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Abstract

In this work the fluid–structure interactions are considered by investigating a straight but slender pipe inter-

acting with uniform water flow. Two configurations are studied, namely vertically and horizontally positioned

pipes, which are modelled as an Euler–Bernoulli beam with flexural stiffness. Both pretension and length–wise

mass distribution are considered. The structure is assumed to be moving only in the direction normal to flow

(cross-flow motion) hence its in-line motion is neglected. The external fluid force acting on the structure is the

result of the action of sectional vortex-induced drag and lift forces. Only mean drag force is considered, with

time varying lift force modelled using a nonlinear oscillator equation of the Van der Pol type. The obtained

coupled system of nonlinear partial differential equations is simplified employing Galerkin–type discretisation.

The resulting ordinary differential equations are solved numerically providing multi-mode approximations of

cross-flow displacement and non-dimensional lift coefficient. The comparison between the responses of vertical

and horizontal structures shows that, as expected due to a balancing between pretension and weight, in general

a higher amplitude of vibration is observed for the vertical configuration than in the same location along the

pipe for the horizontal configuration in the lower part of the structure. However, lower amplitudes are obtained

in the upper part of the pipe. The horizontal configuration solutions are identical in symmetrical locations

along the pipe due to constant pretension. The influence of the wake equation coefficients and the fluid force

coefficients on the response amplitudes has been also considered together with the length of the pipe and pre-

tension level, and the appropriate response curves are included. Finally, for the higher mode approximations it

has been shown that the vibrations level at lower frequencies is predicted reasonably well by retaining only a

small subset of modes.

Vortex induced vibrations, Wake oscillator, Multi-mode approximation, Nonlinear analysis

1. Introduction

Slender marine structures such as piles, offshore risers, umbilicals, and others are often very sensitive to

excitation induced by vortex shedding, which results in vibrations that in certain combinations of waves and

current develop into a resonance phenomenon known as lock-in. This kind of vibrations can be destructive

and may lead to structural collapse. Several decades of research have been devoted to exploring the complex

nature of vortex-induced vibrations (VIVs), from purely fundamental studies of the phenomenon to attempts

to develop a reliable toolkit that would allow predicting VIVs of marine structures with a desired precision. It

should be noted, that VIVs can also develop in air, in particular in cable bridges, chimneys and tall buildings

[1, 2] but the current study is focussed on this phenomenon in the water.
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The need of industry for an effective solution in this area led to the development of a number of software

packages, such as SHEAR7 [3] or OrcaFlex [4], that utilize semi-empirical approaches to predict riser VIVs.

One of the critical requirement for such tools is an acceptable simulation time. These tools normally use a

coupled model of the fluid forces and the structural dynamics to simulate VIVs of a riser. The fluid force is

usually modelled using semi-empirical equations such as Morison’s equation. As a result, these tools are fast to

run and they offer a cheaper and more practical alternative to carrying out physical experiments. However, the

obvious drawbacks in this case are their limited accuracy and range of applicability.

When computational fluid dynamics became a more accessible way to model VIVs due to the increase of

computational capabilities, a number of new modeling approaches were proposed, such as investigations and

attempts to study the behavior of long flexible circular cylinders and full-scale riser systems with so-called strip

theory [5, 6, 7, 8], which allows the observation of a multi-mode response of a flexible riser while implementing

high aspect ratio 3D meshes [9]. Although this was definitely a step forward, the computation of a single CFD

simulation still takes a significant amount of time for this approach to be effectively integrated and used by

the industry. Some attempts of partial integrations have been made by OrcaFlex [4] by introducing the Vortex

Tracking model, based on the underlying physical equations of boundary layer theory and the Navier-Stokes

equations. However, there are some benefits in using full-scale CFD as a tool to calibrate existing semi-empirical

reduced-order models, which will result in creation of a better, less computationally demanding models for VIVs

prediction. Experimental studies on the force distribution along the axis of a flexible circular cylinder undergoing

multi-mode VIVs have also been carried out, for example by Chaplin et al. [10] and Huera Huarte et al. [11],

who in 2006 combined experimental data with the finite element method model of the riser. Recently, Franzini

et al. [12, 13] obtained and used experimental data for determining hydrodynamic coefficients in the developed

reduced order model of flexible cylinder subjected to prescribed top motions. Similar problem was considered

by Mazzilli et. al [14] and non-linear modes based on Bessel functions were developed. These results could be

also useful for the reduced-order models calibrations.

The analytical approach to VIVs is represented by a wide range of models, with some of them incorporating

a Van der Pol type equation as the governing equation for the fluid force acting on the structure [15, 16]. Since

then, many modifications have been made to this particular approach, and the model itself became known as

the wake oscillator model. The simplest wake oscillator model describes the interactions between a fluid flow

and a rigid cylinder capable of moving in cross-flow direction only, with the system usually described by two

coupled ordinary differential equations. One of the equations is the equation of motion of the structure, and

the second equation is a semi-empirical description of the lift force generated by the passing fluid, a nonlinear

self-excited fluid oscillator. In 1997 Balasubramanian and Skop [17] proposed the new model with two terms for

the lift force. In previous models, a Van der Pol equation was employed as the governing equation for the entire

lift force on the structure. The model introduced in [17] included a Van der Pol equation driven by the local

transverse motion of the structure as a governing equation for one component of the fluctuating lift force and

a so-called stall term which is linearly proportional to the local transverse velocity of the structure. Because of

the stall term, an asymptotic, self-limiting structural response at zero structural damping was captured.

One of the most notable analysis in this class of low dimensional models in terms of the fundamental be-

haviour was made by Facchinetti et al. [18], where the transverse vibrations of one degree-of-freedom structures

in stationary uniform flow were investigated. The analysis was undertaken by first estimating the values of all

parameters based on the available experimental data on forced vortex shedding, and then solving numerically

the fully coupled system. These results have been systematically compared with experimental data from the
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literature such as oscillation amplitude at lock-in, extension of lock-in and effective added mass. It was found

that the acceleration coupling provided the best match for the experimental results qualitatively and, in some

aspects, quantitatively. Later, Violette et al. [19] performed comparisons of the Facchinetti wake oscillator

model of slender cylinder undergoing VIVs with DNS and experiments.

A coupled model incorporating two degrees-of-freedom motion of a rigid cylinder excited by harmonic fluid

forces was proposed by Wang et al. [20] in 2003, who also considered an extension of this approach towards

a slender structure by using Euler-Bernoulli beam theory. This work was later modified by Ge et al. [21],

incorporating the Facchinetti wake oscillator [18]. In 2007 Furnes and Sorensen [22] developed a 3D time

domain model called VIVITAS [22] with coupled nonlinear oscillators representing in-line and cross-flow fluid

force components. Some empirical coefficients from the Facchinetti model [18] were tuned against the Marintek

data [22]. The effect of variable tension on vortex induced vibration of vertical riser was studied in [23] where a

finite element model of the structure was coupled to a wake-oscillator model of the van der Pol type. Overall, the

wake oscillator models are not computationally demanding and hence can be implemented in various software

packages for the design and analysis of offshore marine systems, and for instance, the Iwan and Blevins model

[24] is already included in OrcaFlex [4].

Further investigations on the semi-empirical approach were presented in the work by Keber and Wiercigroch

[25]. They investigated the effect of a weak structural nonlinearity on the dynamical behaviour of a vertical

offshore riser undergoing VIVs. As offshore risers experience additional excitation from the flow of the fluid

inside the pipe, this work considered the influence of internal flow and nonlinear coupling of axial and bending

displacements. It was shown that the structural nonlinearity has a stiffening effect on the oscillation of the

riser, which becomes more pronounced when the internal flow is incorporated into the model. Earlier Mazzilli

et al. have conducted non-linear modal analysis of axially loaded beams in [26] exploring effects of structural

nonlinearities. In 2009 Srinil, Wiercigroch and O’Brien [27] proposed a reduced-order model of the VIVs of

a catenary riser, with a mathematical description of a multi-mode response of a slender structure combined

with a wake oscillator model as the fluid force component; however, only very limited multi-mode analysis

was presented. Catenary risers were also studied by Mazzilli and Sanches [28] using the nonlinear normal

mode approach where the fluid forces were modeled using the phenomenological model from [1]. The same

approach was later used for straight risers modelling in [29] where the fluid forces were described by Iwan-

Blevins phenomenological model.

Overall, although a number of models describing interactions between the fluid flow and flexible structures

have been developed and published, the obtained numerical results are limited and there is still a need for proper

multi-mode analysis. Several of the available models only look at the horizontal configuration of the structure,

where the pretension is acting in the direction perpendicular to the distributed weight of the structure. The

weight distribution becomes important in the vertical configurations, where these forces are acting along the

same axis, and therefore this paper will look at the comparison of the multi-mode responses of vertical and

horizontal configurations of a pipe.

The rest of the paper is organised as follows. In the next section the mathematical model of the riser

system is explained, which is followed by a description of the proposed reduction procedure in Section 3. The

responses are analysed in Section 4, where the dependence of the solution on key system parameters is shown

and influence of the number of modes retained in the model on the system response is considered. Finally, some

concluding remarks are provided in Section 5.
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Figure 1: Model of the considered system in (a) vertical and (b) horizontal configurations. The pipe is subject to a uniform flow
with velocity U acting in the x direction. Cross-flow displacement of the pipe v(z, t) and non-dimensional wake coefficient q(z, t)
are the main unknowns.

2. Description of the model

The adopted model for the fluid–structure interactions considered here consists of a straight but slender pipe

interacting with uniform flow. Two configurations of the pipe are studied, i.e. vertically and horizontally

positioned structures as shown in Fig. 1. The pipes are modelled as an Euler–Bernoulli beam with flexural

stiffness. Structural damping can be neglected in the first instance as damping of risers is dominated by

hydrodynamic forces and internal damping of the pipe is considered to be very low [30]. The pretension T is

applied, and the length–wise mass distribution is included. The structure is assumed to be moving only in the

direction normal to flow as shown in Fig. 1 (cross-flow motion) with its in-line motion neglected. Although for

some effects including dual resonances [31], taking into account in-line vibrations is crucial, this assumption could

be justified for initial analysis as the cross–flow response dominates over the in–line motion in terms of amplitude

as shown by experimental investigations [32] on flexible pipes supported at both ends. The analysis presented

here could be easily extended to include in-line motion but it would be a subject for another investigation.

The equations of motion presented later in this section are developed for the vertical configuration of the riser,

where the pretension T and the weight of the riser are acting along the same axis. It is worth noting that

for the horizontal configuration the pretension and weight will be perpendicular to each other, resulting in the

term with wst multiplier not being included in the structural equation, Eq. (1). In the examples presented the

influence of sagging of the riser is neglected as is the effect of buoyancy.

The governing differential equation for the vertical continuous structure with purely linear characteristics

has the following form:

m∗
∂2v(z, t)

∂t2
+ EI

∂4v(z, t)

∂z4
− T

∂2v(z, t)

∂z2
− wst

∂v(z, t)

∂z
= FF (z, t), (1)

where v(z, t) is the cross-flow displacement of the structure, E is Young’s modulus, I is the area moment of
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Figure 2: Fluid forces acting on the structure. Drag force F⃗D acts in line with relative stream velocity U⃗R and lift force F⃗L acts
in perpendicular direction.

inertia of the pipe, wst is the weight per unit length and FF (z, t) is the external fluid forcing. The mass per

unit of length parameter m∗ includes the mass of the fluid inside the pipe (for a riser with internal fluid), the

mass of the pipe, and the added mass related to the reactive inertial forces from the external fluid:

m∗ = ρFi Ai + ρST AST + CM ρFo (Ai + AST ) , (2)

where Ai and AST are cross-sectional areas of the pipe bore and pipe wall, and ρFi , ρFo and ρST are densities

of the internal and external fluids and the structure, respectively. The coefficient of added mass CM can be

assumed as 1 here since the cross-section of the riser is perfectly circular and the surfaces are ideally smooth [33].

As was discussed in [34], the external fluid force acting on the structure FF (z, t) can be determined as

a cross-flow projection of the total hydrodynamic force, F⃗ , which is the result of the actions of the sectional

vortex-induced drag F⃗D and lift F⃗L forces shown in Fig. 2. As can be seen from this figure, the drag force F⃗D is

acting along the velocity, U⃗R = U⃗− V⃗ which is the fluid velocity relative to the cylinder [35] (V⃗ is the velocity of

the cylinder and U⃗ is the velocity of the flow). The lift force F⃗L is then acting in the perpendicular directions,

where the magnitudes of lift and drag forces depend on the magnitude of relative velocity U⃗R, as discussed in

[36].

F⃗D =
1

2
ρFoCDD|U⃗R|2

U⃗R

|U⃗R|
, (3)

F⃗L =
1

2
ρFoCLD|U⃗R|2 R · U⃗R

|U⃗R|
, (4)

where R = R
(

π
2 , k⃗

)
is the tensor of rotation which rotates the relative velocity vector in a counterclockwise

direction by 90◦ around axis k⃗. Using the Rodrigues formulation it can be written as

R
(π
2
, k⃗
)

= cos
(π
2

)(
I− k⃗ ⊗ k⃗

)
+ sin

(π
2

)
k⃗ × I+ k⃗ ⊗ k⃗ = j⃗ ⊗ i⃗− i⃗⊗ j⃗ + k⃗ ⊗ k⃗, (5)

where I = i⃗⊗ i⃗+ j⃗ ⊗ j⃗ + k⃗ ⊗ k⃗ is the unit tensor. Substituting U⃗R = (U − ∂w(z,t)
∂t )⃗i− ∂v(z,t)

∂t j⃗ (where w(z, t) is
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in-line displacement) into Eqn.(4), we obtain

F⃗L =
1

2
ρFoCLD|U⃗R|2

∂v(z,t)
∂t i⃗+ (U − ∂w(z,t)

∂t )⃗j

|U⃗R|
. (6)

Here the other parameters are CL, lift coefficient, and CD, total drag. The latter can be represented as a sum

of a constant mean sectional drag, CD0 and fluctuating drag, Cfl
D

CD = CD0 + Cfl
D . (7)

Since in this paper we are limiting our consideration to motion in the cross-flow directions only, we will

assume that ∂w(z,t)
∂t = 0 and therefore U⃗R = Ui⃗− ∂v(z,t)

∂t j⃗, and

F⃗D =
1

2
ρFoCDD|U⃗R|

(
Ui⃗− ∂v(z, t)

∂t
j⃗

)
, (8)

F⃗L =
1

2
ρFoCLD|U⃗R|

(
∂v(z, t)

∂t
i⃗+ Uj⃗

)
. (9)

Then we can work out the value of total hydrodynamic force component acting in the cross-flow direction

FF (z, t) as an appropriate projection of the sum of lift and total drag forces F⃗ = F⃗L + F⃗D (see Fig. 2).

Therefore we have

FF (z, t) = (F⃗L + F⃗D) · j⃗ = 1

2
ρFoCLD|U⃗R|U − 1

2
ρFoCDD|U⃗R|

∂v(z, t)

∂t
. (10)

Following the approach of employing nonlinear oscillator equations of the Van der Pol type [15] [16] [24]

[36], the fluctuating lift CL and drag Cfl
D coefficients could be modeled by two wake oscillators [34]. However

in this paper we will only consider the mean amplified drag assuming that CD ≈ CD0 and therefore we will

use only one wake oscillator to describe the fluctuating lift CL = CL0q(z, t)/2, where q(z, t) is governed by the

following equation
∂2q(z, t)

∂t2
+ λΩF

(
q(z, t)2 − 1

) ∂q(z, t)
∂t

+Ω2
F q(z, t) = FS(z, t). (11)

Here λ is the Van der Pol parameter, ΩF is the frequency of vortex shedding, and FS(z, t) is the structural

force. Adopting the acceleration coupling as proposed by Facchinetti et al [18], we obtain

FS(z, t) = A
∂2v(z, t)

∂t2
. (12)

Finally, assuming that |∂v(z,t)∂t | ≪ U (see [35], for example) and therefore |U⃗R| ≈ U , we obtain the final expression

for the external fluid forces as

FF (z, t) =
1

4
ρFoCL0DU2q(z, t)− 1

2
ρFoCD0DU

∂v(z, t)

∂t
, (13)

which corresponds well to forces used in the widely accepted model [18]. Thus we obtain a system of the coupled

equations

m∗
∂2v(z, t)

∂t2
+ EI

∂4v(z, t)

∂z4
− T

∂2v(z, t)

∂z2
− wst

∂v(z, t)

∂z
=

1

4
ρFoCL0DU2q(z, t)− 1

2
ρFoCD0DU

∂v(z, t)

∂t
, (14)

∂2q(z, t)

∂t2
+ λΩF

(
q(z, t)2 − 1

) ∂q(z, t)
∂t

+Ω2
F q(z, t) = A

∂2v(z, t)

∂t2
. (15)

In order to solve this coupled problem, the Galerkin–type discretisation of transverse v(z, t) displacement

and wake coefficient q(z, t) is performed. Details of this reduction process are presented in the following section.
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3. The reduction procedure

The decomposition of the system’s response into its modal components is achieved through substitution of the

Galerking–type discretisation of transverse displacement v(z, t) and wake coefficient q(z, t) into Eqs. (14) and

(15) in a similar way as was done in [25]

v(z, t) =

N∑
n=1

vn(t)ṽn(z) , q(z, t) =

N∑
n=1

qn(t)q̃n(z). (16)

Assuming that

ṽn(z) = q̃n(z) = sin
(
nπ

z

L

)
(17)

we have

v(z, t) =

N∑
n=1

vn(t) sin
(
nπ

z

L

)
, q(z, t) =

N∑
n=1

qn(t) sin
(
nπ

z

L

)
. (18)

By invoking the orthogonality property of linear normal modes

L∫
0

ṽn(z)ṽi(z)dz =

{
0, n ̸= i

L/2, n = i
(19)

and using the following non-dimensional parameters and variables

ωRn =
ωn

ωref
; ωn =

πn

L

√
EI(πn)2

L2m∗
+

T

m∗
, ΩF = 2πSt

U

D
, ΩR =

ΩF

ωref
; τ = ωreft, z̃ =

z

L
, v̄ =

v

D
,

the following governing equation is obtained for the motion of the linear structure in the n–th normal mode (to

simplify the formulae the bar sign is omitted below so v is used instead v̄):

d2vn(τ)

dτ2
+ aΩR

dvn(τ)

dτ
+ ω2

Rnvn(τ) = bΩ2
Rqn(τ) +

2wst

m∗Lω2
ref

N∑
i=1

Φinvi (τ), (20)

where

Φin =

1∫
0

(πi) cos (πiζ) sin (πnζ) dζ, (21)

a =
1

4

ρFoCD0D
2

πStm∗
, b =

1

16

ρFoCL0D
2

π2S2
tm∗

.

ωref is the reference frequency and the n–th non-dimensional transverse natural frequency is denoted as ωRn.

The dynamical characteristics are now described in the temporal domain while the spatial distribution of the

response ṽn(z) is defined by a harmonic function that satisfies the boundary conditions,

v(0, t) = 0 , v(L, t) = 0 , (22)

d2v

dz2
(0, t) = 0 ,

d2v

dz2
(L, t) = 0 . (23)

The equation for wake coefficient is transformed in a similar manner and the following results are obtained for

the n-th component

d2qn(τ)

dτ2
− λΩR

dqn(τ)

dτ
+ λΩR

N∑
i=1

N∑
k=1

N∑
s=1

(Ψiksnq̇i(τ)qk(τ)qs(τ)) + Ω2
Rqn(τ) = A

d2vn(τ)

dτ2
, (24)
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where

Ψiksn =

1∫
0

sin (πiζ) sin (πkζ) sin (πsζ) sin (πnζ) dζ. (25)

Therefore, in order to calculate the system response as N mode approximation, the coupled system of ordinary

differential equations Eqs. (20, 21) and (24, 25) needs to be solved. Then the obtained functions of time vn(τ)

and qn(τ) should be substituted into Eq. (16) to determine the system behaviour both in time and along the

structure in terms of displacement v(z̃, τ) and wake coefficient q(z̃, τ).

Thus we obtain the set of equations for one mode approximation which are

d2v1(τ)

dτ2
+ aΩR

dv1(τ)

dτ
+ ω2

R1v1(τ) = bΩ2
Rq1(τ),

d2q1(τ)

dτ2
+ λΩR

(
q1(τ)

2 − 1
) dq1(τ)

dτ
+Ω2

Rq1(τ) = A
d2v1(τ)

dτ2
.

In the case of one mode approximation the displacement and wake coefficient along the structure could be

calculated as

v(z̃, τ) = v1(τ)ṽ1(z̃) = v1(τ) sin(πz̃),

q(z̃, τ) = q1(τ) sin(πz̃).

For two-mode approximation, the equations are

d2v1(τ)

dτ2
+ aΩR

dv1(τ)

dτ
+ ω2

R1v1(τ) = bΩ2
Rq1(τ) +

2mstg

m∗Lω2
ref

Φ21v2 (τ) ,

d2v2(τ)

dτ2
+ aΩR

dv2(τ)

dτ
+ ω2

R2v2(τ) = bΩ2
Rq2(τ) +

2mstg

m∗Lω2
ref

Φ12v1 (τ) ,

d2q1(τ)

dτ2
+ λΩR

(
3

4
q1(τ)

2 dq1(τ)

dτ
+

1

2
q2(τ)

2 dq1(τ)

dτ
+ q1(τ)q2(τ)

dq2(τ)

dτ
− dq1(τ)

dτ

)
+Ω2

Rq1(τ) = A
d2v1(τ)

dτ2
,

d2q2(τ)

dτ2
+ λΩR

(
3

4
q2(τ)

2 dq2(τ)

dτ
+

1

2
q1(τ)

2 dq2(τ)

dτ
+ q1(τ)q2(τ)

dq1(τ)

dτ
− dq2(τ)

dτ

)
+Ω2

Rq2(τ) = A
d2v2(τ)

dτ2
,

and the displacement and wake coefficient along the structure need to be calculated taking both modes into

account as

v(z̃, τ) = v1(τ)ṽ1(z̃) + v2(τ)ṽ2(z̃) = v1(τ) sin(πz̃) + v2(τ) sin (2πz̃) ,

q(z̃, τ) = q1(τ) sin(πz̃) + q2(τ) sin (2πz̃) .

The complete set of equations for the three mode approximation is given in the Appendix.

4. Results

The results presented in this section are calculated numerically for the set of reference parameters given in

Table 1, where the reference frequency ωref was selected as the first natural frequency of the reference structure

ωref =
π
L

√
EIπ2

L2m∗
+ T

m∗
. The values of coefficients CL0 , CD0 and St were adopted from [1] and for wake oscillator

coefficients λ and A values similar to those used in [18] were chosen. The system of the developed ordinary

differential equations (Eqs.(20), (24)) was solved using an in-house code implemented in FORTRAN and the

standard subroutine using Adams-Moulton’s method was selected to obtain the solution.
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Table 1: Reference system parameters values

Parameter value Parameter Value
External Diameter, Do 0.250 m Density of the structure, ρST 7850 kg/m3

Internal Diameter, Di 0.125 m Density of the water, ρFo 1020 kg/m3

Length, L 250 m Coefficient CD0 2.0
Young’s Modulus, E 2.10 · 1011Pa Coefficient CL0 0.3

Pretension T 700000 N/m Coefficient St 0.2
Coefficient λ 0.3 Coefficient A 10

Reference frequency, ωref
π
L

√
EI(π)2

L2m∗
+ T

m∗
= 0.57174 rad/s

First we compare the responses of the structure at different locations along the pipe subjected to uniform

flows of different velocities. The results are shown for horizontal and vertical configurations in Figs. 3 and 4,

respectively.

For the horizontal configuration, the resonance curves are shown in Fig. 3 at four different points, z̃ = 0.2,

0.25, 0.50 and 0.75. The graphs presented in parts (a)–(d) demonstrate the dependence of the steady state

response of the structure in terms of cross-flow displacement amplitude on the frequency ratio, ΩR = ΩF /ωref .

As the frequency ratio ΩR is proportional to the external flow velocity, U as ΩR = 2πSt
U
D/ωref , and the solution

is obtained based on a four-mode approximation, the first four resonance peaks are observed under variation of

the flow velocity. It is worth noting that the same response is observed for z̃ = 0.25 and 0.75 in this case as the

weight of the structure is acting in perpendicular direction to the pretension, T , resulting in the symmetrical

response of the structure. As can be seen from Figs. 3(b) and (d), zero solution is observed for z̃ = 0.25 and 0.75

around fourth resonance ΩR ∈ (3.71, 5.48) near the node of the fourth mode ṽ4(z̃) = sin(4πz̃). Fig. 3(c) shows

that for z̃ = 0.50, there are two regions of zero solutions, i.e. ΩR ∈ (1.61, 2.62) around the second resonance

and ΩR ∈ (3.71, 5.48) around the fourth resonance near the nodes of the second mode ṽ2(z̃) = sin(2πz̃). The

obtained zero solutions demonstrate that although the system of equations for four-mode approximation is

nonlinear and all variables are coupled through the relevant wake equations, in this case there is little influence

of the structural modes on each other. Also it can be seen from Figs. 3(a)–(d) that the highest vibration

amplitude for all locations is approximately at the same level, although the maximum value varies for different

flow velocities and for different coordinates.

The dependence of the steady state response of the structure in terms of cross-flow displacement amplitude

on the frequency ratio, ΩR = ΩF /ωref is demonstrated in Fig. 4 for the vertical configuration. Here the solution

is based on five-mode approximation and the resonance curves are presented at the locations z̃ = 0.20, 0.25, 0.33,

0.50, 0.70 and 0.90 with the first five resonance peaks observed. In this case the weight of the structure is acting

along the same direction as the pretension, T and therefore the structure’s response is no longer symmetrical.

As can be seen from Fig. 4 the overall maximum of the cross-flow displacement amplitude is decreasing with

the increase of the coordinate z̃ as the pretension is being off set by the weight resulting in the higher amplitude

of motion in the lower part of the pipe. The lock-in to near zero (low amplitude) solutions is also observed for

the vertical configuration of the structure, however these solutions are no longer zero solutions as the additional

terms in the right hand side of Eq. (20) introduce direct coupling between the structural modes. As can be

seen from Fig. 4(c), the lock-in to low amplitude solution is observed for z̃ = 0.50 for ΩR ∈ (1.76, 2.64) around

the second resonance and ΩR ∈ (3.73, 4.82) around the fourth resonance near the nodes of the second mode
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Figure 3: Resonance curves for four-mode approximation at different locations along the horizontal pipe for (a) z̃ = 0.20, (b)
z̃ = 0.25, (c) z̃ = 0.50, (d) z̃ = 0.75.

ṽ2(z̃) = sin(2πz̃). Fig. 4(d) shows a low amplitude solution around third resonance ΩR ∈ (2.64, 3.71) near

the node of the third mode ṽ3(z̃) = sin(3πz̃) and Figs. 4(e) and 4(f) demonstrate lock-in to low amplitude

solution around fourth and fifth resonances for ΩR ∈ (3.73, 4.84) and ΩR ∈ (4.84, 6.71), respectively. For the

coordinate z̃ = 0.70 which is located between the nodes for mode ṽ3(z̃) = sin(3πz̃) at z̃ = 0.666667 and mode

ṽ4(z̃) = sin(4πz̃) at z̃ = 0.75, the amplitude of the vibrations is reduced near third and fourth resonances at

ΩR ∈ (2.64, 3.71) and ΩR ∈ (3.71, 4.82), respectively (see Fig. 4(b)).

It is interesting to compare the solutions for vertical and horizontal configurations at the same locations, and

Fig. 5 demonstrates such comparison for z̃ = 0.25 (part a) and z̃ = 0.75 (part b). The results are presented for

three-mode approximation as dependence of the cross-flow amplitude on the frequency ΩR. Here two co-existing

solutions were obtained for the horizontal configuration around the second resonance peak at ΩR ∈ (1.44, 2.63)

and they are shown in pink and grey. The vertical configuration solution is given in navy. In general, a higher

amplitude of vibration is observed for the vertical configuration in the lower part of the structure, as can be

seen from Fig. 5(a) for z̃ = 0.25, and a lower amplitude is obtained for this configuration in the upper part

of the pipe (Fig. 5(b)). As was mentioned before, the horizontal configuration solutions are identical for the

chosen coordinates of the pipe due to the symmetry of the structure and constant pretension along it. The

vertical configuration solution is affected by the weight distribution and therefore the response is different for

z̃ = 0.25 and 0.75.

The co-existing solutions for the horizontal configuration are shown in Figs. 6 and 7 for z̃ = 0.25 and 0.75,

respectively. In parts (a) of these figures, time histories of the steady state response of the system in terms

of the cross-flow displacement are presented for ΩR = 1.8642, while parts (b) demonstrate the trajectories of

the cross-flow displacement on the phase plane. As can be seen from these figures, the obtained responses are
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Figure 4: Resonance curves for five-mode approximation at different locations along the riser for (a) z̃ = 0.90, (b) z̃ = 0.70, (c)
z̃ = 0.50, (d) z̃ = 0.33333, (e) z̃ = 0.25 and (f) z̃ = 0.20.

periodic and the non-dimensional frequency of the high amplitude solution (shown in pink) is 1.963 while the

frequency of low amplitude solution (shown in grey) is 1.811. For the vertical configuration solution shown

in navy at both locations (z̃ = 0.25 and 0.75), the non-dimensional frequency of the response is 1.963 – the

same as for higher amplitude solution obtained for the horizontal configuration. It is worth noting that the

non-dimensional frequency of the vortex shedding ΩR and the frequency of the structure’s response do not

coincide while the structure is exhibiting the lock-in phenomenon near the second resonance.

Figure 8(a) demonstrates the dependence of the response frequency (for cross-flow vibration) on the fre-

quency ratio ΩR = ΩF /ωref , which is a function of the flow velocity. Here the dash lines indicate the entrance

to and exit from lock-in regions. It can be seen from this figure that the lock-in to the first resonance occurs

at ΩR ∈ (0.84, 1.25) where the frequency of the cross-flow vibration is approximately equal to the first natural

frequency of the structure (ωR1 = ω1

ωref
= 1.000). The second lock-in region is seen for ΩR ∈ (1.62, 2.62) and here

the frequency of the vibration is approximately equal to the second natural frequency (ωR2 = ω2

ωref
= 2.008). Fi-

nally, the third lock-in region is observed for ΩR ∈ (2.62, 3.93) and in that region the frequency of the vibration

is approximately equal to the third natural frequency (ωR3 = ω3

ωref
= 3.032). The observed slight variation in the

response frequency in the lock-in regions might be connected with the current assumption of the constant added

mass and it will be investigated in the future. It is interesting to note that as the flow velocity increases there is

a break between the first and second lock-in regions, but there is no break between the second and third lock-in
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Figure 5: (colour online) Resonance curves for three-mode approximation for different coordinates along the riser for (a) z̃ = 0.25
and (b) z̃ = 0.75. The solution for vertical configuration is shown in navy and co-existing solutions for horizontal configuration are
presented in pink and grey.
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Figure 6: (colour online) (a) Time histories of cross-flow displacement and (b) trajectories on the phase plane for three-mode
approximation at z̃ = 0.25 for ΩR = 1.8642. The solution for vertical configuration is shown in navy and co-existing solutions for
horizontal configuration are presented in pink and grey.

regions. Figures 8(b)-(e) show how the trajectories of the structure’s response on the phase plane change with

the frequency ratio. Specifically, Figs. 8(b) and 8(c) show the jump to second lock-in response when frequency

ratio changes from ΩR = 1.58249 to 1.62645. Figures 8(d) and 8(e) demonstrate the trajectories at the border

of the third lock-in region at ΩR = 3.95623 and outside it at ΩR = 4.96726. There is a notable change not only

in the amplitude but also in the shape of the solution.

The influence of the coupling coefficient A and the wake equation coefficient λ was analysed next and the

results are presented in Fig. 9 for the vertical configuration. Four-mode approximation was used to calculate the

presented resonance curves showing the dependence of cross-flow amplitude on non-dimensional vortex shedding

frequency, ΩR at z̃ = 0.4. In Fig. 9(a) the results of the calculations are presented for four different values of

the coupling coefficient A = 8, 10, 12 and 14 and λ = 0.3. As can be seen from this figure, the amplitudes of

the vibrations increase significantly in the whole frequency region at the larger values of A. Also, a slight shift

towards higher frequencies is observed for the maximum amplitude values in each resonant region and the jump

between the lock-in solutions becomes larger for higher frequency values.

Fig. 9(b) demonstrates the influence of the coefficient λ, where four values of this coefficient λ = 0.20,

0.25, 0.30 and 0.35 were considered at A = 10. As can be seen, increasing λ value leads to a decrease of the

amplitudes of vibration, and there are no observable frequency shifts for the local maximums. Similar results
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Figure 7: (colour online) (a) Time histories of cross-flow displacement and (b) trajectories on the phase plane for three-mode
approximation at z̃ = 0.75 for ΩR = 1.8642. The solution for vertical configuration is shown in navy and co-existing solutions for
horizontal configuration are presented in pink and grey.
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Figure 8: (a) Frequency of the cross-flow vibration for vertical configuration as function of ΩR for three-mode approximation at
z̃ = 0.25 and trajectories on the phase plane for (b) ΩR = 1.58249; (c) ΩR = 1.62645; (d) ΩR = 3.95623 and (e) ΩR = 4.96726.
The dash lines in part (a) indicate entrance to and exit from lock-in.

are also obtained for the horizontal configuration for both A and λ coefficients but they are not included to

avoid repetition.

The other important coefficients influencing the solution are the fluid force coefficients CD0 and CL0 , which

are examined in Fig. 10. Fig. 10(a) presents the resonance curves for four different values of the coefficient

CD0 = 1.6, 1.8, 2.0 and 2.2, and Fig. 10(b) shows the results for CL0 = 0.25, 0.28, 0.30 and 0.33. As can be

seen from these figures obtained for the vertical configuration, increasing the coefficient CD0
results in lower

amplitudes of vibrations while increasing the coefficient CL0 leads to the higher amplitudes. However, as was

the case with the wake equation coefficient λ, neither CD0 nor CL0 noticeably influences the location of the

local maximums along the frequency axis.

The geometry and loading of the structure were also briefly looked at, and Fig. 11 shows the results of

the simulations for varying pretension, T , and different lengths, L of the vertical pipe. Fig. 11(a) presents the

resonance curves for T = 300, 400, 700 and 1000 kN calculated for L = 250 m and Fig. 11(b) demonstrates
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Figure 9: (colour online) Resonance curves for four-mode approximation at z̃ = 0.4 for different values of (a) coupling coefficient
A = 8, 10, 12 and 14 and λ = 0.3; and (b) wake equation coefficient λ = 0.20, 0.25, 0.30 and 0.35 and A = 10.
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Figure 10: (colour online) Resonance curves for four-mode approximation at z̃ = 0.4 for different values of (a) coefficient CD0 = 2.2
(in navy), 2.0 (in grey), 1.8 (in purple) and 1.6 (in pink) and (b) coefficient CL0 = 0.33 (in navy), 0.3 (in gray), 0.28 (in purple)
and 0.25 (in pink).

cross-flow amplitudes for L = 150, 200, 250 and 300 m obtained at T = 700 kN. As can be observed, the

resonant frequencies of the structure depends both on pretension, T and length, L, and each local peak shifts to

the right as pretension is increased or length is decreased. The maximum amplitudes in each resonance region

slightly decrease for higher values of pretension and slightly increase for longer pipes, where each lock-in region

becomes wider for higher pretension and shorter pipe length.

Finally, Fig. 12 demonstrates the resonance curves for higher mode approximations. The results for z̃ = 0.25

and z̃ = 0.50 are shown in Fig. 12(a) and 12(b) respectively for 6 mode (in navy), 7 mode (in pink), 8 mode (in

grey) and 9 mode (in purple) approximations. As can be seen from these figures, in all cases each consecutive

approximation predicts shorter regions for the penultimate resonance, i.e. for z̃ = 0.25 the sixth resonant region

is observed for ΩR ∈ (5, 98, 8.18) for the six mode approximation (navy line), but the lock-in region is predicted

at ΩR ∈ (5.98, 7.22) for all higher mode approximations. In general, the level of vibrations (peak resonant

amplitudes) at lower frequencies is predicted reasonably well by approximations with fewer modes taken into

account. However this does not always apply to the last resonant region as the difference in the amplitudes could

be substantial, as demonstrated in Fig. 12(a) for six (in navy) and seven (and higher) mode approximations in

the sixth resonant region ΩR ∈ (5.98, 7.22).
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Figure 11: (colour online) Resonance curves for four-mode approximation at z̃ = 0.4 for different values of (a) tension T =
300, 400, 700 and 1000 kN calculated for L = 250 m and (b) the riser length L = 150 m (in pink), 200 m (in purple), 250 m (in
grey) and 300 m (in navy) at T = 700 kN.
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Figure 12: (colour online) Resonance curves for 6 mode (in navy), 7 mode (in pink), 8 mode (in grey) and 9 mode (in purple)
approximations for different coordinates along the riser for (a) z̃ = 0.25 and (b) z̃ = 0.50.
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5. Conclusions

In this work the fluid–structure interactions were considered by investigating a straight but slender pipe

interacting with uniform water flow. Two configurations were studied, namely vertically and horizontally

positioned pipes, which are modelled as an Euler–Bernoulli beam with flexural stiffness. Both the pretension

and the length–wise mass distribution were considered. The structure was assumed to be moving only in the

direction normal to flow (cross-flow motion) hence its in-line motion was neglected. The external fluid force

acting on the structure is the result of the action of sectional vortex-induced drag and lift forces. Only mean

drag was considered, with the time varying lift force modelled by a nonlinear oscillator equation of the Van

der Pol type to calculate the non-dimensional lift coefficient. The obtained coupled system of nonlinear partial

differential equations was simplified using Galerkin–type discretisation along the pipe. The resulting ordinary

differential equations were solved numerically providing multi-mode approximations of cross-flow displacement

and non-dimensional lift coefficient.

A comparison between the responses of vertical and horizontal structures has been made. In the case of the

horizontal configuration, although the system of equations is nonlinear and all variables are coupled through

the relevant wake equations, the structural modes are observed to have little influence on each other. For the

vertical configuration however, there is a direct coupling between the structural modes, which is reflected in

the shape of the resonance curves. In general, a higher amplitude of vibration is observed for the vertical

configuration in the lower part of the structure, and a lower amplitude is obtained in the upper part due to

a balancing between pretension and weight. Meanwhile, the horizontal configuration solutions are identical in

symmetrical locations along the pipe due to constant pretension.

When studying the influence of the coupling coefficient A (which appears in the wake equation as the

multiplier in front of the structural acceleration), it was observed that the amplitudes of the vibrations increased

significantly in the whole frequency region at the larger values of this coefficient, and there was a slight shift

towards higher frequencies for maximum amplitude values in each of the resonant regions. Our analysis also

shows that increasing the value of the wake oscillator coefficient λ leads, as expected, to a decrease of the

amplitudes of the vibrations, and there are no observable frequency shifts for the local maximums.

The other important coefficients influencing the solution are the fluid force coefficients CD0 and CL0 . It is

shown that increasing the coefficient CD0
results in lower amplitudes of vibrations while increasing the coefficient

CL0 leads to higher amplitudes. However, as was the case with wake equation coefficient λ, neither CD0 nor

CL0 noticeably influences the locations of the local maximums along the frequency axis.

While looking at the geometry and loading of the structure, it was observed that the resonant frequencies

of the structure depend both on the pretension, T , and the length, L, where each of the local peaks shifts to

higher values of frequencies as the pretension is increased or length is decreased. The maximum amplitudes

in each resonant region slightly decrease for higher values of pretension and slightly increase for longer pipes,

where each lock-in regions becomes wider for higher pretension and shorter pipe length.

The resonance curves for higher mode approximations were also studied and in all cases it was observed that

each consecutive approximation predicts a shorter lock-in region for the penultimate resonance. In general, the

level of vibrations (peak resonant amplitudes) at lower frequencies is predicted reasonably well by approximations

with fewer modes taken into account. However, this does not always apply to the last resonant region, as it

was shown that the difference in amplitudes could be substantial. In practical VIVs, low frequency modes are

of particular interest, therefore, they should be well defined. These results show that in order to achieve better
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accuracy of the highest mode of interest, at least a small set of higher modes, superior to those of interest,

should be retained in the model.

Finally, it has to be emphasized that the proper calibration of the proposed model based on the experimental

tests will be an important part of future work. Also, the in-line component of the motion will be taken into

account in order to improve the model in further investigations.
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6. Appendix

Finally, for three-mode approximation we have

d2v1(τ)

dτ2
+ aΩR

dv1(τ)

dτ
+ ω2

R1v1(τ) = bΩ2
Rq1(τ) +

2mstg

m∗Lω2
ref

3∑
i=1

Φi1vi (τ)

d2v2(τ)

dτ2
+ aΩR

dv2(τ)

dτ
+ ω2

R2v2(τ) = bΩ2
Rq2(τ) +

2mstg

m∗Lω2
ref

3∑
i=1

Φi2vi (τ)

d2v3(τ)

dτ2
+ aΩR

dv3(τ)

dτ
+ ω2

R3v3(τ) = bΩ2
Rq3(τ) +

2mstg

m∗Lω2
ref

3∑
i=1

Φi3vi (τ)

d2q1(τ)

dτ2
− λΩR

dq1(τ)

dτ
+ λΩR

3∑
i=1

3∑
k=1

3∑
s=1

Ψiks1q̇i(τ)qk(τ)qs(τ) + Ω2
Rq1(τ) = A

d2v1(τ)

dτ2

d2q2(τ)

dτ2
− λΩR

dq2(τ)

dτ
+ λΩR

3∑
i=1

3∑
k=1

3∑
s=1

Ψiks2q̇i(τ)qk(τ)qs(τ) + Ω2
Rq2(τ) = A

d2v2(τ)

dτ2

d2q3(τ)

dτ2
− λΩR

dq3(τ)

dτ
+ λΩR

3∑
i=1

3∑
k=1

3∑
s=1

(Ψiks3q̇i(τ)qk(τ)qs(τ)) + Ω2
Rq3(τ) = A

d2v3(τ)

dτ2

Ψiksj =

1∫
0

sin (πiξ) sin (πkζ) sin (πsζ) sin (πjζ) dξ

v(z̃, τ) = v1(τ)ṽ1(z̃) + v2(τ)ṽ2(z̃) + v3(τ)ṽ3(z̃) = v1(τ) sin(πz̃) + v2(τ) sin (2πz̃) + v3(τ) sin (3πz̃)

q(z̃, τ) = q1(τ) sin(πz̃) + q2(τ) sin (2πz̃) + q3(τ) sin (3πz̃)
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