
Computers 2012, 1, 3-23; doi:10.3390/computers1010003
OPEN ACCESS

computers
ISSN 2073-431X

www.mdpi.com/journal/computers
Article

Enhanced Bully Algorithm for Leader Node Election in
Synchronous Distributed Systems
Md. Golam Murshed and Alastair R. Allen *

School of Engineering, University of Aberdeen, Aberdeen, AB24 3UE, Scotland, UK;
E-Mail: mg.murshed@abdn.ac.uk

* Author to whom correspondence should be addressed; E-Mail: a.allen@abdn.ac.uk;
Tel.: +44-1224-272501; Fax: +44-1224-272497.

Received: 6 April 2012; in revised form: 19 May 2012 / Accepted: 5 June 2012 /
Published: 25 June 2012

Abstract: In distributed computing systems, if an elected leader node fails, the other
nodes of the system need to elect another leader. The bully algorithm is a classical
approach for electing a leader in a synchronous distributed computing system. This
paper presents an enhancement of the bully algorithm, requiring less time complexity and
minimum message passing. This significant gain has been achieved by introducing node
sets and tie breaker time. The latter provides a possible solution to simultaneous elections
initiated by different nodes. In comparison with the classical algorithm and its existing
modifications, this proposal generates minimum messages, stops redundant elections, and
maintains fault-tolerant behaviour of the system.

Keywords: leader node election; distributed systems; bully algorithm

1. Introduction

Centralised control in distributed systems helps to achieve some specific goals such as mutual
exclusion, synchronization, load balancing, and time scheduling. This type of distributed system often
requires a unique node to play the role of leader or coordinator of the other nodes. As node crash failure
is not uncommon in distributed systems, failure of a leader node requires special attention and needs
extra tasks to elect another one to act as leader. A leader election algorithm is one of the fundamental
activities of distributed systems, as it acts as a basis for more complex and high level algorithms and
applications. Leader election is important in various systems, for example in certain implementations of



Computers 2012, 1 4

distributed web services. Distributed systems require some special capabilities of a good and efficient
leader election algorithm, such as leader longevity, low communication overhead, low complexity in
terms of time and messages, and providing uniqueness to the elected leader. Several algorithms had
been proposed to deal with the leader node failure problem, and the Bully Algorithm is the classical
one amongst them for electing a leader node in synchronous systems, although this algorithm demands
a large number of messages between the nodes. A distributed system can be defined as synchronous if
some bounds are predefined: (a) lower and upper bound times to execute processes of a node are known
in advance; (b) within a known bounded time the underlying communication network is able to transmit
a message from one node to another node; (c) each node contains a local clock whose drift rate has a
known bound [1]. So it can be inferred from these properties that a synchronous distributed system is
deterministic by nature. This implies that a leader election algorithm is also a deterministic procedure
that can be achieved by a number of communications among the nodes.

Generally, in fault-tolerant distributed systems the leader node has to perform some specific
controlling tasks and this node is well known to the other nodes. This node does not necessarily possess
any extra processing feature to become elected, but election algorithms need a special mechanism to elect
the leader. After crash failure of the leader node, it is urgently needed to reorganize the existing active
nodes to call for an election and to elect a leader in order to continue the operation of the entire system.

The main focal point of an efficient and robust leader election algorithm is to minimise the number
of messages generated for the election procedure and hence to reduce the complexity of the overall
execution time. Based on simulation and analysis, this paper shows that Garcia-Molina’s bully
algorithm [2] can be modified to enhance its performance in message passing and subsequently demand
less time complexity that results in electing a new leader node faster. The paper is organised as follows:
Section 2 describes the features of a leader election algorithm and Section 3 reviews related work. The
enhancements of the bully algorithm are described in Section 4, and the operation of the algorithm is
clarified with the aid of an example in Section 5. Section 6 presents a performance analysis of the
proposed and former algorithms. Section 7 draws the conclusion of this paper.

2. Features of a Leader Election Algorithm

Leader election is a procedure that is embedded in every node of the distributed system. Any node
which detects the failure of the leader node can initiate a leadership election. The election concludes its
operation when a leader is elected and all the nodes are aware of the new leader and agree on that.

In a leader election like the bully algorithm the following assumptions are made: (a) each node must
have a unique id determined by the operating system; (b) each node knows the id of the others; (c) nodes
are not aware of the current state of other nodes. Along with these, the following requirements must be
met by the algorithm [3]:

1. Safety. All the live nodes must agree on the elected leader [4]. Each node contains a local variable
ldr which indicates the current leader of the system. Moreover, each node also contains another
local variable state, which represents the current status of the node. It may be in normal, elect or
wait state. When the node is in normal operation and there is an active leader in the system then the
state variable contains the value normal. By contrast, elect and wait are exceptional cases. State



Computers 2012, 1 5

elect occurs when the system is in the process of electing a new leader. State wait is a special case
during the election: this state is used when a node actively takes part in the election and is waiting
for the result.

2. Liveness. After participating in an election all the live nodes and the elected leader node must
come into a position where all of them are in operational state normal. Each node must set its local
variable ldr = m, where m is the node id of the elected leader [4–7].

A node calling an election means that it initiates an election algorithm. According to [4,8], a node can
not initiate more than one election at a time. But in a distributed system n nodes can initiate n elections
concurrently, where n > 1 is an integer.

3. Literature Review

Failures with particular features in a distributed system determine the solution to be proposed. A
leader election algorithm requires some system features to be satisfied in order to work properly. The
bully algorithm proposed by Garcia-Molina [2] assumes that the system has the following properties:

1. The system is synchronous, and consists of a fixed set of nodes that are connected by a reliable
communication network. Nodes communicate with each other by message passing.

2. Nodes in the system never halt temporarily and reply to incoming messages immediately.
3. Integers are used to identify nodes. Every node knows the ids of the others.
4. All nodes use the same leader election algorithm.
5. A node has no prior knowledge that the current leader node has crashed: a timeout policy is used

to detect node failure.
6. Crashed nodes may recover and may rejoin the system provided that they agree upon the current

election algorithm.

After completion of a successful election according to the bully algorithm, (a) the node with the
highest id of all live nodes is elected as the leader or coordinator: there should be only one leader; (b) all
nodes in the system agree on the newly elected leader. This algorithm uses three types of message:

election: This message is generated by the node which detects failure, to announce an election.
answer: Recipient nodes send this acknowledgment in response to the election message.
coordinator: The newly elected leader node announces itself as leader by sending this message to
all other nodes.

An election is initiated when one node detects, through time-out, that the leader node has crashed.
Since the system is synchronous and the upper limit to pass a message is known a priori, the local
failure detector of a node reports possible leader failure if it does not receive an expected message within
a predefined time period. More than one node may discover the crash and announce more than one
election concurrently [4,8,9]. At the outset of an election, the detector node i sends the election message
to all the nodes of its group whose id number is greater than i. It then waits for answer message from the
recipient nodes. If it does not receive any within a predefined time bound, it declares itself as the leader
by sending coordinator message to all nodes with lower id numbers than itself. If it receives answer



Computers 2012, 1 6

message from any of the nodes, it waits a further period to receive coordinator message that informs
about the newly elected leader. If the first election initiator node does not receive coordinator message
within a predefined time, it starts another election. This procedure is carried on until a new leader node
is elected and all the nodes agree on the new leader node.

A node k that recognizes the failure of the leader node can immediately announce itself as the leader
if it finds that no other live node contains a higher node id than itself (i.e., k > i where i ∈ I and
I = {IdsOfAllLivingNodes}). Otherwise, it starts an election by sending election message to the higher
numbered nodes. If an ordinary (not a leader) node recovers and joins the group, it first sends election
message to nodes having higher id than itself and some elections take place in the system sequentially.
If a former leader recovers, it initiates another election and bullies the other nodes into submission.

The bully algorithm has some drawbacks. (a) Every time a node (former leader or ordinary node)
recovers from a crash failure, it initiates an election, which consumes significant system resources.
(b) Although this algorithm ensures liveness, it sometimes fails to meet the safety condition. This can
happen when a former leader node is replaced by a node with the same id number while the election
procedure is in progress [4]. The newly elected node and the former leader node (which was down for a
while) will both announce themselves as leaders simultaneously. (c) This algorithm elects a new leader
node with the help of a number of redundant elections. In the worst case, it can require a large number
of messages to elect a leader node. The worst case occurs when a node with the lowest id initiates an
election: the role for initiating election is handed over to a node with next higher id and this continues till
the node with the highest id takes over the role. As a result, at least n− 2 redundant elections take place
in the entire system where n is the number of nodes. (d) This algorithm does not provide an efficient
solution for the simultaneous detection of leader node failure by more than one node. More than one
election may take place at the same time, which imposes a heavy load on the network. (e) This algorithm
does not provide a robust solution in an exceptional case like the potential electioneer node crash.

A significant modification to the conventional bully algorithm has been proposed by Mamun et al.
in [9]. In this paper, two more new message-types have been introduced: ok message and query message.
Redundant elections have been stopped using these two messages. The authors suggest that whenever a
node detects failure of the leader node it announces an election. In response to this election all recipient
nodes will send back ok messages to the announcer. Upon receipt of all ok messages, the electioneer-node
knows the identity of the highest id holder of all the live nodes. It then sends coordinator message to all
the nodes, announcing the new leader. If the former leader wakes up, it just announces itself as leader.
If an ordinary node wakes up, it sends query message to the higher nodes and upon receipt of answer
messages it comes to know who the present leader is.

There are several drawbacks to this modified algorithm as well. (a) This algorithm does not guarantee
to stop more than one simultaneous election. This usually happens when a lower numbered node detects
the failure of the leader while an election is in progress which was initiated by another node of higher
id. Because of its ignorance about the ongoing election it will start another election, which causes
more message generation in the system. Moreover, the failure detector modules of more than one node
may detect the crash of the current leader node at exactly the same time and may initiate more than
one election in parallel. The worst case occurs when all the live nodes except the next highest id node
simultaneously recognise the failure of the leader and begin more than one new election concurrently. In



Computers 2012, 1 7

that case, all the live nodes have to reply with ok messages to their respective sender nodes, which incurs
O(n2) messages over the network. (b) This algorithm does not propose any action to be taken if a new
node with a higher node id is added to the system while the former leader is down. (c) This algorithm
does not provide any solution, or does not suggest any urgent action to be taken, when an exceptional
case happens, such as the electioneer node failing during the election.

Another modification to the conventional bully algorithm has been proposed in [10] as a solution
to the large number of messages generated. The authors proposed a coordination group consisting
of several preselected ordered nodes. The aim of forming this group is to prevent global elections
between all nodes. After detecting the crash of the current leader node, the detector node sends the
crash-leader message to the next candidate/alternative node and waits for the reply. If the alternative
node is alive, it sends back an ok message to the detector node and also sends a message to the crashed
node. Being sure about the crash of the current leader node, the alternative node declares itself as the
leader, broadcasting coordinator message to all the nodes of the system. In the case of failure of all
the candidate nodes in the coordinator group, a new election takes place. In this procedure, the detector
node forms a new coordinator group, sending and receiving election and ok messages respectively. The
proposed modification certainly minimizes the number of messages compared to the original algorithm,
but electing a new leader might take a long time. Moreover the paper did not mention about the possible
cardinality of the coordinator group and did not explain some extraordinary cases like the detector node
failure case, former leader revival case, etc.

To make the traditional algorithm fault tolerant, the authors in [11] proposed a minor modification to
the election process. In this algorithm, when a node detects a possible failure of the current leader node, it
sends election message to all nodes with higher id numbers. Upon receiving the ok messages, the detector
node selects the node with highest id of all the living nodes and declares that by broadcasting coordinator
messages. The authors assumed that the messages might get corrupted or lost and that is why an extra
round in the election process has been proposed. The newly declared node again initiates another election
by sending election messages to the higher id nodes and finishes the election by declaring the existing
highest id node as the leader node based on the reply sent by the higher id nodes. Garcia-Molina mentions
some assumptions about synchronous distributed systems: assumption 6 is “there are no transmission
errors”, and assumption 8 is “the communication subsystem does not fail”. So it is quite clear that a node
might fail but not the messaging system. The proposed modification in [11] takes a long time to elect a
new leader node and does not consider some more exceptional cases that could arise in the system.

Although the traditional bully algorithm had been proposed in 1982, it is still a very useful and
preferred algorithm for some important applications. In [12], the author proposed to use a variation
called Fast Bully Algorithm (FBA) to implement a Web Service Community. Some web services
that are functionally similar are grouped as a community to make the whole service faster, convenient
and available. In this application, one of the web services plays the role of the Master Web Service
(Coordinator) and FBA is used to elect a new Master Web Service in case of coordinator failure. The
author also developed Weather Community as a prototype of the web service community, and illustrated
the performance of FBA. A similar application has been proposed in [13], where web services have
been implemented using the Whisper architecture. One of the components of this architecture is Peer



Computers 2012, 1 8

Group where the members provide similar functionality and implement the bully algorithm to elect
a coordinator.

4. Proposed Enhanced Bully Algorithm

This paper proposes some modifications to Garcia-Molina’s bully algorithm [2] and the modified
bully algorithm [9]. The basic system assumptions are as in [2], and the types of message used are very
similar to the modification proposed in [9]. Our algorithm is detailed in the Appendix.

4.1. Proposed Modifications

Analyzing the shortcomings of these algorithms, here we are proposing a set division. According to
this concept, all the nodes of a synchronous distributed system are divided into two sets: Candidate and
Ordinary. Candidate is comprised of ⌈N/2⌉ nodes, where N is the number of nodes in the system. The
other nodes will be in Ordinary, such that any node in Candidate has a higher node id than any node in
Ordinary. Every node of the system should be aware of the other nodes’ sets and ids. The number of
nodes in each set is fixed for now, and no reshuffle is needed for the time being as it would add extra
overhead to the system. But if new nodes are added regularly to the system, after a certain number of
additions the set cardinality will be rearranged. Cardinality arrangement is not discussed in this paper.

Along with the set concept we also propose several important corrections to the algorithm defined
in [9].

1. We assume that election message contains the id of the failure detector node and the id of the failed
node, and that answer message contains the node ids of the leader and Candidate set.

2. We introduce the notion of tiebreaker time δ which is greater than the node to node transmission
time and is unique and different for every node. Higher id nodes should have lower δ and lower id
nodes should have higher δ.
The operating system will determine the value of δ for every node individually using the
following Equation:

δi =
α

i
+ (N − (i− 1))tTX (1)

where i is node id, N is number of nodes in the system, tTX is the average node to node message
transmission time in the system, and α is a real number constant set by the operating system
dynamically. Here we follow the assumptions 8 and 9 in [2] made by Garcia-Molina about node
to node message transmission time tTX .

So δi is the tiebreaker time of a particular node with id i which is unique and varies from other
nodes’ tiebreaker times. For instance, if the value of α is 2.0 and the number of nodes is 10, the
value of tiebreaker time of node 5 is δ5 = 6tTX + 0.4, and for node 6 is δ6 = 5tTX + 0.33. Notice
that the difference in tiebreaker time between two nodes is at least tTX .

3. We also propose a correction to the waiting time (time-out). After sending election message, node
i waits for time

Tel,i = 3tTX + 2tP + δi



Computers 2012, 1 9

where tP is the processing time at the sender node. If we assume tTX ≫ tP , then

Tel,i
∼= 3tTX + δi.

Additionally, if a node i sends ok message, it will wait for time

Tok,i = 2tTX + tP + δi

Tok,i
∼= 2tTX + δi.

4.2. The Election Procedure

It is assumed that each node knows its respective id and which set it belongs to, and the ids and
sets of all other nodes. Our proposed election algorithm is capable of handling possible exceptional
situations that could arise in a synchronous distributed system and these are described below and detailed
in the Appendix.

4.2.1. Ideal Case (IC)

When a node i ∈Ordinary detects the failure of the leader node it sends election message to the nodes
of Candidate and waits for Tel,i time to receive ok message. On receiving election message, all the
live nodes of Candidate will reply with ok messages to the sender node. Upon receipt of ok messages,
detector node learns the highest id node of all living nodes at present. It then generates coordinator
messages and informs all the nodes of both sets about the new leader node. If a node from Candidate
detects the failure, it will send election message to higher id nodes of its own set. The recipient nodes
confirm about the election by sending ok messages to the electioneer node and the electioneer node now
knows the live highest id node and broadcasts coordinator messages to declare the new leader. In this
way, eventually a leader will be elected. If a node notices that it is the next highest id node after the
crashed leader node, it declares itself as the leader directly. The Ideal Case is detailed in Algorithms 1–4
in the Appendix.

4.2.2. Candidates Failure Case (CFC)

If a detector node from Ordinary does not get a reply from Candidate within Tel,i time, it assumes
all the nodes in Candidate have crashed and it then sends election message to the nodes of its own set
with higher id than itself. After that, the election takes place as normal. In this situation the election
procedure takes more time and messages than that of the ideal case. However, this case is very rare.

4.2.3. Electioneer Failure Case (EFC)

This case occurs when the detector (electioneer) node crashes just after sending election messages.
After receiving the election message, all recipient nodes reply by sending ok message and wait for Tok,i

time. If a potential candidate node i does not receive any coordinator message within Tok,i
∼= 2tTX + δi

time, it will declare itself as the new leader node by sending coordinator messages to all the nodes of the
system. Here we assume that the multicast election messages are received by the potential candidates at
nearly the same time.



Computers 2012, 1 10

4.2.4. Simultaneous Election Case (SEC)

More than one node may detect that the leader node has crashed. In that case, detector nodes will
initiate separate elections simultaneously [4,9]. Every election will follow the rules of the ideal case
described in Section 4.2.1. A potential node in Candidate Set to become leader may receive more than
one election message simultaneously. A detector node must send election message to the potential nodes
and start its clock for Tel,i time-out period. Potential nodes that received election message will reply
with ok message only to the highest id node of all the sender nodes. Here after sending ok messages,
nodes will wait for Tok,i time. Upon receiving ok messages the detector node declares the new leader by
broadcasting coordinator message to all nodes of the system. If the time-out period, Tel,i (and Tok,i as
well), is over, the following steps have to be taken.

1. If the detector node belongs to Ordinary, it assumes that no node in Candidate is alive and it
initiates another election inside its own set. But it is very rare that all the nodes in Candidate set
(which is around 50% of all nodes in the system) have crashed.

2. If the detector node belongs to Candidate it will declare itself as the new leader. The highest
id node has to wait less time compared with the others, because the tiebreaker time δ varies
significantly from one node to another. Hence, one node will declare itself as leader before the
others. Here, as δ is unique to every node, this algorithm will meet both the liveness and safety
requirements of the leader election algorithm.

4.2.5. Node Revival Case (NRC)

When a node of Ordinary recovers from failure, it will first generate a query message and send it to
the nodes of Candidate. If the revived node is of Candidate it will send query message to the higher
id nodes of its own set. The nodes which received query messages will reply with answer messages
to the newly revived node. The purpose of answer message in Garcia-Molina’s bully algorithm and
in our proposal is not the same. In our proposed modification, answer message acts not only as an
acknowledgment but also as an information message: it contains the id of the current leader node and
the ids of the members of Candidate. After receiving answer messages, it comes to know the identity of
the leader at this moment. If the leader is a lower id node than itself, it will initiate an election. It will do
nothing otherwise. A new node can be added to the system to meet the requirements of computational
purposes. If this node gets the highest node id and is elected as leader while a former leader is down,
the former one may not know about the new leader. But our proposed modification in answer message
informs the revived former leader node or an ordinary node about the current live nodes in Candidate.

5. Example Election

The whole election process proposed in this paper can be described with the help of an example.
Let there be 10 nodes with id 1 . . . 10. Nodes 1 . . . 5 belong to Ordinary and nodes 6 . . . 10 belong to
Candidate. Each node has its own δ assigned by the operating system. Each node knows: which set
it belongs to, the other nodes’ ids, which sets the other nodes belong to, and which node is the current
leader. We assume that node 10 is the current leader. At present it is down and node 3 has detected that.



Computers 2012, 1 11

Node 3 sends election messages to Candidate (Figure 1). The nodes of Candidate send ok messages
to node 3, the detector, which is depicted in Figure 2. As shown in Figure 3, node 3 now knows which is
the highest id node and declares node 9 as the new leader using coordinator message.

Figure 1. Election initialisation.

Figure 2. ok message.



Computers 2012, 1 12

Figure 3. Leader declaration.

Now suppose node 10 is the leader and it crashes, and nodes 2, 5 and 7 detect that simultaneously.
Now nodes 2, 5 and 7 will initiate three separate elections by sending election messages to Candidate,
as shown in Figure 4.

Figure 4. Election initialisation in parallel.



Computers 2012, 1 13

Upon receipt of election messages nodes 9 and 8 will send ok message to node 7. At the same time
nodes 7 and 6 will send ok message to node 5 as shown in Figure 5, because to each of these nodes in
Candidate it is the highest id node among the detector nodes. After sending ok messages, nodes will
start their own timer to wait Tok,i time to receive coordinator message. Detector nodes 7, 5 and 2 wait
up to Tel,7, Tel,5, Tel,2 times respectively to receive ok message. Here we should note that Tel,i > Tok,i

and δi ̸= δj where i ̸= j. However, node 7 knows about the highest live node id, and declares the new
leader, i.e., node 9, and Figure 6 shows that.

Figure 5. ok message to the highest id electioneer nodes.

Figure 6. Declaration of the new leader node.



Computers 2012, 1 14

6. Performance Analysis

Based on message generation in the system, a comparative analysis of [2,9] and our proposed
algorithm would be appropriate to determine which algorithm performs better than the others.

Garcia-Molina’s bully algorithm requires N − 1 messages to elect a leader node in the best case,
where N is the number of nodes. The best case happens when the node having the next highest id
number detects the failure of the leader node and hence announces an election. In the worst case it
requires O(N2) messages to elect a leader node. The worst case happens when the lowest id node of the
system detects the failure of the leader node. It will send election messages to N−1 nodes having higher
id than itself. Each of the nodes eventually initiates a separate election one by one. In this algorithm,
a previously failed node which was not a leader node initiates an election after recovery. But if it was
a former leader, it just broadcasts coordinator messages to other nodes to announce itself as the new
leader. Hence, it requires O(N2) messages to elect a leader node in the worst case and N − 1 messages
in the best case. The Simultaneous Election Case (SEC) happens when more than one node detects the
leader node’s failure at the same time or within a very short time interval. In our example analysis, we
assumed nodes 2, 5 and 7 detected the failure in parallel and started elections individually.

The modified Bully Algorithm proposed in [9] also requires N − 1 messages in the best case. But it
gains a significant improvement in the worst case. It requires only O(n) messages to elect a new leader
node in the worst case. On the recovery of a node, N − 1 messages are required if the recovered node is
a former leader and 2(N − 1) messages are required if the recovered node has the lowest id.

The algorithm proposed in this paper also requires N − 1 messages in the best case. But it requires
at most 2N − 1 messages in the worst case if at least one node in Candidate is live. Therefore there is
almost a 30% gain with respect to the algorithm proposed in [9]. It is very unlikely that all the nodes
in Candidate, which is around 50% of the total nodes, are down at the same time. On the recovery of a
former leader, the algorithm necessitates N − 1 messages. If the recovered node holds the lowest id, N

messages are required.
Neither the algorithm in [2] nor in [9] explains the situation when more than one node detects the

crash of the leader simultaneously and initiates separate elections concurrently. Basically in concurrent
election, the worst case occurs when all the living nodes (except the next highest id node) detect the
failure of the leader node. In the case of the bully algorithm and its modification proposed in [9], almost
O(N2) messages are required, although ignored, to elect a leader in the worst case. But in our proposed
modification we tried to minimize the number of messages by using set division and tie breaker time. The
tie breaker time stops redundant and unnecessary elections and helps to reduce the number of messages
needed to elect a new leader node. To compare our proposed modification with [2,9], we assumed that
all the detector nodes will initiate separate elections and complete the elections until an identical, new
leader node is elected. Tables 1–3 show that at least a 37% reduction in messages has been achieved
compared with [9] in the Simultaneous Election Case (SEC).



Computers 2012, 1 15

Table 1. Performance analysis: N = 5, average Tel = 1201µs.

Case Key nodes
Number of messages Latency (µs)
[2] [9] Our alg. [2] [9] Our alg.

Best case n4 4 4 4 800 800 800
Worst case n1 20 11 9 8804 3401 3403
SEC n1, n3 20 18 11 8804 3401 3001
NRC n2 13 5 5 6201 1000 1000

Table 2. Performance analysis: N = 10, average Tel = 1701µs.

Case Key nodes
Number of messages Latency (µs)
[2] [9] Our alg. [2] [9] Our alg.

Best case n9 9 9 9 1800 1800 1800
Worst case n1 90 26 18 33309 6901 6201
SEC n2, n5, n7 73 56 26 28208 6501 4600
NRC n3 58 13 9 23507 2600 1800

Table 3. Performance analysis: N = 20, average Tel = 2703µs.

Case Key nodes
Number of messages Latency (µs)
[2] [9] Our alg. [2] [9] Our alg.

Best case n19 19 19 19 3800 3800 3800
Worst case n1 380 56 38 127357 13903 12204
SEC n4, n5, n16 275 124 52 98248 12703 7200
NRC n20 19 19 13 3800 3800 3800

Moreover [2,9] do not indicate what would happen if the electioneer node crashes before it announces
the new leader. It can be guessed that both algorithms allow another node to detect the leader failure again
through time-outs, and initiate a new election. But we are proposing (in Section 4.2.3) a robust method
that must elect a leader after initiating an election, whether or not the electioneer node crashes in the
middle of the election. So, our algorithm completely ensures both liveness and safety requirements of
the leader election algorithm.

In order to compare the performance of the algorithms, we execute them in three test cases where the
systems comprised 5, 10, and 20 nodes respectively.

We consider a fast Ethernet environment with data transfer speed 100 Mb/s and latency 200 µs. For
our proposed algorithm here we assume tTX = 200µs, α = 3.0. We takes as an example a system
with 10 nodes, having node id 1 . . . 10 and leader node 10 has recently crashed. The tiebreaker times



Computers 2012, 1 16

may be calculated by Equation 1: δi = {2003, 1802, 1601, 1401, 1201, 1000, 800, 600, 400, 200} . Since
Garcia-Molina’s Bully Algorithm [2] and its modified version [9] utilize the time-out period to recognize
any failure of nodes, we assume the time-out period is the average of all the Tel,i, that is, the waiting times
for election messages. Therefore we estimate a waiting time of 1701 µs for the Garcia-Molina [2] and
Mamun [9] algorithms. We analyzed the algorithms for several different cases: Best Case, Worst Case,
Simultaneous Election Case (SEC), and Node Revival Case (NRC). Table 2 presents the results.

Best case: Here in the example of Table 2, node 9 first detects that the current leader node, node
10, has crashed, and declares itself as the new leader, sending 9 coordinator messages. The number of
messages for this case is the same for all three algorithms. Assuming a latency of 200 µs, the overall
time needed to elect a new leader node in this case is 1800 µs.

Worst case: The traditional Bully algorithm elects a new leader node, in this case, by performing a
series of redundant elections and ends up producing 90 messages in total. In each election, which is 9
in number in this case, the electioneer node waits the average Tel time which is 1701 µs. So the total
time needed is 90 × 200 + 9 × 1701 µs. Algorithm [9] needs 26 messages to elect a new leader and
the electioneer node needs to wait the average Tel time only once. Our proposed algorithm needs less
messages but the waiting time for node 1 is higher than the average Tel time since each node has been
assigned a unique waiting time after sending election message.

Simultaneous election case: The traditional bully algorithm performs 8 elections in this case and
requires 73 messages. Each election requires 1701 µs for waiting time. Since three elections are
taking place simultaneously, algorithm [9] requires 24 messages where each takes 200 µs. During the
election, node 2 has to wait the average Tel time to complete the election. So the total time needed is
24× 200 + 1× 1701 µs. Our algorithm needs 16 effective messages and Tel time = 1400 for node 7. So
the total time is 16× 200 + 1× 1400 µs.

We tested these three algorithms for systems comprised of 5 and 20 nodes as well. The tie breaker
times have been calculated as in the previous example. In the case of 5 nodes, the waiting time has been
calculated for [2,9] to be 1201µs and for 20 nodes, 2703µs. The results are given in Tables 1 and 3.

7. Conclusions

This paper presents some modifications to the classical bully algorithm which overcome the
limitations of this algorithm, and make it efficient and fast to elect a leader in synchronous distributed
systems. The performance of the proposed algorithm has been compared with the original bully
algorithm [2] and its modification [9] and our proposal produces a better outcome. The algorithm is
fast and guarantees correctness and robustness, and the simulation results show that it requires fewer
messages to elect a new leader. There is also scope to propose an algorithm for an asynchronous system
and this will be future work. We also aim to investigate in detail the probability of occurrence of the
various cases described in this paper.



Computers 2012, 1 17

References

1. Sinha, P.K. Distributed Operating Systems Concepts and Design; Prentice-Hall: Upper Saddle
River, NJ, USA, 2002; pp. 332–334.

2. Garcia-Molina, H. Elections in a distributed computing system. IEEE Trans. Comput. 1982,
C-13, 48–59.

3. Wang, X.; Teo, Y.M.; Cao, J. Message and time efficient consensus protocol for synchronous
distributed systems. J. Parallel Distrib. Comput. 2008, 68, 641–654.

4. Coulouris, G.; Dollimore, J.; Kidberg, T. Distributed Systems Concept and Design; Pearson
Education: Essex, UK, 2003; pp. 431–436.

5. Kim, J.L.; Belford, G.G. A distributed election protocol for unreliable networks. J. Parallel
Distrib. Comput. 1996, 35, 35–42.

6. Peleg, D. Time-optimal leader election in general networks. J. Parallel Distrib. Comput. 1990,
8, 96–99.

7. Stoller, S.D. Leader Election in Distributed Systems with Crash Failures; Technical Report 481;
Computer Science Department, Indiana University: Indiana, IN, USA, 1997.

8. Tanenbaum, A.S.; Steen, M.V. Distributed Systems Principles and Paradigms; Prentice-Hall:
Upper Saddle River, NJ, USA, 2003; pp. 262–263.

9. Mamun, Q.E.K.; Masum, S.M.; Mustafa, M.A.R. Modified Bully Algorithm for Electing
Coordinator in Distributed Systems. In Proceedings of the 3rd WSEAS International
Conference on Software Engineering, Parallel and Distributed Systems, Salzburg, Austria, 13–15
February 2004.

10. Gholipour, M.; Kordafshari, M.; Jahanshahi, M.; Rahmani, A. A New Approach for Election
Algorithm in Distributed Systems. In Proceedings of the Second International Conference on
Communication Theory, Reliability and Quality of Service, Colmar, France, 20–25 July 2009;
pp. 70–74.

11. Effatparvar, M.; Effatparvar, M.; Bemana, A.; Dehghan, M. Determining a Central Controlling
Processor with Fault Tolerant Method in Distributed System. In Proceedings of the International
Conference on Information Technology: New Generations, Las Vegas, NV, USA, 2–4 April 2007;
pp. 658–663.

12. Subramanian, S. Highly-Available Web Service Community. In Proceedings of Sixth
International Conference on Information Technology: New Generations, Las Vegas, NV, USA,
2007; pp. 296–301.

13. Cardoso, J. Semantic Integration of Web Services and Peer-to-Peer Networks To Achieve
Fault-Tolerance. In Proceedings of IEEE International Conference on Granular Computing,
Atlanta, GA, USA, 10–12 May 2006; pp. 796–799.



Computers 2012, 1 18

Appendix

N = number of nodes

i = node number

Candidate = set of ⌈N/2⌉ higher id nodes

Ordinary = set of ⌊N/2⌋ lower id nodes

state = state of node

ldr = local variable containing the node id of the current leader node

δ = tie breaker time set for individual nodes

Tel, i = 3ttx + δi

Tok, i = 2ttx + δi

ttx = transmission time

Algorithm 1 Electn
procedure ELECTN

Pre: Node I recognises that leader node has crashed
stateI ← elect
Post: New leader node elected
stateI ← normal

if I ∈ Candidate then
Procedure ElectnCand

else
Procedure ElectnOrd

end if
end procedure

Algorithm 2 Update
procedure UPDATE(var, val)

vari ← val | ∀i
statei ← normal | ∀i

end procedure



Computers 2012, 1 19

Algorithm 3 ElectnCand
procedure ELECTNCAND // I ∈ Candidate

if (I is next highest node id after previous leader node) then
Broadcast(coordinator, I) // Broadcast coordinator, I is new leader
Procedure Update(ldr, I)

else
Multicast election message to nodes i ∈ Candidate | ∀i > I

Wait(Tel, i) // Electioneer waits time Tel, i for all ok messages
if (any coordinator message received within Tel, i stating J is new leader) then

Procedure Update(ldr, J)
else

if (any ok message received within time Tel, i ) then
find highest id node J from the responders
Broadcast(coordinator, J)
Procedure Update(ldr, J)

else
Broadcast(coordinator, I)
Procedure Update(ldr, I)

end if
end if

end if
end procedure



Computers 2012, 1 20

Algorithm 4 ElectnOrd
procedure ELECTNORD // I ∈ Ordinary

Multicast election message to all nodes i ∈ Candidate
Wait(Tel, i) // Electioneer node waits time Tel, i for all ok messages
if (any coordinator message received within time Tel, i stating J is new leader) then

Procedure Update(ldr, I)
else

if (any ok message received within time Tel, i) then
find highest id node J from the responders
Broadcast(coordinator, J)
Procedure Update(ldr, J)

else
if ((no ok message received within time Tel, i) ∧ (I ∈ Ordinary is next highest id)) then

Broadcast(coordinator, I)
Procedure Update(ldr, I)

else
Multicast election message to all nodes i ∈ Ordinary | ∀i > I

Wait(Tel, i)

if (any coordinator message received within time Tel, i stating J is new leader) then
Procedure Update(ldr, J)

else
if (any ok message received within time Tel, i) then

find highest id node J from the responders
Broadcast(coordinator, J)
Procedure Update(ldr, J)

else
Broadcast(coordinator, I)
Procedure Update(ldr, I)

end if
end if

end if
end if

end if
end procedure



Computers 2012, 1 21

Algorithm 5 ElectnEFC
procedure ELECTNEFC

// A node I has received election messages from other nodes
Get node id of failed leader node from election message
if ((no ok message was sent during the last Tok, i time) ∧ (ldri is the same as that of the election

message)) then
statei ← wait
Send ok message to detector node with highest id
Wait(Tok, i) // Node I will wait for coordinator message for time Tok, i

if (node I receives coordinator message within time Tok, i) then
// J is the new leader node, where J > I

Procedure Update(ldr, J)
else

Broadcast(coordinator, I)
Procedure Update(ldr, I)

end if
end if

end procedure



Computers 2012, 1 22

Algorithm 6 ElectnNRC
procedure ELECTNNRC // A node I recovers from failure

if I ∈ Candidate then
Multicast query message to each node i ∈ Candidate | i > I

Wait(Tok, i) // Node I will wait for answer messages
if (I receives ≥ 1 answer messages within time Tok, i) then

Get the id J of the current leader node
if J > i then

Procedure Update(ldr, J)
else

Broadcast(coordinator, I)
Procedure Update(ldr, I)

end if
else

Broadcast(coordinator, I)
Procedure Update(ldr, I)

// As time Tok, i expired and all higher id nodes are down
end if

else // I ∈ Ordinary
Multicast query message to each node i ∈ Candidate
Wait(Tok, i) // Node I will wait for answer message for time Tok, i

if (I receives ≥ 1 answer messages within time Tok, i) then
Get the id J of the current leader node
Procedure Update(ldr, J)

else
Multicast query message to each node i ∈ Ordinary

// Tok, i expired and all nodes in Candidate are down
Wait(Tok, i)
if (I receives ≥ 1 answer messages within time Tok, i) then

Get the id J of the current leader node
if J > i then

Procedure Update(ldr, J)
else

Broadcast(coordinator, I)
Procedure Update(ldr, I)

end if
else

Broadcast(coordinator, I)
Procedure Update(ldr, I)

end if
end if

end if
end procedure



Computers 2012, 1 23

c⃝ 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


