
distribution optimisation. The SLP level set method is
presented in the section on ‘Level set topology optimis-
ation’. The extension for material design is introduced in
the section on ‘Material and topology optimisation’.
Examples are presented in the section on ‘Examples’,
followed by conclusions in the section on ‘Conclusions’.

Level set topology optimisation

Level set method
The first key component of level set based topology
optimisation is to define the boundary of the structure as
the zero level set of an implicit function

wðxÞ $ 0; x [ V

wðxÞ ¼ 0; x [ C

wðxÞ , 0; x � V

8>><
>>:

ð1Þ

whereV is the domain for the structure,C is the boundary
of the structure, w(x) is the implicit function and x [ Vd,
whereVd is the design domain containing the structure,V
,Vd, as shown in Fig. 2. The implicit function is a simple
scalar function that has a value at each point in the
domain. The domain is usually discretised such that the
implicit function is only defined for a finite number of
points within the design domain. It can then be interp-
olated between these points using shape functions in a
similar manner to a FE discretisation.

There are several optimisation methods that utilise an
implicit description of the structure. In the present
paper, the conventional level set method is used.28 This
approach initialises the implicit function as a signed
distance function, where the magnitude of the function
indicates the shortest distance to the boundary and the
sign is defined by equation (1). Maintaining the signed
distance property throughout the optimisation is
important for the stability of the method, as it prevents
the implicit function becoming too steep or flat, which
can lead to numerical instabilities.43

In the conventional level set method, the solution of
the following advection equation is used to move the
position of the implicit boundary

Lw ðxÞ
Lt

þ D

w ðx; tÞdx
dt

¼ 0 ð2Þ

where t is a fictitious time domain. The advection
equation (2) becomes a Hamilton–Jacobi type equation
by considering advection velocities of the type:43

dx/dt ¼ V ?hw (x), where V is a velocity function acting

2 Implicit description of structure
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normal to the boundary. The equation is then discretised
in space and time and solved using an explicit forward
Euler scheme, producing the following update rule for
the discrete implicit function values

wkþ1
i ¼ wk

i 2 Dt

D

wk
i

�� ��V i ð3Þ
where k is the iteration number, i is a discrete point in
the design domain, Dt is the time step and Vi is the
velocity value at the point i.

Fixed grid analysis
The level set method is usually performed on a fixed
grid. For level set based structural optimisation, the
same fixed grid is often also used for the FE discretisa-
tion. This approach avoids the difficult and expensive
remeshing of the structure as the design changes during
optimisation. However, some elements in the mesh may
be cut by the boundary as the mesh is not fitted to the
structure. To handle this situation, the area fraction
weighted fixed grid approach is used,44 where the
properties of an element are multiplied by the fraction of
the element that lies within the element:

�Ei ¼ aiEi

�ri ¼ airi
ð4Þ

where Ei and ri are the Young’s modulus and density of
the material for element i, the overbar denotes the
effective material properties used to build the FE
matrices and ai is the area fraction, defined as

ai ¼ Ai;IN=Ai ð5Þ
where Ai is the total area of element i, and Ai,IN is the
area of the element that lies inside the structure.

Sequential linear programming level set method
A general optimisation problem involves minimising an
objective while satisfying equality and inequality con-
straints. In level set based optimisation, the velocity
function should aim to maximise the reduction of the
objective function while maintaining or improving
the feasibility of the constraint functions. This can be
achieved by defining the velocity function using the
shape derivatives of the objective and constraint func-
tions.42 The position and topology of the boundary is
then updated using equation (3). The process of
obtaining a velocity function and updating the implicit
function is performed iteratively until a converged sol-
ution is obtained.

Shape derivatives are used to define the velocity
function because they provide information about how a
function changes over time with respect to a movement
of the boundary. Shape derivatives usually take the form
of a boundary integral

Lf Vð Þ
LV

¼
ð
C

ðsfV ÞdC ð6Þ

where sf is the shape sensitivity function for f(V). There
are several approaches for obtaining an appropriate
velocity function for optimisation. In the present work,
the SLP level set method is used.42 There are two key
steps in this method. The first is the discretisation of the
shape derivative boundary integrals to produce simple
approximations for the function changes with respect to

a velocity function. For example, the discretisation of
the integral in equation (6) can be written as

Dt
LfðVÞ
LV

< Dt
Xn
j¼1

ðsf ; jV jljÞ ¼ cV; cj ¼ Dtsf ; jlj ð7Þ

where lj is a discrete length of the boundary (or surface
area in 3D) around a discrete boundary point j, sf,j is a
discrete value of the shape sensitivity function, n is the
number of discrete points, V is a vector of discrete
velocity function values and c is a vector of integral
coefficients. Note that each side in equation (7) has been
multiplied by the time step to produce the total change
in f(V) after updating the implicit function.

The second step in the SLP level set method is to solve
an optimisation subproblem to obtain a velocity func-
tion that minimises the objective function shape
derivative, while maintaining constraint feasibility, or
moving the constraints towards the feasible region.
To produce solutions with smooth structural bound-
aries, it was found necessary to restrict the admissible
velocity function to a linear combination of the shape
sensitivity functions of the objective and constraints

VðlÞ ¼ lfsf þ
Xp
i¼1

lisi;Vmin # V # Vmax ð8Þ

where l are weights for each shape sensitivity function,
and p is the total number of constraints. The subproblem
is then to find the optimal weight values, which is solved
using SLP

l
Minimise : cVðlÞ

Subject to : aiVðlÞ ¼ hi; i ¼ 1· · ·m

b iVðlÞ # gi; i ¼ 1þm· · ·p

lmin # l # lmax

ð9Þ

where ai and bi are the integral coefficients for the
equality and inequality constraints respectively, hi and gi
are constraint change targets in the subproblem for
constraint i, m is the number of equality constraints and
p is the total number of constraints.

The SLP level set method offers a framework for
handling general constraints for the conventional level
set approach. A further benefit is that non-level set
design variables can be easily introduced into the
problem. This is achieved by including the first order
derivatives of the non-level set design variables in the
subproblem. The variables in the subproblem are then
the change in the additional variables Dy and the
velocity function for this iteration

l ;Dy
Minimise : cVðlÞ þ D

f yDy

Subject to : aiVðlÞ þ D

hi;yDy ¼ hi; i ¼ 1· · ·m

biVðlÞ þ D

gi;yDy # gi; i ¼ 1þm· · ·p

lmin # l # lmax

ymin # y # ymax

ð10Þ

where y are the non-level set design variables, hfy, hhi,y,
hgi,y are the first order derivatives of the objective
function, equality and inequality constraints with
respect to y and Dy is the change in y for the current

Dunning et al. Simultaneous material and topology optimisation

Materials Science and Technology 2015 VOL 31 NO 8 887



iteration. The non-level set design variables are then
updated at the same time as the implicit function using

ykþ1 ¼ yk þ Dy ð11Þ
The SLP level set method allows for simultaneous
optimisation of the level set topology and other design
variables making it an ideal tool for the simultaneous
optimisation of topology and material distribution. This
section has briefly covered the key concepts of the SLP
level set method, for further details and numerical im-
plementation (see Ref. 42). The extension of the SLP
level set method for simultaneous topology and material
design is introduced in the next section.

Material and topology optimisation

Material distribution model
The continuous distribution of two materials is modelled
by specifying the fraction of one of the materials within
each element in the fixed FE mesh. The stiffness and
density of an element are then approximated using the
simple rule of mixtures approach

Ei ¼ ð12 yiÞE1 þ yiE2

ri ¼ ð12 yiÞr1 þ yir2
ð12Þ

where yi is the material design variable for element i,
which can range continuously from 0 to 1, subscripts
1 and 2 refer to materials 1 and 2 respectively. The
Poisson’s ratio of the two materials may also be
different. However, for the metallic materials considered
in the present paper, this difference is small. Thus, a
simplification is made where the Poisson’s ratio of the
material mix is assumed constant. To simultaneously
optimise topology and material distribution, the
material design variables yi are added to the topology
optimisation problem using the SLP level set method, as
shown in equation (10).

Material design variable derivatives
The first order derivatives of the material design vari-
ables with respect to the objective and constraints are
required to solve the subproblem for V and Dy in
equation (10). The optimisation problem studied in the
present paper is to minimise the structural compliance,
which can also be understood as the work performed by
the loading, with an upper limit on the total structural
mass

V;y
Minimise : Cðu;V; yÞ ¼ f s þ fbðV; yÞ

� �
u

Subjectto : KðV; yÞ�u ¼ f s þ f bðV; yÞ
mðV; yÞ # M

0 # y # 1

ð13Þ

where K is the global stiffness matrix, which is
dependent on the structural domain described by the
implicit function (equation (1)), and the material design
variables y, fs is the applied surface loading, fb is the
body force loading, u is the displacement vector, m is the
mass of the structure, M is the limit on structural mass
and C is the compliance of the structure. The derivatives
of compliance and mass with respect to the structural
domain are handled implicitly through shape derivatives

and velocity function (equation (6)). Using the FE
discretisation of the structure and the effective element
material property definitions from equations (4) and
(12), the terms dependent on y in equation (13) can be
written as

KðV; yÞ ¼
Xne

i¼1
ð12 yiÞE1 þ yiE2

� �
aiKe ð14Þ

mðV; yÞ ¼
Xne

i¼1
ð12 yiÞr1 þ yir2
� �

aiAiti ð15Þ

f bðV; yÞ ¼
Xne

i¼1
ki ð12 yiÞr1 þ yir2

� �
aiAiti

� �
=4 ð16Þ

where ne is the total number of elements,K e is the stiffness
matrix of an element with E and a equal to 1?0, ti is the
thickness of a 2D element, k i is a vector of accelerations at
each degree of freedom for element i and the factor of 1/4
in equation (16) is because four-nodeplane stress elements
are used in the present work.

The derivative of the structural mass with respect to a
single material design variable is

LmðV; yÞ
Lyi

¼ ðr2 2 r1ÞaiAiti ð17Þ

The adjoint method can be used to obtain the first order
derivatives of the compliance objective with respect to
the material design variables. It is well known that the
compliance function is self-adjoint.7 Therefore, we omit
the derivation and simply present the result

LCðV; yÞ
Lyi

¼ 2
Lf bðV; yÞ

Lyi

� �T

u i 2 uTi
LKðV; yÞ

Lyi

	 

ui ð18Þ

where u i is the displacement vector for element i.
The necessary partial derivatives can be obtained by
differentiating equations (14) and (16)

LKðV; yÞ
Lyi

¼ ðE2 2 E1ÞaiKe ð19Þ

Lf bðV; yÞ
Lyi

¼ ðr2 2 r1ÞkiaiAiti

4
ð20Þ

Numerical issues
The approach introduced above uses one material design
variable per element in the fixed FE mesh. However, the
implicit structure description usually results in some
elements in the fixed mesh lying completely outside the
structure. Therefore, during the optimisation, some
material design variables can become effectively inactive,
as they do not affect the design. Inactive design variables
are handled by removing them from the subproblem
(equation (10)) and update (equation (11)). This
approach is efficient as it reduces the number of vari-
ables in the subproblem. However, as the implicit
boundary moves through the fixed grid, some elements
that were completely outside the structure can become
part of the structure. This can create a discontinuity in
the optimisation if there is a discontinuity in the material
distribution between an element that is part of the
structure and an inactive element that becomes part of
the structure during an update, as shown in Fig. 3. In the
SIMP approach to combined topology and material
optimisation, this type of discontinuity is less likely to
occur, as all design variables are active throughout the
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optimisation.32 Also the use of sensitivity filtering may
help smooth any potential discontinuities.

This discontinuity is addressed by setting an inactive
material design variable to the average of the active
variables from neighbouring elements, as shown in Fig. 4.
Inactive design variables are updated in this way at the
same time as the update of the active design variables.

Examples

Three-dimensional cantilevered beam
The first example is a 3D cantilevered beam. The design
domain is discretised using 25|25|50 unit sized eight-
node elements. The design domain, boundary conditions
and load cases are shown in Fig. 5. The properties for
material 1 are E1 ¼ 1?0, r1 ¼ 1?0, and for material 2,
E2 ¼ 0?7, r2 ¼ 0?68. A Poisson’s ratio of 0?3 is used for
both materials. The objective is to minimise the com-
pliance subject to a mass constraint of 1100 units. Three
separate load cases are applied, one in each orthogonal
direction at the loading point. The magnitude of the
loads is 0?4, 20?0 and 20?0 in the x, y, and z directions
respectively.

The optimisation is run twice with two different initial
designs to demonstrate the robustness of the level set
topology optimisation method. The first starts with the
entire design domain filled with material; the second
starts with a thin beam (Fig. 6). The same solution is
obtained from both starting points, as shown in Fig. 7.
In each case, the design is composed of 100% of material
1. The compliance value for the two solutions is
within 0?5%.

For this example, the optimal design does not contain
material grading. However, it is unclear before the

optimisation which of the two materials is the best
choice, as material 1 has higher stiffness, whereas ma-
terial 2 has higher specific stiffness. This example shows
that by adding material design variables into the pro-
blem, the optimiser is able to determine the best material
choice. This is confirmed by solving the topology op-
timisation problem using only material 2, which pro-
duces a solution with 13% higher compliance than the
100% material 1 solution.

This example also demonstrates that there are no
fundamental limitations in applying the proposed
optimisation method to design 3D structures with
graded materials.

Two-dimensional cantilevered beam
A cantilevered beam of aspect ratio 1?6 is optimised with
graded materials in this example. The design domain is
discretised using 128|80 unit sized elements, which are
1 unit thick (Fig. 8). The properties for material 1 are
E1 ¼ 100, r1 ¼ 1?0, and for material 2, E2 ¼ 150,
r2 ¼ 1?4. A Poisson’s ratio of 0?3 is used for both

3 Discontinuity of material distribution caused by inactive design variables

4 Setting material design variable for inactive element a

5 Cantilevered beam: design domain, loading and boundary

conditions
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materials. The mass constraint for the problem is
5120 units.

Optimisation was run for four cases: case 1, using only
material 1; case 2, using only material 2; case 3, simul-
taneous material and topology optimisation; and case 4,
a sequential approach where the topology is optimised
first for a fixed material distribution, then the material
distribution is optimised for the converged topology.
For the two problems that consider material distribution
optimisation (cases 3 and 4), the starting value for all
material design variables is 0?5 (an equal mix of the two

materials). The final topology and material distributions
for the four optimisation cases are shown in Fig. 9.

The final topology for all solutions is the same.
However, structural dimensions are different in order to
meet the mass constraint, as the materials have different
densities. The final compliance values for the four
solutions are 35?70, 32?14, 32?05 and 32?59, for only
material 1, only material 2, simultaneous and sequential
optimisation respectively. The maximum difference
between optimum compliance values is only 11%, which
suggests that, for this example, the topology is a more
significant factor on the compliance than the material
choice or distribution.

The solution obtained using the simultaneous
approach has almost 100% of material 2 in the final
design (Fig. 9e), and the topology and compliance of this
solution are close to those obtained using only material 2
(Fig. 9b). These designs have slightly lower compliance
than the solution obtained using the sequential
approach, which is made from an even amount of each
material. The sequential approach cannot obtain a
solution with 100% of material 2 because the mass
constraint is satisfied in the topology optimisation phase
for an even mix of the two materials. Therefore, as the
volume of material is fixed during the material
optimisation phase, the solution for the sequential
approach has the same even mix of the two materials.

(a) (b)

a full design domain; b thin beam
6 Initial designs

(a) (b)

a from full design domain; b from thin beam
7 Optimum solutions

8 Short cantilever: loading, boundary conditions and initial

topology
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This demonstrates that the sequential approach can limit
the exploration of the design space and the simultaneous
approach is able to find the optimum solution that the
sequential approach cannot.

It is interesting to observe in the sequential solution
that islands of material 2 are present at the intersection
of members in the lattice-like structure. This may be
explained by the fact that two load paths run through an
intersection and material 2 is the stiffer of the two ma-
terials. Therefore, the optimiser makes the choice of
putting the stiffer material where the structure sees the
highest loads to reduce the overall compliance. More-
over, there are areas in the sequential solution composed
of a mixture of the two materials, which is of course
permitted by the optimisation approach. Some areas
appear composed of an even mix of the two materials,
which is also the mixture for the initial design. However,
these design variables change during optimisation and
are not simply stuck at their initial values.

Beam with self-weight
A clamped beam with a uniformly distributed load
along the top is optimised for topology and materials.
In addition, the self-weight of the beam is also
considered during optimisation. Using symmetry

conditions, only the left half of the beam is modelled
(Fig. 10). The design domain is discretised using
400|80 square elements, which are 0?01 m thick. The
properties for material 1 are E1 ¼ 70 GPa,
r1 ¼ 2800 kg m23, and for material 2, E2 ¼ 110 GPa,
r2 ¼ 4500 kg m–3. A Poisson’s ratio of 0?3 is used for
both materials. The mass constraint for the problem is
1250 kg. The four cases of material 1 only, material 2
only, simultaneous material and topology optimisation
and sequential optimisation are studied, and the final
topologies and material distributions for the full beam
for all cases are shown in Fig. 11.

The final compliance values for the four solutions are
5?98, 5?36, 5?15 and 5?12 N m, for only material 1, only
material 2, simultaneous and sequential optimisation re-
spectively. The topologies for all solutions are similar. The
best singlematerial design is formaterial 2, which has 10%
lower compliance than the solution for material 1. The
two solutions that consider material distribution have
compliance values within 1%, which is*4?5% lower than
the material 2 solution. This shows that a design with
material grading can obtain a lower compliance value
than a single material design. However, for this example,
the solutions using the simultaneous and sequential
approaches obtain similar compliance values, although
the percentage of each material in the final design is
different. This suggests that there can be multiple opti-
mum solutions. The percentage of material 2 for the
simultaneous and sequential approaches solutions is
83 and 50% respectively.

Optimisation with uncertainty
Real structures operate in an uncertain environment.
Robust optimisation is one approach that considers
uncertainties by optimising the stochastic performance of
the design, such as the mean or variance. The example in

9 Cantileveredbeamsolutions: topology foraonlymaterial1,bonlymaterial2,csimultaneous topologyandmaterial optimisation,

d sequential optimisation and material distribution for e simultaneous optimisation and f sequential optimisation

10 Beam with self-weight: loading, boundary conditions

and initial topology
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this section minimises the mean, or expected compliance
of a structure (Fig. 12) with uncertainties in the loading
magnitude and direction. Normal probability
distributions are assumed for the uncertainties, and the
minimisation of expected compliance problem can be
reformulated as a simpler multiple load case problem.45

The probability distributions for both applied loads f are
the same. The mean magnitude is 10 kN, and standard
deviation is 2 kN. The standard deviation for the
uncertain direction is 0?25 rad. The design domain is
discretised using 100|150 elements, which are 0?01 m
thick. The properties for material 1 are E1 ¼ 70 GPa,
r1 ¼ 3000 kg m23, and for material 2, E2 ¼ 120 GPa,
r2 ¼ 5000 kg m23. A Poisson’s ratio of 0?3 is used for
both materials. The mass constraint for the problem is
1500 kg. The final topology andmaterial distributions for
all cases are shown in Fig. 13.

The expected compliance for the four solutions are
10?48, 9?92, 9?49 and 9?87 N m, for only material 1, only
material 2, simultaneous and sequential optimisation
respectively. Both solutions that consider material
distribution obtain a lower expected compliance compared
with the single material designs. The best result is obtained
using the simultaneous optimisation approach, which has
anexpected compliance value*4%lower than the solution
obtained using the sequential approach. It is noticeable in
this example that the topologies of the four solutions are
different, although there are some similar features, such as
the cross-bracing of the central column. This demonstrates
how material choice and optimisation strategy can affect
the optimal topology.

Conclusions
A new level set method is introduced for simultaneously
optimising the topology and continuous material dis-
tribution of a structure. The topological solutions are
represented by smooth boundaries, which make them
naturally suited for AM. The distribution of two
materials is modelled by specifying the fraction of one of
the materials within each element in the fixed FE mesh.
These fractions become additional design variables in
the optimisation problem. The topology and material
distribution are optimised simultaneously using the SLP
level set method.

The examples demonstrate that the optimisation
method is robust in converging to the consistent
optimum solution. Solutions obtained by the proposed
method are compared against those using a single
material and a sequential approach, where topology is
optimised first, followed by material distribution
optimisation. It has been shown that the simultaneous
material and topology optimisation approach is able to
explore the largest design space, hence has the potential
to find the global optimum. The results also suggest that
there may be multiple optimum solutions due to the
expanded design space, and this can offer engineers an
opportunity to select from a range of optimum
solutions. The last example establishes that it is possible
for optimum solutions to account for uncertainties in the
design environment.

11 Beam with self-weight: topology for a only material 1, b only material 2, c simultaneous topology and material optimisation,

d sequential optimisation and material distribution for e simultaneous optimisation and f sequential optimisation

12 Optimisation problem with uncertain loading
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