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Abstract

The dynamical response of a piecewise-linear capsule system is studied by means of path-following tech-
niques in this paper. As the capsule model belongs to the class of piecewise-smooth dynamical systems
involving impact and friction, a special care is taken in order to divide the trajectory of the system into a
smooth vector field in each disjoint subregion. Specifically we study a two-sided drifting system focusing
on directional control and energy consumption. We aim to address two practical problems which are
maximizing the rate of progression and directional control of the system by following a typical period-1
trajectory. The one-parameter analysis shows that two types of bifurcations, grazing bifurcation and
boundary-intersection crossing bifurcation are found, and the maximal rate of progression is achieved
when the capsule performs the oscillations without sticking phases. In our two-parameter study, the
control parameters for which the rate of progression is maximal are identified using fixed value of power
consumption, and the curves which divide the motion of the capsule between forward and backward
progression are obtained.

Keywords: Capsule dynamics; Vibro-impact; Non-smooth dynamical system; Numerical continuation

1. Introduction

Rectilinear directional control of capsule robots [1–4] is a challenge task, particularly when dynamic
environment is changing [5, 6]. In the application of capsule endoscopy [7, 8], extra legged mechanism
is employed for the capsule in order to resist the natural peristalsis of gastrointestinal tract, e.g. [9, 10].
For the self-propulsion capsules, backward progression becomes a compulsory skill, and this could be
achieved either through a careful design of the trajectory of the internal mass [1–3] or by suitably varying
the oscillation parameters [4, 6, 11]. In the former case, the trajectory of the internal mass is limited by
the size of the capsule, leading to complications in practical design. In the latter case, the internal mass
is subject to a sinusoidal excitation and the motion can be controlled by varying the system parameters,
such as the frequency and amplitude of harmonic excitation. However, determining the precise parameter
values that allow changing the direction of the rectilinear motion is not straightforward, but can be done
via dedicated studies of the dynamical response of capsule systems.

This paper presents a detailed analysis of the dynamical response of a vibro-impact capsule system,
with special focus on its forward and backward progression. Such progression is sometimes referred to as
a drift in the literature, which has received considerable attention in the past in the context of engineering
applications, see e.g. [12–15]. In [12], the dynamics of a piecewise-linear drifting oscillator was studied and
the analysis revealed that the largest drift was achieved when the system response switches from periodic
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to chaotic, originating from a cascade of period-doubling bifurcations. Luo and co-workers [13] considered
a two-degrees-of-freedom plastic impact oscillator with a frictional slider, and the largest progression was
found when the system operates under period-1, multi-impact motion. Ho et al. [14] studied the dynamic
response of a electro-vibro-impact drifting system, and the highest progression rates and impact force of
the system were achieved when periodic trajectories of the system occur. A novel drifting oscillator for
analysis and prediction of percussive drilling was proposed by Depouhon et al. in [15]. In these previous
investigations, only one-sided drift of the system has been considered. Therefore, the current paper aims
at contributing to the study of two-sided drifting systems, with special emphasis on directional control
and energy consumption.

The dynamical study of systems of the type considered here poses well-known challenges from a nu-
merical point of view. These are mainly due to non-smooth nonlinearities, typical in systems involving
impact and friction. In order to explore the behaviour of the capsule system, we will employ two different
types of numerical approaches, namely, direct numerical integration and path-following techniques. As
will be explained in detail later, the proposed capsule model belongs to the class of piecewise-smooth
dynamical systems [16], which are characterized by periods of smooth evolution interrupted by instanta-
neous events. For this type of systems, the state space is usually divided into disjoint subregions, in such
a way that the system dynamics in each region is described by a smooth vector field. Therefore, a special
care must be taken in order to get reliable numerical approximations of the behaviour of such systems
in an efficient way [17]. Path-following (continuation) methods are well-established techniques in applied
mathematics [18] that enable a systematic study of a system response subject to parameter variations.
For the case of piecewise-smooth systems, specialized continuation tools such as SlideCont [19], COCO
[20] and TC-HAT [21] have been developed, and the latter will be employed in the current work for the
numerical study of the capsule model.

The rest of the paper is organized as follows. In the next section, the physical model of the capsule
system is explained and its equations of motion describing different modes of operation in a compact
manner are presented. In Section 3, the mathematical formulation of the capsule model is studied in
detail in order to carry out numerical analysis by means of TC-HAT. In particular, two solution measures
are defined for monitoring the performance of the system. In Section 4, one-parameter analysis of the
system under variation of excitation frequency is carried out by following a typical period-1 trajectory.
Then two practical problems for which the rate of progression is maximised and directional control of the
capsule system are tackled through two-parameter study. Finally, some concluding remarks are drawn in
Section 5.

2. Physical Model and Equations of Motion

Consider a capsule system with two degrees of freedom as shown in Fig. 1. The system consists of
a movable internal mass m1 attached to an outer capsule of mass m2 via a linear spring-damper pair
k1, c. The mass m1 is subject to a harmonic excitation force with amplitude Fd and frequency Ω. The
absolute displacements of the the internal mass and the capsule are given by the variables X1 and X2,
respectively. If the relative displacement X1 −X2 exceeds a gap E, an intermittent contact between m1

and a weightless plate attached to the capsule via a secondary spring k2 takes place. When the resulting
force acting on the capsule from the internal mass support and the secondary spring having stiffness k2 is
larger than the threshold of the Coulomb friction Fc between the capsule and its surrounding medium, a
one-dimensional motion of the capsule occurs, whose direction depends on the direction of the resulting
force within the capsule.

As will be explained in more detail in Section 3.1, the dynamics of the capsule system can be decom-
posed into various modes of operation, depending on whether the internal mass m1 is in contact with
the secondary k2, direction of the capsule motion, etc. These operational modes can be mathematically
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Figure 1: Physical model of the vibro-impact capsule system.

described in a compact form as follows (cf. [4, 6, 11]):































x′

1 = y1,

y′1 = α cos(ωt) + (x2 − x1) + 2ξ(y2 − y1)− P3β(x1 − x2 − δ),

x′

2 = (P1(1− P3) + P2P3)y2,

y′2 =
1

γ
(P1(1 − P3) + P2P3)

(

P3β(x1 − x2 − δ)− (x2 − x1)− 2ξ(y2 − y1)− sign(y2)
)

,

(1)

with P1 := H
(

∣

∣(x2 − x1) + 2ξ(y2 − y1)
∣

∣− 1
)

, P2 := H
(

∣

∣(x2 − x1) + 2ξ(y2 − y1)− β(x1 − x2 − δ)
∣

∣− 1
)

and P3 := H(x1 − x2 − δ), where H(·) stands for the Heaviside step function. In the equations of motion
(1), the following nondimensional variables and parameters have been introduced:

Ω0 =

√

k1

m1

, t = Ω0τ, ω =
Ω

Ω0

, ξ =
c

2m1Ω0

, β =
k2

k1
,

α =
Fd

Fc

, δ =
k1

Fc

E, γ =
m2

m1

, x1 =
k1

Fc

X1, x2 =
k1

Fc

X2.

(2)

3. Capsule Model as a Piecewise-Smooth Dynamical System

As it is evident from the equations of motion (1), the capsule model belongs to the class of piecewise-
smooth dynamical systems [16], which are characterized by periods of smooth evolution interrupted by
instantaneous events. Typically, the trajectories of these systems are split into smooth segments consisting
of the following components: a smooth vector field that governs the system behaviour during the segment
and a smooth event function whose zeroes define the terminal point of the segment. Each segment is
labeled with an index Ii, i ∈ N, so that any solution of the piecewise-smooth dynamical system is fully
characterized by its solution signature {Ii}

M

i=1, where M ∈ N defines the length of the signature. This
mathematical formulation enables the application of path-following algorithms by means of the software
package TC-HAT [21], a driver of AUTO 97 [22] for numerical continuation and bifurcation detection of
periodic solutions of piecewise-smooth dynamical systems. Recent applications of TC-HAT can be found
in [23–25], where the continuation package is employed to study the bifurcation scenario of particular
engineering systems.

In order to write the periodically forced model as an autonomous system, the following standard
nonlinear oscillator [18] will be appended to the equations of motion:











r′ = r + ωs− r
(

r2 + s2
)

,

s′ = s− ωr − s
(

r2 + s2
)

,
(3)

which has the asymptotically stable solution, r(t) = sin(ωt) and s(t) = cos(ωt). This step is necessary
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due to the AUTO 97-formulation which does not allow time-dependent forcing terms as that appearing in
the capsule system (1). Furthermore, to decouple the periodic behaviour of the system from the (forward
or backward) drift, we introduce the following linear transformation:























w1 = x1,

w2 = x1 − x2,

v1 = y1,

v2 = y1 − y2.

(4)

Here, the new variables w2 and v2 give the position and velocity of the internal mass, respectively, relative
to those of the capsule. In this way, the oscillatory motion of the system is fully described by the variables
w2, v1 and v2, as will be seen in the next section. This coordinate change is inspired by a previous work
[26], in which the periodic and progressive motion of a drifting oscillator are detached so as to study the
oscillatory modes separately.

3.1. Mathematical Formulation in TC-HAT

Denote by λ := (ω, α, ξ, δ, β, γ) ∈
(

R

+
)6

and u := (w2, v1, v2, r, s)
T ∈ R5 the parameters and the

state variables of the system, respectively, with R+ being the set of positive numbers. Below we will
introduce the segments Iij , i, j ∈ N, into which the trajectories of the piecewise-linear model (1) can be
divided. Each segment will be associated with a smooth vector field and an event function, as explained
at the beginning of Section 3.

No Contact - Stationary (NC-S), I11, I12, I13. These segments occur when two conditions are met:
the internal mass (m1) and the secondary spring (k2) are not in contact (see Fig. 1), and the force acting
on the capsule from the internal mass support (k1, c) is smaller than the threshold of the dry friction,
that is

w2 < δ and |w2 + 2ξv2| ≤ 1.

The motion of the capsule during this regime is governed by the equation

u′ = fNC-S(u, λ) :=















v1
αs− w2 − 2ξv2
αs− w2 − 2ξv2

r + ωs− r
(

r2 + s2
)

s− ωr − s
(

r2 + s2
)















, (5)

which is obtained after applying the coordinate transformation (4) to the equations of motion (1) and
appending the nonlinear oscillator (3) to the resulting system. Note that in the original system (1) we
have that x′

1 = y1 and x′

2 = 0 (the capsule does not move). Combining this with the fact that w′

2 = x′

1−x′

2

(see transformation (4)) gives w′

2 = v1, corresponding to the first component of (5). Moreover, this mode
of operation terminates when one of the following events occur:

h11(u, λ) := w2 − δ = 0 (Internal mass hits the secondary spring),

h12(u, λ) := w2 + 2ξv2 − 1 = 0 (Transition to forward drift),

h13(u, λ) := w2 + 2ξv2 + 1 = 0 (Transition to backward drift),

where the subindex 1j refers to the segment labels I1j introduced above, j = 1, 2, 3. In what follows, this
notation will be used to associate the segment labels with the corresponding event functions.

No Contact - Forward Drift (NC-FD), I21, I22. These segments are characterized by the conditions:

w2 < δ and w2 + 2ξv2 > 1,
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i.e., the internal mass and the secondary spring are detached and the force acting on the capsule from
the support of the internal mass exceeds the threshold of the dry friction in the forward direction. Hence,
the capsule moves forward, and the dynamics of the system is described by

u′ = fNC-FD(u, λ) :=

















v2
αs− w2 − 2ξv2

αs− (w2 + 2ξv2)
(

1 + 1
γ

)

+ 1
γ

r + ωs− r
(

r2 + s2
)

s− ωr − s
(

r2 + s2
)

















. (6)

This operation regime ends when one of the following events take place:

h21(u, λ) := w2 − δ = 0 (Internal mass hits the secondary spring),

h22(u, λ) := v1 − v2 = 0 (Capsule velocity becomes zero).

No Contact - Backward Drift (NC-BD), I31, I32. This operation mode is analogous to the previous
one, except that now the force acting on the capsule from the internal mass support exceeds the threshold
of the dry friction in the backward direction. Thus, the conditions for this operation regime are

w2 < δ and w2 + 2ξv2 < −1.

The motion of the capsule is described by the system of ODEs

u′ = fNC-BD(u, λ) :=

















v2
αs− w2 − 2ξv2

αs− (w2 + 2ξv2)
(

1 + 1
γ

)

− 1
γ

r + ωs− r
(

r2 + s2
)

s− ωr − s
(

r2 + s2
)

















. (7)

Similarly to the previous case, this mode of operation finishes when one of the events below occur:

h31(u, λ) := w2 − δ = 0 (Internal mass hits the secondary spring),

h32(u, λ) := v1 − v2 = 0 (Capsule velocity becomes zero).

Contact - Stationary (C-S), I41, I42, I43. These segments are analogous to those defined for the
No Contact - Stationary mode. The difference is that now the internal mass is in contact with the
secondary spring, hence an additional elastic force has to be considered in the conditions characterizing
this operation regime:

w2 ≥ δ and
∣

∣w2 + 2ξv2 + β(w2 − δ)
∣

∣ ≤ 1.

The motion of the capsule is governed in this case by the system

u′ = fC-S(u, λ) :=















v1
αs− w2 − 2ξv2 − β(w2 − δ)
αs− w2 − 2ξv2 − β(w2 − δ)

r + ωs− r
(

r2 + s2
)

s− ωr − s
(

r2 + s2
)















. (8)

This mode of operation terminates when one of the following events occur:

h41(u, λ) := w2 − δ = 0 (Contact with the secondary spring is lost),

h42(u, λ) := w2 + 2ξv2 + β(w2 − δ)− 1 = 0 (Transition to forward drift),

h43(u, λ) := w2 + 2ξv2 + β(w2 − δ) + 1 = 0 (Transition to backward drift).

5



Contact - Forward Drift (C-FD), I51, I52. This operation regime is characterized by the conditions:

w2 ≥ δ and w2 + 2ξv2 + β(w2 − δ) > 1,

analogously to the No Contact - Forward Drift mode. The capsule dynamics is described by the equation

u′ = fC-FD(u, λ) :=

















v2
αs− w2 − 2ξv2 − β(w2 − δ)

αs−
(

w2 (β + 1) + 2ξv2
)

(

1 + 1
γ

)

+ 1
γ

(

βδ(1 + γ) + 1
)

r + ωs− r
(

r2 + s2
)

s− ωr − s
(

r2 + s2
)

















. (9)

This operation regime ends when one of the events below take place:

h51(u, λ) := w2 − δ = 0 (Contact with the secondary spring is lost),

h52(u, λ) := v1 − v2 = 0 (Capsule velocity becomes zero).

Contact - Backward Drift (C-BD), I61, I62. Similarly to the previous cases, this operation mode is
analogous to its no-contact counterpart (NC-BD). As before, the conditions characterizing this regime
include the elastic force coming from the secondary spring

w2 ≥ δ and w2 + 2ξv2 + β(w2 − δ) < −1.

The motion of the capsule is described in this case by the system of ODEs

u′ = fC-BD(u, λ) :=

















v2
αs− w2 − 2ξv2 − β(w2 − δ)

αs−
(

w2 (β + 1) + 2ξv2
)

(

1 + 1
γ

)

+ 1
γ

(

βδ(1 + γ)− 1
)

r + ωs− r
(

r2 + s2
)

s− ωr − s
(

r2 + s2
)

















. (10)

This mode of operation finishes when one of the following events occur:

h61(u, λ) := w2 − δ = 0 (Contact with the secondary spring is lost),

h62(u, λ) := v1 − v2 = 0 (Capsule velocity becomes zero).

In Table 1 we summarize the operation modes and segments defined above. An illustration of this
orbit segmentation is presented in Fig. 2. Finally, the capsule model can be expressed in terms of the
vector fields introduced before as follows:

No contact (w2 < δ):

u′ =















fNC-S(u, λ), v1 − v2 = 0 and |w2 + 2ξv2| ≤ 1,

fNC-FD(u, λ), v1 − v2 > 0 or (v1 − v2 = 0 and w2 + 2ξv2 > 1) ,

fNC-BD(u, λ), v1 − v2 < 0 or (v1 − v2 = 0 and w2 + 2ξv2 < −1) .

(11)

Contact (w2 ≥ δ):

u′ =















fC-S(u, λ), v1 − v2 = 0 and
∣

∣w2 + 2ξv2 + β(w2 − δ)
∣

∣ ≤ 1,

fC-FD(u, λ), v1 − v2 > 0 or
(

v1 − v2 = 0 and w2 + 2ξv2 + β(w2 − δ) > 1
)

,

fC-BD(u, λ), v1 − v2 < 0 or
(

v1 − v2 = 0 and w2 + 2ξv2 + β(w2 − δ) < −1
)

.

(12)
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Operation mode Segment Vector field Event function

No Contact - Stationary (NC-S)
I11 fNC-S h11

I12 fNC-S h12

I13 fNC-S h13

No Contact - Forward Drift (NC-FD)
I21 fNC-FD h21

I22 fNC-FD h22

No Contact - Backward Drift (NC-BD)
I31 fNC-BD h31

I32 fNC-BD h32

Contact - Stationary (C-S)
I41 fC-S h41

I42 fC-S h42

I43 fC-S h43

Contact - Forward Drift (C-FD)
I51 fC-FD h51

I52 fC-FD h52

Contact - Backward Drift (C-BD)
I61 fC-BD h61

I62 fC-BD h62

Table 1: Segments defined for the numerical study of the capsule model in TC-HAT.

3.2. Solution Measures

In this section we will introduce two solution measures that will be used to monitor the changes in the
periodic response of the capsule system when a control parameter is varied. In most of the path-following
packages (e.g. AUTO 97 [22]), the L2-norm is set by default as the principal solution measure to construct
bifurcation diagrams. Nevertheless, in our study we will use solution measures that allow us to gain more
insight into the physical phenomena occurring in the capsule system.

From a practical point of view, one of the main concerns in capsule applications is to investigate the
influence of the control parameters on the average rate of progression (drift) per period of the capsule,
which can be computed as follows. Consider a periodic solution u(t) = (w2(t), v1(t), v2(t), r(t), s(t)) of
(11)–(12) with period T > 0. We thus define the rate of progression as (see (1) and (4))

ROP :=
1

T

T
∫

0

(v1(t)− v2(t)) dt, (13)

whose sign indicates whether the capsule moves forward (positive ROP) or backward (negative ROP).
The second solution measure that will be used in our study is related to the average power dissipated

by the capsule system per period, defined as

PAVG :=
1

T

T
∫

0

α cos(ωt)v1(t) dt =
1

T

T
∫

0

αs(t)v1(t) dt. (14)

The quantities (13) and (14) defined above will allow us to tackle practical questions, such as finding
the parameter values yielding the highest progression rates, optimal operation conditions in terms of
energy consumption, parametric boundaries between forward and backward drift, etc.

4. Numerical Investigation of the Capsule Dynamics

As mentioned earlier, one of our main concerns is to investigate the drift of the capsule and its energy
consumption, for which reason the solution measures ROP and PAVG defined before will be monitored
in the following bifurcation study. For this purpose path-following methods will be applied, using the
period-1 trajectory shown in Fig. 2 as starting solution, for which the capsule presents forward drift
with stick and slip phases with short periods of backward motion. In Section 4.1, we will begin our
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Figure 2: Period-1 solution of the capsule system (11)–(12) computed for the parameter values ω = 1.85, α = 0.6, ξ = 0.05,
δ = 0.02, β = 12 and γ = 3. Panel (a) shows the segments I22 (No Contact - Forward Drift), I13 (No Contact - Stationary),
I32 (No Contact - Backward Drift), I11 (No Contact - Stationary), I42 (Contact - Stationary) and I51 (Contact - Forward

Drift), listed in Table 1. Hence, the displayed trajectory has a cyclic solution signature {I22, I13, I32, I11, I42, I51}. Panel
(b) depicts the corresponding time history showing the internal mass (solid line) and capsule (dashed line) motion. The
colors denote the orbit segments as displayed in panel (a).

analysis with a detailed one-parameter study with respect to the excitation frequency ω, and identify the
maximum average power dissipated by the system and the maximum rate of progression. In Section 4.2,
the two-parameter continuation with respect to the excitation frequency ω and the mass ratio γ will be
carried out by keeping the average power consumption PAVG as a constant. In this way, we will try to
identify the parameter scenarios for which the capsule system is operating in the energy-efficient manner.

4.1. One-parameter analysis

From a practical point of view, one of the main concerns is to maximize the rate of progression of the
capsule system while minimising consumption of energy. Therefore, we will first perform the numerical
continuation of the periodic orbit shown in Fig. 2 with respect to the frequency of excitation ω by using
ROP and PAVG as solution measures. The result of the continuation is depicted in Fig. 3 where two
types of bifurcations, grazing (labeled GRi) and boundary-intersection crossing (labeled BCi), have been
found. The latter type usually takes place when two discontinuity boundaries, say H1 and H2, intersect
each other transversely in the state space. If a periodic solution passes through a point in the intersection
H1 ∩H2 upon variation of a single parameter, then this event is called a boundary-intersection crossing
bifurcation. A more detailed discussion about this phenomenon and its dynamical implications can be
found in [27, Section 2.3] and [16, Section 7.3].

The sequence of bifurcations shown in Fig. 3(a) is as follows. First, at ω ≈ 1.4526 we found the
grazing bifurcation GR1, for which a period-1 solution of the capsule system makes grazing contact with
the discontinuity boundary w2+2ξv2 = −1, as will be explained in more detail later. The first boundary-
intersection crossing bifurcation is found at ω ≈ 1.5068, which is produced by a solution trajectory passing
through a point in the intersection of the discontinuity boundaries v1 − v2 = 0 and w2 + 2ξv2 = −1.
Another boundary-intersection crossing bifurcation is encountered for ω ≈ 1.6648 (BC2), whose detailed
description will be given later. The transversal intersection of the discontinuity boundaries v1−v2 = 0 and
w2+2ξv2+β(w2−δ) = 1 gives rise to the bifurcation BC3 (ω ≈ 1.6955), after which the stick-slip motion
of the capsule system disappears. As the excitation frequency is further increased, additional bifurcation
points BC4, BC5, and BC6 are detected at ω ≈ 1.7599, 1.7771, and 1.8294, respectively. After BC4
the motion of capsule presents again stick and slip phases with small intervals of backward drift. This
backward motion, however, disappears at ω ≈ 1.8594 via the grazing bifurcation GR2. After this point,
the last boundary-intersection crossing bifurcation BC7 is found at ω ≈ 2.0911. If the excitation frequency
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Figure 3: One-parameter continuation of the period-1 response of the capsule system (11)–(12) with respect to the excitation
frequency ω, computed for the parameter values α = 0.6, ξ = 0.05, δ = 0.02, β = 12 and γ = 3. Panels (a) and (b) show
the behaviour of the average power consumption PAVG and the rate of progression ROP, respectively, as the frequency
varies. The points labeled GRi denote grazing bifurcations, while BCi represent boundary-intersection crossing bifurcations
detected during the continuation process.

is further increased, the ROP becomes smaller and smaller until it reaches zero at the bifurcation point
GR3 (ω ≈ 2.2331), for which a period-1 orbit makes grazing contact with the discontinuity boundary
w2 + 2ξv2 + β(w2 − δ) = 1, which defines the transition to forward drift during the contact mode. It
should be noted that the capsule system has the oscillations without sticking phases for ω ∈ (1.696, 1.76),
i.e. between BC3 and BC4 as shown in panel (b), and the maximum ROP and PAVG are both achieved
at ω ≈ 1.714 and 1.732, respectively.

In Fig. 4 we show in more detail the dynamics of the capsule around the bifurcation point GR1,
detected at ω ≈ 1.4526. In panel (a) we can observe the solution trajectory making grazing contact with
the discontinuity boundary w2 + 2ξv2 = −1, which defines the transition to backward motion during the
no contact mode. For frequency values before GR1 (see panel (b)), the capsule motion is characterized by
a classical stick-slip response, as can be verified by observing the time history of the capsule velocity, which
is always ≥ 0. This behaviour persists up to the bifurcation point GR1, after which the solution crosses
the discontinuity boundary w2+2ξv2 = −1, hence giving rise to small intervals of backward motion. This
effect can be clearly observed in panel (c), which shows the system response for ω = 1.49 (after GR1).
From a practical point of view, such bifurcations can be extremely dangerous, for instance in medical
applications where capsule robots are used to explore veins and arteries, in which case backward motions
of the capsule must be avoided to prevent damage of the tissue. Furthermore, such small backward drifts
may also affect the efficiency of the system due to energy dissipated through friction.

Fig. 5 shows the behaviour of the capsule system near the boundary-intersection crossing bifurcation
BC2, found at ω = ωBC ≈ 1.6648. As explained before, such bifurcations take place when two discontinuity
boundaries intersect each other transversely in the state space. In our particular case, these boundaries
are v1 − v2 = 0 and w2 = δ, which, for the sake of clarity, will be referred to as H1 and H2, respectively.
Panel (c) presents a small portion of the state space around the intersectionH1∩H2, for ω < ωBC, showing
the segment sequence {I32, I11, I42, I51} (see Table 1). If the frequency slightly increases, the length of
the segment I11 gradually decreases and then disappears at ω = ωBC. At this point, the terminal point of
the segment I31 shown in panel (b) belongs to the intersection H1∩H2, which precisely characterizes the
boundary-intersection crossing bifurcation. After ω = ωBC, a new segment I62 is created, whose length
locally grows as the frequency increases, and the solution presents the segment sequence {I31, I62, I42, I51}
around H1∩H2. This is a typical scenario for a boundary-intersection crossing bifurcation, around which
the solution segmentation experiences dramatic changes upon small variations of a parameter [16, 27].

4.2. Two-parameter analysis

In this section we will make use of the TC-HAT capability for two-parameter continuation of periodic
solutions with an additional boundary condition. In our study, this additional condition will be given
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Figure 4: (a) Grazing orbit of system (11)–(12) corresponding to the bifurcation point GR1 shown in Fig. 3. (b) Time
histories of the capsule velocity and position for ω = 1.44, before grazing occurs. (c) Time histories of the capsule velocity
and position for ω = 1.49, after grazing. The boxed region shows that in this operation mode there is a time window for
which the capsule moves backward, corresponding to the interval in which the capsule velocity is negative.
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Figure 6: Two-parameter continuation of the periodic orbits for the system (11)–(12) with respect to the excitation frequency
ω and the mass ratio γ, computed for the parameter values α = 0.6, ξ = 0.05, δ = 0.02, and β = 5, 8, 12, 18, 27. (a) Resulting
curves in the ω-γ plane for which the average power consumption PAVG = 0.1 is kept constant. (b) Behaviour of the ROP
along the constant-power curves shown in panel (a). The label POPT marks the point of highest ROP for the case β = 12.
(c) Solution family computed along the constant-power curve when β = 12. (d) Capsule motion computed at the points P1

(ω = 0.92, γ = 1.9330), POPT (ω ≈ 1.1225, γ ≈ 1.5376) and P2 (ω = 1.3280, γ = 5.5019) shown in panels (a), (b) and (c),
corresponding to the case β = 12.

in terms of the solutions measures (13) and (14), which are related to the rate of progression (ROP)
and average power dissipated by the capsule (PAVG), respectively. The first question we are going to
tackle with this approach concerns the maximization of the ROP with a prescribed power consumption.
Specifically, we will perform the numerical continuation of a periodic orbit of the capsule system with
respect to the frequency of excitation ω and the mass ratio γ, with the condition PAVG = 0.1. As we do
so, we will monitor the behaviour of the ROP and determine the parameter values for which a maximum
has been achieved. The result of this numerical procedure can be seen in Fig. 6(a), showing a family of
curves with different stiffness ratios in the ω-γ plane for which the power consumption of the capsule is
exactly PAVG = 0.1. Panel (b) presents the values of ROP along the power curves described before. Here,
for β = 12, we determined that the ROP achieves a maximum value ≈ 0.0819 at (ω, γ) ≈ (1.1225, 1.5376).
In panel (c), we depict the family of periodic solutions projected onto the w2-v2, computed along the
power curve. In addition, we computed the capsule motion for three points: P1 (ω = 0.92, γ = 1.9330),
POPT (ω ≈ 1.1225, γ ≈ 1.5376, giving the maximum ROP) and P2 (ω = 1.3280, γ = 5.5019). The result
is shown in panel (d), in which it can be verified that at POPT the capsule moves indeed faster than for the
other parameter combinations at P1 and P2. Another observation from panel (b) is that, as the stiffness
ratio β increases, the value of ROP at POPT is getting larger so that the capsule becomes more efficient.
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Figure 7: Two-parameter continuation of the periodic orbits for the system (11)–(12) with respect to the amplitude α and
frequency ω of excitation, computed for the parameter values ξ = 0.05, δ = 0.02, γ = 3 and β = 5, 8, 12, 18. (a) Resulting
curve in the α-ω plane along which the ROP is zero, for β = 12. (b) Family of zero-ROP curves for the stiffness ratios
indicated in the picture. (c) Backward drift of the capsule system for α = 1.47, ω = 0.849, β = 12. (d) Zero-drift of the
capsule system for α = 1.77, ω ≈ 0.8167, β = 12. (e) Forward drift of the capsule system for α = 2.08, ω = 0.781, β = 12.
In panels (c), (d) and (e), the red and black lines represent the motion of the internal mass and the capsule, respectively.

Another practical issue that can be addressed in the framework of two-parameter continuation is that
of directional control. Preliminary studies on this topic has been carried out by the authors in the past
(Liu et al. [6] and [4]), where the directional control was achieved by judiciously varying the mass ratio γ

or by switching between coexisting attractors. In the present work, we will employ a different approach
based on path-following techniques. As mentioned earlier, the ROP, as defined in (13), can take negative,
zero and positive values, which in turn indicate the direction of capsule drift (or no drift). Therefore,
a continuous control of the drift direction can be implemented when the operating point of the capsule
is set around ROP = 0. Similarly as before, this can be determined by performing the two-parameter
continuation of a periodic solution with the additional condition ROP = 0. The result of this process
is presented in Fig. 7(a), showing a curve in the α-ω plane for which the ROP is exactly zero. This
curve divides locally the two-parameter space into three regions: forward drift (ROP > 0, below the
curve), zero drift (ROP = 0, on the curve), and backward drift (ROP < 0, above the curve). This can
be verified in panels (c), (d) and (e), which depicts the capsule motion for backward, zero and forward
drift, respectively. A family of these curves for various stiffness ratio β are presented in panel (b), and
the results show that, as the stiffness ratio increases, the frequency and the amplitude of excitation need
to be larger in order to control the direction of capsule drift.

5. Conclusions and Future Work

The dynamical response of a piecewise-linear capsule system was studied by means of path-following
techniques in this paper. As the capsule model belongs to the class of piecewise-smooth dynamical systems
involving impact and friction, the trajectory of the system was split into smooth segments consisting a
smooth vector field that governed the system behaviour during the segment and a smooth event function
whose zeroes defined the terminal point of the segment. Therefore, a special care was taken in order to
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get reliable numerical approximations of the behaviour of such system in an efficient way. The novelty of
our contribution comes from the fact that this is the first study of a two-sided capsule drifting system,
where we paid a special attention on directional control and energy consumption. Two practical issues
of maximizing the rate of progression and directional control were tackled by using the continuation
tool TC-HAT to follow a typical period-1 trajectory of the capsule system. Two solution measures, the
rate of progression ROP and the average power dissipated by the capsule system PAVG were defined for
monitoring the performance of the system.

Our one-parameter study was undertaken by performing the numerical continuation of the period-1
orbit with respect to the frequency of excitation ω. The result of the continuation shows two types
of bifurcations, i.e. grazing bifurcation and boundary-intersection crossing bifurcation. The grazing
bifurcations were produced via a tangential contact with the discontinuity boundaries w2+2ξv2+β(w2−
δ) = 1 and w2 + 2ξv2 = −1, which define the transition to forward (in the contact case) and backward
(no contact), respectively. The transversal intersection between the boundaries v1 − v2 = 0 and w2 = δ

gave rise to a boundary-intersection crossing bifurcation that was studied in detail. The numerical
continuation indicates that the capsule system has small periods of negative capsule velocity in which
case the capsule moves a little bit backward when the first grazing bifurcation GR1 is encountered. As the
frequency of excitation increases, the backward drift of the capsule disappears entirely after the second
grazing bifurcation GR2, and when the third one GR3 is encountered, the capsule has no progression
thereafter. Our findings show that the capsule system performs the oscillations without sticking phases
for ω ∈ (1.696, 1.76) which is between the third BC3 and the fourth boundary-intersection crossing
bifurcation BC4, and the maximum ROP and PAVG could both be achieved at ω ≈ 1.714 and 1.732,
respectively.

In our two-parameter study, in order to find the maximum ROP using limited power, we fixed a value
of power consumption PAVG = 0.1 and found the curves for different stiffness ratios in ω-γ plane producing
exactly the same power consumption via continuation. Then we computed the ROP along each curve and
obtained the maximal ROP. For β = 12, we have identified the maximal ROP at ω ≈ 1.1225, γ ≈ 1.5376.
As the stiffness ratio β increases, the maximal ROP along each curve is getting larger so that the capsule
system becomes more efficient. For the directional control of the capsule system, we carried out first the
numerical continuation of a periodic solution with respect to the amplitude of excitation α, and found
a point for which the ROP changed sign. Then by including the additional condition ROP= 0 in the
continuation routine, the continuation was carried out in the α-ω plane and the curve was obtained. This
curve divides the α-ω plane into three modes of operation, i.e. forward drift, zero drift, and backward
drift. Therefore, the capsule system can be driven along a desired direction by a proper selection of the
control parameters, α and ω. We also calculated a series of these curves for various stiffness ratios, and
our findings show that, as the stiffness ratio β increases, the frequency and the amplitude of excitation
need to be larger in order to control the direction of capsule progression.
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