
Influence of climate change and human activities on the organic and inorganic 1 

composition of peat during the Little Ice Age (El Payo mire, W Spain) 2 

Silva-Sánchez, N.a, Martínez Cortizas, A. a, Abel-Schaad, D. b, López-Sáez, J.A.b, 3 

Mighall, T.M.c 4 

 5 

a Departamento de Edafoloxía e Química Agrícola. Facultade de Bioloxía. Universidade 6 

de Santiago de Compostela. Rúa de Lope Gómez de Marzoa, sn,  15782, Santiago de 7 

Compostela, Spain. 8 

b Instituto de Historia. Centro de Ciencias humanas y sociales. Consejo Superior de 9 

Investigaciones Científicas. Calle Albasanz, 26-28, 28080, Madrid, Spain. 10 

c Department of Geography & Environment, School of Geosciences, University of 11 

Aberdeen, Elphinstone Road, Aberdeen AB24 3UF, UK 12 

 13 

Corresponding Author: Silva Sánchez, N. noemi.silva.sanchez@usc.es 14 

 15 

Key Words: Geochemistry, Pollen, Non-pollen Palynomorphs, Carbon accumulation, 16 

Peat decomposition, Soil erosion, Soil erosion, Dust fluxes, transhumance 17 

18 

mailto:noemi.silva.sanchez@usc.es


Abstract 19 

 20 

The study of environmental change during the Little Ice Age (LIA) offers a great 21 

potential to improve our current understanding of the climate system and human-22 

environment interactions. Here, a high resolution multiproxy investigation of a 23 

Mediterranean mire from central-western Spain, covering the last ~700 years, was used 24 

to reconstruct peat dynamics and land use change to gain further insights into their 25 

relationship with LIA climate (temperature and moisture). To accomplish this, 26 

concentrations and accumulation rates of major and minor lithogenic (Si, K, Ti, Rb, and 27 

Zr) and biophilic (C and N) elements, as well as humification indices (UV-Absorbance 28 

and Fourier Transform Infrared Spectroscopy - FTIR) and pollen and non-pollen 29 

palynomorphs were determined. Peatland dynamics seems to have been coupled to 30 

changes in solar irradiance and hydrological conditions. Our results point to wetter 31 

conditions after the mid-16th century, although with high intra-annual fluctuations. At 32 

the late 18th century, when solar activity was systematically higher than before, peat 33 

carbon accumulation rates (PCAR) showed a continuous increase and the humification 34 

indices suggest a change towards more humified peat. Enhanced soil erosion occurred at 35 

~AD 1660-1800 (SE1), ~AD 1830-1920 (SE2) and ~AD 1940-1970 (SE3), although a 36 

minor increase in Si fluxes was also detected by ~AD 1460-1580. All phases coincided 37 

with higher abundances of fire indicators, but the changes recorded during the ~AD 38 

1460-1580 event and SE1 coincide with the Spörer and Maunder minima, so a climatic 39 

influence on soil erosion cannot be discounted. Changes in the sources of mineral 40 

matter to the catchment between ~AD 1550 and ~AD 1650 and since the mid 17th 41 

century were likely related to modifications of tree cover and/or variations in wind 42 

strength.  43 



1. Introduction 44 

 45 

Palaeoenvironmental reconstruction of climate and land use changes using peatlands is 46 

important to improve our current understanding of the climate system and human-47 

environment interactions. Knowledge of the long-term ecological dynamics of peatlands 48 

is essential to assess possible responses and feedbacks of these carbon-rich ecosystems 49 

to climate change and natural disturbance (Yu, 2006). Peatland dynamics, as well as 50 

carbon accumulation in peatlands, is a function of the balance between primary 51 

production of living plants and decomposition of the organic remains, both being 52 

controlled by climate and other environmental factors. Climate during the Holocene has 53 

generally favoured peat accumulation and has maintained a large carbon sink (Turunen, 54 

2003), but the rate of carbon accumulation has never been constant. Well known intra-55 

Holocene climate shifts, like the so-called Medieval Climate Optimum or the Little Ice 56 

Age, offer a great opportunity to test controls on carbon accumulation. Temperature 57 

plays a dominant role in carbon dynamics although, despite much research, a consensus 58 

has not yet emerged on the temperature sensitivity of soil carbon decomposition [for 59 

review on the topic see: (Davidson and Janssens, 2006)]. Increasing temperature favours 60 

organic matter decay and consequently carbon release to the atmosphere. However, 61 

temperature also exerts a strong influence on primary productivity, which is crucial for 62 

carbon sequestration. In northern peatlands, hydrological changes are also known to 63 

play an important role in carbon storage (Charman et al., 2009; Klein et al., 2013; Loisel 64 

and Garneau, 2010). They can be natural but also human induced by drying, burning or 65 

other mechanisms of peat degradation. Thus, peatland dynamics at various temporal 66 

scales result from complex and nonlinear relationships with temperature and moisture 67 

conditions (Yu et al., 2001). Discerning these links is important for understanding the 68 



past and future carbon cycle. In this sense, the study of carbon dynamics on a wide 69 

range of peatlands is required. Much research has been done in boreal and Northern 70 

peatlands (e.g. Frolking and Roulet, 2007; Gorhan and Gorham, 1991; Loisel and Yu, 71 

2013; Ovenden, 1990; Packalen and Finkelstein, 2014; Turunen, 2003; Turunen et al., 72 

2001; Vitt et al., 2000; Yu et al., 2003; Yu, 2006, 2012) but Mediterranean wetlands 73 

still remain relatively understudied (e.g. Rodríguez-Murillo et al., 2011). 74 

 75 

The Little Ice Age (LIA) is normally defined as a recent period of generalized mountain 76 

glacier expansion and is conventionally framed between the 16th and 19th centuries, a 77 

period during when European climate was variable but frequently cooler (Grove, 1988; 78 

Mann, 2002). However, the timing and global character of the Little Ice Age is still a 79 

matter of debate (e.g. Bertler et al., 2011; Bradley et al., 2003; Diaz et al., 2011; Mann 80 

et al., 2009, 1999). Most multiproxy palaeoenvironmental studies, based on evidence of 81 

cooling, and earliest evidence of glacier expansions, place the start of the LIA to ~AD 82 

1300-1400, after the end of the Medieval Climate Anomaly (MCA). Grove, (2004) 83 

defines the LIA as beginning in the 13th or 14th century and culminating between the 84 

mid-16th and mid-19th centuries. Changes in orbital cycles, solar and volcanic activity, 85 

as well as the thermohaline circulation have been proposed as the major causes behind it 86 

(Crowley and Kim, 1996; Lean et al., 1995; Rind and Overpeck, 1993; Robock, 2000; 87 

Stuiver et al., 1997).  88 

 89 

Climatic deterioration at the LIA, besides altering peatland dynamics, is considered to 90 

have increased dust deposition in ombrotropic peatlands in Sweden (de Jong et al., 91 

2007) and Poland (De Vleeschouwer et al., 2009). Massa et al., (2012) also detected 92 

increased Ti concentrations in Greenlandic lakes during this climatic event; although 93 



Silva-Sánchez et al. (2015), failed to find increased mineral content in Greenlandic peat 94 

during the LIA. In most European settings, where long histories of human pressure are 95 

common, human-induced soil erosion through the use of fire for the creation of 96 

pastureland and cropland, appears to be more relevant than climate forcing (e.g. Hölzer 97 

and Hölzer, 1998; Martínez Cortizas et al., 2005; Silva-Sánchez et al., 2014). However, 98 

the interplay between climate and human activity makes it difficult to determine any 99 

climatic influence over soil erosion (Ballantyne, 1991; Foster et al., 2000; Fuchs, 2007). 100 

In the last few decades, erosion has became one of the most significant environmental 101 

problems worldwide (Grimm et al., 2002; Lal, 1990; Montgomery, 2007; Pimentel, 102 

2006; Wilkinson and McElroy, 2007), particularly in areas having a seasonal climate 103 

and a long history of human pressure like the Mediterranean region (García-Ruiz et al., 104 

2013). Palaeoenvironmental reconstructions from these environments might provide 105 

valuable information about how ecological systems have changed over time and how 106 

these changes have affected soil erosion processes. Contrasting palaeoenvironmental 107 

information about human activities and climate with historical evidence of social 108 

change allow global interpretations about socio-ecological systems.  109 

 110 

Several investigations undertaken in the Iberian Peninsula revealed the imprint of the 111 

LIA. Evidence has been found in geomorphological studies of glacier fluctuations (e.g. 112 

Grove, 2001; González Trueba et al., 2008), dendroclimatological reconstructions (e.g. 113 

Büntgen et al., 2008) and palaeoenvironmental studies of natural archives such as 114 

alluvial terraces (e.g. Benito et al., 2003b; Gutiérrez-Elorza and Peña-Monné, 1998; 115 

Thorndycraft and Benito, 2006), marine (e.g. Abrantes et al., 2005; Bernárdez et al., 116 

2008; Desprat et al., 2003; Diz et al., 2002; González-Álvarez et al., 2005; Martins et 117 

al., 2005; Nieto-Moreno et al., 2013) or lake sediments (e.g. Julià et al., 1998; Martín-118 



Puertas et al., 2008; Morellón et al., 2012; Valero Garcés et al., 2008; Valero-Garcés et 119 

al., 2006). Because of the geographical distribution of peatlands in Iberia, the LIA has 120 

been primarily recorded in the Northern areas -i.e. Eurosiberian bioclimatic region (e.g. 121 

Martínez-Cortizas et al., 1999; Gil García et al., 2007; Ortiz et al., 2008; Schellekens et 122 

al., 2011; Silva-Sánchez et al., 2014; Castro et al., 2015). Here, we present a high 123 

resolution multiproxy study of a Mediterranean mire covering the last ~700 years. 124 

Major and minor lithogenic (Si, K, Ti, Rb, and Zr) and biophilic (C and N) element 125 

concentrations and accumulation rates, humification indices obtained by UV-126 

Absorbance and Fourier-transform infrared spectroscopy (FTIR) and pollen and non-127 

pollen palynomorph records are combined. The main objectives are: 1) to analyse peat 128 

dynamics in terms of carbon accumulation and peat decay and relate it to climate 129 

(temperature and moisture) changes during the Little Ice Age, 2) provide evidence of 130 

soil erosion and establish their relationship with climate and human activity and 3) get 131 

insights in mineral matter sources and its possible drivers. 132 

 133 

2. Material & Methods 134 

 135 

2.1. Study area and sampling  136 

El Payo mire (Figure 1) is a fen located in the Gata Range, at 1000 m a.s.l, near to a 137 

small stream and surrounded by elevations above 1400 m a.s.l. The peatland is very 138 

close to the Pass of Santa Clara, which connects the provinces of Cáceres and 139 

Salamanca. This area constitutes a contact zone between Precambrian shales and slates 140 

and the granitic materials, which define the Jalama Pluton. Large amounts of colluvial 141 

debris has accumulated above them (IGME, 1982). The monthly average temperature is 142 

11.3˚C and annual rainfall reaches 1263 mm, so the area isincluded in the 143 



supramediterranean bioclimatic belt and has a humid ombroclimate (Peinado Lorca and 144 

Rivas-Martínez, 1987). Moreover, due to prevailing winds coming from the Southwest, 145 

there is an Atlantic influence. 146 

The vegetation is dominated by supramediterranean oak forests of Quercus pyrenaica 147 

enriched with many characteristic Atlantic elements (Peinado Lorca and Rivas-148 

Martínez, 1987; Pulido et al., 2007). At lower altitudes distinct mesomediterranean oak 149 

forests are found on the slopes. Grazing activities have created areas of pasture and 150 

Scots pine (Pinus sylvestris) has also spread due to afforestation. At higher altitudes, the 151 

landscape is mainly composed of shrub communities consisting of Echinospartum 152 

ibericum, Cytisus oromediterraneus, C. striatus and Erica australis. Along 153 

watercourses, Alnus glutinosa grows, with isolated stands of Betula alba. The current 154 

vegetation on the mire is composed by species such as Carex nigra, C. echinata, Molinia 155 

caerulea, Juncus acutiflorus, Erica tetralix, Genista anglica, Calluna vulgaris, Pedicularis 156 

sylvatica, Potentilla erecta, Drosera rotundifolia and Sphagnum sp. 157 

A core of 100 cm depth was obtained from the middle of the mire with a Russian core 158 

sampler of 5 cm diameter. The base, composed by sands and gravels, was reached. The 159 

core was then wrapped in plastic and stored under cold conditions until analysis.  160 

 161 

2.2. Radiocarbon dating and Chronology 162 

 163 

Five AMS (accelerator mass spectrometry) 14C measurements were taken on bulk peat 164 

samples at the Uppsala (Ua) and Centro Nacional de Aceleradores (CNA) laboratories 165 

(Table 1) and used to produce an age depth model. Ages BP were calibrated using the 166 

IntCal13.14C curve (Reimer et al., 2013), while  pM ages were calibrated with the 167 

postbomb_NH2.14C curve (Hua et al., 2013). The age depth model (Figure 2) was 168 



produced using Clam 2.2 software (Blaauw, 2010). The best fit was obtained applying a 169 

smooth spline solution. Confidence intervals of the calibrations and the age-depth 170 

model were calculated at 95% (2 σ). In the text ages are expressed as ca. yrs AD (i.e 171 

~AD). 172 

 173 

2.3. Elemental analysis (concentrations and accumulation rates) 174 

 175 

Concentrations of major and trace lithogenic (Si, K, Ti, Rb, Zr) elements were 176 

determined using dispersive X-ray fluorescence with an EMMA-XRF analyser 177 

(Cheburkin and Shotyk, 1996). The instruments are hosted at the RIAIDT facility of the 178 

University of Santiago de Compostela. Carbon and N were measured with a LECO 179 

CHN-1000 analyser in the University of Santiago de Compostela using 180 

ethylenediaminetetraacetic acid (EDTA) as reference material. Quantification limits for 181 

Carbon and Nitrogen were 100 µg·g-1.  As PY is a minerogenic mire it is possible to 182 

interpret changes in mineral matter fluxes as inorganic inputs from the soils of the 183 

catchment (i.e. soil erosion). 184 

 185 

Accumulation rates were obtained by multiplying carbon concentration by dry bulk 186 

density and growth rate. Dry bulk density was calculated dividing dry mass (after 187 

drying peat samples for 24 hours at 105ºC) by wet sample volume, while the growth 188 

rate (cm/yr) was determined by the age depth model (provided by the Clam output).   189 

  190 

2.4. Humification -FTIR and UV-Absortion of NaOH peat extracts 191 

 192 



FTIR analyses and UV-Absorption of NaOH peat extracts (UV-Abs) were done on 193 

dried and milled peat samples at 1 cm contiguous intervals. ATR-FTIR spectral 194 

characterization was made using a Bruker IFS-66V FTIR spectrometer hosted at the 195 

RIAIDT facility of the University of Santiago de Compostela. Following Broder et al., 196 

(2012) a humification index (HI FTIR) was calculated as the ratio between peak 197 

intensities at 1630 cm-1 (aromatic C=C and asymmetric COO− group vibrations; i.e. 198 

lignin and other aromatics and aromatic or aliphatic carboxilates (Haberhauer et al., 199 

1998) and 1035 cm-1 (C-O stretching and O-H deformation; i.e. polysaccharides (Artz et 200 

al., 2006)). UV-Absorption of the NaOH peat extracts was measured in the University 201 

of Santiago de Compostela following the conventional method of extracting the humic 202 

acid fraction from dried and milled peat samples using 8% NaOH and assessing the 203 

absorbance of the extract at 540 nm using a spectrophotometer (Blackford and 204 

Chambers, 1993).  205 

 206 

2.5. Pollen analysis 207 

 208 

Laboratory sub-sampling for pollen analysis was done at 2 cm contiguous intervals, 209 

resulting in a total number of 50 samples. The traditional pollen extraction method 210 

(Fægri and Iversen, 1989; Moore et al., 1991), with an initial wash with HCl, a NaOH 211 

wash and a final treatment with HF, was applied. A Thoulet solution was used for 212 

densimetric separation of pollen and non-pollen microfossils (Goeury and de Beaulieu, 213 

1979). Pollen concentration was estimated by adding a Lycopodium tablet to each 214 

sample (Stockmarr, 1971).   Pollen grains were identified with the help of different keys 215 

and atlases (Fægri and Iversen, 1989; Moore et al., 1991; Reille, 1992) and the reference 216 

collection of the Archaeobiology Laboratory of CSIC (Madrid). The identification of 217 



non-pollen palynomorphs (NPPs) is based on van Geel and Aptroot, (2006) and van 218 

Geel et al., (2003, 1989, 1981) and nomenclature follows Miola (2012). 219 

 220 

Ferns, hydro-hygrophilous taxa and NPPs were excluded from the total pollen sum, 221 

(500 pollen grains minimum; 558 ± 29 pollen grains average) as they tend to be over 222 

represented (Wright and Patten, 1963). Data processing and graphic representation was 223 

performed with the help of the TILIA and TGView programs (Grimm 1992, 2004). 224 

Pollen assemblage zones have been determined with a cluster analysis using CONISS 225 

(Grimm, 1987). Microcharcoal have also been counted in the same slides used for 226 

pollen (Finsinger and Tinner, 2005; Tinner and Hu, 2003). Charcoal accumulation rate 227 

(CHAR) was finally calculated by dividing the concentration of microcharcoal by the 228 

deposition time of each sample. 229 

 230 

3. Results  231 

 232 

3.1. Chronology  233 

 234 

Radiocarbon dates are shown in Table 1 and the age-depth model for the sequence is 235 

presented in Figure 2.  Peat accumulation rate (AR) has varied considerably over the 236 

last 700 cal yr BP. It was initially low, 0.07-0.08 cm·yr-1, and very constant between 237 

~AD 1315 to ~1650 (equivalent to a deposition time [DT] of 13.4-11.7 yr·cm-1). Then, 238 

peat growth increased gradually from ~AD 1650 to 1900 until it reached rates of ~0.33 239 

cm·yr-1 (3.3 yr·cm-1), staying stable around this point to the mire surface.  240 

 241 

3.2.  Geochemical record 242 



 243 

3.2.1. Elemental analysis  244 

 245 

Carbon concentrations progressively decrease from the base of the core to 60 cm. 246 

Above that depth, maximum carbon concentrations (36-45%) are reached in the upper 247 

(Figure 3). Nitrogen values remain fairly constant (mostly between 1.1 and 1.6%) 248 

although with minor fluctuations. Content is higher (2.0-2.4%) from 7 to 20 cm. 249 

 250 

Concentrations of major and trace lithogenic elements (Si, K, Ti, Rb and Zr) show a 251 
common pattern of variation (Figure 3). Bilateral Pearson correlation coefficients (r) are 252 
statistically significant (α=0.01) ranging from 0.76 to 0.95. Minimum values occur 253 
between 60 and 19 cm and in the top 14 cm. From 60 cm to the base of the core, except 254 
for a short-lived decrease between 76 and 72 cm, lithogenic concentrations show high 255 
values. The lithogenic elements have low accumulation rates below 74 cm (Figure 3), 256 
although a minor increase from base line values can be found between 88 and 79 cm, 257 
particularly for Si, Rb and Zr. After that, three main increases – also from base line 258 
values- are apparent at: 55-72, 23-51 and 10-20 cm, the one nearest the mire surface 259 
having the highest values (44.5 and 1.2 g m-2 yr-1 for Si and K, and 200, 20 and 7.6 mg 260 
m-2 yr-1 for Ti, Rb and Zr respectively).  261 
 262 

Peat carbon accumulation rates (PCAR) are highly constant from 100 to 60 cm 263 

(24.9±8.1 gC m-2 yr-1), where they began to increase slightly. From 60 to 25 cm PCAR 264 

continuously increases (up to 167 gC m-2 yr-1). After that they maintain more stable 265 

values (114.1 ± 29.3 gC m-2 yr-1) although with a slightly decreasing trend. 266 

 267 

3.2.2. Peat humification (HI FTIR and UV-Abs) and C/N ratio 268 

HI FTIR and UV-Abs show the same pattern of variation, both decrease from the base 269 

of the core to 64 cm (1.07 to 0.55 and 0.48 to 0.27 respectively, Figure 3b), record high 270 

values from 64 cm to 19 cm (0.82-1.23 and 0.3-0.6 respectively) and lower values from 271 

there to the top of the core (Figure 3b). As with the humification indices, C/N ratio 272 



shows high values (25-38) between 64-19 cm, but also in the top 8 cm (around 28). 273 

Values in the section below 60 cm are low and rather constant (Figure 3b).   274 

 275 

3.3. Palynological record  276 

 277 

Betula, Alnus, Quercus pyrenaica and Quercus ilex are among the main arboreal pollen 278 

(AP) taxa (Figure 4). AP remains relatively high (23-78 %) in the whole sequence, but 279 

some arboreal taxa, like Alnus and Betula, show a more or less continuous decrease, 280 

being replaced by Erica arborea type, Poaceae, and cultivated trees like Castanea, Olea 281 

and Pinus. Among local taxa, Cyperaceae pollen and Pteridium spores are recorded 282 

continuously through the record.  283 

 284 

Three major pollen assemblage zones were identified (Figure 4). PY 1 (78-100 cm; 285 

~AD 1600-1330) is characterised by the highest percentages of AP (43-78 %; 64.7 ± 286 

9.3), Betula being the dominant taxa. Alnus decreased continuously from the beginning 287 

of the record. Erica arborea type was well represented, increasing its presence nearly 288 

continuously, while Poaceae shows very constant low values. Cerealia and 289 

coprophilous fungi were recorded regularly. The transition from PY1 to PY2 is 290 

characterised by a sharp decrease in Betula. Poaceae and other herbs increase 291 

simultaneously. Kretzschmaria deusta (HdV-44; previously named Ustulina deusta) 292 

spores, whose fungus is a well known plant pathogen causing soft-rot of wood (van 293 

Geel and Andersen, 1988), occurs for the first time. Birch has been proven to be one of 294 

possible Kretzschmaria deusta host plants (Wilkins, 1934).  295 

 296 



During PY2 (78-24 cm; ~AD 1600-1925) Betula and Alnus increased in value although 297 

total AP is slightly lower (51-28 %; 41.9 ± 5.4) compared with PY1 (Figure 4). From 60 298 

cm, some thermophilous cultivated taxa like Castanea and Olea, as well as 299 

coprophilous fungi, increased in abundance, indicating a possible climatic amelioration 300 

but also intensified human activity in the region. PY2 is characterised by a high increase 301 

in wetter conditions/shallow open water indicators (Figure 4). However, fungi 302 

associated with dry conditions also increased throughout the zone, albeit in much lower 303 

numbers, suggesting that intra-annual hydrological changes might have occurred. The 304 

transition from PY2 to PY3 is characterised by a sharp decrease in Betula and Erica 305 

arborea type and as Poaceae and other anthropozoogenous herbs increased. 306 

Simultaneosusly, Cerealia type increases suggesting cultivation was practised locally.  307 

 308 

In PY3 Betula and Alnus have fallen to less than 5% (Figure 4). Castanea and Olea 309 

increased in value. Pinus, which has been used in recent afforestation schemes, as well 310 

as cereals (Cerealia and Secale cereale) also increased in representation. 311 

Anthropozoogenic taxa and coprophilous fungi, are also prominent. NPPs indicative of 312 

a change to eutrophic conditions also increased in this zone. 313 

 314 

4. Discussion 315 

 316 

4.1.  Carbon accumulation, peat decay and their relation to temperature and 317 

moisture changes during the Little Ice Age 318 

 319 

In the PY record, peat accumulation, as well as PCAR, seems to have been largely 320 

affected by the cooler conditions during the more rigorous times of the LIA. From the 321 



beginning of the record (~AD 1300) peat growth and PCAR were low, but at the end of 322 

the 18th century (~AD 1770), and coinciding with an increase in solar activity after the 323 

termination of the Maunder minimum (Figure 5a; Bard et al., 2000), they show a 324 

sizeable increase, the upward trend continuing until the present day. A longer and 325 

warmer growing season after the coldest period of the LIA might have favoured peat C 326 

accumulation by increasing net primary production. Similar results, recording decreased 327 

carbon accumulation during the LIA, had been found in a Swedish mire (between ~AD 328 

1400-1800; Oldfield et al., (1997)) and in two peatlands, one from UK and one from 329 

Denmark (~AD 1300-1800 and ~AD 1490-1580, respectively; Mauquoy et al., (2002)). 330 

Increased C accumulation during warmer periods has also been found by Charman et 331 

al., (2013). They analysed an extensive data collection from Northern Hemisphere 332 

extratropical peatlands, concluding that carbon sequestration rate declined over the 333 

climatic transition from the Medieval Climate Anomaly (MCA) to the Little Ice Age. 334 

This probably happened as a consequence of lower LIA temperatures and other 335 

environmental factors which influence net primary production such as snow cover or 336 

cloudiness.  337 

At ~AD 1760-1930 peat humification indices (UV-Abs and HI FTIR ratio) increase 338 

suggesting a change towards more decomposed peat (Figure 5a). C/N ratios also show 339 

an increase in this peat section. Although changes in vegetation have been reported to 340 

influence the trends of UV-Abs (Caseldine et al., 2000; Yeloff and Mauquoy, 2006), 341 

C/N ratios (Bragazza et al., 2007; van Smeerdijk, 1989) and molecular composition of 342 

the peat (Schellekens and Buurman, 2011), the pollen record of the PY core does not 343 

support any abrupt change in peat vegetation at this time. High UV-Abs and HI FTIR 344 

values have been frequently related with increased peat decomposition (Blackford and 345 

Chambers, 1993; Blackford, 2000). Elevated C/N ratios are often interpreted, in 346 



northern peatlands, as the result of decreased peat decomposition because of carbon, the 347 

energy source for the microorganisms, is lost and nitrogen is kept as proteins (Kuhry 348 

and Vitt, 1996; Malmer and Holm, 1984). But high C/N ratios, coinciding with higher 349 

decomposition peat layers, have also been previously reported for Northwest Iberian 350 

(Pontevedra Pombal et al., 2004) and Scottish peatlands (Anderson, 2002).  351 

The C/N ratio depends both on C and N contents, but in peatlands relative N variation 352 

tends to be larger, having thus a higher influence on the ratio. In the PY record, the 353 

correlation of C/N with C is 0.32 (r; α = 0.01) whereas with N is -0.77 (r; α = 0.01; 354 

larger with a polynomial function). Nitrogen concentration in peat can be affected by 355 

several environmental factors (Kravchenko et al., 1996). Favourable conditions for 356 

decomposition, such as higher temperatures after the Maunder minimum or dry 357 

wet/shifts, may result in increasing N mineralization (Kralova et al., 1992; Morecroft et 358 

al., 1992; Reddy and Patrick, 1986), increasing the potential for N loss. If the amount of 359 

mineralised N exceeds the demand by the biota on the peat surface, then N will be lost 360 

relative to C in the catotelm (Anderson, 2002) and the C/N ratio will increase. 361 

Moreover, despite carbon loss through anaerobic decomposition in the catotelm, as 362 

plant remains are decomposed, peat organic matter gets enriched in aliphatic and 363 

aromatic compounds (Buurman et al., 2006; Hammond et al., 1985; Hatcher et al., 364 

1986; Stout et al., 1988) with a higher C concentration than those that are preferentially 365 

lost (as polysaccharides); so the C content of the material that remains is higher (as well 366 

as the C/N ratio). This is supported in the PY core (Figure 5a) by higher HI FTIR ratios, 367 

which suggest an accumulation of aromatic and aliphatic moieties and a loss of 368 

polysaccharides and an increase in C concentration after ~AD 1760. The positive or 369 

negative sign of the balance between carbon accumulation (through enhanced primary 370 

production) and carbon losses (through enhanced decomposition and DOC release) 371 



under a warming scenario has been subject of much debate (e.g. Davidson and Janssens, 372 

2006; Dorrepaal et al., 2009; Frolking et al., 2014; Ise et al., 2008). In PY, although late 373 

18th century warming led to a clear increase in carbon accumulation, it also favoured 374 

peat decomposition for the period ~AD 1760-1930. Similarly, at ~AD 1580-1650, and 375 

also coinciding with a rise in solar activity [i.e. the brief period of climate amelioration 376 

between the Spörer and Maunder minima], C/N ratios and HI FTIR values (Figure 5a) 377 

point towards increased peat decomposition. A slight increase in C concentration can 378 

also be identified but, neither PCAR nor UV-Abs responded, highlighting the 379 

importance of relying in more than one proxy. 380 

 381 

The hydrological regime, besides temperature, is thought to be a major forcing in peat 382 

dynamics. Enough moisture supply is needed for peat accumulation, while drier 383 

conditions may favour peat decomposition. Variations in NPP assemblage in the PY 384 

record support evidence of a wetter LIA in the Mediterranean, especially for the period 385 

after mid-16th century (Figure 5a). Wet indicators began to increase after ~AD 1550 and 386 

they show a sharper increase at ~AD 1720-1930. During the second phase a 387 

simultaneous increase in drier indicators suggests that high intra-annual hydrological 388 

fluctuations also occurred, especially at ~AD 1740-1760 and ~AD 1870-1940 when dry 389 

NPPs are more prominent (Figure 4). This chronology is coherent with other studies in 390 

Mediterranean Spain. Figure 5a shows the comparison of our NPP proxy data and 391 

previous reconstructions of variations in humidity in Mediterranean Spain. The best 392 

agreement is found for the record of Barriendos Vallve and Martin-Vide, (1998), who 393 

reconstructed flood periods based on historical documentation describing events on the 394 

Mediterranean coast of the Iberian Peninsula. Reconstruction from Taravilla lake record 395 

(Moreno et al., 2008), located in the Tagus headwaters, also resembles the one 396 



presented here from PY favourably, except that the wet periods they found at ~AD 1420 397 

and ~AD 1540 do not have any equivalence at PY using the proxies determined. Benito 398 

et al., (2003a), who undertook a spatial-temporal analysis of documentary flood data 399 

collected for the Tagus basin (Central Spain), also identified the ~AD 1550-1670 event 400 

in the PY record, but not the ~AD 1770-1930 one, which seems to have occurred 401 

slightly earlier in their reconstruction. Research on river flooding, lake levels, marine 402 

sediments and studies on documentary sources in Mediterranean Iberian Peninsula (e.g. 403 

Fletcher and Zielhofer, 2013; Nieto-Moreno et al., 2013; Morellón et al., 2012; Moreno 404 

et al., 2008, 2012; Roberts et al., 2012; Valero Garcés et al., 2008; Benito et al., 2003a) 405 

have shown that the LIA, although with fluctuations, was generally wetter in 406 

comparison with the Medieval Warm Period.  The PY records wetter conditions 407 

especially after 16th century and it is in agreement with numerous other studies 408 

(Barriendos Vallve and Martin-Vide, 1998; Benito et al., 2003a, 2003b; López-Sáez et 409 

al., 2009; Morellón et al., 2012; Moreno et al., 2008; Valero-Garcés et al., 2008), 410 

although even for this period droughts may have occurred intermittently. 411 

Hydrological fluctuations in the Northern Hemisphere are thought to be highly 412 

influenced by the North Atlantic Oscillation, and ultimately forced by changes in solar 413 

activity. But the correlation between solar activity and NAO fluctuations has varied 414 

over time. (Kirov and Georgieva, 2002) indicated a negative correlation between solar 415 

activity and NAO. But, more recent studies (Trouet et al., 2009) indicate the existence 416 

of a positive forcing. According to them, a persistent positive NAO occurred during the 417 

Medieval Climate Anomaly and a clear shift to weaker NAO conditions occurred during 418 

the Little Ice Age. A negative (positive) state of the NAO would generate wetter (drier) 419 

conditions in the Mediterranean (at least in the west; Roberts et al. (2012)). In the PY 420 

record, the variations in NPP assemblages are consistent with changes in NAO 421 



reconstruction (Figure 5a -NAOms; Trouet et al. (2009)), with the wetter conditions of 422 

the LIA occurring synchronously with the weakest NAO. 423 

Peatland carbon accumulation rates (PCAR) are controlled by the difference between 424 

production and decomposition, which is affected by local and climatic factors including 425 

hydrology and temperature (Klein et al., 2013). In the PY record, there was an adequate 426 

moisture supply during periods of increased temperature after the late 18th century, 427 

which might have triggered the increase in carbon accumulation. At the same time, 428 

warmer temperatures and seasonal drought might be behind increased peat 429 

decomposition. Higher values of dry indicators at ~AD1740-1760 and ~AD 1870-1940 430 

(suggesting at least some seasonal drought) seem to have affected neither carbon 431 

accumulation nor peat decomposition. According to (Charman et al., 2013), although an 432 

adequate moisture supply is necessary for the presence of peat, above a threshold of 433 

moisture availability the effect on carbon accumulation is secondary relative to growing 434 

season temperature and light conditions. 435 

 436 

4.2. Soil erosion, dust sources and its relation with climate and human activity  437 

 438 

Although without any apparent increase in soil erosion, probably because of the high 439 

arboreal cover, ever since ~AD 1300, carbonicolous fungi, charcoal influx and 440 

coprophilous fungi in the PY mire indicate the use of fire and grazing (Figure 5b). 441 

Historical evidence indicates that the Gata Range experienced intense social and 442 

population changes during the LIA. After the early 13th century, the Gata Range no 443 

longer was considered a frontier between the Castilian and Muslim kingdoms, so 444 

intense efforts were made to repopulate the range (Blanco-González et al., 2015; 445 

Clemente Ramos and de la Montaña Conchiña, 1994; Martín Martín, 1985). Also in the 446 



13th century, the development of La Mesta, a powerful association of sheepherders of 447 

the medieval Crown of Castile (Ezquerra Boticario and Gil Sánchez, 2008), took place. 448 

Palynological research in the Central System indicates that from the Iron Age to the 449 

Early Middle Ages, anthropic activities were still sporadic and mainly located in the 450 

lowlands, but from the Feudal Period onwards, when La Mesta transhumance system 451 

took place, they spread into the high-mountains (López-Sáez et al., 2014). Livestock 452 

herds were transhumant, moving to and from pastures in the kingdom according to the 453 

season through protected and defined cattle trials (Abel-Schaad and López-Sáez, 2012; 454 

Abel-Schaad et al., 2014; López-Merino et al., 2009; López-Sáez et al., 2009). The main 455 

tracks (Cañadas Reales) took most of large herds over long distances on well-defined 456 

itineraries, joining wintering areas in the South with summering areas in the North. ,.In 457 

the Mediterranean basin livestock movements between landscapes with complementary 458 

ecologies were widespread phenomena. They ocurred in the Iberian and the Italic 459 

Peninsulas, as well in Southern France and in the Balkans (Pascua Echegarai, 2012). 460 

Besides main tracks, smaller subsidiary routes, where trips were shorter, were also 461 

common. One of these routes passed nearby the PY mire. Based upon increases in 462 

coprophilous fungi (Figure 5b), cattle passage might have been higher at ~AD 1330-463 

1400 and at ~AD 1500-1580. Increased charcoal influx/carbonicolous fungi indicate 464 

that the use of fire was common during this time. By ~AD 1460-1580, a first, slight 465 

increase in the fluxes of lithogenic elements (Figure 5b) occurred roughly coinciding 466 

with the ~AD 1500-1580 increase in grazing pressure indicators, but also with the 467 

Spörer minimum. By then, soil erosion intensity was still limited. Tree cover was high 468 

(being arboreal pollen ~70%), but some taxa, like Alnus, showed a continuous decrease 469 

from the beginning of the PY record (~AD 1300), most likely linked to its use as 470 

livestock feed. 471 



 472 

After that, three major periods of enhanced soil erosion (SE1: ~AD 1660-1800, SE2: 473 

~AD 1830-1920 and SE3: ~AD 1940-1970 (Figure 5b) seem to have occurred 474 

associated with increases in the use of fire to create agriculture and pasture land, 475 

although at times climatic influence cannot be discarded.  476 

 477 

During SE1 (~AD 1660-1800) Si, K, Ti, Rb, and Zr fluxes increased. Silicon, and to a 478 

lesser extent Zr, Rb and K fluxes peak during the Maunder minimum (Figure 5b), which 479 

may indicate a possible climatic influence on mineral matter inputs, through enhanced 480 

soil erosion. SE1 also coincides with a rise in charcoal influx indicating an active use of 481 

fire. But, it is not until ~AD 1720, after the Maunder minimum, when Cerealia and 482 

coprophilous fungi doubled in value, reinforcing the climatic interpretation of the Si 483 

enrichment during SE1 and suggesting that in this mountainous location a possible 484 

connection between the development of cultivation and pasture and ameliorated climatic 485 

conditions exists.  486 

 487 

Throughout SE2 (~AD 1830-1920), new efforts appear to have been made in order to 488 

favour grazing activities through the use of fire. The increase in Quercus ilex may 489 

indicate a proliferation of dehesas in the lowlands (Figure 4). Dehesas (montados in 490 

Portugal) are Quercus ilex dominated woodland-pastures with important ecological and 491 

cultural functions on the Iberian Peninsula. This traditional land-use system evolved as 492 

an adaptation to poor soils and adverse rainfall that cannot support intensive agriculture. 493 

Cultivation of arboreal species such as Castanea and Olea occurred at the same time. 494 

This intensification of human activities in the range are chronologically framed by the 495 

rise of liberal policies in the early decades of the 19th century, that led to the 496 



confiscation of large areas of land to councils and the Church and the dissolution of La 497 

Mesta (Merino Navarro, 1976). The first Olea plantations were planted at the beginning 498 

of the 16th century (Figure 4) by encouragement of the Order of Santiago and Emperor 499 

Carlos due to an olive oil shortage (Maldonado Santiago, 2005). According to some 500 

sources (Ezquerra Boticario and Gil Sánchez, 2008) the spread of Olea at the beginning 501 

of the 19th century (Figure 4) was related with an increase in the value of olives, but due 502 

to its coincidence with increased solar activity it might be very likely that climate also 503 

played an impact on this trend. According to the records of most lithogenic elements 504 

and dust flux, SE2 seem to have been lower and more fluctuating than the previous 505 

phase. Rubidium and Ti fluxes show the highest increases, while other lithogenics keep 506 

values more similar to their background levels. A change in lithogenic sources might 507 

explain this pattern, and this is discussed further in the text. Moreover, the dissolution of 508 

La Mesta in 1836 favoured the interests of local stockbreeders against large landowners, 509 

which resulted in further grazing intensification, showed by the increase of 510 

coprophilous fungi (Figure 5b). The latter seem to be a general pattern for central and 511 

western Central System (Abel-Schaad et al., 2014; López-Sáez et al., 2014). 512 

 513 

SE3 (~AD 1940-1970) is the most severe erosion episode recorded in the last seven 514 

hundred years in the PY mire catchment. Maximum values in charcoal influx and 515 

carbonicolous fungi indicate that fire was again used to transform the landscape (Figure 516 

5b). Further increases in Cerealia and coprophilous fungi and the anthropogenic and 517 

anthropozoogenic herb assemblages indicate a more intensive land use. During this 518 

time, grazing activities reached the highest intensity of the whole record. Assuming that 519 

the imprint provided by the passage of herds would be characteristically lower 520 

compared with that produced by the presence of local livestock, the area was no longer 521 



a livestock track, but became pasture land for local stockbreeders, especially in summer 522 

time. Riparian trees, like Alnus and Betula, are reduced to isolated stands along 523 

watercourses. 524 

 525 

In 1938 a General Plan of afforestation promoted short cycle tree plantations at a 526 

national level (Ximénez de Embún and Ceballos, 1939). As a consequence, Pinus 527 

afforestation plantations were very prominent. In the study area, Pinus sylvestris was 528 

the favoured species as it grows better at these altitudes. In lower areas P. pinaster was 529 

also planted on a large scale. These plantations were mainly created in treeless areas, 530 

especially on pastureland, but also on shrublands. The pollen record shows an intense 531 

decrease of grasslands during this period. Decreases in Cistus type and Erica arborea 532 

type pollen percentages are also detected in PY pollen record. To some extent, the 533 

decrease in other taxa like Betula and Alnus, may have also been linked to the spread in 534 

Pinus afforestation and other human transformations of the landscape in the last couple 535 

of decades.  536 

 537 

A coupling between soil erosion and tree cover during historical times has been detected 538 

in many records from European peatlands (e.g. Chapman, 1964; Hölzer and Hölzer, 539 

1998; Kempter and Frenzel, 1999; Martínez Cortizas et al., 2005). In the PY mire, the 540 

creation of cropland, pastureland and fruit tree plantations, often associated with Betula 541 

and Alnus clearance, promoted soil exposure in the catchment leading to increased dust 542 

fluxes to the peatland. However, it is surprising that the large decrease in Betula (and 543 

Alnus) percentages between ~AD 1550 and ~AD 1650 were not accompanied by any 544 

noticeable impact on lithogenic fluxes. Anyway, despite the lack of response in net 545 

mineral inputs to the mire, coinciding with Betula and Alnus decreases (~AD 1550-1650 546 



and from the mid ~AD 1700s) there was an increase in the Ti/Zr ratio (Figure 5b) , 547 

pointing to a change in dust sources associated to changes in the forest stand near the 548 

peatland. Titanium is enriched in fine soil fractions (i.e. clay) compared to Zr (Schuetz, 549 

1989; Taboada et al., 2006) so an increase in Ti/Zr values indicate the arrival of smaller 550 

grain size material. This can happen with a change in wind strength (Fábregas Valcarce 551 

et al., 2003; Martínez Cortizas et al., 2002) but also, which appears to be the case, 552 

because a change in tree cover would modify the potential source areas (Kempter and 553 

Frenzel, 1999).The exact cause of the reduction of Betula and Alnus between at ~AD 554 

1550-1650 is difficult to ascertain. On one hand, there is a simultaneous increase in 555 

anthropozoogenic perennial pasture and coprophilous fungi, pointing towards 556 

clearances related with the creation of pastureland for grazing (in this case without the 557 

use of fire) (Figure 5b). There is also evidence of cereal cultivation, but without any 558 

noticeable increase compared to previous times. On the other hand, the presence of 559 

Kretzschmaria deusta (HdV-44), known from birch carr deposits (van Geel, 1978), is a 560 

pathogen of broadleaved trees including Betula and Alnus (van Geel and Andersen, 561 

1988). It causes soft-rot on living trees and it can continue to decay wood after the host 562 

tree has died, making K. deusta a facultative parasite. Thus, even though grazing was 563 

probably favoured (intentionally or not) to some extent, tree disease may have also 564 

played an important role in Betula and Alnus decline. 565 

Other example of decoupling between tree cover and soil erosion happened in recent 566 

times, as high lithogenic accumulation rates were detected  during the spread of Pinus 567 

afforestations at El Payo. Recent soil erosion inputs in minerotrophic peatlands, despite 568 

increased tree afforestation in the catchment, seem to be a wider process as evidence of 569 

this has also been found for example in North West Spain (e.g. Silva-Sánchez et al., 570 

2014).   571 



  572 



5. Conclusions 573 

 574 

Climate change during the Little Ice Age was one of the main drivers of environmental 575 

change, at different scales, in the Mediterranean mountain sector where the PY mire is 576 

located. It affected peatland dynamics, which varied considerably through the period 577 

seemingly in response to changes in solar irradiance and hydrological conditions. 578 

Changes in PCAR in the PY core are consistent with previous research, which indicates 579 

enhanced carbon accumulation in peatlands during warmer periods. From ~AD 1770 580 

(when solar activity is systematically higher than before) PCAR showed a continuous 581 

increase pointing to enhanced carbon accumulation probably due to higher primary 582 

productivity associated with warmer conditions. Moreover, at ~AD 1770-1930, despite 583 

evidence of increased wetter conditions - at least seasonally -, FTIR and UV-Abs 584 

humification indices indicate a change towards more humified peat. The fact that there 585 

was an adequate moisture supply during periods of increased temperature after the late 586 

18th century might have triggered the increase recorded in carbon accumulation, 587 

whereas warmer temperatures and seasonal drought might be behind increased peat 588 

decomposition. This research indicates that under a warming scenario Mediterranean 589 

mountainous peatlands might have a positive net carbon accumulation, at least, if 590 

enough water supply is maintained.  591 

Three major periods of enhanced soil erosion occurred at ~AD  1660-1800 (SE1), ~AD 592 

1830-1920 (SE2) and ~AD 1940-1970 (SE3), although a minor increase in Si fluxes 593 

was already detected by ~AD 1460-1580. Although the latter one and SE1 happened 594 

during the Spörer and Maunder minima, all phases coincided with increases in fire 595 

indicators. According to this, fire, applied as a tool of land use change (e.g. to promote 596 



pastureland in detriment of shrubland), seems to have strongly influenced soil erosion 597 

and mineral influx to the mire. Increased soil erosion was not always accompanied by 598 

forest decline. Nevertheless, changes in woodland vegetation (Betula and Alnus) were 599 

coeval with changes in chemical indicators of dust sources (the Ti/Zr ratio), although 600 

changes in wind strength may have also influenced the origin of the dust that reached 601 

the mire. 602 
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Figure captions 1034 

Figure 1. Location map of El Payo mire. 1035 

Figure 2. Age depth model of the PY core. Blocks in the radiocarbon ages represent the 1036 

95% confidence level in radiocarbon dates calibration, and the grey-shaded area the 1037 

highest density ranges.  1038 

Figure 3. A) Vertical trends in the elemental composition of organic (C, N) and 1039 

lithogenic elements (Si, K, Ti, Rb, Zr) in the PY core expressed as % and as 1040 

accumulation rates. For accumulation rates (PCAR, Si AR, K AR, Ti AR, Rb AR and 1041 

Zr AR) dashed lines connect measured values and solid line represents the smoothed 1042 

trends. Vertical dashed lines: mean values at the base of the core. Horizontal dashed 1043 

bars: minor and major (SE1, SE2 and SE3) soil erosion events; B)vertical trends in 1044 

organic matter decomposition proxies: C/N ratio and humification indexes (HI FTIR 1045 

and HI UV-Abs). 1046 

Figure 4. Palynological summary diagram of the PY core. Anthropozoogenic perennial 1047 

pastures: Apiaceae, Brassicaceae, Campanula, Caryophyllaceae, Fabaceae undiff., 1048 

Liliaceae undiff., Rosaceae undiff., Scrophulariaceae; Anthropozoogenic nitrophilous 1049 

communities: Anthemis, Chenopodiaceae, Galium, Plantago, Rumex, Urtica dioica 1050 

type; Anthropogenic nitrophilous communities: Aster type, Cichorioideae, Erodium, 1051 

Geranium; Dry indicators: Pleospora (HdV-3B), HdV-10, Byssothecium circinans 1052 

(HdV-16C), HdV-63 (van Geel and Aptroot, 2006; van Geel, 1978); Wet/Open water 1053 

indicators: HdV-18, Spermatophores of Copepoda (HdV-28), HdV-65, HdV-92 (Bakker 1054 

and van Smeerdijk, 1982; Ellis, 1971; Mighall et al., 2006; van Geel, 1978); Eutrophic 1055 

indicators: HdV-123, HdV-124, HdV-181 (Bakker and van Smeerdijk, 1982; Pals et al., 1056 



1980; van Geel, 1978). Shaded areas represent a x5 exaggeration. CONISS: Constrained 1057 

incremental sum of squares. 1058 

Figure 5. A) variations in indicators of peatland dynamics and climate. PCAR, C/N, HI 1059 

FTIR, UV-Abs variations and wet/Open water vs. dry non pollen palynomorphs (NPPs) 1060 

variations the PY core plotted against Solar activity reconstruction by Bard et al., 2000, 1061 

several paleoflood reconstructions on Mediterranean river or lake basins (Barriendos 1062 

and Martín-Vide, 1998; Benito et al., 2003; Moreno et al., 2008) and NAOms 1063 

reconstruction by Trouet et al., 2009. Vertical ligth grey bars: Spörer and Maunder 1064 

minimums in solar activity; horizontal mid grey bars: increases in wet-open water NPP; 1065 

horizontal dark grey bars: increases in dry NPP; B) variation in indicators of soil 1066 

erosion, fire incidence and human activity. Ti and Si AR; Charcoal AR; Carbonicolous 1067 

fungi*: Gelasinospora (HdV-1) and Chaetomium (HdV-7A); Coprophilous fungi*: 1068 

Cercophora type (HdV-112), Sporormiella type (HdV-113), Podospora type (HdV-1069 

368) and Sordaria type (HdV-55A); Cerealia* and Ti/Zr and stacked diagram of tree, 1070 

shrub and herb pollen sums. Ligth grey bars: Spörer and Maunder minimums in solar 1071 

activity. Dashed bars: minor and major (SE1, SE2, SE3) soil erosion events.  * Lighter 1072 

lines shows a x5 exaggeration 1073 
















