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Explosive Contagion in Networks
J. Gómez-Gardeñes1,2, L. Lotero3,6, S. N. Taraskin4 & F. J. Pérez-Reche5

The spread of social phenomena such as behaviors, ideas or products is an ubiquitous but remarkably 
complex phenomenon. A successful avenue to study the spread of social phenomena relies on epidemic 
models by establishing analogies between the transmission of social phenomena and infectious 
diseases. Such models typically assume simple social interactions restricted to pairs of individuals; 
effects of the context are often neglected. Here we show that local synergistic effects associated with 
acquaintances of pairs of individuals can have striking consequences on the spread of social phenomena 
at large scales. The most interesting predictions are found for a scenario in which the contagion ability 
of a spreader decreases with the number of ignorant individuals surrounding the target ignorant. This 
mechanism mimics ubiquitous situations in which the willingness of individuals to adopt a new product 
depends not only on the intrinsic value of the product but also on whether his acquaintances will adopt 
this product or not. In these situations, we show that the typically smooth (second order) transitions 
towards large social contagion become explosive (first order). The proposed synergistic mechanisms 
therefore explain why ideas, rumours or products can suddenly and sometimes unexpectedly catch on.

Communication between pairs of individuals constitutes the basic building block of macroscopic contagion and 
dissemination of social phenomena such as behaviors, ideas or products. The mathematical formulation for social 
diffusion is reminiscent of the spread of infectious diseases and it is indeed common to use the term viral to refer 
to the rapid advent of a product or an idea. Following this analogy, compartmental epidemic models such as the 
Suceptible-Infected-Susceptible (SIS) or the Susceptible-Infected-Recovered (SIR) are often used to describe the 
dynamics of the transmission of social phenomena1–3.

Epidemic models assume that the transition to macroscopic epidemic invasions in a population can be fully 
explained in terms of microscopic contagions between pairs of individuals. However, the dynamics of social 
transmission do not only depend on the characteristics of the transmitting and receiving individuals ( e.g. on 
attitude or persuasiveness) but also depend on the context of the transmission event. In particular, individuals 
connected in some way to transmitter-receiver pairs of individuals might have important and unexpected effects 
on the spread of social phenomena at the global population level4,5.

The first attempt to include the influence of the context within an epidemiological modelling framework was 
made by Daley and Kendal (DK)6. In the DK model, an individual spreading a rumor or idea may stop spreading 
it and become a stifler after realizing that the rumor is already known by some of its contacts. The importance of 
accounting for this effect was highlighted in their work by showing that a rumor can reach a large fraction of a 
population even if it is transmitted at an infinitesimally small rate α. This finding was in sharp contrast with pro-
totype SIR epidemics which ignore the effects of individuals surrounding infected-susceptible pairs and only 
predict large invasions if the rate of transmission of infection is larger than a certain critical value, i.e. if α α> c

7. 
Despite the different location of the invasion threshold given by the DK and SIR models, both models and their 
variants8 predict that the number of individuals affected by the spreading phenomenon increases smoothly with 
increase of the pair transmission rate, α. This corresponds to a second-order phase transition from non-invasive to 
invasive regime at the critical value, αc. Continuous transitions were also obtained with an extended SIR model 
involving context-dependent transmission mechanisms assuming that each pairwise contagion can be enhanced 
or diminished depending on the number of infected/spreader individuals surrounding the transmitter-receiver 
pair9,10.

A continuous transition between the non-invasive and invasive regimes is not able to explain the fact that 
social phenomena often become accepted by many people overnight. Examples include the sudden unfolding 
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of social movements or the rapid increase in popularity of new communication tools11. Such explosive conta-
gions would correspond to a first-order phase transition from non-invasive to invasive regimes in which the 
number of individuals affected by the spreading phenomenon exhibits a discontinuous increase. Explosive tran-
sitions to large contagion have been predicted by some models incorporating complex synergistic mechanisms. 
These include transmission dynamics in which ignorants can only become spreaders if they are surrounded by 
a number of spreaders larger than a certain threshold12–14 and models in which transmission is enhanced by 
constructive memory of ignorants to previous exposures to the spreading phenomenon15–19 or by a non-linear 
cooperation of the transmitting spreaders20,21. Note that weakly non-linear and memory-less synergistic transmis-
sion mechanisms studied in refs 9,10 do not lead to explosive transitions. This suggests that strong non-linearity 
and memory to previous transmission attempts are important factors leading to explosive transitions. Explosive 
transitions have also been observed in models which assume adaptive rewiring of contacts of susceptible hosts to 
avoid infection from infected individuals22. In this case, rewiring plays a crucial role for explosive transitions since 
eliminating contacts without further rewiring leads to continuous transitions23.

Models predicting explosive contagion typically assume strong synergistic effects involving receivers (igno-
rant individuals) and transmitters (spreaders); the effects of ignorant acquaintances of receivers are typically 
neglected. In this article, we show that explosive transitions can also occur when the acquaintances of ignorant 
receiver individuals are highly reluctant to accept new social phenomena. This seemingly paradoxical result is 
especially relevant to social contexts in which individuals hesitate joining a collective movement, e.g. a strike, 
fearing the risk of becoming part of a minority that can eventually be punished. This scenario also corresponds 
to typical social settings. For instance, social media such as YouTube, Facebook or Whatsapp typically have a 
very fast acceptance11 which depends on both its intrinsic value and perceived value given by our acquaintances.

Synergistic transmission rate
The model introduced here extends those proposed in refs 9,10 to incorporate the effects of ignorant individuals 
connected to receivers (see Fig. 1). Note that this contrasts with the mechanisms used in refs 9,10 which focused 
on synergistic effects of spreaders attached to receivers. In particular, we model the transmission rate, λ →j i, from 
a transmitter j to an ignorant/healthy receiver i as:

λ ασ= ( ) , ( )→ n i[ ] 1j i
h

where α accounts for the intrinsic value of the spreading phenomenon in the absence of the context. The number, 
( )n ih , of ignorant/healthy individuals connected with the receiver, i, can affect transmission from j to i and this is 

accounted for by the function σ ( )n i[ ]h . Non-synergistic models with constant transmission rate, λ α=→j i , are 
recovered for σ ( ) =n i[ ] 1h . We analyse the effects of synergistic transmission using two representative cases for 
the function σ ( )n i[ ]h : (i) exponential,

σ ( ) = , ( )β ( )n i e[ ] 2h n ih

and (ii) linear dependence on ( )n ih ,

σ β β( ) = ( + ( ))Θ( + ( )), ( )n i n i n i[ ] 1 1 3h h h

where Θ( )x  is the Heaviside theta-function which takes the values Θ( ) =x 1 for ≥x 0 and Θ( ) =x 0 for <x 0. 
The parameter β quantifies the constructive β( > )0  or interferring β( < )0  synergy effect of ( )n ih  on transmis-
sion. The exponential dependence assumed in Eq. (2) offers a convenient way to ensure that λ ≥→ 0j i  for any 
value of β. We therefore use this form to illustrate most of our results. However, use of linear synergistic rates 
leads to qualitatively similar results and conclusions (See the Supplementary Information).

Explosive contagion in SIS epidemics
The evolution of the spreading process depends both on transmission rates and dynamical rules imposed. For 
concreteness, we start the analysis by employing the exponential synergistic transmission rates (2) for contagion 
dynamics given by the rules of the SIS epidemic model applied to a population of N individuals. The individuals 
form a network of contacts through which information spreads. To start with, we illustrate our results by using an 
Erdös-Rényi (ER) graph of size =N 103 with a Poisson degree distribution, ( ) = / !,−P k k e kk k  characterised 
by mean node degree k . Below we report similar phenomenology for k-regular graphs.

In the SIS dynamics, each individual can be either susceptible (ignorant) or infected (spreader). Within 
discrete-time transmission dynamics employed in most of our simulations, a spreader, j, in a time step δt δ( = )t 1 , 

Figure 1. Schematic plot of the transmission from a transmitter j to a receiver i with synergistic rate given 
by Eq. (1) when there are 2 ignorant/healthy individuals (green circles) surrounding i. 
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can either transmit the social phenomenon to an ignorant, i, with probability λ δ→ tj i  or can become ignorant 
with probability µ δt. Starting from a population composed of ignorants and a small number of spreaders, 
Y N0 , the number of spreaders, Y, evolves in time and the system reaches a quasi-steady state which can either 

be free of spreaders (spreader-free state characterised by Y =  0) or correspond to an endemic state with a positive 
number of spreaders, >Y 0, coexisting with = −X N Y  ignorants. Coexistence of Y and X in the endemic 
steady-state is a consequence of a balance between the new infections occurring at each time step and the number 
of individuals becoming ignorant. The endemic invasive regime appears when α µ/  takes large enough values.

Figure 2 shows the concentration of spreaders in the steady state, = /y Y N , as a function of α for several 
values of the synergistic parameter β. The curves shown are calculated as follows. For each value of β, the simula-
tion starts with α = 1 from a configuration in which a small fraction (around 5%) of the nodes is initially set 
randomly as spreaders and the rest are ignorant. For each value of α, we iterate the dynamics for a large number 
of time steps so that y  can be accurately measured. Subsequently, α is decreased by α∆  and the Monte Carlo 
(MC) simulation starts again, taking as initial conditions the last configuration obtained for the previous value of 
α. In this way, we perform an adiabatic continuation to compute each of the α( )y  curves shown in Fig. 2.

The striking result is that, for negative enough values of β, the synergistic SIS model displays an abrupt phase 
transition from the spreader-free (healthy) phase to the endemic one. This explosive onset of the endemic regime 
is our main finding and it is in sharp contrast with the results obtained with the traditional non-synergistic epi-
demic models.

Markovian microscopic evolution
Additional evidence for the phenomenon can be obtained by numerical solution of the Markovian microscopic 
evolution equations extending the method introduced in24,25 by incorporating the synergy effects. The key quan-
tities in this approach are the probabilities ( )p t{ }i  that an individual i is a spreader at time t. Their evolution is 
given by the following equations:

µ( + ) = ( )( − ) + ( − ( )) ( ), ( )p t p t p t q t1 1 1 4i i i i

where ( )q ti  is the probability that an ignorant node, i, gets in contact with a neighbouring spreader neighbour and 
becomes a spreader itself:

∏ λ( ) = − − ( ) ( ) .
( )=

→q t t A p t1 [1 ]
5i

j

N

j i ij j
1

Here, Aij is the ( , )i j -th component of the adjacency matrix defined as =A 1ij  if nodes i and ≠j i are con-
nected and =A 0ij  otherwise. The probability of infection λ ( )→ tj i  is a time- and context-dependent variable 
which we approximate by

∑λ α β( ) =




 − ( )





 , ( )

→
=

t A p texp [1 ]
6

j i
l

N

il l
1

using the expression ( ) = ∑ ( − ( ))=n i A p t1h
l
N

il l1  for the number of healthy neighbors of a node i at time t. By 
solving the set of Eqs. (4), one obtains the stationary distribution ⁎p{ }i  that yields the stationary value of infected 
individuals = ∑ =

⁎y pi
N

i1 .
In Fig. 3, we show the results of the numerical solution of Eqs. (4) for β = − .0 5 in an ER network of mean 

degree =k 6. Eqs. (4) have been solved by considering two different sets of initial conditions corresponding to 
either ( ) = .p 0 0 01i , ∀ i (the red dashed curve with an up-arrow) or ( ) = .p 0 0 99i , ∀ i (the blue dashed curve with 

Figure 2. Concentration of spreaders, 〈y〉, in the steady state of SIS epidemics on Erdös-Rényi networks 
with 〈k〉 = 4 as a function of the inherent transmission rate, α. Different curves correspond to different values 
of the synergistic parameter, β. The recovery rate of spreaders is µ = .0 2.



www.nature.com/scientificreports/

4Scientific RepoRts | 6:19767 | DOI: 10.1038/srep19767

a down-arrow). For small and large values of the inherent contagion rate, α, the solutions are independent of the 
initial conditions. In contrast, two different stationary states corresponding to the spreader-free ( = )y 0  and 
endemic ( > )y 0  regimes are observed for α. ≤ ≤ .0 36 0 6 depending on the initial conditions. Thus, both the 
MC and Markovian evolution predict the coexistence of endemic spreading and spreader-free states and the cor-
responding hysteresis effect with discontinuous transitions between these regimes.

The above results are corroborated by MC simulations run from different initial configurations with fractions 
of spreaders drawn uniformly at random between 0 and 1 (in contrast to data presented in Fig. 2 where, due to 
particular choice of initial conditions, only the upper branch of the hysteresis in the bi-stability region is dis-
played). The comparison between the two approaches is also shown in Fig. 3 in terms of the fraction f 0 of initial 
configurations leading to the spreaders-free regime in MC simulations (see the continuous line in Fig. 3). The 
bi-stable region predicted by the Markovian formalism is indeed well captured by the region where f 0 changes 
between 0 and 1.

Mean-Field model
To gain further insight on how explosive transitions appear in the synergistic SIS model, we consider a heteroge-
neous mean-field model. Within this formalism, the concentration, ρk, of spreaders of degree k evolves as 
follows26:

ρ µρ λ θ ρ θ= − + ( )( − ) , ( )
k 1 7k k k k

where θ ρ= /k kk  is the average fraction of spreaders surrounding each node. The rate of transmission towards 
an ignorant i of degree k is given by λ θ ασ( ) = ( )n i[ ]k

h  which is a function of the average number of ignorant 
nodes, θ( ) = ( − )n i k 1h , surrounding the receiver, i.

The stationary state of the SIS process in mean-field approximation corresponds to the condition ρ =


0k , ∀ k 
which, from Eq. (7), satisfies the following condition:

θ
λ θ

µ λ θ θ
θ θ








−

( )
+ ( )








= ( ) = .

( )

k
k k

g1 1 0
8

k

k

2

This equality is trivially satisfied for θ θ= = 0sf  which corresponds to the spreader-free regime. The 
non-trivial regime with macroscopic spreading corresponds to θ( ) =g 0. Eq. (8) can be solved analytically for a 
network with a random z-regular graph topology characterised by a degree distribution, δ( ) = ,P k k z. In this case, 
the concentration of spreaders, y, coincides with θ which is the solution of θ( ) =g 0. The later condition can be 
recast for y in the following form:

µλ= − ( ) . ( )
−y

z
y1 9z

1

The solution of Eq. (9) for exponential synergistic transmission rate, λ α β( ) = ( ( − ))y z yexp 1z  (a linear rate 
leads to analogous results as shown in the Supplementary Information), is µβ α β= − ( / )/( )y W z1  when β ≠ 0 

Figure 3. Concentration of spreaders, 〈y〉, as a function of α for the SIS process in an Erdös-Rényi network 
of 〈k〉 = 6 when β = −0.5. The dashed curves indicate the solution obtained by solving the Markovian 
evolution equations whereas the solid amber circles correspond to the results obtained by using MC simulations 
(103 realizations for each value of α). The hysteresis effect points out the existence of a bi-stability region. The 
solid curve shows the fraction f 0 of ralizations (in the MC simulations) that end up in the fully ignorant 
solution, =y 0. The recovery rate is µ = .0 2.
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and µ α= − /( )y z1 , otherwise. Here, the Lambert function, ( )W x , is implicitly defined by the relation 
( ) ( ( )) =W x W x xexp 27.
The Lambert function is only defined for > − /x e1  and, importantly, it is double-valued in the interval 
∈ (− / , )x e1 0 . The condition > − /x e1  implies that systems with inherent transmission rate 
α α β µβ< < ( ) = −e0 *  are necessarily in the spreader-free regime with = =y y 0sf . For α α β≥ ( )* , there are 

two non-trivial solutions associated with the two branches, ( ) ≥ −W x 10  and ( ) ≤ −−W x 11 , of ( )W x   
for ∈ (− / , )x e1 0 , with the physical solutions being in the range ∈ ,y [0 1]. The analysis of the two branches of 
( )W x  reveals that the transition from non-invasive to invasive regime when increasing α at fixed β is smooth if 

β β> = − −ztp
1 since only the branch ( )W x0  leads to positive values of y. This occurs for:

α α β µ
> ( ) = . ( )

β−e
z 10c

z

Here, α β( )c  is an epidemic threshold corresponding to the situation in which the positive non-trivial solution 
to Eq. (9) coincides with the spreader-free solution, i.e. α( ) = =y y 0c sf . Note that for β = 0 the usual threshold 
for the SIS process is recovered at α µ= /zc . For α α β> ( )c , the solution ysf  becomes unstable while the positive 
solution for y is stable and corresponds to the endemic state.

Explosive transitions are observed for β β< tp where the two branches of ( )W x  take positive values as soon as 
α α β> ( )* . However, the solution corresponding to ( )−W x1  becomes negative for α α β> ( )c  and must be dis-
carded. We then conclude that the bi-stability region associated with the explosive transition is restricted to values 
of β β< tp and α α β α β∈ ( ), ( )[ * ]c . Finally, the mean field analysis concludes that the three possible regimes 
(epidemic, healthy and bi-stability) meet at a tricritical point28 located at:

α β µβ β( , ) = (− , ), ( )e 11tp tp

where the invasion transition occurring with increasing α at fixed β changes from second- to first-order with 
decreasing β.

In Fig. 4, we show the contagion diagram in the β α( , ) plane. The solid curves show the analytical predictions 
α β( )*  and α β( )c  for random z-regular graphs with =z 4 and =z 6 in panels (a) and (b), respectively. The results 
are in good agreement with the bi-stable region obtained by solving the Markovian evolution equations for 
z-regular graphs (see dashed curves in Fig. 4). In addition, the circles display the boundaries for ER graphs with 
=k z . It becomes clear that the node degree heterogeneity of ER graphs leads to a smaller bi-stability region 

compared with the prediction for random z-regular graphs. On the other hand, the position of the triple point in 
ER networks ( i.e. the intersection of the two branches of circles) is in good agreement with the theoretical and 
numerical values (located at the intersection of solid and dashed curves, respectively) obtained for z-regular 
graphs.

Explosive contagion with removal of spreaders
The SIS model assumes that spreaders may temporarily stop spreading the social phenomenon but can eventually 
resume spreading it after meeting a spreader. In some cases, however, it can be more appropriate to assume that 
spreaders cease spreading permanently, i.e., they become stiflers or removed by passing from the spreader state 

Figure 4. Contagion diagram in the (α, β) plane. The solid curves show the theoretical mean-field prediction 
for the boundaries of the bi-stability region, α β( )*  and α β( )c , in a random z-regular graph with (a) =z 4 and 
(b) =z 6. The dashed lines and circles show the corresponding boundaries computed by solving the Markovian 
evolution equations in a z-regular graph and an ER network with =k z, respectively. The recovery rate is set 
to µ = .0 2 in both panels.
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to a new compartment for removed individuals, as in the SIR epidemic model. Within a mean-field framework, it 
is possible to formulate a model with rather general removal mechanisms which encompass both the SIR model 
and a variant of the DK model introduced by Maki and Thompson (MT)29. The dynamics of the concentrations 
of ignorants (x), spreaders (y) and removeds (r) on random z-regular graphs are given by the following equations:

λ
( )
= − ( ) , ( )

x t
t

z x xyd
d 12z

λ µγ
( )
= ( ) − ( ) , ( )

y t
t

z x xy x yd
d 13z

µγ
( )
= ( ) . ( )

r t
t

x yd
d 14

These equations assume that the population remains constant, i.e., the concentrations satisfy the closure con-
dition ( ) + ( ) + ( ) =x t y t r t 1 for every t.

The transmission rate is defined as λ ασ( ) = ( )x xz z , where σ ( )xz  gives a synergistic contribution to transmis-
sion which depends on the number of ignorants, ( )n ih , surrounding a receiver i, i.e. ( ) =n i zxh  (Table 1 gives 
expressions of σ ( )xz  for the cases of exponential and linear synergistic transmissions).

Finally, the transition from the spreader state to the removed one is mediated in Eqs. (13) and (14) by param-
eter μ (the spontaneous removal rate of a spreader) and the function γ ( )x  that captures several possible mecha-
nisms for removal of spreaders. In particular, the SIR model assumes that spreaders stop spreading the social 
phenomena spontaneously ( i.e. removal is not affected by encounters with other individuals). In contrast, the MT 
model assumes that recovery can only occur when a spreader meets another spreader or a removed individual  
(e.g. a stifler). These two behaviours can be modelled by setting (cf. Table 1),

γ ( ) =



 ( + ) = ( − ) , ( )

x z y r z x
1 for SIR

1 for MT 15

so that the analysis of SIR and MT models can be done in a unified way by solving Eqs. (12)–(14).
In general, it is not possible to obtain an exact solution to the system defined by Eqs. (12)–(14). However, it is 

possible to obtain the final concentration of removed individuals, ∞r , which quantifies the reliability of any 
spreading phenomenon with permanent removal of spreaders. The solution is given in implicit form by the fol-
lowing equation which is more conveniently expressed in terms of the final concentration of ignorants, 
= −∞ ∞x r1  (see the Supplementary Information for details):

α µ
= ( ) ≡

( − )
( ) − ( ) .

( )∞
∞

∞f x x
z x

F x F x;
1

[ ]
160 2 0 2

Here, x0 is the initial concentration of ignorants and the function,

∫
γ
σ

( ) =
( )
( )

,
( )

F x s
s s

sd
17z

2

incorporates synergistic and removal mechanisms governed by σ ( )xz  and γ ( )x , respectively. Particular expres-
sions for ( )F x2  corresponding to different removal and synergistic mechanisms analysed in this work are given in 
Table 1. Explosive contagion transitions occur when Eq. (16) gives more than one solution for ∞r . The regimes 
with continuous and explosive transitions are separated by a critical regime for which ( )∞f x x; 0  displays an 
inflection point at some value of = ∈ ( , )∞x x 0 1tp . These conditions and definition of ( )∞f x x; 0  given by Eq. 
(16) result in the following equations for the tricritical point:

Model γ(x) σz(x) F2(x)

SIR, no synergy 1 1 ln(x)

SIR, linear synergy 1 β β( + )Θ( + )z x z x1 1 β( ) − ( + )x z xln ln 1

SIR, exponential synergy 1 βe z x β(− )z xEi

MT, no synergy ( − )z x1 1 ( ( ) − )z x xln

MT, linear synergy ( − )z x1 β β( + )Θ( + )z x z x1 1 β β( ) − ( + ) ( + )
β

z x z z xln 1 ln 11

MT, exponential synergy ( − )z x1 βe z x
β(− ) +

β

β

−
z z xEi e z x

Table 1.  Summary of the functions describing the models with removal of spreaders. Expressions are given 
for random z-regular graphs. The function ( )Ei x  appearing in ( )F x2  for models with exponential synergy is the 
exponential integral defined as ∫( ) = −

−

∞ − −Ei x t e td
x

t1 .
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σ
γ

( ) =
( − ) ( )

( ( ) − ( ))
,

( )
x

x x
x F x F x

1

18
z tp

tp tp

tp 2 0 2 tp

γ γ
σ

σ
′( ) = ( )






+
′( )

( )






,

( )
x x

x
x
x

1

19
z

z
tp tp

tp

tp

tp

where the prime denotes the derivative with respect to x. From Eqs. (18) and (16), the inherent transmission rate 
at the triple point can be expressed as:

α
µγ

σ
=

( )

( )
.

( )

x
zx x 20z

tp
tp

tp tp

In general, any spreading phenomenon with removal of spreaders for which Eqs. (18)–(19) have a solution 
with > ∈ ( , )x x 0 10 tp  can exhibit explosive transitions for strong enough interfering synergy. In particular, both 
the SIR and MK model exhibit explosive transitions, in analogy to those exhibited by y  in the SIS model. In the 
Supplementary Information, we present a complete analysis of the general equations derived here for the SIR 
model with linear synergistic transmission rate. Despite being a relatively simple model, it exhibits the main typ-
ical features of explosive transitions characteristic of more complicated models.

In Fig. 5 we show the solutions of Eq. (16) (dashed curves) for the SIR model with exponential synergistic rate 
together with the results (points) obtained by MC simulations. The evolution of the dashed curves reveals a tran-
sition from smooth to explosive regimes when decreasing β. These results correspond to a relatively large initial 
concentration of ignorants. However, it is possible to show that explosive transitions can be observed for any 
positive initial concentration of ignorants provided β β< ( )xtp 0 , where β ( )xtp 0  decreases with x0. Remarkably, the 
discontinuous transitions predicted by the mean-field analysis are corroborated by the numerical MC simula-
tions, showing bi-stability regions in which low and large reliability of the spreading phenomenon coexist in an 
interval of α.

Discussion
In summary, our results give compelling evidence for explosive transitions towards macroscopic acceptance of 
social phenomena. The explosive nature of these transitions has important implications in real social scenarios. 
For instance, it may represent unexpected and challenging barriers for the control of global pandemics of unde-
sired social phenomena or, conversely, an exciting scenario for the diffusion of innovative products and ideas. 
The key factor responsible for explosive transitions is the negative action on transmission of ignorant neighbours. 
Such opposition prevents transitions to large contagion until the transmission becomes strong enough as to over-
come the reluctance of ignorant contacts. At this point, an explosion to large contagion occurs. Thus, explosive 
contagions appear as by-product of the inhibition of the epidemic onset up to a point in which a macroscopic 
avalanche of contagions unavoidably occurs. Note that inhibitory mechanisms are absent in our previous models 
where synergy was associated with infected neighbours of receivers9,10. We have checked that such synergistic 
mechanism leads to discontinuous transitions in SIS epidemics for sufficiently constructive synergy but tran-
sitions in SIR spread are continuous9,10. In contrast, synergy associated with ignorant neighbours leads to more 

Figure 5. Concentration of removeds at the end of SIR epidemics as a function of the inherent 
transmission rate, α. The initial concentration of ignorants is = .x 0 980  and the removal rate is µ = .0 2. 
Symbols indicate the results of MC simulations for ER networks of size =N 103 and =k 6 (103 realizations of 
epidemics for each value of α; all the epidemics run on the same random graph). Different colours correspond 
to different values of β, as marked by the colour-box. Lines show the analytical solutions of the synergistic SIR 
mean-field model. A magnified view of the onset of the discontinuity for β = − .0 6 is displayed in the inset.
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ubiquitous explosive transitions which occur with and without removal of spreaders. Again, this highlights the 
important role of inhibitory mechanisms on explosive transitions.

The mechanism leading to explosive contagions is reminiscent of the cluster merging processes proposed 
in explosive percolation models30–35. However, these models rely on global external biases for cluster merging 
favouring the delay of the percolation transition which often lack a clear motivation and application31. In our case, 
explosive contagions result from the combined action of local synergistic effects, in line with the microscopic 
rules responsible for explosive synchronization phenomena36–39, jamming in complex networks40 or generalized 
epidemics16–18. We have shown that synergy associated with ignorant neighbours leads to genuine discontinuous 
transitions on random graphs involving a relative fraction of hosts smaller than one. This phenomenology is sim-
ilar to discontinuous percolation transitions of type-II in cluster merging processes35.

Very recently, discontinuous transitions of this type have also been reported for contact processes41, in which 
the recovery mechanism is similar to that of the SIS model. Here we have shown that discontinuous transitions 
to global contagion are not only observed in SIS dynamics but are robustly predicted for models with permanent 
recovery of spreaders. Such models are arguably more realistic than SIS and contact processes for the spread of 
social phenomena. It is important to stress that, although non-linear effects in transmission rates can promote 
discontinuous transitions20,21, nonlinearity is not the driving force responsible for explosive contagions associated 
with inhibition by ignorant acquaintances, since they occur even for weakly non-linear synergistic rates.

Synergistic mechanisms studied here and in our previous works9,10 are associated with the number of ignorant 
neighbours of spreaders or the number of spreader neighbours of receivers, respectively. However, our models 
could easily be adapted to study the effects of other synergistic mechanisms associated with, e.g. the relative 
fraction of ignorant or spreader neighbours instead of their number42–44. Given the relatively low node degree 
heterogeneity of the networks considered in this work, we do not envisage qualitative differences between our 
results and those for a transmission rate depending on the fraction of neighbours. In contrast, differences might 
be more significant for spread in networks with more heterogeneous node degree (e.g. in scale-free networks23).

References
1. Goffman, W. & Newill, V. A. Generalization of epidemic theory: An application to the transmission of ideas. Nature 204, 225–228 

(1964).
2. Bettencourt, L. M., Cintrón-Arias, A., Kaiser, D. I. & Castillo-Chávez, C. The power of a good idea: Quantitative modeling of the 

spread of ideas from epidemiological models. Physica A 364, 513–536 (2006).
3. Isham, V., Harden, S. & Nekovee, M. Stochastic epidemics and rumours on finite random networks. Physica A 389, 561–576 (2010).
4. Berger, J. Contagious: why things catch on (Simon & Schuster, 2014).
5. Nowak, A., Szamrej, J. & Latané, B. From private attitude to public opinion: a dynamic theory of social impact. Psychol. Rev. 97, 

362–376 (1990).
6. Daley, D. J. & Kendall, D. G. Epidemics and rumours. Nature 204, 1118 (1964).
7. Kermack, W. O. & McKendrick, A. G. A contribution to the mathematical theory of epidemics. P. Roy. Soc. Lond. Mat. A 115, 

700–721 (1927).
8. Castellano, C., Fortunato, S. & Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591–646 (2009).
9. Pérez-Reche, F. J., Ludlam, J. J., Taraskin, S. N. & Gilligan, C. A. Synergy in spreading processes: From exploitative to explorative 

foraging strategies. Phys. Rev. Lett. 106, 218701 (2011).
10. Taraskin, S. N. & Pérez-Reche, F. J. Effects of variable-state neighborhoods for spreading synergystic processes on lattices. Phys. Rev. 

E 88, 062815 (2013).
11. Johnson, S. Where good ideas come from (Riverhead books, 2010).
12. Granovetter, M. Threshold models of collective behavior. Am. J. Sociol. 83, 1420 (1978).
13. Watts, D. J. A simple model of global cascades on random networks. Proc. Nat. Acad. Sci. (USA) 99, 5766 (2002).
14. Centola, D. & Eguiluz, M. V.M.and Macy. Cascade dynamics of complex propagation. Physica A 374, 449 (2007).
15. Dodds, P. S. & Watts, D. J. Universal behavior in a generalized model of contagion. Phys. Rev. Lett. 92, 218701 (2004).
16. Janssen, H.-K., Müller, M. & Stenull, O. Generalized epidemic process and tricritical dynamic percolation. Phys. Rev. E 70, 026114 

(2004).
17. Bizhani, G., Paczuski, M. & Grassberger, P. Discontinuous percolation transitions in epidemic processes, surface depinning in 

random media, and Hamiltonian random graphs. Phys. Rev. E 86, 11128 (2012).
18. Chung, K., Baek, Y., Kim, D., Ha, M. & Jeong, H. Generalized epidemic process on modular networks. Phys. Rev. E 89, 052811 

(2014).
19. Wang, W., Tang, M., Zhang, H. -F. & Lai, Y. -C. Dynamics of social contagions with memory of nonredundant information. Phys. 

Rev. E 92, 12820 (2015).
20. Liu, W.-m., Hethcote, H. & Levin, S. Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 

25, 359–380 (1987).
21. Assis, V. R. V. & Copelli, M. Discontinuous nonequilibrium phase transitions in a nonlinearly pulse-coupled excitable lattice model. 

Phys. Rev. E 80, 61105 (2009).
22. Gross, T., D’Lima, C. & Blasius, B. Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96, 208701 (2006).
23. Zhang, H.-F., Xie, J.-R., Tang, M. & Lai, Y.-C. Suppression of epidemic spreading in complex networks by local information based 

behavioral responses. Chaos 24, 043106 (2014).
24. Gómez, S., Arenas, A., Borge-Holthoefer, J., Meloni, S. & Moreno, Y. Discrete-time markov chain approach to contact-based disease 

spreading in complex networks. Europhys. Lett. 89, 38009 (2010).
25. Guerra, B. & Gómez-Gardeñes, J. Annealed and mean-field formulations of disease dynamics on static and adaptive networks. Phys. 

Rev. E 82, 035101 (2010).
26. Barrat, A., Barthélemy, M. & Vespignani, A. Dynamical processes on complex networks (Cambridge University Press, Cambridge, 

2008).
27. Corless, R., Gonnet, G., Hare, D., Jeffrey, D. & Knuth, D. On the lambert w function. Adv. Comput. Math. 5, 329–359 (1996).
28. Aharony, A. Multicritical points. In Hahne, F. (ed.) Critical Phenomena vol. 186 of Lecture Notes in Physics 209–258 (Springer Berlin 

Heidelberg, 1983).
29. Maki, D. & Thompson, M. Mathematical models and applications: with emphasis on the social, life, and management sciences (Prentice 

Hall, 1973).
30. Achlioptas, D., D’Souza, R. M. & Spencer, J. Explosive percolation in random networks. Science 323, 1453–1455 (2009).
31. Grassberger, P., Christensen, C., Bizhani, G., Son, S.-W. & Paczuski, M. Explosive percolation is continuous, but with unusual finite 

size behavior. Phys. Rev. Lett. 106, 225701 (2011).



www.nature.com/scientificreports/

9Scientific RepoRts | 6:19767 | DOI: 10.1038/srep19767

32. da Costa, R. A., Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Explosive percolation transition is actually continuous. Phys. Rev. 
Lett. 105, 255701 (2010).

33. Cho, Y. S., Hwang, S., Herrmann, H. J. & Kahng, B. Avoiding a spanning cluster in percolation models. Science 339, 1185–1187 
(2013).

34. Saberi, A. A. Recent advances in percolation theory and its applications. Phys. Rep. 578, 1–32 (2015).
35. Cho, Y. S. & Kahng, B. Two types of discontinuous percolation transitions in cluster merging processes. Sci. Rep. 5, 11905 (2015).
36. Gomez-Gardenes, J., Gomez, S., Arenas, A. & Moreno, Y. Explosive synchronization transitions in scale-free networks. Phys. Rev. 

Lett. 106, 128701 (2011).
37. Leyva, I. et al. Explosive first-order transition to synchrony in networked chaotic oscillators. Phys. Rev. Lett. 108, 168702 (2012).
38. Motter, A. E., Myers, S. A., Anghel, M. & Nishikawa, T. Spontaneous synchrony in power-grid networks. Nat. Phys. 9, 191–197 

(2013).
39. Ji, P., Peron, T. K. D., Menck, P. J., Rodrigues, F. A. & Kurths, J. Cluster explosive synchronization in complex networks. Phys. Rev. 

Lett. 110, 218701 (2013).
40. Echenique, P., Gómez-Gardeñes, J. & Moreno, Y. Dynamics of jamming transitions in complex networks. Europhys. Lett. 71, 

325–331 (2005).
41. Chae, H., Yook, S.-H. & Kim, Y. Discontinuous phase transition in a core contact process on complex networks. New J. Phys. 17, 

023039 (2015).
42. Bagnoli, F., Liò, P. & Sguanci, L. Risk perception in epidemic modeling. Phys. Rev. E 76, 061904 (2007).
43. Wu, Q., Fu, X., Small, M. & Xu, X.-J. The impact of awareness on epidemic spreading in networks. Chaos 22, 013101 (2012).
44. Shang, Y. Discrete-time epidemic dynamics with awareness in random networks. Int. J. Biomath. 06, 1350007 (2013).

Acknowledgements
JGG is supported by the Spanish MINECO through the Ramón y Cajal program and Projects FIS2011-25167 
and FIS2012-38266-C02-01, the European Commission through FET IP projects MULTIPLEX (Grant No. 
317532) and PLEXMATH (Grant No. 317614), the Fondo Social Europeo and Gobierno de Aragón (FENOL 
group), and the Brazilian CNPq through the grant PVE of the Ciencias Sem Fronteiras program. LL is supported 
by the Enlazamundos program of the Medelln city council and project HERMES (Grant No. 29014) from the 
Universidad Nacional de Colombia.

Author Contributions
J.G.G. and F.J.P.R. designed the research. J.G.G., L.L., S.N.T. and F.J.P.R. performed the research. J.G.G., S.N.T. and 
F.J.P.R. wrote the paper.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Gómez-Gardeñes, J. et al. Explosive Contagion in Networks. Sci. Rep. 6, 19767;  
doi: 10.1038/srep19767 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Explosive Contagion in Networks
	Synergistic transmission rate
	Explosive contagion in SIS epidemics
	Markovian microscopic evolution
	Mean-Field model
	Explosive contagion with removal of spreaders
	Discussion
	Acknowledgements
	Author Contributions
	Figure 1.  Schematic plot of the transmission from a transmitter j to a receiver i with synergistic rate given by Eq.
	Figure 2.  Concentration of spreaders, 〈y〉, in the steady state of SIS epidemics on Erdös-Rényi networks with 〈k〉 = 4 as a function of the inherent transmission rate, α.
	Figure 3.  Concentration of spreaders, 〈y〉, as a function of α for the SIS process in an Erdös-Rényi network of 〈k〉 = 6 when β = −0.
	Figure 4.  Contagion diagram in the (α, β) plane.
	Figure 5.  Concentration of removeds at the end of SIR epidemics as a function of the inherent transmission rate, α.
	Table 1.   Summary of the functions describing the models with removal of spreaders.



 
    
       
          application/pdf
          
             
                Explosive Contagion in Networks
            
         
          
             
                srep ,  (2015). doi:10.1038/srep19767
            
         
          
             
                J. Gómez-Gardeñes
                L. Lotero
                S. N. Taraskin
                F. J. Pérez-Reche
            
         
          doi:10.1038/srep19767
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep19767
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep19767
            
         
      
       
          
          
          
             
                doi:10.1038/srep19767
            
         
          
             
                srep ,  (2015). doi:10.1038/srep19767
            
         
          
          
      
       
       
          True
      
   




