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Abstract. Complex network theory has been successfully ap-
plied to understand the structural and functional topology of
many dynamical systems from nature, society and technol-
ogy. Many properties of these systems change over time, and,
consequently, networks reconstructed from them will, too.
However, although static and temporally changing networks
have been studied extensively, methods to quantify their ro-
bustness as they evolve in time are lacking. In this paper we
develop a theory to investigate how networks are changing
within time based on the quantitative analysis of dissimilari-
ties in the network structure.

Our main result is the common component evolution func-
tion (CCEF) which characterizes network development over
time. To test our approach we apply it to several model
systems, Erd̋os–Rényi networks, analytically derived flow-
based networks, and transient simulations from the START
model for which we control the change of single parameters
over time. Then we construct annual climate networks from
NCEP/NCAR reanalysis data for the Asian monsoon domain
for the time period of 1970–2011 CE and use the CCEF to
characterize the temporal evolution in this region. While this
real-world CCEF displays a high degree of network per-
sistence over large time lags, there are distinct time peri-
ods when common links break down. This phasing of these
events coincides with years of strong El Niño/Southern Os-
cillation phenomena, confirming previous studies. The pro-
posed method can be applied for any type of evolving net-
work where the link but not the node set is changing, and may
be particularly useful to characterize nonstationary evolving
systems using complex networks.

1 Introduction

Networks are practical representations for complex systems
with interacting components and have been used to study
phenomena in sociology, engineering and natural systems
(Barthélemy, 2011; Menck and Kurths, 2012; Palla et al.,
2005; Holme et al., 2004). Complex network techniques,
based on statistical associations between climate parameter
time series at different points on Earth, have yielded new in-
sights in the investigation of climate dynamics (Tsonis and
Swanson, 2008; Donges et al., 2009; Paluš et al., 2011).
Such climate networks have been used for detecting long-
range correlations, or teleconnections (Martin et al., 2013;
Barreiro et al., 2011), and studying such phenomena such as
the El Niño/Southern Oscillation (ENSO,Gozolchiani et al.,
2008; Deza et al., 2013) and the Indian Monsoon system (Re-
hfeld et al., 2013; Malik et al., 2011; Stolbova et al., 2014).
In particular,Tsonis and Swanson(2008) found changes in
the global network topology during El Niño events, with sig-
nificantly fewer links and lower clustering coefficients, and
inferred a lower predictability for El Niño over La Niña
years. Using climate networks,Yamasaki et al.(2008) and
Gozolchiani et al.(2008) also found ENSO influence on re-
gional atmospheric processes in non-ENSO regions. Tempo-
ral and spatial variability of climate, and thus climate net-
work structure, are of increasing interest considering ongo-
ing environmental changes, and climate networks as evolv-
ing in time are still an open subject. The spatial-temporal
developments in a given network set can be too complex to
be captured by eye, and systematic approaches to quantify
changes are needed. WhileBerezin et al.(2012) investigated
the origins of the climate network stability such as the spatial
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embedding and physical coupling between climate in differ-
ent locations using the correlation between correlation matri-
ces, other studies describe how the network graph is chang-
ing over time to understand the behaviour of the underlying
dynamical system (e.g.Rehfeld et al., 2013).

Various aspects of temporally changing networks have
been considered for sociological and biological networks.
Albert and Barabasi(2000) analysed random network growth
and evolution in response to the addition or rewiring of
links between nodes and found that the graph topology
changed depending on the frequency of link changes.Fu
et al.(2009) tracked node function changes using a stochastic
block model for evolving networks to investigate evolution-
ary effects in email networks and gene regulation.

One of the most common dissimilarity measures which has
been used for network comparison is Hamming distance. It
was introduced byHamming(1950) as a measure for com-
paring strings of symbols and was used for measuring the
distance between the networks. Given the adjacency matrices
AN andAM of two graphsN andM, their Hamming distance
is determined from the sum over the number of links which
are found in one, but not the other network:H(N,M) =∑

i,j |AN
i,j −AM

i,j |. However, although Hamming distance can
be generalized for directed networks with possibly differing
node numbers, two networksM andN may have the same
Hamming distance to the fixed networkK while having dif-
ferent topology themselves. The Hamming distance therefore
may not enough to detect topological changes.

Here we propose a common component evolution func-
tion (CCEF) based on the common set of links in pairs of
networks to evaluate graph changes quantitatively in space
and time. We characterize the method using Erdős–Rényi
networks (Erdös and Rényi, 1959), analytically derived flow
networks (Molkenthin et al., 2014a, b) and transient simula-
tions from the START model (Rehfeld et al., 2014) for which
we control changes of individual parameters over time. Then
we construct annual climate networks from NCEP/NCAR
reanalysis data for the Asian monsoon domain and use the
CCEF to characterize the temporal evolution in the monsoon
system.

2 Derivation of the common component evolution
function

We consider unweighted and undirected networks, for which
n nodes are joined in pairs by edges, or links. The linking
structure is given in the adjacency matrixA, a binaryn × n

matrix with zeros on the diagonal, as we do not allow for
self-loops. An element is non-zero,Aij = 1, if and only if
the verticesi andj are connected, and zero otherwise.

Let us consider a linearly ordered set ofT evolving in
time networks:N1, . . . ,NT . Then thecommon component
networkfor two of these networksNi andNj , CC(Ni,Nj ),
is a network on the same nodes, where the set of edges is
present in both original networks. IfNi andNj have adja-

cency matricesAi andAj , the number of edges in the com-
mon component network CC(Ni,Nj ) is the number of non-
zero elements above the diagonal in the binary sum of ad-
jacency matricesAi andAj . This common component net-
work can be generalized for anyk+1 networks by induction:
CC(Ni, . . . ,Ni+k+1) = CC(CC(Ni, . . .Ni+k−1),Ni+k).

The common component functionCCF(Ni, . . . ,Ni+k)

counts the number of links in a common compo-
nent network of k networks: CCF(Ni, . . . ,Ni+k) =

||CC(CC(Ni, . . . ,Ni+k−1),Ni+k)||, where by ||Ni || we
mean the number of links in the networkNi , and the
common component function CCF(Ni,Nk) gives the
number of coinciding edges in the graphs ofNi and Nk,
i,k ∈ {1,2, . . . ,T }. We set CCF(Ni) = CCF(Ni,Ni). The
common component function CCF(Ni) takes values in
[0,maxCCF(Ni)] and is in the following normalized to
[0,1] using the maximal number of links in the networks.

In analogy to covariance estimation (Chatfield, 2004) and
similar to Berezin et al.(2012), we take the mean over the
CCFs with the same time lags to estimate the non-normalized
common component evolution function, CCEF∗, as

CCEF∗(δ) =
1

T − δ

T −δ∑
i=1

CCF(Ni,Ni+δ) , (1)

whereδ is the time lag between the networks, andδ ∈ [0,T −

1]. The maximum value of the CCEF∗ is given by CCEF∗(0)

for zero lag, as an average number of links in the set of net-
work

CCEF∗(0) =
1

T

T∑
i=1

CCF(Ni) , (2)

and we use it to obtain the normalizedcommon component
evolution function

CCEF(δ) =
CCEF∗(δ)

CCEF∗(0)
, (3)

which we will use exclusively in the following. As an estima-
tion of the CCEF uncertainty we use the standard deviation
over all CCEF values.

2.1 Testing the method on random networks

To test our method we generate a set ofT Erdős–Rényi
graphs (Erdös and Rényi, 1959) with a fixed number ofn
nodes and a fixed connection probabilityp. We artificially
impose a linear ordering on the set, such that we can in-
dex them withi ∈ (1,T ). We compute the CCEF for Erdős–
Rényi graphs with 100 nodes and link probabilities of 0.3,
0.5, and 0.9. The resulting functions, shown in Fig.1, de-
crease from 1 to a plateau at CCEF(δ) ≈ p for δ > 0 for
each link probabilityp. For this example we can analytically
compute the expected CCEF, since forδ = 0 each network is
compared with itself and therefore CCEF= 1. For all other
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compared with itself and therefore CCEF = 1. For all other
values of δ two random matrices with n nodes and connec-
tion probability p are compared. Then the number of totally
possible links is n(n−1)/2, and the expectation value of the165

number of links in each of the networks is pn(n− 1)/2. As
the probability of each of the edges in one network to also ap-
pear in the other network is p, the total number of common
links is p2n(n− 1)/2, which with the normalization leads to
f(p), the ratio of total number of common links and the ex-170

pectation value of the number of links to be

f(p) =
p2n(n− 1)

pn(n− 1)
= p . (4)

The CCEF for each linking probability therefore lies close

Fig. 1: Mean CCEF for 10 indexed sets of random Erdős-
Renyi networks with 100 nodes and different linking prob-
abilities p. The dashed lines correspond to the analytical
CCEF levels, the errorbars give the 1σ standard deviation for
each index lag

.

to the expected value p.

2.2 Test models175

To characterize our approach further we investigate simula-
tions of more complex, spatially embedded processes. We
obtained networks (i) analytically from flow fields, as de-
scribed in (Molkenthin et al., 2014a) and (ii) from the Spatio-
Temporally Autocorrelated Time series model START.180

Networks from flows

The flow networks are constructed directly from a velocity
field using a correlation measure based on the temperature
profiles resulting from a temperature peak via advection and

diffusion (Molkenthin et al., 2014b,a). The velocity function185

considered here is:

v(x,y) =

 e
−(y−0.5x)2

c

0.5e
−(y−0.5x)2

c

 , (5)

and we vary the parameter c for the flow-width from 200 to
2000 in 10 steps, thus gradually changing the flow network.
The positions and the number of nodes are kept constant. For190

each value of c we obtain a correlation matrices C1, ...,C10,
and thresholding these matrices by different critical values
we obtain set of adjacency matrices.

Networks from the START model

As a more complex test case we consider two transient simu-195

lations for the START model (Rehfeld et al., 2014). Networks
generated from START undergo a distinct transition when the
forcing parameter F is changed: For F =−1 the network is
partitioned into two vertical connected areas. For F = 0 hor-
izontal cross-links have appeared and link the two sections.200

At maximal forcing, for F = 1, there is one large, horizon-
tally oriented component. We performed two transient simu-
lations with a 6× 7 sampling grid (Rehfeld et al., 2014) for
20000 timesteps and 100 ensemble members each. In the first
run the forcing parameter was increased linearly from the205

start to the end of the simulation. In the second run we peri-
odically changed the forcing parameter F (t) = sin(t/2000).
Networks were constructed based on the 20% strongest links
in the correlation matrices obtained for each 100-step-long
time window. Due to the stochastic component, networks210

constructed for different ensemble members, but for the same
time period may be quite different, networks for different pe-
riods of same ensemble member may be quite similar.

Asian monsoon data

In a real-world application we used daily NCEP/NCAR re-215

analysis temperature anomaly data (NOAA) for the Asian
monsoon domain for the years 1970-2010 C.E. . The spatial
resolution was 2.5◦× 2.5◦, covering the area between 2.5◦S
to 42.5◦N and 57.5◦E to 122.5◦E, resulting in time series for
468 nodes. Networks were constructed using Pearson corre-220

lation in windows for each full year and by thresholding the
correlation matrix such that we obtain a link density of 5%.
The same dataset and time period was used in Molkenthin
et al. (2014b) to investigate the influence of changing node
topologies in space on the estimates of node degree and be-225

tweenness.

Figure 1. Mean CCEF for 10 indexed sets of random Erdős–Rényi
networks with 100 nodes and different linking probabilitiesp. The
dashed lines correspond to the analytical CCEF levels, the error bars
give the 1σ standard deviation for each index lag

.

values ofδ two random matrices withn nodes and connec-
tion probabilityp are compared. Then the number of totally
possible links isn(n−1)/2, and the expectation value of the
number of links in each of the networks ispn(n − 1)/2. As
the probability of each of the edges in one network to also ap-
pear in the other network isp, the total number of common
links isp2n(n− 1)/2, which with the normalization leads to
f (p), the ratio of total number of common links and the ex-
pectation value of the number of links to be

f (p) =
p2n(n − 1)

pn(n − 1)
= p . (4)

The CCEF for each linking probability therefore lies close to
the expected valuep.

2.2 Test models

To characterize our approach further we investigate simula-
tions of more complex, spatially embedded processes. We
obtained networks (i) analytically from flow fields, as de-
scribed inMolkenthin et al.(2014a) and (ii) from theSpatio-
TemporallyAutocor relatedTime series model START.

2.2.1 Networks from flows

The flow networks are constructed directly from a velocity
field using a correlation measure based on the temperature
profiles resulting from a temperature peak via advection and
diffusion (Molkenthin et al., 2014b, a). The velocity function
considered here is

v(x,y) =

 e
−(y−0.5x)2

c

0.5 e
−(y−0.5x)2

c

 , (5)

and we vary the parameterc for the flow width from 200 to
2000 in 10 steps, thus gradually changing the flow network.
The positions and the number of nodes are kept constant. For
each value ofc we obtain a correlation matricesC1, . . . ,C10,
and thresholding these matrices by different critical values
we obtain set of adjacency matrices.

2.2.2 Networks from the START model

As a more complex test case we consider two transient simu-
lations for the START model (Rehfeld et al., 2014). Networks
generated from START undergo a distinct transition when the
forcing parameterF is changed: forF = −1 the network is
partitioned into two vertical connected areas; forF = 0 hori-
zontal cross-links have appeared and link the two sections. At
maximal forcing, forF = 1, there is one large, horizontally
oriented component. We performed two transient simulations
with a 6× 7 sampling grid (Rehfeld et al., 2014) for 20 000
timesteps and 100 ensemble members each. In the first run
the forcing parameter was increased linearly from the start
to the end of the simulation. In the second run we peri-
odically changed the forcing parameterF(t) = sin(t/2000).
Networks were constructed based on the 20 % strongest links
in the correlation matrices obtained for each 100-step-long
time window. Due to the stochastic component, networks
constructed for different ensemble members, but for the same
time period, may be quite different, and networks for differ-
ent periods of the same ensemble member may be quite sim-
ilar.

2.2.3 Asian monsoon data

In a real-world application we used daily NCEP/NCAR re-
analysis temperature anomaly data (NOAA, 2014) for the
Asian monsoon domain for the years 1970–2010 CE. The
spatial resolution was 2.5◦

×2.5◦, covering the area between
2.5◦ S–42.5◦ N and 57.5–122.5◦ E, resulting in time series
for 468 nodes. Networks were constructed using Pearson cor-
relation in windows for each full year and by thresholding the
correlation matrix such that we obtain a link density of 5 %.
The same data set and time period was used inMolkenthin
et al. (2014b) to investigate the influence of changing node
topologies in space on the estimates of node degree and be-
tweenness.

3 Results

3.1 Flow networks

We computed the CCEF for flow networks with linearly in-
creasing flow-width parameterc. As Fig.2 shows, the com-
mon component size decreases monotonically with the width
parameter difference of the networks. The higher the thresh-
old of the correlation matrix is, the faster the CCEF decays
but the general shape does not change.
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Fig. 2: CCEF for the indexed flow-networks with increasing
flow-width parameter c, and for different threshold values of
adjecency matrices of the flow-networks.

3 Results

3.1 Flow-networks

We computed the CCEF for flow-networks with linearly in-
creasing flow-width parameter c. As Fig. 2 shows, the com-230

mon component size decreases monotonously with the width
parameter difference of the networks. The higher the thresh-
old of the correlation matrix is, the faster the CCEF decays
but the general shape does not change.

3.2 START-model networks235

The START model undergoes a more distinct transition from
a network with two distinct parts through a connected stage
with three regions to one single component(Rehfeld et al.,
2014) in response to a single forcing parameter F . To char-
acterize the CCEF response to different network evolution240

patterns we use two test cases, in which we vary F from its
minimum to its maximum. In the first example, the forcing
parameter is varied linearly along time. The CCEF response
is a slow decline from its maximum CCEF(0) = 1 to a min-
imum value CCEF(99)≈ 0.4, as shown in Fig. 3. In the sec-245

ond test the forcing parameter was varied periodically as a
function of time, F = sin( 2π

P t), with P = 10. In response to
the sinusoidal forcing, periodic behavior is also observable in
the CCEF and with the same period as the forcing parameter.

Fig. 3: CCEF for networks from the START model with peri-
odic (green) and linearly increasing (blue) forcing parameter
F. The error bars indicate the standard deviation of the CC
size estimates.

3.3 Application to the Asian Monsoon domain250

Finally, we used the CCEF to investigate the evolution of cli-
mate networks from observations. The networks were con-
structed using a link density of an annual basis for 41 years,
1970-2011 C.E. The obtained CCEF in Fig. 4 is reminiscent
of the Erdős-Rényi networks in Sec. 2.1, with an initial quick255

decline followed by a plateau.

Fig. 4: CCEF of annual climate networks for the time period
1970-2011 C.E., error bars are presented as CCEF standard
deviation of the respective time lag in years.

Figure 2. CCEF for the indexed flow networks with increasing
flow-width parameterc, and for different threshold values of ad-
jacency matrices of the flow networks.

3.2 START-model networks

The START model undergoes a more distinct transition from
a network with two distinct parts through a connected stage
with three regions to one single component (Rehfeld et al.,
2014) in response to a single forcing parameterF . To char-
acterize the CCEF response to different network evolution
patterns we use two test cases, in which we varyF from its
minimum to its maximum. In the first example, the forcing
parameter is varied linearly along time. The CCEF response
is a slow decline from its maximum CCEF(0) = 1 to a mini-
mum value CCEF(99) ≈ 0.4, as shown in Fig.3. In the sec-
ond test the forcing parameter was varied periodically as a

function of time,F = sin
(

2π
P

t
)
, with P = 10. In response

to the sinusoidal forcing, periodic behaviour is also observ-
able in the CCEF and with the same period as the forcing
parameter.

3.3 Application to the Asian Monsoon domain

Finally, we used the CCEF to investigate the evolution of cli-
mate networks from observations. The networks were con-
structed using a link density of an annual basis for 41 years,
1970–2011 CE. The obtained CCEF in Fig.4 is reminiscent
of the Erd̋os–Rényi networks in Sect.2.1, with an initial
quick decline followed by a plateau.

However, while in the case of Erdős–Rényi networks
(Fig. 1) the baseline is equal to the set link density, it is sig-
nificantly higher than the link density here. We thus conclude
that a high degree of persistence and a low amount of spatio-
temporal variance can be found in climate networks from the
Asian Monsoon domain at annual timescale.

The spatial domain selected for this study is the host of
very distinct seasonal dynamics during the Asian Monsoon
seasons, see e.g.Wang (2006). At inter-annual timescales,

4 L. Tupikina et al.: Evolution of climate networks

Fig. 2: CCEF for the indexed flow-networks with increasing
flow-width parameter c, and for different threshold values of
adjecency matrices of the flow-networks.

3 Results

3.1 Flow-networks

We computed the CCEF for flow-networks with linearly in-
creasing flow-width parameter c. As Fig. 2 shows, the com-230

mon component size decreases monotonously with the width
parameter difference of the networks. The higher the thresh-
old of the correlation matrix is, the faster the CCEF decays
but the general shape does not change.

3.2 START-model networks235

The START model undergoes a more distinct transition from
a network with two distinct parts through a connected stage
with three regions to one single component(Rehfeld et al.,
2014) in response to a single forcing parameter F . To char-
acterize the CCEF response to different network evolution240

patterns we use two test cases, in which we vary F from its
minimum to its maximum. In the first example, the forcing
parameter is varied linearly along time. The CCEF response
is a slow decline from its maximum CCEF(0) = 1 to a min-
imum value CCEF(99)≈ 0.4, as shown in Fig. 3. In the sec-245

ond test the forcing parameter was varied periodically as a
function of time, F = sin( 2π

P t), with P = 10. In response to
the sinusoidal forcing, periodic behavior is also observable in
the CCEF and with the same period as the forcing parameter.

Fig. 3: CCEF for networks from the START model with peri-
odic (green) and linearly increasing (blue) forcing parameter
F. The error bars indicate the standard deviation of the CC
size estimates.

3.3 Application to the Asian Monsoon domain250
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structed using a link density of an annual basis for 41 years,
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Fig. 4: CCEF of annual climate networks for the time period
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Figure 3. CCEF for networks from the START model with periodic
(green) and linearly increasing (blue) forcing parameterF . The er-
ror bars indicate the standard deviation of the CC size estimates.
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Figure 4. CCEF of annual climate networks for the time period
1970–2011 CE. Error bars are presented as CCEF standard devia-
tion of the respective time lag in years.

however, teleconnections such as that to the ENSO phe-
nomenon plays a significant role (Turner and Annamalai,
2012; Clarke, 2008). In order to identify reasons for the vari-
ability of climate networks in this region we compared the
variation of common component functions CCF(Ni,Nj ) for
different i,j ∈ [1970,2011], where i is kept fixed. in this
way, we obtained a common-links-recurrence diagram, illus-
trated in Fig.5a, with maximum values on the diagonal. Each
pair (i,j) for i,j ∈ [1970,2011] corresponds to the value of
the common component function CCF(Ni,Nj ), as in Eq. (3).

Figure 5a shows rows and columns with distinct lower
values for the CCF. In these lines the overall sum,Si =∑

j CCF(Ni,Nj ), takes smaller values in the yearsi ∈

(1971−1973,1975,1984,1989,1993,1999). We compared
this sequence with a list with strong El Niño phenomena

Nonlin. Processes Geophys., 21, 705–711, 2014 www.nonlin-processes-geophys.net/21/705/2014/
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However, while in the case of Erdős-Rényi networks
(Fig. 1) the baseline is equal to the set link density, it is sig-
nificantly higher than the link density here. We thus conclude
that a high degree of persistence and a low amount of spatio-260

temporal variance can be found in climate networks from the
Asian Monsoon domain at annual time-scale.

(a) Common link recurrence

(b) Correlation of the common link evolution

Fig. 5: Common-links-recurrence-diagram (a) and correla-
tion matrix of the common link evolution (b). Each point
(i, j) in diagram (b) corresponds to the value of the corre-
lation coefficient corr(i, j) between the common component
functions CCF (Ni,Nk) and CCF (Nj ,Nk). Lines with low
values (marked at the bottom with arrows) are observable
around strong ENSO years.

The spatial domain selected for this study is the host of
very distinct seasonal dynamics during the Asian Monsoon
seasons, see e.g. Wang (2006). At inter-annual timescales,265

however, teleconnections such as that to the ENSO phe-
nomenon plays a significant role (Turner and Annamalai,
2012; Clarke, 2008). In order to identify reasons for the
variability of climate networks in this region we compared
the variation of common component functions CCF(Ni,Nj)270

for different i, j ∈ [1970,2011], where i is kept fixed. This

way, we obtained a common-links-recurrence-diagram,
illustrated in Fig. 5a, with maximum values on the diagonal.
Each pair (i, j) for i, j ∈ [1970,2011] corresponds to the
value of the common component function CCF(Ni,Nj), as275

in Eq. 3.

Fig. 5a shows rows and columns with distinct lower val-
ues for the CCF. In these lines the overall sum, Si =∑
jCCF(Ni,Nj), takes smaller values in the years i ∈280

(1971− 1973,1975,1984,1989,1993,1999). We compared
this sequence with a list with strong El-Niño phenomena
according to the El-Niño 3.4 index (Trenberth, 1997), and
observed that 1972, 1982, 1988, 1992 and 1997 were the
strongest ENSO event years in this time period. At the same285

time, the correlation between the CCF functions of these
years and all others, given in Fig. 5b, also takes on very low
values. Around stronger El-Niño years the surface tempera-
ture networks have less common links, and the correlation of
their CCF with all others is considerably lower. ENSO events290

occur during the northern hemisphere winter season and thus
the main effect of the link breakdown in our networks occur
in the year after the event started.

4 Discussion

The CCEF enables us to investigate the evolution of linearly295

ordered, or evolving, network sets quantitatively. We tested
its response to three different types of model networks and
find, that their response enables us to characterize their evo-
lution.
Unlike random networks, the flow network CCEF level is,300

within limits, not related to the threshold value but dis-
plays a deterministic decrease of network similarity: two
flow-networks separated by bigger index lag have less links
in the intersection, hence the common component function
CCF(Ni,Ni+δ) decreases with the growth of δ, and the in-305

tersection of two flow-networks decreases with the difference
in the width parameter. Furthermore we find that the links in
a network set with higher threshold are more persistent.

The START model examples, on the other hand, illustrate
the distinct difference between slow, linear changes of the310

processes generating the networks over time - and periodic,
rapid transitions. While in the first case the CCEF decreases
slowly, and only considerably for large time difference, in
case of periodic and rapid transitions the CCEF response is
also periodic over the time lag. In this case it is particularly315

important that the time window a single network corresponds
to is sufficiently small compared to the ongoing evolution to
avoid aliasing effects which would occur in case of window
width as a multiple of the forcing period and to be able to
detect the changes at all.320

The year-long daily temperature anomaly networks of the
Asian Monsoon domain show a high degree of spatio-
temporal persistence. This is consistent with the results of

Figure 5. Common-links-recurrence diagram(a) and correlation
matrix of the common link evolution(b). Each point(i,j) in di-
agram(b) corresponds to the value of the correlation coefficient
corr(i,j) between the common component functions CCF(Ni ,Nk)

and CCF(Nj ,Nk). Lines with low values (marked at the bottom
with arrows) are observable around strong ENSO years.

according to the El Niño 3.4 index (Trenberth, 1997), and
observed that 1972, 1982, 1988, 1992, and 1997 were the
strongest ENSO event years in this time period. At the same
time, the correlation between the CCF functions of these
years and all others, given in Fig.5b, also takes on very low
values. Around stronger El Niño years the surface tempera-
ture networks have fewer common links, and the correlation
of their CCF with all others is considerably lower. ENSO
events occur during the Northern Hemisphere winter season
and thus the main effect of the link breakdown in our net-
works occurs in the year after the event started.

4 Discussion

The CCEF enables us to investigate the evolution of linearly
ordered, or evolving, network sets quantitatively. We tested
its response to three different types of model networks and
find that the responses enable us to characterize their evolu-
tion.

Unlike random networks, the flow-network CCEF level
is, within limits, not related to the threshold value but dis-
plays a deterministic decrease of network similarity: two
flow networks separated by bigger index lag have fewer links
in the intersection, hence the common component function
CCF(Ni,Ni+δ) decreases with the growth ofδ, and the inter-
section of two flow networks decreases with the difference in
the width parameter. Furthermore, we find that the links in a
network set with higher threshold are more persistent.

The START model examples, on the other hand, illustrate
the distinct difference between slow, linear changes of the
processes generating the networks over time – and periodic,
rapid transitions. While in the first case the CCEF decreases
slowly, and only considerably for large time difference, in
case of periodic and rapid transitions the CCEF response is
also periodic over the time lag. In this case it is particularly
important that the time window a single network corresponds
to is sufficiently small compared to the ongoing evolution
to avoid aliasing effects which would occur in the case of
window width as a multiple of the forcing period and to be
able to detect the changes at all.

The year-long daily temperature anomaly networks of
the Asian Monsoon domain show a high degree of spatio-
temporal persistence. This is consistent with the results of
Berezin et al.(2012), who found similarly high values over
large regions of the South Atlantic and the equatorial Pa-
cific. While the general shape of the CCEF in Fig.4 agrees
with that for the Erd̋os–Rényi random networks (Fig.1), the
CCEF fluctuates around a much higher level compared to the
link density.

This points towards a highly non-random, deterministic
general structure in the network on which the inter-annual
variability is imprinted. Links in this network are compara-
tively stable but lose some of their stability when the external
disturbance of an El Niño event is added. This agrees well
with the findings ofGozolchiani et al.(2008) andTsonis and
Swanson(2008), who showed that, for global networks, fluc-
tuations, or “blinking” of links could be related to the global
signature of ENSO variability. Therefore, despite the large
persistence in the monsoon network, the monsoon–ENSO
teleconnection is also visible in the common link recurrence
(Fig. 5b).

To check whether the main changes in the climate net-
works investigated here occurred due to changes in the de-
grees of “supernodes” (nodes with higher degree), we plotted
the variability of the degree for each node in Fig.6a) and find
that, indeed, degree variability is high (low) where node de-
gree is high (low). Computing the correlation between time
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cific. While the general shape of the CCEF in Fig. 4 agrees
with that for the Erdős-Rényi random networks (Fig. 1), the
CCEF fluctuates around a much higher level compared to the
link density.
This points towards a highly non-random, deterministic gen-330

eral structure in the network on which the inter-annual vari-
ability is imprinted. Links in this network are comparatively
stable but loose some of their stability when the external
disturbance of an El-Niño-event is added. This agrees well
with the findings of Gozolchiani et al. (2008) and Tsonis and335
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tuations, or “blinking” of links could be related to the global
signature of ENSO variability. Therefore, despite the large
persistence in the monsoon network, the monsoon-ENSO
teleconnection is also visible in the common link recurrence340

(Fig. 5b).
To check whether the main changes in the climate networks
investigated here occurred due to changes in the degrees of
”supernodes” (nodes with higher degree), we plotted the vari-
ability of the degree for each node in Fig. 6a) and find that,345

indeed, degree variability is high (low) where node degree
is high (low). Computing the correlation between time series
of node degrees, we obtain a network of degree variability.
Fig. 6b shows the degree of the resulting graph. Where the
degree variability is low, over mainland India, we find high350

degrees in the degree network, which means that links in this
region are mostly persistent. Where the degree variability is
high, over the adjacent Indian Ocean and the South China
Sea, we also observe high degree values in the network of
the degrees, suggesting that degree changes here are large,355

but synchronized. In the northern part of the Asian monsoon
domain considered here, spanning from Afghanistan through
Pakistan, the Himalayas to China, we find a higher degree
variability with less synchronized degree changes. Desyn-
chonization in this region may occur due to the additional360

effect of the continental Westerlies and the large altitudinal
gradients.

5 Conclusions

We have presented a generic approach to characterize the
evolution of networks. With model tests we established that365

it is possible to use it to distinguish random, deterministic
and periodic evolution behaviors in a set of networks. The
new quantity to measure variability and persistence in net-
works is suitable for different network types. For example,
the network set may be linearly ordered by time - or by pa-370

rameter difference. The method can be extended in a straight-
forward manner, but it currently requires that the node struc-
ture and link density remain constant. Applying the CCEF
analysis to data from the Asian Monsoon domain we found
that El-Niño years are accompanied by a distinct network im-375

(a) Degree variability

(b) Degree of the degree network

Fig. 6: Mean degree variability (a) and degree of the degree
variability (b) in the annual temperature anomaly networks
(1970-2011).

print, leading to small common components with non-ENSO
years and high agreement with ENSO years. In the future, the
CCEF could be a particularly useful tool in the investigation
of change points in network evolution.
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series of node degrees, we obtain a network of degree vari-
ability. Figure6b shows the degree of the resulting graph.
Where the degree variability is low, over mainland India,
we find high degrees in the degree network, which means
that links in this region are mostly persistent. Where the
degree variability is high, over the adjacent Indian Ocean
and the South China Sea, we also observe high degree val-
ues in the network of the degrees, suggesting that degree
changes here are large, but synchronized. In the northern
part of the Asian monsoon domain considered here, spanning
from Afghanistan through Pakistan, the Himalayas to China,
we find a higher degree variability with less synchronized
degree changes. Desynchonization in this region may occur
due to the additional effect of the continental Westerlies and
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We have presented a generic approach to characterize the
evolution of networks. With model tests we established that
it is possible to use it to distinguish random, deterministic
and periodic evolution behaviours in a set of networks. The
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works is suitable for different network types. For example,
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forward manner, but it currently requires that the node struc-
ture and link density remain constant. Applying the CCEF
analysis to data from the Asian Monsoon domain we found
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