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Abstract This paper introduces an approach to level-set to-
pology optimization that can handle multiple constraints and
simultaneously optimize non-level-set design variables. The
key features of the new method are discretized boundary
integrals to estimate function changes and the formulation of
an optimization sub-problem to attain the velocity function.
The sub-problem is solved using sequential linear program-
ming (SLP) and the new method is called the SLP level-set
method. The new approach is developed in the context of the
Hamilton-Jacobi type level-set method, where shape deriva-
tives are employed to optimize a structure represented by an
implicit level-set function. This approach is sometimes
referred to as the conventional level-set method. The SLP
level-set method is demonstrated via a range of problems
that include volume, compliance, eigenvalue and displace-
ment constraints and simultaneous optimization of non-
level-set design variables.

Keywords Level-set method - Topology optimization -
Constraints - Sequential linear programming

1 Introduction

The level-set method was originally developed as a mathe-
matical tool for tracking the motion of interfaces in two or
three dimensions (Osher and Sethian 1988; Sethian 1999;
Osher and Fedkiw 2003). The key idea is to represent interfaces
using a discretized implicit function, which is then evolved
under a velocity field to track interface motion. This approach
naturally allows for complicated phenomena to occur, such as
interface merging or splitting. Sethian and Wiegmann (2000)
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were first to utilise the level-set method for structural optimi-
zation, noting its natural handling of topological changes,
coupled with a clear and smooth interface representation.
This attractive combination has seen significant interest in
level-set based structural optimization methods in recent years
and they have become a viable alternative to traditional
topology optimization methods based on element-wise de-
sign variables, such as the Solid Isotropic Material with
Penalisation (SIMP) method (Bendsee and Sigmund 2003)
and Evolutionary Structural Optimization (ESO) methods
(Huang and Xie 2010).

This introduction intends to provide a general overview of
the range of approaches to level-set based optimization. For
more comprehensive reviews see: van Dijk et al. (2013),
Sigmund and Maute (2013), Deaton and Grandhi (2014) and
the critical comparison of several level-set methods by Gain
and Paulino (2013). The key common feature of all level-set
methods is the representation of the boundary as the zero
level-set of an implicit function. In level-set based optimiza-
tion, sensitivities are then used to update the implicit function
and hence optimize the position of the boundaries. The im-
plicit boundary representation allows natural handling of to-
pological changes, such as merging or insertion of holes. This
allows for some degree of topology optimization, although
special techniques are often required to create new holes
during optimization (Allaire et al. 2005; Park and Youn
2008; Dunning and Kim 2013). The initial approaches to
level-set based optimization used shape derivatives coupled
with the original level-set method for front tracking. In this
approach the implicit function is frequently re-initialized to
become a signed distance function and it is updated by solving
a Hamilton-Jacobi (H-J) type equation using an explicit up-
wind scheme (Allaire et al. 2004; Wang et al. 2003). This is
sometimes called the conventional approach (Deaton and
Grandhi 2014). Variations on the conventional approach in-
clude solving the H-J equation using semi-implicit additive
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operator splitting (Luo et al. 2008) or a semi-Lagrange ap-
proach (Xia et al. 2006). These methods can overcome the
Courant—Friedrichs—Lewy (CFL) stability condition that limit
the efficiency of the conventional approach. Alternative im-
plicit functions have also been employed in level-set based
optimization. Radial basis functions can be used to convert the
Hamilton-Jacobi PDE into an ODE (Wang and Wang 2006a)
or a simple set of algebraic equations (Luo et al. 2007). The
spectral level set method represents the implicit function as
coefficients of a Fourier series and the design variables are the
coefficients of the basis functions (Gomes and Suleman
2006). There are also methods based on phase fields
(Takezawa et al. 2010; Blank et al. 2010) where the implicit
function is used to define the material phase of a point and the
update is performed by solving a reaction—diffusion equation.

Practical engineering problems often involve several con-
straints and various approaches have been employed to handle
constraints in level-set based optimization. Some approaches
are limited to problems with a single constraint, such as the
maximum material volume. This constraint can be added to
the objective using a fixed Lagrange multiplier (Allaire et al.
2004; Wang and Wang 2006a). This is effectively a penalty
method, which cannot guarantee the constraint is satisfied. An
alternative is to obtain the Lagrange multiplier under the
assumption that the volume remains constant during the
level-set update (Wang et al. 2003). However, conserving
volume or mass with the level-set method can be difficult.
This method can be improved by adjusting the Lagrange
multiplier to account for the current feasibility of the con-
straint (Wang and Wang 2006b) or by using Newton’s method
to correct the Lagrange multiplier if the constraint becomes
infeasible (Osher and Santosa 2001). A further approach is to
explicitly compute the Lagrange multiplier each iteration,
using a one-dimensional optimization technique, to ensure
constraint feasibility (Wang et al. 2007; Zhu et al. 2010;
Dunning and Kim 2013).

The methods discussed so far have been applied to only
single constraint problems where the constraint is usually an
upper limit on material volume. To handle multiple con-
straints, a gradient projection method has been used, where
the decent direction of the objective function is projected onto
the tangential space of the active constraints (Wang and Wang
2004). However, a return mapping algorithm is required to
handle non-linear constraints and infeasible initial designs
(Yulin and Xiaoming 2004). This algorithm modifies the
velocity function by adding a linear combination of the vio-
lated constraint gradients, so that they become feasible over
one or more iterations. The gradient projection method has
been demonstrated for multiple volume constraints for multi-
ple materials (Wang and Wang 2004; Yulin and Xiaoming
2004) and for a volume and input displacement constraint for
compliant mechanism design (Yulin and Xiaoming 2004).
Another approach to handle multiple constraints is to use the
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augmented Lagrange multiplier method (Luo et al. 2008,
2009). However, the choice of penalty parameters can affect
the convergence and efficiency of the level-set method (Zhu
et al. 2010) and it can be difficult to satisfy the constraint
unless the parameter is very large (van Dijk et al. 2012).

All the constraint handling methods discussed so far are
applicable to conventional level-set optimization methods.
Some alternative level-set methods are formulated such that
traditional optimization techniques can be applied. This is
often the case when using parameterizations other than the
signed distance function. For example, the Method of Moving
Asymptotes (MMA) can be used when the implicit function is
parameterized using compactly supported radial basis func-
tions, which converts the H-J PDE into a set of algebraic
equations (Luo et al. 2007). The level-set optimization method
proposed by van Dijk et al. (2012) links implicit function
values at the nodes to density values within elements using
an exact Heaviside function. Gradients are first obtained at the
element level and then linked to the level-set design variables
using the chain rule, thus allowing multiple constraints to be
handled without using penalty parameters. However, the rela-
tionship between the nodal implicit function values and ele-
ment densities is non-linear, which can lead to an ill-
conditioned optimization problem. The method was used to
solve problems with multiple compliance constraints, although
further regularization was required to remove numerical arti-
facts from the solutions, such as material islands. Another
limitation of this approach is that it is linked to the density
based material model for sensitivity analysis and is not easily
applicable to other material models, such as the eXtended Finite
Element Method (X-FEM) (Wei et al. 2010), superimposed
moving mesh (Wang and Wang 2006b) or an adaptive moving
mesh (Liu and Korvink 2008).

This paper presents a new approach for handling multiple
constraints in the conventional level-set topology optimization
method. The key features of the new method are discretized
boundary integrals to estimate function changes and the for-
mulation of an optimization sub-problem to attain the velocity
function. This approach does not require penalty parameters to
handle constraints and has the additional benefit of being able
to simultaneously optimize non-level-set design variables.
The simultaneous optimization of the level-set implicit func-
tion and additional design variables has received little atten-
tion in the literature. However, level-set methods that use a
parameterization that allows the use of mathematical program-
ming could potentially be extended to include other design
variables (Luo et al. 2007; van Dijk et al. 2012), although this
is not discussed by the authors.

The paper is organized as follows: first we review the
conventional level-set method, then an approach is developed
where the velocity function sub-problem is formulated as a
linear program (LP), called the LP level-set method. This is
further developed where the sub-problem is solved using
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Sequential LP, called the SLP level-set method. This is follow-
ed by numerical implementation details and a range of numer-
ical examples is used to demonstrate the new method.

2 Level-set based optimization

This section reviews the conventional level-set method for
optimization. First, the boundary of the structure is defined as
the zero level set of an implicit function:

¢(x)=>0,xef?
o(x) = 0,xel’ (1)
¢(x) < 0,x¢s?2

where (2 is the domain for the structure, I is the boundary of
the structure, ¢(x) is the implicit function and x € ), where
is the design domain containing the structure, 2c{),;. This
implicit description allows the boundary to break and merge
naturally, allowing topological changes to occur during opti-
mization. In the conventional approach, the implicit function
is initialized as a signed distance function, where the magni-
tude is the distance to the boundary and the sign is defined by
(1). The signed distance property promotes stability in the
level-set method and it is desirable to maintain this property
throughout the optimization (Allaire et al. 2004; Yulin and
Xiaoming 2004).

The position, shape and topology of the structure boundary

is optimized by iteratively solving the following advection
equation:
%(tx)vLV(b(x, t)%: 0 (2)
where ¢ is a fictitious time domain. The advection equation (2)
becomes a Hamilton-Jacobi type equation by considering
advection velocities of the type: dx / dt=V - V¢ (x) (Sethian
1999; Osher and Fedkiw 2003). The equation is then
discretized and solved using an explicit forward Euler scheme,
producing the following update rule for the discrete implicit
function values:

o =of — M|V (3)

where £ is the iteration number, i is a discrete point in the
design domain, At is the time step and ¥; is the velocity value
at the point 7. In the conventional approach to level-set based
optimization, the velocity function is obtained from a shape
derivative.

There are two common methods for obtaining the velocity
values at the discrete points. If the design is analysed using the
ersatz material method, where weak material is used to model
the void, then derivative and velocity values can be computed
directly at all points in the domain. This is known as the

natural velocity extension method (Osher and Santosa 2001;
van Dijk et al. 2013). The disadvantage of this method is that
the implicit function requires frequent re-initialization to
maintain the signed distance property of the implicit function,
which is important for the stability of the conventional level-
set method. The second approach is to compute sensitivity and
velocity values only at the structural boundary and then extend
velocities to discrete points in such a way that the signed
distance function is preserved after solving (2) (Liu and
Korvink 2008; Dunning et al. 2011). The second velocity
extension approach is used during the development of the
SLP level-set method, which is introduced in the next section.

3 The SLP level-set method
3.1 Preliminaries

To illustrate the new method, we use a generic optimization
problem where one of the design variables is the position of a
structural boundary:

Minimise : f({2,x)
Subject to : h;(£2,x) = h;,
g:(£2,x)<g,,

i=1"m 4)
i=1+m-p

where fis the objective function, 4; and g; are the constraint
functions, m is the number of equality constraints, p is the total
number of constraints and x is a vector of additional non-level-
set design variables.

The level-set description of the boundary presents a large
design space for the optimization problem (4), therefore
gradient-based methods are usually employed to solve the
problem. This requires at least the first derivatives of the
objective and constraints with respect to each design variable.
It is assumed that the first derivatives with respect to the non-
level-set design variables, x can be obtained. The remaining
variable in our problem is the position of some part of a
boundary, 2. Shape derivatives provide information about
how a function changes over time with respect to a movement
of the boundary and usually take the form of a boundary
integral (Allaire et al. 2004):

of (£2,x)

Ar——o—= At L(sf - V)dr (5)

where s, is a shape sensitivity function and V' is a velocity
function acting normal to the boundary. In equation (5) the
shape derivative, of /0S2, is multiplied by the time step to
compute the total change in the function f after updating the
implicit function using (3) with the specified time step, A¢,
and velocity function, V. The shape sensitivity and velocity

functions vary along the boundary and are usually assumed
smooth. Therefore, the shape derivative is characterised as a
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boundary integral involving a velocity function. This defini-
tion can be blurred when using fictitious material models and
the natural velocity extension method. In the following we
assume that shape sensitivity values are only computed at
points along the boundary. Details of our velocity extension
approach are included in Section 4.1.

After computing the shape sensitivities, we are free to
choose the velocity function and the time step. The time step
in (5) can be eliminated by replacing the velocity function by a
boundary movement function, z:

AIM: J (sy-2)dl’, z=At-V (6)
o r

To evaluate the integral, the boundary is discretized. The
discretization of the shape derivative for the objective function
can be written as:

n

of (£2,x
A’a—g): Z (spjozj-lj) =¢-2, ¢;=s7;-1; (7)
=1

where /; is a discrete length of the boundary (or surface area in
3D) around a discrete point j, s;; is a discrete value of the
objective shape sensitivity, 7 is the number of discrete points
and ¢ is a vector of integral coefficients for the objective.
The definition of ¢; in (7) is equivalent to using a numerical
integration method that assumes piecewise constant velocity
and sensitivity values. More accurate schemes can be
employed and our implementation uses a piecewise linear
assumption for the shape sensitivity functions (see Section 4.2).
Similarly, discretizations of the constraint function shape
derivatives can be written as:

Ohi(12,x) &

R

(sij-z- 1) =2z, a;=si;-1; (8)
where s;; is a discrete value of the shape sensitivity for
constraint i and g, is an integral coefficient for constraint Z,
boundary point j.

The change in the objective and constraints are now
explicit functions of the boundary move function, z,
though functions (7) and (8). The key aspect of the LP
and SLP level-set methods developed in this paper is that an
optimization sub-problem is used to attain z to meet the
constraints, whilst improving the objective.

3.2 The LP level-set method

We first introduce an approach similar to the SLP level-set
method called the Linear Programming (LP) level-set method.
This is used to motivate several features of the SLP level-set
method.

For a problem that does not have additional non-level-set
design variables, a good choice for the boundary movement
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function would be one that minimizes the objective shape
derivative whilst meeting the constraints, or at least moving
towards a feasible solution. This can be achieved by solving
the following LP sub-problem:

Minimize : ¢ -z B
Subjectto: a;-z=h;—h;, i=1"m ()
a; - 2=8; — g i=1+m-p

ZminS Y ARS Zinax

where /; and g; are the current constraint function values and
Zmin and z,,,, are side constraints on the boundary movement,
which are usually dictated by the CFL condition or by the
limits of the design domain. The LP sub-problem is used to
attain the discrete values of the boundary movement function,
which is then used with the conventional level-set method to
update the boundary of the structure:

o1 = o = V|V, = of ~ [Vl 1o

Note that the boundary movement function values have to
be extended to all discrete points in the domain using a
velocity extension method.

For problems with non-level-set design variables, the LP
sub-problem can be defined as (11) which includes the com-
putation of the step change in x during an iteration of the main
optimization loop:

Minimize : ¢-z + Vf,- Ax

Subjectto : a;-z+ Vh;x - Ax=h;—h, i=1"m
a,-2+ Vg, - AX<g, —g;, i=1+mp (1)
Zpin< Z < Zpax
A Xpin< A X < A Xpae

Vi =1{0f/ox; of/oxs of Jox, "
Vhix = {0h;/ox)  Oh;)ox, Oh;Jox, M (12)
Vgix = {0g;/ox) 0g;/ox og;/0x, }'

where Ax is a vector of step changes for the non-level-set
design variables and AX,,;, and Ax,,., are the side constraints.
In the main optimization loop, the update of the non-level-set
variables can then be computed by:

X =xk - Ax (13)

The LP level-set method can thus handle multiple con-
straints, beyond a simple volume limit, and also simultaneously
optimize for non-level-set design variables. However, we found
that the solution for z from the LP sub-problem may not be
smooth along the boundary. This can be seen in an example of
the compliance minimization of an aspect ratio 2 cantilever
beam, subject to a 50 % volume constraint (the initial design is
shown in Fig. 1a). The solution obtained using the LP level-set
method, Fig. 1c¢ is compared to the solution obtained using the
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(a)

Fig. 1 Cantilever example: a Initial design, loading and boundary con-
ditions, b Solution using Lagrange multiplier method, ¢ Solution using
LP level-set method

Lagrange multiplier approach where a one-dimensional opti-
mization technique is used to compute the multiplier each
iteration, Fig. 1b. The solution obtained with the LP level-set
method has a rough boundary, Fig. lc compared with the
Lagrange multiplier solution, Fig. 1b, although the overall
topology is similar. The aim of our level-set topology optimi-
zation method is to produce smooth boundary solutions.
Furthermore, the shape sensitivity function of the compliance
for an optimal structure is constant on the boundary (Wang
et al. 2003), which unlikely if the boundary is rough. We
therefore develop the LP level-set method further to obtain a
smoother boundary move function.

3.3 Development of the SLP level-set method

To obtain a smooth boundary, without using additional
smoothing or regularization techniques, we require a smooth
boundary move function along the structure boundary. This is
achieved by constructing a boundary movement function from
a linear combination of the shape sensitivities:

P
Z(A) = >‘f © Sy + Z Ai v Si, Zinin SZSZinax (14)
i=1

where A is a vector of weights for each shape sensitivity
function. Now the variables in the sub-problem are the weight
values, in place of the discrete values of z. This choice of the

boundary move function restricts the admissible vector fields,
compared with the LP level-set approach (9). However, the
number of variables in the sub-problem is significantly reduced,
which reduces the computational cost of the method. Also, the
smoothness of the boundary move function is now dependent
on the smoothness of the shape sensitivity fields.

In (14) z is a linear function of A and because the
discretized shape derivatives are linear functions of z (7, 8)
then we could directly solve for A using LP. However, the side
limits on z also need to be satisfied, which is not guaranteed if
an LP problem is solved for A only. To explain this further,
assume we choose some admissible A such that the upper side
limits on z are just active along a portion of the boundary. Now
an increase in magnitude of A will result in a violation of the z
side limits along the boundary portion. The approach devel-
oped in this work does not use z as a variable in the sub-
problem and the side limits are implicitly enforced after first
evaluating z for a given A. Using this approach, the discretized
shape derivatives are no longer linear functions of A because
of the second step of enforcing the side limits on z. This effect
is shown in Fig. 2, where the computed value of the shape
derivative for the compliance objective of the cantilever in
Fig. 1a is shown against the A\ value for the objective shape
sensitivity. The sub-problem is solved using Sequential LP for
A. We call this the SLP level-set method.

In the SLP level-set method, the objective and constraint
boundary integrals are linearized about the current value of A
using a first order Taylor expansion:

of (£2)
At 20

() =e-2() + (- 2 -7 L2 ) 1)

where A* is the value of A at iteration k of the SLP sub-
problem. The change in the objective function is linked to A
through the definition of the boundary movement function
(14) and the discretized boundary integral (7). The following
LP problem is then solved for the new value of A:

Minimize : V fy- AFF! -

Subject to : Vif, - N =Ty — b+ VE NS, i =1m
Vagin  NTISg — g+ Vgl A =1 mep
)\minS A < )\max

(16)
where:
Va={0/oA; ojon -~ ofon, )T
W=V g Vo =% T Ve = B
(17)

A SLP method is then used to iteratively find the
optimal values of A and our implementation is detailed in
Section 4.3. The LP problem in (16) is extended to include

@ Springer



636

P. D. Dunning, H. A. Kim

~100

200
Fig. 2 Shape derivative of compliance with respect to the weight value A,

non-level-set design variables, in the same manner as the
LP level-set method (11).

To solve the LP problem in (16) we require the derivatives
of the objective and constraint change boundary integrals with
respect to A, (17). This is not easily obtained analytically;
therefore we employ finite differences to compute the required
derivatives. The finite difference method is often avoided in
optimization due to the high computational cost associated
with many function evaluations and many variables.
However, the function evaluations here only involve comput-
ing z, for given A using (14) and a dot product to compute the
objective or constraint change boundary integral, (7, 8). Thus,
the function evaluations are reasonably cheap. Also, the num-
ber of weight variables is equal to the number of constraints
plus one. So, for problems with a small number of constraints,
the finite difference approach does not add significant com-
putational cost to the SLP level-set method.

3.4 Setting side limits

To solve the LP problem in (16) side limits on A are required.
The limits should be set such that any choice of A does not
activate all side constraints on the boundary move function
(14). If this occurs then a small change in A could result in no
change in z, leading to zero gradients in (17).

If there are no constraints, then the side limits for Arcan be
defined from the values of srand the side constraints:

) Z. .z
)‘f‘min = min (Ej)a )‘ﬁlnax = max (Z/')a Z/' = (m: ]max)
J j Sfj o SfJ
(18)
When we introduce a constraint, setting appropriate side
limits for both weight values is not straightforward, as the side

limits for A,will affect the required side limits for A\; and visa
versa:

Af min = mjin (EJ-), Af max = mjax (Ej), (19)

_ ([ Zjmin — /\lsl,j Zjmax — /\lsl,j
Zj= - ) )
Sfi St
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>\1‘min = min (Zj)aAlA,max = max (Z/')v (20)
J J ’

s (Fimin = ArSry Zjmax = ArSyy
! s sy

We devise a methodology to set appropriate side limits for
A, which has been shown to work well for a wide range of
problems. The first step is to reduce the problem to find the
side limits of A, only. This is achieved by assuming relation-
ships between \r and the \; values. The relationships are
formed using ratios of the discretized objective and constraint
boundary integrals when the boundary movement vector is set
to its maximum or minimum values:

C * Znin C * Znax
Vimin = y Timax = (21)
A; * Zmin ; * Zmax

These ratios provide an estimate on the ratio of Asto \;
when the boundary move function is set to either extreme.
Whilst computing the side limits, the ); values are assumed to
equal A\ multiplied by one of the ratios defined in (21).

The next step is to compute side limits on ), at each
boundary point in a similar manner to (19) and (20) except
the ratios in (21) are used to compute the extreme maximum
and minimum values:

Zi Zi
. j,min j,min
Af jamin = mm( ) 7 )

SrjtSjmin Sfj+ 8jmax

(22)
7. 7.
_ J,max Jj,max
Af,jmax = Max )
Sfj T Sjmin Sfj 7+ Sjmax
r
§jmin = g mlﬂ(’”i,mm * Si,js Vimax 'Si,j)a (23)

i=1

p
Sjmax = E maX(ri,min * Sijs Vimax * Si,j)
i=1

Once limits for A\rhave been computed at each boundary
point, the median values are used to set the side limits on A,
where median values are used instead of extreme values to
provide conservative side limits. The side limits for )\;
values are then computed from the side limits on Ar and
the ratios in (21):

)\ijmin = 7i)\f.mina )\fmax = ’_’i>\f,maxv = mln({ri,min|7 |ri7max|)

(24)

where 7; is defined to give conservative side limits for \,.
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4 Numerical implementation
4.1 Conventional level-set method

The examples in this paper use a 2D Cartesian grid to
discretize the implicit function. The Cartesian grid is also used
to form a FE mesh of bilinear four node plane stress elements
(Cook et al. 2002).

The FE mesh remains fixed throughout the optimization.
This will result in some elements being cut by the structural
boundary. For this paper we use the area-fraction approach
to compute the stiffness matrix of a cut element (Dunning
et al. 2011), which is similar to the ersatz material approach
used by Allaire et al. (2004). The idea is to weight the
stiffness matrix of a cut element by the fraction of material
within the element:

Kc = (OLC/OéE)KE (25)

where K. is the approximated stiffness matrix of the cut
element, K is the stiffness matrix of the same element with-
out a cut, whose area is oy , and «, is the area of the cut
element that lies inside the structure. To compute the internal
area of a cut element, «. , the implicit function is interpolated
along element edges to find points where the boundary inter-
sects an element edge. The collection of intersection points
and element nodes that lie inside the structure are then used to
compute the internal area, Fig. 3. Note that the SLP level-set
method does not rely on a particular FE analysis approach and
can be used with other analysis techniques.
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¢<0

$>0

Fig.3 Element internal area calculation from nodal implicit function values
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In the SLP level-set method, sensitivity values are only
computed at the boundary, not directly at grid nodes using a
natural velocity extension approach. However, it is known that
the approximated stiffness used in the area-fraction fixed grid
approach leads to reduced accuracy at the boundary (Jang
et al. 2004; Wei et al. 2010; Dunning et al. 2011). Therefore,
we use a weighted least-squares method to compute more
accurate sensitivities at boundary points (Dunning et al. 2011).

The sub-problem in the SLP level-set method only com-
putes boundary move values at the boundary. The boundary
move function is the velocity function multiplied by the time
step (6). Therefore, a velocity extension method can be used to
extrapolate boundary move values to grid nodes. Maintaining
the signed distance property of the implicit function is impor-
tant for the stability of the conventional level-set method.
Therefore, it is desirable to define the grid node velocities,
or boundary move values, such that this property is main-
tained during the update. This approach reduces the frequency
of re-initialization steps required for a stable algorithm. In
this work, the fast marching method is used to efficiently
compute a velocity extension that maintains the signed
distance property (Adalsteinsson and Sethian 1999).

The narrow band method is used to improve efficiency by
limiting the velocity extension to a small region around the
boundary, instead of the entire domain (Sethian 1999; Wang
et al. 2003). Re-initialization of the implicit function is per-
formed using the same fast marching method employed for
velocity extension. Note that re-initialization is not performed
after each update, but only when the boundary is near the edge
of the current narrow band, or after 20 iterations have passed
since the last re-initialization.

The upwind finite difference scheme is often used to com-
pute spatial gradients of the implicit function because of its
favourable stability when solving the Hamilton-Jacobi equa-
tion (Sethian 1999). This scheme is utilized here where each
gradient component is approximated using the higher order
weighted essentially non-oscillatory method (Jiang and Peng
2000) that improves the stability and accuracy of the upwind
scheme.

A simple termination criterion is used, where the optimiza-
tion is stopped if the maximum relative change in the objective
over the previous ten iterations is less than a small number:

( inwc - inm)/( inax +f£nin) <7 iE[k - 97k] (26)

where fis the objective value, £ is the iteration number and
v is a small number. The convergence criterion is only
checked if the constraints are satisfied within a 1 % tolerance.
The optimization algorithm is composed of the following
major steps:

1. Compute area-fractions and boundary discretization
from the current implicit function (Fig. 2).
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2. Assemble global matrices from area-fraction weighted
element matrices, (25).

3. Solve the primary and adjoint equations (if required).

4. If all constraints are satisfied, then check for conver-
gence using (26).

5. For the objective and constraints: compute shape sensi-
tivities at all discrete boundary points and gradients for
any non-level-set design variables.

6. Compute boundary integral coefficients (Section 4.2).

7. Solve the SLP sub-problem for the boundary move func-
tion and non-level-set design variable step updates, (16).

8. Extension of the boundary move function using the fast
marching method.

9. Spatial gradient calculation using an upwind scheme.

10. Update the implicit function, (10) and non-level-set
design variables, 13). Return to step 1.

4.2 Boundary integral

The procedure used to compute boundary integrals is
split into two stages. The first stage is to discretize the
boundary. The second is the numerical integration of the
shape derivative boundary integrals for the objective and
constraint functions.

The boundary is discretized into linear segments, which
are obtained during the computation of internal area for
elements cut by the boundary, Fig. 3. This provides an
explicit description of the current boundary. Shape sensi-
tivity values are computed at all discrete boundary points.
We then assume a piece-wise linear variation of the shape
sensitivity function along each segment and a piece-wise
constant velocity value in the neighborhood of each
boundary point, Fig. 4.

The neighborhood that the velocity function is constant
around a boundary point is weighted to obtain a more even
discretization of the velocity function. The boundary integral
coefficient for boundary point 3 in Fig. 4 is obtained by
computing the shaded area. The required boundary seg-
ments weight values, w,; and w;,, are computed from the
neighbouring segment lengths:

wog = I3a/(la + 13a) , waa = las/(I3a + lus) (27)

These weighting functions help divide the numerical
integration more evenly between the boundary points.
This approach is used for all examples in this paper.
However, experiments with simpler numerical integration
schemes have also yielded comparable results, such as
using a piecewise constant assumption for the shape sen-
sitivity functions and no weighting.
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Fig. 4 Numerical integration of boundary a function

4.3 SLP filter method

A SLP filter method is used to solve the sub-problem for the
boundary movement function (Fletcher et al. 1998). The idea
of the filter method is to treat the non-linear constrained
optimization problem as a multi-objective problem, where
the second “objective” is to minimize the constraint violation.
The main advantage of this approach for the SLP level-set
method is that it can robustly handle the situation where an
infeasible problem is posed. This is because filter method can
find the solution that minimizes the constraint violation, even
if the problem is infeasible. This solution is then used to define
the boundary move function and non-level-set design variable
updates.

The two main approaches for solving LP problems are
simplex methods and interior-point methods (Rao 2009).
When the number of variables in the LP problem is small
(less than 10) we use the revised simplex method. For larger
problems it is more efficient to use an interior point method.
A primal-dual interior point method is used, following the
implementation by Zhang (1996) with a start point sug-
gested by Mehrotra (1992).

4.4 Further details of constraint handling

The sub-problem in the SLP level-set method aims to meet the
constraints. However, if the current design is in the infeasible
region then it may not be possible to meet the constraints
during the current iteration of the level-set method. This
problem is handled by setting limits for the maximum and
minimum constraint changes during the current iteration. The
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limits are computed from the discretized boundary integrals
and z side limits:

B[ = {a[ * Zmax; A; * Znmin, 0}
himax = 0.2max(03;) , hjmin = 0.2min(3;)
gtﬂ,max = 0'2max(ﬁi) ’ gi,min = Ozmln(ﬁl)

(29)

where the 0.2 factor has been seen to work well for a range of
problems. If the violation of an equality constraint lies outside
the limits, then the constraint value in the sub-problem is
changed accordingly:

if Z,‘ —h; > hi,max set:h;, = h; + hi,max

" (30)
ifh; —h; < hi,min set: h;=h; + hi,min

The same principle is applied to inequality constraints:

if g+ < Zimn S€t: & =& + &imin (31)

This method allows the design to approach the feasible
region over several iterations of the level-set method.

An active constraint method is also employed, where in-
equality constraints that are not active, and not close to becom-
ing active, are not considered during the sub-problem. A con-
straint is removed from the sub-problem if: g; — g; > &; ax -

4.5 Numerical parameters

The numerical implementation of the SLP level-set method
presented in this paper has three numerical parameters that
need to be specified by a user. The first is related to the choice
of side limits for A (22-24), where the median of the values
computed for each boundary point (22) is used to form the
final limits. Values other than the median can be chosen,
although experience has shown that the median value works
well for a wide range of problems. The second parameter is
the method used to compute the integral coefficients for the
shape derivatives. A, weighted, piece-wise linear shape sensi-
tivity function is used in this work, Fig. 4. However, as
discussed in Section 4.2, comparable results can be obtained
with simpler methods. The third parameter is the 0.2 factor
used to set the constraint change targets for infeasible designs
(29). Lower values tend to result in slower convergence for
initially infeasible designs, whereas higher values are
more likely to yield an infeasible sub-problem. In our
experience a value of 0.2 was found to be a good
compromise and is used consistently for all the examples in
this paper and we have not yet come across a case where a
different value was needed.

Fig. 5 Cantilever beam solutions: a minimization of compliance, b
minimization of volume

5 Examples

The SLP level-set method is applied to solve a range of example
problems to demonstrate its effectiveness in constrained optimi-
zation and inclusion of non-level-set design variables.

5.1 Cantilever beam

The first example is a cantilever beam with aspect ratio 2,
shown in Fig. la. The design domain is discretized using
160x80 unit sized elements. Material properties are Young’s
modulus of 1.0 and Poisson’s ratio of 0.3. The beam is
optimized for two problem formulations. First, the total com-
pliance is minimized subject to a volume constraint set to

(a)

Bar area
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Fig. 6 Cantilever with bar reinforcement: a solution, b convergence
history

@ Springer



640

P. D. Dunning, H. A. Kim

(a)

R NN A R 3
Fig.7 Bridge topology and support optimization: a initial design, boundary
conditions and support region (shown in red), b solution (active supports
shown using hatching)

50 % of the design domain. Then, the final compliance value
(5.94x10%) is used as a constraint in the dual problem, where
the volume is minimized, subject to an upper limit on the
compliance. The resulting solutions of the two problems com-
pare very closely, Fig. 5, and the final compliance and volume
values are within the convergence tolerance.

Non-level-set design variables are added to the compliance
minimization of the cantilever beam. The structure of Fig. la is
reinforced with bar elements that coincide with element edges in
the mesh and the cross sectional areas of the bars are optimized
simultaneously with the topology of the continuum. This ap-
proach can optimize for continuum and truss topology simulta-
neously. The design space contains purely truss type, purely
continuum type structures and combinations of the two. In
practice, the areas that contain just the bar elements can be
considered a truss structure, the continuum areas are panel
structures and the combined areas are reinforced panel structures.

Fig. 8 Natural frequency example: initial design and boundary conditions

@ Springer

(b) 2100 0.8

» ™~ =
£ 1900 0.6

& \ 2
g A Volume =
Q" 1700 04 o
=

) £
= =
g c
= 15 P
& 1500 0.

1300 0.0

9 . 5 5
0 2 Iteration *° &

Fig. 9 Maximize 1st natural frequency: a solution, b convergence
history

(a)

(b)2100 0.8
—~ ™~ w,
w ‘\\ 4 =
Z 1900 T = 06 £
< \ : =
\

= \ ,' 31
=~ [V / s
z VN o~ Volume =
2 1700 Nre 04 QE,
%) \'/
=y @ E
5] (=]
= 1500 02~

1300 0.0

0 25 Jteration 50 75

Fig. 10 Natural frequency ratio constraint problem: a solution, b con-
vergence history



Sequential linear programming level-set topology optimization

641

Fig. 11 Natural frequency
example, comparison of solutions
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For this example, the mesh size is 80%40 and there are 6,520
non-level-set design variables. The volume constraint is replaced
with an upper limit on the total mass of the structure, set to 100.0,
which includes both the continuum material and bar reinforce-
ments. The edge length, thickness and density of the 2D ele-
ments are 2.0, 0.1 and 0.1, respectively. The material properties
for the bar elements are the same as the 2D elements and bar
areas are limited to be between 10°® and 0.1. The solution and
convergence history for the reinforced cantilever beam are
shown in Fig. 6. This example demonstrates that the SLP
level-set method can effectively handle problems with many
non-level-set design variables.

5.2 Simultaneous optimization of topology and supports

Buhl (2002) introduced a method for simultaneously optimizing
the topology and support boundary conditions of a structure.
Designable supports are introduced by attaching springs to each
degree of freedom at nodes within a support region. The spring
stiffness can range from a very high value, representing an
active support, to a very small value, representing an inactive
support. The support springs are aggregated into one design
variable per element within the support region. A power
penalization method is used to force the support design
variables to be either completely active or inactive. To avoid
the trivial solution that all supports are active, a constraint is
added to problem that limits the total cost of the supports. Buhl
(2002) demonstrated the effectiveness of this approach using
the SIMP method for the topology optimization. In this paper
the support optimization approach is combined with the SLP
level-set, where the support design variables are introduced as
non-level-set design variables.
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Fig. 12 Crushing mechanism: initial design and boundary conditions.
Only top half'is shown here due to symmetry

The simultaneous optimization of topology and supports
using the SLP level-set method is demonstrated by minimizing
the compliance of a bridge structure, taken from Buhl (2002),
Fig. 7a. The design domain is 1.0x0.5 and discretized using
200x100 elements. A uniformly distributed load is applied
along the top edge and the supports at the top left are right
corners are fixed and not subject to optimization. The top two
rows of elements are fixed to remain part of the structure. The
red region in Fig. 7a indicates the support design region subject
to optimization. The problem has two constraints, an upper limit
on material volume, set to 20 % of the design domain, and an
upper limit on the total support cost, set to 20 % of the maximum
possible cost, where the cost of a support design variable varies
linearly from one, if it is active, to zero, if it is inactive. The
solution obtained using the SLP level-set method is shown in
Fig. 7b, which agrees favourably to the solution obtained when
SIMP was used to optimize the topology (Buhl 2002).

5.3 Natural frequency problems

This example is taken from Shu et al. (2011). The initial
design and boundary conditions are shown in Fig. 8. The
design domain is 2% 1 m and discretized using 100x50 ele-
ments. The material properties are Young’s modulus of
200 GPa, Poisson’s ratio of 0.3 and density of 7,800 kg/m”>.
The thickness of the structure is 0.01 m. Consistent element
mass matrices are used. The area in the central grey square has
a density of 1.56x10° kg/m® and is not subject to optimiza-
tion. To prevent spurious modes occurring in the void region,
elements completely outside the structure are given a stiffness
of 0.2 GPa and density of 7.8 x 10 % kg/m’. In this example the

Fig. 13 Crushing mechanism solution
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eigenvalues remain simple (multiplicity of one) throughout
the optimization, therefore special methods for handling re-
peated eigenvalues are not required.

The example in Fig. 8 is first optimized to maximise the first
natural frequency, w;, subject to a volume constraint, set to 40 %
of the design domain. The solution is shown in Fig. 9a and the
convergence history, including the second natural frequency, w,,
is shown in Fig. 9b. The convergence history shows that the first
and second natural frequencies almost coalesce at iteration 28
and the final frequency ratio is only: w, / w;=1.04.

The maximization of first natural frequency problem is
solved with an additional constraint that the second natural
frequency must be at least 1.2 xw;. This type of constraint can
be used to prevent mode switching during the optimization
(Odaka and Furuya 2005). Also, a design problem may re-
quire a specific frequency gap (Osher and Santosa 2001). The
solution of the problem with a frequency ratio constraint is
shown in Fig. 10a and convergence history in Fig. 10b. The
solution meets both constraints and the first natural frequency
is within 0.1 % of the value obtained in the original problem.
The topology of the solutions is the same, although there are
differences in the shape, shown in Fig. 11.

5.4 Compliant mechanism design

The SLP level-set method is now used to design a crushing
compliant mechanism, taken from Sigmund (1997). The objec-
tive is to maximize the mechanical advantage, defined as the
ratio of the crushing force, F,,,;, applied to a rigid work piece to
the input force, F;,, subject to upper limits on the displacement
at the input force location and the total volume. The initial
design, loading and boundary conditions are shown in
Fig. 12, where the circle represents the rigid work piece and
the grey area is not subject to optimization. Symmetry is used
and only the top half of the mechanism is modelled. The design
domain is discretized using 200x66 elements. The Young’s
modulus is 3 GPa, Poission’s ratio is 0.4 and the thickness is
10 mm. The input force is 50 N and the input displacement
constraint is 0.1 mm. The volume constraint is 33 % of the
design domain.

The solution of for the mechanism problem is shown in
Fig. 13, which has a similar topology to the solution obtained
by Sigmund (1997) using the SIMP method. The constraints
are satisfied at the optimum and the final mechanical advan-
tage is 1.0.

6 Conclusions
A new method is developed to handle multiple constraints and
simultaneously optimize for non-level-set design variables

when using the conventional level-set topology optimization
method. The key components of the new approach are

@ Springer

discretized boundary integrals to estimate function changes
and a sub-problem to compute the velocity function and step
changes for the non-level-set design variables. The sub-
problem is solved using SLP, thus the new method is termed
the SLP level-set method.

The velocity function is defined as a linear combination of
the shape sensitivity functions for the objective and con-
straints. This approach produces a smooth velocity function
from sensitivity functions and further regularization of the
velocity function is not required. The velocity function
attained from the sub-problem is extended to grid nodes using
the fast marching method. This approach helps maintain the
signed distance property of the implicit function during the
level-set update, which promotes stability and requires only
occasional re-initialization. A further advantage of the SLP
level-set method is that it does not rely on a particular FEA
approach. The method is demonstrated to successfully opti-
mize a wide range of optimization problems with multiple
constraints and non-level-set design variables.
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