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Abstract

Genome-wide association (GWA) analyses have generally been used to detect individual
loci contributing to the phenotypic diversity in a population by the effects of these loci on the
trait mean. More rarely, loci have also been detected based on variance differences
between genotypes. Several hypotheses have been proposed to explain the possible
genetic mechanisms leading to such variance signals. However, little is known about what
causes these signals, or whether this genetic variance-heterogeneity reflects mechanisms
of importance in natural populations. Previously, we identified a variance-heterogeneity
GWA (vGWA) signal for leaf molybdenum concentrations in Arabidopsis thaliana. Here,
fine-mapping of this association reveals that the vGWA emerges from the effects of three
independent genetic polymorphisms that all are in strong LD with the markers displaying
the genetic variance-heterogeneity. By revealing the genetic architecture underlying this
vGWA signal, we uncovered the molecular source of a significant amount of hidden additive
genetic variation or “missing heritability”. Two of the three polymorphisms underlying the
genetic variance-heterogeneity are promoter variants for Molybdate transporter 1 (MOTT),
and the third a variant located ~25 kb downstream of this gene. A fourth independent asso-
ciation was also detected ~600 kb upstream of MOT7. Use of a T-DNA knockout allele high-
lights Copper Transporter 6; COPT6 (AT2G26975) as a strong candidate gene for this
association. Our results show that an extended LD across a complex locus including multi-
ple functional alleles can lead to a variance-heterogeneity between genotypes in natural
populations. Further, they provide novel insights into the genetic regulation of ion homeosta-
sis in A. thaliana, and empirically confirm that variance-heterogeneity based GWA methods
are a valuable tool to detect novel associations of biological importance in natural
populations.
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Author Summary

Most biological traits vary in natural populations, and understanding the genetic basis of
this variation remains an important challenge. Genome-wide association (GWA) studies
have emerged as a powerful tool to address this challenge by dissecting the genetic archi-
tecture of trait variation into the contribution of individual genes. This contribution has
traditionally been measured as the difference in the phenotypic means between groups of
individuals with alternative genotypes at one, or multiple loci. However, instead of altering
the trait mean, certain loci alter the variability of the trait. Here, we describe the genetic
dissection of one such variance-controlling locus that drives variation in leaf molybdenum
concentrations amongst natural accessions of Arabidopsis thaliana. The variance-control-
ling locus was found to result from the contributions of multiple alleles at multiple loci
that are closely linked on the chromosome and is a major contributor to the “missing heri-
tability” for this trait identified in previous studies. This illustrates that multi-allelic genetic
architectures can hide large amounts of additive genetic variation, and that it is possible to
uncover this hidden variation using the appropriate experimental designs and statistical
methods described here.

Introduction

Genome Wide Association (GWA) analysis is a powerful approach to study the genetic basis of
complex traits in natural populations. It is widely used to study the genetics of human disease,
but is equally useful in studies of other populations. For example, it has been used to dissect the
genetics of traits of importance in agricultural applications (see e.g. [1] for an example in cattle)
and ecological adaptation using collections of natural accessions in the genetic model plant
Arabidopsis thaliana, for example [2-7].

The standard GWA approach screens the genome for loci where the alternative genotypes
differ significantly in the mean for the trait or traits of interest. Although hundreds of loci have
been found to affect a variety of quantitative traits using this strategy, it has become clear that
for most complex traits this additive approach fails to uncover much of the genetics contribut-
ing to the phenotypic variation in the populations under study. It is therefore important to
explore the genetics of such traits beyond additivity [8]. An alternative way that genetic varia-
tion can contribute to the phenotypic variability in a population is via direct genetic control of
the variance [9]. To identify an individual locus that makes such direct contributions to the
trait variance, a statistical test is used to identify significant differences in the phenotypic vari-
ance between the groups of individuals that carry alternative alleles at the locus. When such a
variance difference exists between the genotypes at a locus, the locus displays a genetic vari-
ance-heterogeneity. These loci are therefore often referred to as variance-heterogeneity loci (or
vQTL for short [10]). By performing genome-wide analyses to identify such variance-heteroge-
neity loci, novel trait associations and alternative genetic mechanisms involved in shaping the
total phenotypic variance in the analyzed populations can be identified [8,10].

The direct genetic control of the phenotypic variance is a topic that has been studied for
many years in quantitative genetics with a primary focus on its potential contributions to adap-
tation in natural populations and agricultural selection programs. Theoretical and empirical
work has increased our understanding of how individual loci that display variance, rather than
mean, differences between genotypes might cause phenomena such as fluctuating asymmetry,
canalization and genetic robustness [9,11]. Empirical work now also supports the general prin-
ciple that a direct genetic control of the variance is an inherent feature of biological networks
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and individual genes (see [12] for a review) and that it contributes to both capacitation [13,14]
and maintenance of developmental homeostasis [15]. Although it was already shown in the
1980s that it was possible to map vQTL [16], this approach has only recently been more widely
adopted to explore the role of variance-heterogeneity loci in, for example, environmental plas-
ticity [15], canalization [17], developmental stability [18], and natural variation in stochastic
noise [19].

With the advent of GWA analysis, and the later realization that standard additive models
leave much of the genetic variance in the analyzed populations uncovered [8], there has been
an increased interest in exploring the contribution of genetic variance-heterogeneity to the
phenotypic variability in complex traits [10,20]. Several recent studies in, for example, humans
[21], plants [7,19,22], Drosophilia melanogaster [23] and yeast [24] have shown that part of
this previously unexplored heritable genetic variation, beyond the narrow-sense heritability,
can be uncovered by re-analyzing existing GWA datasets using methods to detect differences
in trait variance (variance-heterogeneity GWA or vGWA for short) between genotypes [20-
22].

Previously, we re-analyzed ionomic data from a GWA study based on 93 wild-collected A.
thaliana accessions [2] and detected a variance-heterogeneity locus with a genome-wide signif-
icant difference for the variance in leaf molybdenum concentrations between the genotypes.
This association was found near the MOT1 (Molybdate transporter 1) gene [22]. Importantly,
this locus did not affect the mean leaf molybdenum concentrations in this dataset [2,22].
Molybdenum is an essential element for plant growth due to its role as a part of the molybdop-
terin cofactor that is required by several critical enzymes [25]. Both deficiency and excess of
molybdenum have an impact on plant development [26]. The ability of plants to acquire min-
erals from the soil, and regulate their levels in the plant, depends on complex biochemical and
regulatory pathways. The genetic architecture of such ionomics traits is thus complex [27]. To
date, several studies in A. thaliana have exploited natural variation and QTL analysis to exam-
ine mineral content [28-34], and important insights have been gained into the underlying bio-
logical mechanisms by dissecting the molecular determinants for nine of these QTL. These
include QTL for the accumulation of Co, Mo, Na, Cd, As, S/Se, Zn, Cu and sulfate [5,6,35-42].
Further, GWA analysis has also been used to identify both candidate loci and functional poly-
morphisms contributing to natural variation in these ionomics traits [2,3,5,6,43].

Here, we quantified molybdenum concentrations in leaves in a larger collection of 340 natu-
ral A. thaliana accessions to replicate and dissect the genetic architecture of the previously
detected variance-heterogeneity locus around the MOT1I gene [22]. We uncovered that a com-
plex multi-locus, multi-allelic genetic architecture leads to the genetic variance-heterogeneity
at this locus. Several polymorphisms in three closely linked loci were significantly associated
with the mean molybdenum concentration in the leaf, and due to an extended LD between the
minor alleles at these loci, their joint effects cause the genetic variance-heterogeneity at this
locus. By dissecting this variance-heterogeneity locus in detail, we both reveal the genetic com-
plexity of an adaptive locus for molybdenum homeostasis in A. thaliana [37] and uncover a
significant amount of novel additive genetic variance that otherwise would remain undetected
and contribute to the “missing heritability”.

Results

An increased population-size reveals novel loci associated with
molybdenum concentrations in A. thaliana leaves

The first GWA analysis searching for genetic effects on mean leaf molybdenum concentrations
[2] did not uncover any genome-wide significant associations for this trait. This was surprising
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as it was known from earlier QTL studies that a strong polymorphism affecting this trait was
segregating in the analyzed population [36]. To investigate this further we measured the
molybdenum concentration in leaves from at least six replicate plants of 340 natural A. thali-
ana accessions (S1 Table) that had earlier been genotyped using the 250k A. thaliana SNP-chip
[3]. 58 of the accessions used in this study overlapped with those in the previous study [2,22].
In this larger dataset, we detected several SNPs associated with the mean leaf molybdenum
concentrations in, or near, the MOT1 locus (Fig 1). The minor alleles for some associated SNPs
increased the mean phenotype, whereas others decreased it relative to the major allele (Table 1;
Fig 1B). In our earlier study we identified a genome-wide significant genetic variance-heteroge-
neity for leaf molybdenum concentrations at this same locus containing MOT1 [22]. Here, we
therefore aim to functionally dissect this region further to obtain a deeper understanding of the
genetic mechanisms controlling the range of leaf molybdenum concentrations observed in A.
thaliana [36].

Dissecting the genetic structure of a variance-heterogeneity locus
affecting molybdenum concentrations in A. thaliana leaves

A vGWA analysis of leaf molybdenum concentrations in the 340 accessions, searching for
genetic effects on the between accession variance heterogeneity (S1 Text), revealed several SNP
markers that displayed a genome-wide significant genetic variance-hetereogeneity in the region
of the reported vQTL near the MOT1 gene [22]. The associations were particularly strong (Fig
1A) for a number of SNPs in high LD on chromosome 2 (Fig 1B; vBLOCK). By visualizing the
genotypes for the analyzed accessions across vVBLOCK, we observed that the population con-
tains two distinct multi-locus genotype classes for this segment: one that predominantly con-
tains high-variance associated SNP alleles (vBLOCK™) and another with low-variance
associated SNP alleles (vBLOCK"; Fig 1C). vBLOCK contains in total 20 annotated genes, and
the most obvious functional candidate for the association is MOT1 (10,933,061-10,934,551).

Multiple structural MOT1 promoter-polymorphisms are associated with
molybdenum concentrations in A. thaliana leaves

MOT1 is an obvious functional candidate gene for the genetic variance-heterogeneity for
vBLOCK. A 53 bp deletion in the promoter-region of this gene has earlier been shown to
decrease MOT1 expression, leading to low concentrations of molybdenum in the plant [36,44].
To complement our SNP-marker dataset with this known, and other potentially functional,
structural promoter polymorphisms segregating in the analyzed population, we screened the
promoter region of MOT1I using PCR fragment size differentiation (see Methods for details)
and identified in total six non-coding structural polymorphisms (Fig 2, S1 Table). These were
then genotyped in 283 of the 340 phenotyped accessions.

Two of the six segregating MOT1 promoter polymorphisms were significantly associated with
mean leaf molybdenum concentration. The first was DEL>® which is located 13 bp upstream from
the transcription start-site of MOTI. Baxter et al. [36] earlier showed that this 53 bp deletion
(DEL”) allele lacks the TATA-box in the MOTI promoter, which leads to a reduced expression of
MOT1I and decreased molybdenum concentration in the leaf. We confirm that this allele decreased
the mean molybdenum concentrations in the leaf also in this dataset (Table 1; ppomina = 4.2x107'¢;
Fig 2A) and found the DEL”” allele only among low molybdenum accessions (Mo < 3 pg g dry
weight). We also found a strong association (Pyomina = 5.0x10™"; Table 1; Fig 2A) to a locus
(DUP) located 263 bp upstream from the translation start site. Here, several accessions share
a 330bp long duplication (Fig 2B) located inside a transposable element (AT2TE47050). The
duplication exists in two distinct variants (alleles) differing by four polymorphisms: three
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Fig 1. GWA and vGWA analyses for mean leaf molybdenum concentration. (A) Genome-wide results from single-locus vGWA (blue) and GWA (red)
analyses across the A. thaliana genome. (B) Region on chromosome 2 where a highly significant genetic variance-heterogeneity was detected for the leaf
molybdenum concentrations. Several significant SNPs are detected and these define an extended vGWA associated region (vBLOCK), where the minor
alleles at these significant loci define an LD-block associated with a higher phenotypic variance (vBLOCK™). (C) lllustration of the high LD across vBLOCK.
The accessions that are homozygous for the minor/major allele are colored green/grey and then sorted according to the genotype of the SNP with the
strongest genetic variance-heterogeneity (red dashed line, Table 1).

doi:10.1371/journal.pgen.1005648.g001
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Table 1. Mean and variance effects for five loci in the MOT1 region associated with either mean molybdenum concentration levels (GWA) or vari-

ance (VGWA).
Locus SNP'
Mean associations
DEL n.a.
DUP n.a.
SNP4 rs347469902
SNP, rs347287517
Variance association
vBLOCK rs346654259°

Alleles? Location (bp)® Effect (95% CI)* Significance®
abs/pres (4%) 10,934,564-10,934,616 -2.6 (-3.2—2.0) 42x107'®
abs/pres (3%) 10,934,814-10,935,143 2.8 (2.0-3.6) 5.0x 107"

AT (14%) 10909091 0.8 (0.4-1.2) 46x107°
A/C (19%) 11528777 1.0 (0.7-1.3) 3.0x107"°
A/G (29%) 10917720 7.1 (5.4-9.4) 5.6 x 10712

"Name of the most significant associated SNP markers at each locus in the GWA (Mean associations) or VGWA (Variance association) analyses
2Major allele/Minor allele (minor allele frequency). For the structural variants, abs and pres denotes absence and presence of the variant respectively

SLocation in the TAIR10 assembly

“Estimates of mean effects (ug Mo /g dry weight) and 95% Confidence Intervals (Cl) for the minor alleles from a four-locus fixed-effect regression model
including DEL, DUP, SNP, and SNP,, and the variance effect (fold increase in variance for the minor allele) for vBLOCK from a DGLM model

SSignificances for the effects estimated in*

%Top SNP identified in DGLM scan of vBLOCK.

doi:10.1371/journal.pgen.1005648.t001

point-mutations and one 4bp insertion (DUP**° and DUP*** in Fig 2B). In our dataset, the DUP**°
allele altered leaf molybdenum concentrations and it was found only among accessions with high
leaf molybdenum concentrations (Mo > 10 pg g™ dry weight). To our knowledge, this duplication
has not previously been described in the literature. Using qRT-PCR, we tested the MOT1I expres-
sion in 5 accessions carrying the low-molybdenum DEL™ allele and found that 4 of these have sig-
nificantly lower expression than Col-0 in the root (95% CI 0.2-0.6 fold; 2.5 x 107" <

p < 2.5 x 107 from Fishers method combining p-values for the biological replicates; S3 Table).
Using the same assay, we tested 6 accessions carrying the high-molybdenum DUP**° allele. All
these accessions had higher (95% CI 2.2-7.8 fold; 2.5 x 1072 < p<22x 1072 from Fishers
method combining p-values for the biological replicates; S3 Table) MOT1 expression than Col-0
in the root. Although these results do not provide direct functional evidence that the DUP**° allele
increases the molybdenum concentration in the leaves via an increased expression of MOT1 in the
roots, it suggests this as a plausible mechanism worth further explorations. Together, our results
provide further evidence that allelic heterogeneity at MOT1 is an important component of the
genetic architecture of natural variation in leaf molybdenum concentrations.

A multi-locus analysis confirms that a multi-locus, multi-allelic genetic
architecture determines the molybdenum concentrations in plants from
the global A. thaliana population

Multiple associations to loci with either mean- or variance differences between genotypes for
leaf molybdenum concentrations were uncovered in the single-locus GWA and vGWA analy-
ses. To confirm the independence of these effects, and evaluate their joint contributions to leaf
molybdenum, we fitted all markers (SNPs and structural variants) on chromosome 2 in a gen-
eralized linear model to the mean leaf molybdenum concentration using the LASSO method
[45]. This penalized maximum likelihood regresses the effects of polymorphisms that make no,
or only a minor, independent contribution to the trait towards zero and highlights the markers
that jointly make the largest contribution to the trait variation. The penalty in the analyses was
chosen so that all highlighted polymorphisms in the final model also have a genome-wide sig-
nificant effect in the earlier GWA or vGWA analyses (S1 Fig; see Methods section for details).

PLOS Genetics | DOI:10.1371/journal.pgen.1005648 November 23, 2015

6/24



o ®
@ : PLOS | GENETICS Revealing The Genetic Architecture of a Variance-Heterogeneity Locus

A vBLOCK
+ : - 1- +
SNP1 5 DEL DUP SNP,
e E—
SNP* :4 D' =1 DELS3 DUP326 SNP;*
(—): D’ = |
D’ =0.94 € > D’=0.15 -
B 10934716 10935287
(-165) (-736)

10934814 10935143
(-263) (-592)
DUPR

Duplication

h,_a

Divergence -1bp -7bp * 2 deletions + 19 point mutations

2 point mutations, / \ insertion + 1 point mutation
+4bp

oupe — SR oupes

Fig 2. Schematic illustration of the complex locus on chromosome 2 associated with leaf molybdenum concentrations. (A) Multiple GWA and
VGWA signals were detected to a complex locus around MOT1. There was a strong LD (D’) between three of the associated loci (SNP4, DEL and DUP) and
the high-variance associated variant of vBLOCK (vBLOCK™) that led to the extended VGWA signal (Red/blue arrow indicate leading vGWA SNP in the
DGLM analysis). A fourth independent GWA association (SNP,) was also detected upstream of vBLOCK. The direction of the effects for the minor alleles at
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(decreased), respectively. In (B) we illustrate the differences between the reference allele at DUP (DUP?) and the two variants of the 330 bp duplication
(DUP?26 and DUP>22) in the transposable element AT2TE47050 in the promoter region of MOTT.

doi:10.1371/journal.pgen.1005648.g002

In this way, the LASSO method picks up the genome-wide significant polymorphisms that
have independent effects on the trait.

The MOT1I promoter polymorphisms DEL and DUP were the most strongly associated loci
in the LASSO analysis. Two additional SNP markers, one located ~25 kb downstream
(rs347469902; 10,909,091 bp; SNPy; Table 1) and one ~600 kb upstream of MOT1
(rs347287517; 11,528,777 bp; SNP,; Table 1), were also highlighted. The minor alleles at SNP;
and SNP, (SNP," and SNP,") were both enriched among accessions with high leaf molybde-
num concentrations. The minor alleles at three of the four associated loci thus increased the
mean leaf molybdenum concentrations (Table 1; DUP**°, SNP,*, and SNP,"), and one
decreased it (Table 1; DEL>).
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A multi-locus genetic architecture contributes to the range of
molybdenum concentrations in wild collected A. thaliana accessions

Under certain conditions, multi-allelic genetic architectures can lead to a genetic variance-het-
erogeneity in association-analyses based on bi-allelic SNPs (see e.g. [10]). For example, if a
locus contain a SNP with two alleles, SNP* and SNP?, where the major SNP allele is completely
linked to the major allele at gene M regulating trait T (i.e. only the SNP*-M"™ " haplotype exists
in the population). If now locus M also contains two minor alleles, M and M, that decreases/
increases T an equal amount relative to the value of M"7, and that are tagged by the SNP®
allele, the SNP* and SNP” genotype-classes will have identical means, but different variances.
Here, we will show that the genetic variance-heterogeneity we detected for vBLOCK is due to a
multi-allelic genetic architecture that closely resembles this example.

An extended LD across three polymorphisms affecting mean
molybdenum concentrations lead to a genetic variance-heterogeneity
association in the vGWA analysis

There was a strong LD (D’) between three loci (SNP;, DEL and DUP) associated with the mean
leaf molybdenum concentration and the SNPs across vBLOCK that displayed a highly signifi-
cant genetic variance-heterogenity (Fig 2A; Table 2). All the 20 accessions carrying either the
DEL? or DUP*® alleles also carry the high-variance associated vBLOCK"”. Of the 29 accessions
that carry the high molybdenum SNP,™ allele, 19 carried vBLOCK™ (Fig 1C; see Methods sec-
tion for further detail). The minor alleles at two of these (DUP??°, SNP, ) increased, and at one
of them (DEL*?) decreased, the leaf molybdenum concentration. This results in a situation sim-
ilar to that in the example above: multiple alleles with different directional phenotypic effects
are unevenly distributed across the two variants of vVBLOCK. The fact that one variant
(vBLOCK™) tags three different minor alleles (DUP**°, DEL>® and SNP;*) with different effects
on the mean molybdenum concentration explains the increased phenotypic variance for this
group of accessions.

To statistically disentangle the genetic effects on the mean and variance by this multi-allelic,
multi-locus genetic architecture, an additional vGWA analysis was performed where we fitted
a linear model with separate effects for the mean and variance to the data as outlined by Valdar
and Ronnegard [10]. The three mean associated loci that were located within vBLOCK (DUP,
DEL and SNP,) were fitted as loci with mean effects when screening chromosome 2 for loci
with potential effects on the variance using this method. The entire variance signal to vBLOCK
disappears in this analysis (Fig 3A) illustrating that the variance-heterogeneity association to
vBLOCK is due to the presence of the DEL*?, DUP**° and SNP;* alleles on the high-variance
associated vBLOCK™ (Fig 3C).

Table 2. LD® between the loci altering mean leaf molybdenum concentrations.

DEL
DEL 1
DUP? 1
SNP;,

SNP, 0.59
vBLOCKP

DUP? SNP, SNP, vBLOCK®
0 0.01 0 0.11
1 0.19 0.03 0.08
1 1 0.03 0.34
0.53 0.22 1 0.03
1 0.94 0.15 1

aMinor allele in the analysis is DUP®2° that is associated with mean leaf molybdenum concentrations
PyBLOCK represented by the top-SNP in the dGLM scan across vBLOCK (Table 1)
°LD is provided as r? /D’ above/below the diagonal, respectively.

doi:10.1371/journal.pgen.1005648.t002

PLOS Genetics | DOI:10.1371/journal.pgen.1005648 November 23, 2015 8/24



el e
@ : PLOS | GENETICS Revealing The Genetic Architecture of a Variance-Heterogeneity Locus

® VGWA
o — VvGWA corrected for DEL, DUP, SNP4
8 _____________________________________________________________________
= ©
®©
T
D_ [ ]
R s : :
o ° )
Q L .' E{ H .3 s
I P ‘> s % ,°
Al — : e " g @ ’“' ¥ e ) - e °
50 P A 0 3 U0 - T WAL & LN
(;_'5"&-”‘9"?,‘,’11 L rey RGN
O ] s Y ) {
[ I I I I ]
0 4 8 12 16 20
B Position on chromosome 2 (Mb)

No of accessions
30 60
Ll 1

— —T1 1
e | i i i |
0 5 10 15 20
Molybdenum concentration in leaves
* QO k--------- C1r—t--------- 0 ® O
: C
2 ® DEL®®
8 [eo) DUP326
8 < @ SNP1+
S o -:-'I || |I s s B —
o | T | T |
< 0 5 10 15 20
Molybdenum concentration in leaves
bommmoe- I I fommmmmm e 1

Fig 3. The genetic variance-heterogeneity across vBLOCK emerges from a multi-locus, multi-allelic genetic architecture. (A) The vVGWA analysis
using the alternative DGLM approach also detects a strong association near MOT7 on chromosome 2 (blue dots). The genetic variance-heterogeneity at this
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doi:10.1371/journal.pgen.1005648.g003
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New additive genetic variation revealed by the dissection of a locus
detected via its genetic variance-heterogeneity

We estimated the broad-sense heritability of leaf molybdenum concentrations from the within/
between accession variances to be H* = 0.80 using an ANOVA across all replicated measure-
ments. This estimate is similar to that reported in earlier studies (0.56 [43] to 0.89 [2]). The
narrow-sense heritability was estimated to be h® > = 0.63 using a mixed model based analysis
where the accession mean phenotypes were regressed onto the genomic kinship matrix.

The first GWA analysis for leaf molybdenum concentrations by Atwell et al. [2] was unable
to detect any loci contributing to the variation in the trait mean. The later VGWA study by
Shen et al. [22] identified a genetic variance-heterogeneity in the MOT1I region that explained
27% of the phenotypic variance where the contribution by mean (additive) and variance (non-
additive) effects were 4/23% of the phenotypic variance, respectively. Using the variance
decomposition proposed by Shen et al. [22], we estimate that the genetic variance-heterogene-
ity at vBLOCK contributes 3 and 19% to the phenotypic variance via its effect on the mean and
the variance. The total amount of genetic variance associated with the vVGWA signal here is
thus comparable to that of Shen et al. [22], but in both studies it leaves much of the total addi-
tive genetic variance unexplained as it only accounts for about 5% of h*. The contribution to
H? is, however, larger and between 24 to 28% in these two studies.

However, after considering the individual contributions made by the three polymorphisms
identified on vBLOCK™ (DEL"?, DUP**°, SNP,*; Fig 3), much additive genetic variance is
uncovered. Nearly all the contribution from vBLOCK becomes additive (83% of the total
variance) to explain 45% of h* and 43% of H. By also accounting for the fourth locus (SNP;
Fig 2), the contribution h> and H? increases further to 60 and 50%, respectively. By dissecting
the genetic architecture of the vGWA signal into its underlying multi-locus, multi-allelic com-
ponents, we were thus able to reveal a significant contribution by vBLOCK to the “missing her-
itability” of molybdenum concentration in the leaf in the original GWA [2] and vGWA [22]
analyses.

Functional analyses of genes in LD with the loci affecting the mean
molybdenum concentration in leaves

Here, we functionally explore the associations outside of the coding and regulatory regions of
MOT1I in more detail to identify additional functional candidate polymorphisms and genes for
the regulation of molybdenum homeostasis.

Mutational analyses to identify functional candidates contributing to
variable leaf molybdenum concentrations in A. thaliana

Two regions outside of the coding and regulatory region of MOT1I (chromosome 2 10,933,061
10,935,200 bp) were associated with the mean leaf molybdenum concentrations (SNP; and SNP,
in Figs 1B; 3A). Genes located in the chromosomal regions covered by SNPs in LD (r* > 0.4)
with SNP; and SNP,, respectively, were explored as potential functional candidates for the associ-
ations using T-DNA insertion alleles (S4 Table).

Four T-DNA alleles of five different genes in the region around SNP; (10,909,091 bp; S2 Fig;
S4 Table) were evaluated for leaf molybdenum concentrations, but in none of these did the leaf
molybdenum concentrations differ from that of the wild-type Col-0.

We also evaluated 19 mutants with T-DNA insertions in 14 genes around SNP, (11,528,777
bp; Fig 4; S4 Table), and identified two with significantly altered leaf molybdenum concentra-
tions compared to the wild-type Col-0 (Table 3). One (SALK_138758) has an insertion
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Fig 4. T-DNA analyses to identify candidate genes for the associations to mean leaf molybdenum concentrations. Included in the figure are the
genes (colored boxes) in the region surrounding SNP, that were bounded by the furthest up- and downstream SNPs with r? > 0.4. We measured the mean
leaf molybdenum concentrations for available T-DNA insertional alleles and compared them to the wild-type Col-0. Yellow box = significant difference in leaf
molybdenum concentration, deep blue box = no significant difference, light blue = no T-DNA insertion line tested. The T-DNA lines with insertions in
AT2G26975 and between AT2G27020/AT2G27030 had altered mean leaf molybdenum concentrations.

doi:10.1371/journal.pgen.1005648.9004

covering genes AT2G27020 and AT2G27030, and the other (GK-350E02) has an insertion in
gene AT2G26975. These T-DNA alleles showed on average 55 and 58% reductions in leaf
molybdenum concentrations compared to wild-type Col-0, respectively (Table 3). AT2G27020
was also evaluated via another T-DNA insertional allele (SAIL_760_D06), and this line had
wild-type leaf molybdenum concentrations. Thus, AT2G27030 (ACAM2/CAMS5; 11,532,004
11,534,333) appears to be the most likely functional candidate gene of the two. Calmodulin is a
known metalloprotein and a Ca** sensor, but no previous connections to molybdenum has
been reported. The reduced leaf molybdenum concentration of the T-DNA insertional allele of

PLOS Genetics | DOI:10.1371/journal.pgen.1005648 November 23, 2015 11/24
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Table 3. T-DNA insertion lines with significant associations to the mean leaf molybdenum concentrations.

T-DNA Line ATG Number Gene Molybdenum concentration relative to Col-0? nP p-value®
SALK_138758 AT2G27020;,AT2G27030 PAG1;,CAM5 0.45 13 (24)¢ 0.008
GK-350E02° AT2G26975 COPT6 Family 1: 0.50 17 (24)f 0.003
Family 2: 0.33 12 (24)f 0.001

3The ratio of leaf molybdenum concentration for the tested T-DNA insertion line relative to that of Col-0. Molybdenum concentrations are normalized
against the wild-type Col-0 means in each growth tray

PTotal number of biological replicates for the T-DNA insertional allele in the assay and in parentheses number wild-type Col-0

“Significance as determined by Wilcox rank test comparing molybdenum concentration in the leaves of the T-DNA insertional allele to that of wild-type
Col-0

9Two independent experiments with 8/12 and 5/12 biological replicates of T-DNA allele/wild-type Col-0

®Tests made in two families grown from the selfed segregating parental line

Two independent experiments with 7/12 and 5/12 biological replicates of the T-DNA allele/ wild-type Col-0

doi:10.1371/journal.pgen.1005648.t003

AT2G26975 (Copper Transporter 6; COPT6) makes this a second functional candidate locus
for the association around SNP,. Interestingly, as well as low molybdenum, the T-DNA knock-
out allele of this gene has a slightly increased leaf copper concentration compared to wild-type
(3.82 and 3.36 ug / g dry weight, respectively, in GK-350E02 and wild-type Col-0; p = 0.0018),
suggesting a role of COPT6 also in the regulation of copper homeostasis. From the literature it
is known that copper and molybdenum homeostasis are related and that copper depleted Bras-
sica napus plants have up-regulated expression of both copper transporter genes and MOT1
[46].

Discussion

Common approaches to dissect the genetics of complex traits in segregating populations are
linkage mapping and association studies. These studies aim to identify the loci in the genome
where genetic polymorphisms control the phenotypic variance in the studied populations. This
is achieved by screening for significant genotype-phenotype associations across a large number
of genotyped polymorphic markers in the genome. The most common statistical models used
in such analyses aim to identify loci with significant mean phenotype differences between the
genotypes at individual loci. Although such models are powerful for capturing much genetic
variance in populations, they have limited power when challenged with more complex genetic
architectures including multiple-alleles, variance-heterogeneity and genetic interactions [8,47].
It is therefore important to also develop, and test, methods that explore statistical genetic mod-
els reaching beyond additivity when aiming for a more complete dissection of the genetic archi-
tecture of complex traits.

The genetic architecture of variation in mean leaf molybdenum concentrations has earlier
been explored using GWA analyses in a smaller set of 93 wild collected A. thaliana accessions
[2]. No genome-wide significant associations were found for leaf molybdenum, which was sur-
prising given that the trait has a high heritability [36,43] and that several polymorphisms in
MOT]1 are known to contribute to natural variation in this trait [36,37]. When we re-analyzed
this data using a method to detect variance differences between genotypes, a strong genetic var-
iance-heterogeneity was identified near the MOT1 gene [22]. Here, we studied a larger set of
340 A. thaliana accessions to replicate and fine-map the molecular determinant of this genetic
variance-heterogeneity, and find that the strongest associations are to an extended region sur-
rounding MOT1 (vBLOCK). This is the first successful fine-mapping and replication of a vari-
ance-heterogeneity locus on a genome-wide significance scale and in an independent dataset.
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In this larger dataset we also identified four loci that independently alter the mean concen-
tration of leaf molybdenum. The minor allele at one of these (DEL®) was a deletion in the pro-
moter region of MOT1 previously identified using an F, bi-parental mapping population. This
deletion allele decreases the concentration of molybdenum in leaves by down-regulating
MOT1 transcription [36]. Further, we also identified three previously unknown loci, and the
minor alleles at these loci (DUP??%, SNP,;* and SNP,") increased the concentration of molybde-
num in leaves. One allele (DUP**°) was an insertion polymorphism in the promoter region of
MOT1, and our analyses revealed that accessions carrying this polymorphism have higher
expression of MOTI compared to the Col-0 accession that does not carry this polymorphism.
The other two associations were to SNPs in regions that were not in LD (r*) with the MOT1
gene or its promoter. One of these SNPs was found ~25 kb downstream of MOTI (SNP,) and
the other ~600 kb upstream of the MOT1 transcription start-site (SNP,). The regulation of
molybdenum concentrations in the leaves is hence due to multiple alleles in a gene known to
regulate molybdenum uptake, MOT1, but also alleles at other neighboring loci that have earlier
not been found to contribute to molybdenum homeostasis in A. thaliana. These results support
and refine earlier results from QTL and functional analyses of the MOT1 region that
highlighted the central importance of the MOT1 region in the regulation of molybdenum
homeostasis in natural populations and also suggested that the natural variation in this trait
might have a multi-allelic background [36,37]. As it is well known that major loci affecting
traits under selection often evolve multiple mutations affecting the phenotype, and that allelic
heterogeneity is an important driver of evolution in natural A. thaliana populations [48], our
finding of multiple polymorphisms in this key locus is not surprising. Striking examples of alle-
lic heterogeneity in natural A. thaliana populations include the large number of different loss-
of-function mutants in the GA5 locus leading to semidwarfs [49], the MUM?2 locus leading to
altered seed flotation [50] and the FRIGIDA locus leading to an altered flowering-time [51].

Multi-allelic loci are, however, a major challenge in traditional GWA analyses [48]. It is
therefore valuable to note that such loci, under certain conditions, can lead to a genetic vari-
ance-heterogeneity (see e.g. [10]) that can be detected with a vVGWA analysis. The following
two examples illustrate how genetic variance-heterogeneity can arise under i) classic allelic het-
erogeneity where multiple loss-of-function alleles have evolved independently at a locus, and
ii) general multi-allelic architectures where the alleles affect the phenotype to various degree
and hence either increase or decrease the phenotype relative to that of the major allele. To illus-
trate how a genetic variance-heterogeneity can emerge under these scenarios, let us consider an
example when looking for associations to a bi-allelic SNP with alleles SNP* and SNP* and
where the major SNP allele (SNP?) is completely linked to the major allele at the functional
gene M (M WT) Below, we illustrate how the distribution of the minor alleles across the SNP
genotypes will alter the differences in phenotypic mean and variances between the genotypes,
and hence affect the power to detect them in GWA and vGWA analyses.

1. If gene M evolved via classic allelic heterogeneity, multiple loss-of-function alleles (M, .M,,")
will exist in the population. The largest mean, and smallest variance, difference between the
genotype-classes will occur when all n mutant alleles are linked to the SNP” allele. As the
proportion of the n M alleles linked to the SNP* allele increases, the mean difference
between genotypes will decrease while the variance differences increase until it reaches its
maximum when only one of the M" alleles is linked with the SNP” allele. In all these scenar-
ios, however, there will be a difference both in the mean and variance between the SNP
genotype classes and depending on the power of the study, the locus can be detected by
either GWA, or vGWA analyses.

PLOS Genetics | DOI:10.1371/journal.pgen.1005648 November 23, 2015 13/24
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2. Iflocus M evolved multiple alleles with distinct effects on the phenotype, the locus might
display everything from a complete lack of either mean- and variance-effects (scenario (a)
below), to both mean and variance effects (b) or variance effects only (c). Under the simplest
scenario with two minor alleles, M" and M™, that decreases/increases the trait value relative
to that of M"7, respectively, it is the linkage between the alleles at M and the tested marker
that determines the mean and variance differences between the genotypes observed at this
locus as shown in the examples below.

a. Ifthe M" and M" alleles are evenly distributed across the two SNP genotypes, there will
neither be a mean nor a variance difference between the genotypes.

b. If the SNP tags the M* and M alleles perfectly, i.e. that SNP* tags M* and SNP® M or
vice versa, there will be both mean and variance differences between the genotypes.

c. Ifthe SNP” allele tags both minor alleles perfectly, i.e. M and M only occurs with SNP”,
there will only be a difference in variance between the SNP genotype classes (S3 Fig).

Hence, the vGWA analysis is likely to be useful for identifying loci under a set of different
scenarios ranging from classic allelic heterogeneity to loci with multiple alleles having distinct
effects on the phenotype. As shown here, the genetic variance-heterogeneity for vBLOCK was
detected based on its genetic variance-heterogeneity due to its close resemblance to scenario (c)
above (Fig 2A).

Here, we dissected a locus displaying a genetic variance-heterogeneity for the molybdenum
concentration in A. thaliana leaves into an underlying multi-locus, multi-allelic genetic archi-
tecture. We find several alleles at MOT1 that contribute to this association, which is consistent
with findings in earlier studies reporting that several functional variants of this gene alter the
mean molybdenum concentrations in A. thaliana [36,37]. Such multi-allelic architectures,
where the different genetic variants affect traits under selection to varying degrees, are not
unique to this study but have been described also for other traits and species. For example, in
A. thaliana the Flowering Locus C (FLC) locus has a natural series of alleles with different
effects on vernalization that have been identified [52]. Similar examples also exist in, for exam-
ple, domestic animal populations for both Mendelian traits, such as coat color [53-55], and
complex traits, such as muscularity [56] and meat quality [57]. As illustrated above, the vGWA
analysis is a straight-forward and computationally tractable analytical strategy that could be
used to identify loci where multi-allelic genetic architectures reduce the additive genetic vari-
ance that can be detected by traditional GWA approaches. The examples above suggest that
such genetic architectures are likely to be more common than what has been empirically
shown to date. We therefore recommend that the vGW A approach be tested on more datasets
to reveal how common this type of architecture might be for complex traits. This will also help
reveal how large a contribution such multi-allelic genetic architectures contribute to the “miss-
ing heritability”.

Little is currently known about the genetic mechanisms contributing to variance-heteroge-
neity between genotypes in natural populations. Ayroles ef al. [23] recently reported the first
dissection of a locus displaying a genetic variance-heterogeneity in a segregating population
and found that mutating a single gene (Ten-a) led to a genetic variance-heterogeneity for a
behavioral phenotype in Dropsophila melanogaster. A number of other, not mutually exclusive,
hypotheses have been proposed to explain the origin of genetic variance-heterogeneity at a
locus. These can broadly speaking be divided into two categories: those due to the individual
locus itself such as multiple functional alleles, incomplete linkage disequilibrium and develop-
mental instabilities [7,10,22], and those due to interactions between the locus and other genetic
or environmental factors (i.e. epistasis or gene-by-environment interactions) [8,10,21]. Here,
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we present the first empirical evidence illustrating how population-wide genetic variance-het-
erogeneity in a natural population can result from a complex locus involving multiple loci and
multiple alleles. We show that this genetic variance-heterogeneity originates from the LD (D’)
between multiple functional polymorphisms and the SNP markers defining an LD block
around MOT1 (vBLOCK). The high-variance associated version of this LD-block (vBLOCK™)
contains three independent polymorphisms (DEL>?, DUP** and SNP;") altering the molybde-
num concentration in leaves relative to the major alleles at these loci on the low-variance asso-
ciated version (vBLOCK™). Two of these polymorphisms increase molybdenum and one
decrease it, leading to a highly significant genetically determined variance-heterogeneity
amongst the accessions that share vBLOCK™” (Fig 2A; multi-allelic example ¢ above). Our work
also illustrates how the use of alternative genetic models in GWA analyses can provide novel
insights to complex genetic architectures underlying adaptively important traits in natural
populations.

The LD (D’) between multiple functional polymorphisms and vBLOCK in this collection of
natural A. thaliana accessions is the key genomic feature that facilitated the discovery of this
locus in the vVGWA. Although the molecular basis for this LD-pattern, as well as the reasons for
multiple independent polymorphisms being found almost exclusively with one of the variants
of this LD-block, is unknown, it is interesting to note that they could have emerged via the pro-
cesses discussed in relation with the appearance of synthetic LD in GWA studies [58]. It would
therefore be interesting to, in the future, explore whether the same basic genomic processes
might drive the emergence of both synthetic and vGWA associations in general, or whether the
resemblance between the genetic architecture described here and the mechanism proposed by
Dickson et al. [58] is a rare case of where the two overlap.

Many GWA studies have found that the total additive genetic variance of associated loci is
considerably less than that predicted based on estimates of the narrow-sense heritability, i.e.
the ratio between the additive genetic and phenotypic variance in the population. This com-
mon discrepancy between the two is often called the curse of the “missing heritability” and is
viewed as a major problem in past and current GWA studies [59]. Here, we provide an empiri-
cal example of how a vVGWA is able to identify a locus [22] that remained undetected in a stan-
dard GWA [2] and that, when the underlying genetic architecture was revealed, was found to
make a large contribution to the additive genetic variance and narrow-sense heritability. This
illustrates the importance of utilizing multiple statistical modeling approaches in GWA studies
to detect the loci contributing to the phenotypic variability of the trait, and then also continue
to further dissect the underlying genetic architecture to uncover how the loci potentially con-
tribute to the heritability that was “missing” in the original study [2].

By evaluating T-DNA insertional alleles of genes in LD with the SNPs associated to leaf
molybdenum concentrations, we are able to suggest two novel functional candidate genes
involved in molybdenum homeostasis in A. thaliana. Little is known about the function of one
of these, AT2G27030, and further work is needed to explore the mechanisms by which it may
alter molybdenum concentrations in the plant. The second gene (AT2G26975; Copper Trans-
porter 6; COPT6) located ~600 kb upstream of MOT] is from earlier studies known to be
involved in the connected regulation of copper and molybdenum homeostasis in plants. It was
recently reported [46] that MOT1 and several copper transporters were up-regulated under
copper deficiency in B. napus, suggesting a common regulatory mechanism for these groups of
genes. Further experimental work is needed to explore the potential contributions of these
genes to natural variation in molybdenum homeostasis, and the potential connection between
copper and molybdenum homeostasis.

Here, we dissect a complex locus affecting molybdenum concentration in the A. thaliana
leaf and find it likely that three closely linked genes contribute to this effect. Clustering of genes

PLOS Genetics | DOI:10.1371/journal.pgen.1005648 November 23, 2015 15/24



@’PLOS | GENETICS

Revealing The Genetic Architecture of a Variance-Heterogeneity Locus

with similar function is well known for Resistance (R) genes [60] and close linkage between
genes important for growth rate has also been evidenced [61] in A. thaliana. How common
such functional clustering into complex loci will be for traits of importance for evolution is still
largely unknown as the resolution in most complex trait studies does not allow the separation
of effects from closely linked loci. Our finding that not only the already known gene in this
region, MOT1, but likely also other novel genes contribute to the diverse range of molybdenum
concentrations in the leaf observed in this collection of natural A. thaliana accessions suggest
that the clustering of loci has been of adaptive value for this ecologically relevant trait. This
makes the locus a highly interesting candidate for future work to better understand the role of
gene clustering for the evolution of adapted populations.

In summary, here we dissect a locus displaying a genetic variance-heterogeneity for leaf
molybdenum concentration in A. thaliana [22] into the contributions from three independent
alleles that are in high LD with the high-variance associated version of an extended LD-block
surrounding the MOT1 gene. This is the first empirical example of how a multi-locus, multi-
allelic genetic architecture can lead to genetic variance heterogeneity at a locus. The dissection
of the genetic architecture underlying the vGWA signal allowed the transformation of non-
additive genetic variance into additive genetic variance, and hence allowed the detection of a
significant part of the “missing heritability” in the variation in leaf molybdenum concentra-
tions in this species-wide collection of A. thaliana accessions. This study also delivers insights
into how vGW A mapping facilitates the detection and genetic dissection of the genetic archi-
tecture of loci contributing to complex traits in natural populations. It thereby illustrates the
value of using alternative statistical methods in genome-wide analyses. Further, it provides an
approach to infer multi-allelic loci, which are likely to be both a common, and far too often
ignored, complexity in the genetics of multifactorial traits that contributes to undiscovered
additive genetic variance and consequently the curse of the “missing heritability”.

Materials and Methods
Genotype and phenotype data

The concentration of molybdenum in leaves was measured in 340 natural A. thaliana acces-
sions from the ‘HapMap’ collection ([3]; S1 Table). This dataset contains 58 of the 93 acces-
sions used in the earlier GWA [2] and vVGWA [22] analyses of leaf molybdenum
concentrations supplemented with 282 newly phenotyped accessions. All accessions were
grown in a controlled environment with 6 biological replicate plants per accession, and ana-
lyzed by Inductively Coupled Mass Spectroscopy (ICP-MS) for multiple elements including
molybdenum, as described previously by Baxter et al. [3]. All the ICP-MS data used for the
GWA and vGWA is accessible using the digital object identifier (DOI) 10.4231/T9H41PBV,
and data for the evaluation of candidate genes using T-DNA insertional alleles is accessible
using the DOI 10.4231/T9NP22C0 (see http://dx.doi.org/).

All accessions have previously been genotyped using the 250k A. thaliana SNP chip and
that data is publicly available [3]. SNPs where the minor allele frequency was below 5% were
excluded from the analyses. Genotypes were available for more than 95% of the SNPs in all
accessions, so none were removed due to problematic genotyping. In total, 200,345 SNPs
passed this quality control and were used in our GWA and vGWA analyses.

We evaluated the region upstream of MOT1 for structural polymorphisms in a set of 283
accessions selected to cover the range of leaf molybdenum concentrations (S5 Table). This was
done using gel electrophoresis to identify PCR fragment size differentiation using the primers
described in S6 Table. The PCR reactions were completed as follows: 1ul DNA + 5X GoTagq Bf,
2.5mM dNTP’s, 25mM MgCl,, 0.4uM of each primer, 0.3ul Taq polymerase, and 9.7pl nuclease
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free water for a total reaction volume of 25ul. PCR conditions were 94°C for 1 minute to dena-
ture, 54°C for 1 minute to anneal, and 72°C for 1.25 minutes for extension, repeated for 40
cycles in the Thermo Px2 thermal cycler (Electron Corporation). DNA was prepared for the
accessions that displayed suggestive evidence for structural polymorphisms and submitted for
sequencing using Macrogen (dna.macrogen.com). The sequences were then compared to the
Col-0 reference sequence using DIALIGN (http://bibiserv.techfak.uni-bielefeld.de/dialign/),
which uncovered five loci and six segregating structural polymorphisms (S2 Table) that were
then genotyped in the 283 phenotyped accessions (S5 Table).

Statistical analyses

All analyses described in the sections below were performed using the R-framework for statisti-
cal computing [62]. All figures, except Fig 2, were prepared using R.

GWA and vGWA analyses. The variance-heterogeneity genome-wide association analyses
(VGWA) were performed using Squared residual Value Linear Modeling, SVLM, as imple-
mented in the VariABEL R-package [63]. In short, this two is a two-step method where the
trait is first adjusted for a potential mean SNP effect and other covariates in a regression analy-
sis, and then a second regression analysis is applied to the squared residual values from the first
analysis, using the SNP as the predictor. This analysis will identify any potential genetic vari-
ance-heterogeneity at a locus as the variance for each genotype is equal to the mean of the
squared residual of the trait conditional on genotype. To control for population-structure,
Grammar+ residuals were used as phenotypes in these analyses [64]. The Grammar+ residuals
were calculated using a linear mixed model, incorporating the IBS-matrix to correct for popu-
lation stratification, using the polygenic function implemented in the R-package GenABEL
[65].

The genome-wide association (GWA) analyses were performed using a linear mixed model,
incorporating the IBS-matrix to correct for population stratification, via the polygenic and
mmscore functions implemented in the R-package GenABEL [65].

A genome-wide significance threshold was determined for all tested phenotypes by Bonfer-
roni-correction for the number of tested SNPs, resulting in a threshold of 2.5 x 1077, To detect
potential inflation of the p-values in the GWA analyses due to remaining population stratifica-
tion and/or cryptic relatedness, we visually evaluated the relationship between the theoretical
distribution of p-values under the null-hypothesis versus those observed in the GWA using
quantile-quantile (QQ) plots (54 Fig), and calculated the inflation factor using the function
estlambda in the GenABEL package [65].

Multi-locus LASSO regression analyses. Multi-locus regression analysis to identify inde-
pendent SNP effects on leaf molybdenum concentrations was performed using LASSO regres-
sion implemented in the R-package glmnet [45]. To control for population-structure,
Grammar+ residuals were used as phenotypes in these analyses [64]. The LASSO analysis iden-
tifies the linear model that minimizes the following 3_, (y, — 7,)° + 4 >_;(B;) where y;and y, is
the phenotype and the predicted phenotype of individual i. ; is the individual genotype effects.
The constraint will force most genotype effects to zero, thereby identifying a small subset of
polymorphisms with strong independent effects on the phenotype. As A decreases, the number
of non-zero estimates will increase. If 4 is zero, the method is identical to an ordinary linear
regression. Here, we empirically selected a A where all SNPs with non-zero effects reached the
genome-wide significance threshold in the GWA or vGWA analysis (S1 Fig).

DGLM analyses to simultaneously estimate mean and variance effects of evidenced
loci. Within the Double Generalized Linear Model (DGLM) framework it is possible to
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simultaneously model both dispersion and mean by fitting separate linear predictors for them
[66,67]. We fitted a DGLM with separate genetic effects for the variance, and for the mean:

Y ~ N(X,,, €"") where Y is the Grammar+ residuals for the molybdenum concentrations
used to control for population-structure in the analyses [64], X; = [SNP;, DEL, DUP] T
X, = SNP; and i is the index of the SNP whose variance effect we are estimating. ; and 5, were
estimated using maximum likelihood. The model was fitted using the R-package dglm [67] as
suggested in [10]. It should be noted that although the DGLM analysis is very useful for disen-
tangling mean and variance effects of loci, it is not optimal for genome-wide analyses as it is
both computationally demanding and provides highly conservative genome wide p-values
(A = 0.75 for leaf molybdenum concentration in this population). Here, DGLM was used to i)
re-scan the vVGWA region on chromosome 2 to identify the SNP with the strongest variance
effect in vBLOCK and ii) include evidenced loci as co-factors with mean effect, while redoing
the vVGWA scan to evaluate whether the loci identified in the GWA led to the vGWA
association.

Heritability estimates. Every accession in our data was grown with at least 6 replicates plants.
The broad sense heritability (H?) was calculated using an ANOVA y = f3, + accession X .. + e,
comparing within and between line variances.

To calculate the narrow sense heritability (h?) we fitted a mixed model y = u + Zb + e.
Here ¥ is the mean leaf molybdenum concentration per line and ZZ" = G, where G is the geno-

o2

2—l’2 given by this model tells us the

0% + 0,

b

amount of variance in ¥ explained by kinship. Assuming that the within line replicates has
removed all environmental variance, the amount of the total phenotypic variance explained by
kinship, aka h, is rH”. In reality, as ¥ is estimated using <10 replicates for most lines, some
environmental noise will remain in y, in which case rH? < h* < r. Here, we therefore present
the rH” values, which is the lower bound of h”.

Variance explained. We estimated the fraction of H> explained by the markers in the

mic kinship matrix. The intra-class correlation r =

MOTI regionas R? = 1 — %&i{ﬁ), where ¥ is the mean molybdenum content per line

and X is the genotype matrix for the markers, fitted as a fixed effect. This estimate assumes that
y contains no environmental variance which, as stated above, is not entirely the case. If y con-
tains environmental noise, this estimate will instead be the lower bound of the fraction of H>
explained by X, in the same way as described above for h.

The fraction of h” explained by the evaluated set of polymorphisms in the MOT1 region was
estimated by comparing two mixed models:

y=u+ZzZb+e (1)

y=XB+Zb+e 2)

The intra-class correlation r; in model (1), gives the amount of variance in ¥ explained by
kinship, whereas the intra-class correlation r, in model (2) gives the amount of residual vari-
ance explained by kinship in this model. To compare the two, we calculate the amount of vari-
ance in y explained by kinship under model (2) as 5 ;; = 12(1 — R?). The fraction of h?

"1 — 72 tot

explained by the fixed effects X are then given as m . The fraction of variance

. . e 1 — 12, tot
explained by X that is additive is calculated as =———=—
R
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Expression analysis to evaluate the potential effects of the associated MOT1 promoter
polymorphisms. We quantified the levels of MOT1 mRNA in roots of 6 accessions carrying
the DUP**° polymorhism, 5 accessions carrying the DEL*’ polymorphism and Col-0 as a refer-
ence (S3 Table) using a protocol similar to that of [38]. Roots from plants grown under identi-
cal conditions to those used for ICP-MS analysis were separated from the shoots and rinsed
thoroughly with deionized water to remove any soil contamination. The samples were frozen
in liquid nitrogen and stored at -80°C until extraction. Total RNA was extracted, and DNase
digestion was performed during the extraction, using the Invitrogen PureLink RNA Mini Kit.
Two micrograms of total RNA were used a template to synthesize first-strand cDNA with ran-
dom hexamers, using SuperScript IT Reverse Transcriptase (Invitrogen Life Technologies).
Quantitative real-time PCR (QRTPCR) was performed with first strand cDNA as a template on
three independent biological samples for each accession, using a sequence detector system (Ste-
pOne Plus, Applied Biosystems). For normalization across samples within a QRT-PCR run, the
expression of either PP2A or UBQI0 was used. For quantification of MOT1 the following prim-
ers were used: forward primer 5-GGT GGG TGT GTG GCA CTG T-3’ and reverse primer 5’-
AGC ACA CCA ACC GGA AACTT-3’. The cycle threshold (C") values were determined
based on efficiency of amplification. The C* values were normalized against the mean expres-
sion of either PP2A or UBQ10 by calculating ACT values as CTy;or-mean(Cpp, A(UBQI0))- The
relative change in MOT1 expression versus Col-0 was then calculated for every accession i as
AACT; = ACT,—AC" 0. The fold change in expression for accession i was then calculated as
)-AACT.i

Functional evaluation of candidate genes using T-DNA insertion lines. We identified
all genes in the LD-region (r* > 0.4) surrounding the SNP; and SNP, loci. T-DNA insertional
alleles, catalogued as homozygous at T-DNA Express (http://signal.salk.edu/cgi-bin/
tdnaexpress), were ordered for all genes where they were available (Table 3; S4 Table) from the
Nottingham Arabidopsis Stock Centre (NASC) with the exception of the GABI-kat lines which
were received from the stock centre as F3 families. Since MOT1 is known to regulate molybde-
num concentrations in A. thaliana, the motI-1 T-DNA insertional allele (SALK_118311) for
this gene was included on every experimental block of plants as a control, along with wild-type
Col-0. An experimental block is defined by a cultivation tray containing 9 genotypes (including
wild-type Col-0 and motI-1) with each genotype represented by between 2-12 individuals per
block. The tested T-DNA insertional alleles were grown in 8 independent blocks and the
molybdenum concentration in leaves of all plants quantified by ICP-MS using the same proce-
dure as used previously [36].

For every experimental block, we compared the molybdenum concentration in leaves
between the replicates of every T-DNA insertion line, versus wild type Col-0, using the non-
parametric Wilcox rank test. In 6 out of the 8 blocks, motI-1 showed significantly lower molyb-
denum concentrations compared to the wild type Col-0 (p < 0.05) as expected, and in one
block, the reduction was significant at (p < 0.1). The mot1-1 mutant in one experimental block
of plants showed no difference compared to the wild type Col-0, and the results for the geno-
types in this experimental block that were not supported by the results in other experimental
blocks were discarded. To combine the data on T-DNA alleles that were replicated on several
experimental blocks, we normalized molybdenum concentrations against wild type Col-0
within blocks and jointly analyzed the normalized values using the Wilcox rank test.

Explorations of the long-range LD-block surrounding the MOT7 gene

The vGWA analyses identify a strong variance-heterogeneity signal across a number of mark-
ers on chromosome 2 that contains the functional candidate MOT1 gene. The LD is high
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among these significant markers that define an extended vGWA associated vBLOCK. Visual
inspection of the genotype-matrix of this region, sorted by the genotype of the leading SNP in
the vVGWA analysis (Table 1), indicated the presence of two major groups of accessions that
carry the same alleles across a large number of the associated markers (Fig 1C).

Supporting Information

S1 Fig. Selection of penalty () in LASSO analysis. Penalty is selected such that all SNPs with
non-zero effects in the analysis have reached the genome-wide significance threshold in the
GWA or vGWA analysis.

(TIFF)

S2 Fig. Evaluated T-DNA mutants in region near SNP;. We identified the genes (colored
boxes) in the regions surrounding SNP1 that were bounded by the furthest up- and down-
stream SNPs with r* > 0.4. We measured the mean leaf molybdenum concentrations for avail-
able T-DNA insertion lines and compared them to the reference genotype (Col-0). Yellow
box = nominally significant difference in leaf molybdenum concentration, deep blue box = no
significant difference, light blue = no T-DNA insertion line tested.

(TIFF)

$3 Fig. An illustration of how a multi-allelic genetic architecture could lead to variance-
heterogeneity signals in a population. The top panel illustrates the hypothetical phenotypic
distributions three alleles—M", M"'" and M*—that have different effects on a hypothetical trait.
The bottom panel illustrate the mixture distributions observed in an association analysis to a
bi-allelic marker, where one of the marker- alleles tag functional allele M"'7, and the other tag
both alleles M and M. In this situation, no mean difference could be observed between the
marker alleles, whereas a large variance difference could be detected via the variance-heteroge-
neity between the SNP genotypes using a vVGWA analysis.

(TIFF)

$4 Fig. Quantile-quantile (QQ) plots for the genome-wide association analyses to detect
genetic effects on the trait mean (GWA), or variance (VGWA). Black line illustrates the theo-
retical distribution of p-values under the null-hypothesis and the blue dots those observed in
the two analyses.

(TIFF)

S1 Table. Accessions phenotyped for molybdenum content.
(XLSX)

$2 Table. Structural polymorphisms in MOT1 promoter region.
(XLSX)

$3 Table. Summary statistics and qRT-PCR data to estimate expression of MOT1 in acces-
sions carrying either DUP**® or DEL*’
(XLSX)

S$4 Table. Tested T-DNA insertion lines.
(XLSX)

S5 Table. MOT1 promoter polymorphism genotypes for 283 A. thaliana accessions.
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S6 Table. Primers for genotyping the promoter region of MOT1.
(XLSX)
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