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Flavonoids are polyphenolic compounds with potential antioxidant activity via multiple reduction capacities. Oxidation of cellular
lipids has been implicated in many diseases. Consequently, this study has assessed the ability of several dietary flavonoid aglycones
to suppress lipid peroxidation of hepatic microsomes derived from rats deficient in the major lipid soluble antioxidant, dα-
tocopherol. Antioxidant effectiveness was galangin > quercetin > kaempferol > fisetin > myricetin > morin > catechin > apigenin.
However, none of the flavonoids were as effective as dα-tocopherol, particularly at the lowest concentrations used. In addition,
there appears to be an important distinction between the in vitro antioxidant effectiveness of flavonoids and their ability to suppress
indices of oxidation in vivo. Compared with dα-tocopherol, repletion of vitamin E deficient rats with quercetin, kaempferol, or
myricetin did not significantly affect indices of lipid peroxidation and tissue damage. Direct antioxidant effect of flavonoids in
vivo was not apparent probably due to low bioavailability although indirect redox effects through stimulation of the antioxidant
response element cannot be excluded.

1. Introduction

Many polyphenols can act as antioxidants in chemical
systems and food matrices as their extensive conjugated π-
electron systems facilitate the donation of electrons from the
hydroxyl moieties to oxidising radical species. For example,
flavonoids which are formed via the plant phenylpropanoid
pathway can have multiple reduction capacities. Reactivity,
which is largely determined by the O–H bond dissociation
energies, is highly dependent on the configuration of the O–
H groups of the B and C rings (Figure 1). Thus reaction sto-
ichiometries for many common dietary-derived flavonoids
exceed that of vitamin E (dα-tocopherol), a major recognised
antioxidant in biological systems [1]. The effectiveness of
flavonoids as free radical scavengers in a wide range of
chemical oxidation systems has resulted in suggestions that
they may also have a role as dietary antioxidants which
benefit health [2]. This is because the free radical mediated
oxidation of proteins, lipids, and DNA is implicated in the
pathogenesis of many diseases including heart disease and
cancers [3]. However, many redox effects of flavonoids and
other polyphenols observed in experimental systems may not

be of biological relevance unless they gain access to tissues
where they can exert hydrogen donating activity [4].

Whether flavonoids are redox active in vivo is a matter
of debate. For example, several reviewed epidemiological
studies have found inverse relationships between intake and
diseases which involve oxidative stress [2]. However, a recent
review concluded that there is little convincing evidence from
human studies for a direct antioxidant effect of flavonoids
or other polyphenols [5]. Such disparate views may reflect
the diverse molecular structures of flavonoids within the
food matrix. Commonly, they are glycosylated, methylated
or acetylated at hydroxyl sites on their structure primarily
at positions 3, 5, and 7. Such conjugation may not only
decrease antioxidant effectiveness but may also impact on
bioavailability so that ingested flavonoids pass into the colon
relatively unabsorbed [6]. In contrast, lipophilic flavonoid
aglycones in digested foods may enter cell membranes by
simple diffusion potentially allowing hydrogen donation
in oxidatively active cellular sites. For example, quercetin
appears to be more bioavailable as an aglycone than as a
glycoside when provided from dietary sources [7].
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Figure 1: Basic flavonoid structure and structures of compounds used in the present study.

Aims. Increased indices of oxidation of cellular lipids are a
characteristic of several diseases and nutritional antioxidant
deficiencies [3]. Consequently, we have compared the ability
of flavonoid aglycones and dα-tocopherol to inhibit lipid per-
oxidation of hepatic microsomes derived from rats deficient
in vitamin E. In addition, we have determined the effects
of consumption of three common dietary flavonoids in an
oxidatively stressed rat model. Oxidative stress was induced
by maintaining the rats for several weeks on diets deficient
in vitamin E. The effects in vivo of repletion with quercetin,
myricetin, and kaempferol on indices of lipid peroxidation
and tissue damage were compared with that of vitamin E and
contrasted with antioxidant ability in vitro.

2. Materials and Methods

2.1. Microsomal Incubations. Vitamin E deficient micro-
somal incubations were as previously described [8]. In
brief, livers were removed under terminal anaesthesia from
male hooded Lister rats maintained for 12 weeks on a
semisynthetic diet containing less than 0.5 mg vitamin E/kg.

Microsomes were prepared and the protein concentration
was adjusted to 10 mg/mL with 0.05 M potassium phos-
phate buffer (pH 7.4). Ethanolic solutions (40 μL) of eight
flavonoid aglycones or dα-tocopherol (0.1, 0.25, and 0.5 mM
final concentrations) purchased from Fluka/Riedel-de Haën
(Schwei Buchs, Switzerland) were incubated with 1 mL
microsomal suspensions for 20 min at 25◦C on an asym-
metric roller. Peroxidation was then initiated with an
ascorbate/Fe2+/ADP complex [8], and aliquots removed for
determination of thiobarbituric acid reactive substances
(TBARS) by HPLC [9]. From the oxidation curves, the
relative abilities of the flavonoids to delay oxidation (lag
phase) and suppress maximum peroxidation was calculated
relative to the vitamin E deficient microsomes [8].

2.2. In Vivo Model. The study protocol was conducted in
compliance with the Animals (Scientific Procedures) Act,
1986, and the format is previously described [9, 10]. Wean-
ling male rats were randomly allocated to 5 intervention
groups of 6 animals each. Four intervention groups were
offered, ad libitum, the vitamin E deficient semisynthetic
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diet for 10 weeks. Rats were then offered this diet supple-
mented with either dα-tocopherol, quercetin, myricetin, or
kaempferol at a concentration of 100 mg/kg diet for a further
2 weeks. These compounds were selected as current food
compositional databases [11] suggest that they are the most
commonly consumed flavonols in the N. European diet.
The amount incorporated into the rat chow was selected as
reflecting that which is nutritionally achievable by humans
by dietary means [11] as the current study was not aimed
at establishing responses to pharmaceutical concentrations.
The compounds were dissolved in chloroform and mixed
to an even distribution in the diet. The remaining rats
were maintained on the vitamin E deficient ration. After
12 weeks, (when 16 weeks old and weighing approximately
400 g, see Table 3) the rats were terminally anaesthetized
and blood samples were collected by cardiac puncture into
heparinized tubes. Plasma was separated by centrifugation
for 15 min at 1750 g, 4◦C, and red cells were isolated and
washed twice prior to being re-suspended to the original
volume in phosphate buffered saline. The liver was perfused
in situ with chilled isotonic KCl (0.154 M) via the hepatic
portal vein and snap frozen in liquid nitrogen before storage
at −80◦C until analysis. Plasma concentrations of vitamin
E, quercetin, myricetin, and kaempferol were determined
by HPLC using previously described procedures [12, 13].
Plasma levels of TBARS were determined by HPLC with
fluorimetric detection [9]. Functional antioxidant status
was estimated by the susceptibility of washed erythrocytes
to hydrogen peroxide-induced peroxidation [14] and by
an electron paramagnetic resonance procedure with spin
trapping of lipid radicals with 4-POBN in liver homogenates
[15]. Plasma pyruvate kinase (PK) activities were measured
as indices of tissue damage by the method of Chow [16].

2.3. Statistical Analysis. Results are presented as mean ±
SEM. Data were initially analysed by one-way analysis of
variance and comparison of groups of rats was made using
the Bonferroni multiple comparison test. A P value of less
than 0.05 was considered significant.

3. Results

In general, an observed time-dependent increase in lipid
peroxidation of the hepatic microsomal preparations derived
from vitamin E deficient rats was moderated by preincu-
bation with ethanolic solutions of flavonoids. Protection
against peroxidation increased with increased concentration
of flavonoid as shown for quercetin (Figure 2).

Interpolation of the incubation curves to quantify the
data as the ability to delay the onset of peroxidation (Table 1)
and the suppress maximum peroxidation (Table 2) com-
pared with that of microsomes without flavonoid addition
indicated antioxidant effectiveness as galingen > quercetin
> kaempferol > fisetin > myricetin > morin > catechin >
apigenin. However, none of the flavonoids were as effective
as dα-tocopherol, particularly at the lowest concentration of
0.1 mM (Tables 1 and 2).

In the animal model, repletion with diets containing
quercetin and kaempferol was associated with the presence

Table 1: Abilities of polyphenol aglycones and dα-tocopherol to
delay the onset of peroxidation (lag phase) of hepatic microsomal
preparations from vitamin E deficient rats.

Compound
Lag phase (min)

0.1 mM 0.25 mM 0.5 mM

Quercetin 8.7 >20 >20

Kaempferol 7.8 19.8 >20

Myricetin 7.0 12.6 14.3

Apigenin 4.7 4.7 4.8

Catechin 5.8 5.9 6.2

Morin 4.1 7.4 9.6

Galingin 3.3 >20 >20

Fisetin 4.9 15.0 >20

dα-tocopherol >20 >20 >20

Peroxidation was initiated with an ascorbate/Fe2+/ADP complex and
estimated by the formation of thiobarbituric acid substances (TBARS) as
described in Section 2. Values are means of duplicate determinations.

Table 2: Abilities of polyphenol aglycones and dα-tocopherol to
inhibit maximum peroxidation of hepatic microsomal preparations
from vitamin E deficient rats.

Compound
Inhibition (%)

0.1 mM 0.25 mM 0.5 mM

Quercetin 38 87 95

Kaempferol 21 88 95

Myricetin 11 67 60

Apigenin 1 1 0

Catechin 1 1 1

Morin 7 13 44

Galingin 13 88 94

Fisetin 10 68 90

dα-tocopherol 93 97 95

Peroxidation was initiated with an ascorbate/Fe2+/ADP complex and
estimated by the formation of thiobarbituric acid substances (TBARS) as
described in Section 2. Values are means of duplicate determinations.

of the flavonoids in plasma of vitamin E deficient rats.
However, no myricetin was detected in any of the rats
even when provided with the flavonoid in the diet for 2
weeks. However, repletion with a similar concentration of
dietary dα-tocopherol resulted in a marked increase of the
compound in plasma which was an order of magnitude
greater than any of the detected flavonoids (Table 3).

Repletion of the vitamin E deficient rats with 100 mg
dα-tocopherol/kg diet resulted in a significant decrease in
concentrations of TBARS in both plasma (P < 0.05) and
liver (P < 0.001). In contrast, concentrations were unaffected
by repletion with similar amounts of either quercetin,
kaempferol, and myricetin (Table 4). Repletion with dα-
tocopherol was also associated with a marked decrease
in membrane damage as indicated by lower activities of
pyruvate kinase in plasma and by decreases in the functional
markers of oxidative susceptibility, namely, erythrocyte lipid
peroxidation, and hepatic tissue EPR signal height. However,
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Figure 2: Example of preincubation of hepatic microsomal preparations from vitamin E deficient rats with a polyphenol aglycone
(quercetin) on production of thiobarbituric reactive substances (TBARS) following initiation of peroxidation with Fe/ADP.

Table 3: Weights and plasma concentrations of flavonoids and α-tocopherol in vitamin E deficient rats repleted for 2 weeks with 100 mg/kg
of either α-tocopherol, quercetin, kaempferol or myricetin.

Parameter
Dietary inclusion

−Vitamin E +dα-tocopherol +Quercetin +Kaempferol +Myricetin

Weight (g) 398 ± 11 394 ± 14 393 ± 11 398 ± 9 397 ± 7

dα-tocopherol (nmol/L) 1.16 ± 0.12 12.91± 0.12∗ 0.91 ± 0.12 1.00 ± 0.07 1.04 ± 0.09

Quercetin (μmol/L) Trace Trace 1.48 ± 0.18 Trace Trace

Kaempferol (μmol/L) Trace Trace Trace 0.47 ± 0.06 Trace

Myricetin (μmol/L) nd nd nd nd nd

Results are mean ± SEM of 6 rats/group. ∗Significantly different from −Vitamin E group (P < 0.001). Trace indicates that peak heights were too small to
quantify; nd: no detectable compound.

Table 4: Effects of 2 weeks repletion with either 100 mg α-tocopherol, quercetin, kaempferol or myricetin/kg diet on indices of muscle
damage, lipid peroxidation and antioxidant capacity of vitamin E deficient rats.

Parameter
Dietary inclusion

−Vitamin E +dα-tocopherol +Quercetin +Kaempferol +Myricetin

Pyruvate kinase (U/L) 807 ± 76 132± 13∗∗∗ 632 ± 98 617 ± 108 742 ± 81

TBARS (nmol/mL plasma) 1.66 ± 0.13 1.13± 0.09∗ 2.14 ± 0.51 2.33 ± 0.34 2.08 ± 0.21

TBARS (nmol/mg hepatic protein) 15.3 ± 0.7 2.4± 0.6∗∗∗ 13.4 ± 0.5 13.8 ± 0.8 12.5 ± 0.3

Erythrocyte lipid peroxidation (nmol/mgHb) 50 ± 7 3± 1∗∗∗ 53 ± 4 63 ± 5 64 ± 4

EPR signal height (RU/mg hepatic protein) 22423 ± 1133 1036± 71∗∗∗ 19950 ± 1458 18833 ± 448 17425 ± 1892

Results are mean ± SEM of 6 rats/group. Significantly different from −Vitamin E group (∗P < 0.05; ∗∗∗P < 0.001). TBARS: thiobarbituric acid reactive
substances Hb: haemoglobin, EPR: Electron paramagnetic resonance spectroscopy, RU: relative units.

no analogous effects on these indices were observed in those
rats that were fed any of the flavonoids (Table 4).

4. Discussion

The ability of many of the flavonoids to inhibit peroxidation
of hepatic microsomal preparations from vitamin E deficient
rats might indicate that these dietary compounds could have

significant “vitamin E-like” activity in biological systems.
As in chemical systems [2, 17], antioxidant potency may
depend in part on the number and position of the OH
groups on the molecule. For example, using a DPPH radical
scavenging system, structure-activity studies indicate that
the O-dihydroxy group on ring B of flavonoids plays a
crucial role. A double bond at 2-3 position conjugated with
a 4-oxo function and hydroxyl groups at positions 3 and
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5 also contribute towards antiradical activity of flavonoids
[17]. However, within biological samples such as tissue
homogenates, antioxidant activity may differ from structure-
function relationships apparent in chemical systems [8, 17].
Other factors including molecular charge, solubility, and
partitioning coefficients may also be important determinants
of antioxidant activity. Within microsomal membranes, in
particular, appropriate orientation of the compound within
the membranes to allow access of hydroxyl groups to peroxyl
radicals within phospholipid moieties may be relevant. This
may explain the greater efficacy of dα-tocopherol at the lower
concentration as the phytol chain may intercalate within
the membrane thus conferring optimum orientation of OH
groups on the chromanol ring structure [18].

There appears to be an important distinction between
the in vitro antioxidant effectiveness of flavonoids and their
ability to suppress indices of oxidation in vivo. Compared
with dα-tocopherol, repletion of vitamin E deficient rats
with quercetin, kaempferol or myricetin did not significantly
affect indices of lipid peroxidation and tissue damage in
plasma and liver. This likely reflects the relatively low
bioavailability and/or rapid systemic clearance of the agly-
cones as their inclusion in the diet did not result in marked
increase in concentrations in plasma. Studies aimed at
elucidating the degree and mechanisms of the absorption of
flavonoid aglycones are contradictory [7, 19, 20], but recent
reviews indicate that bioavailability is mostly <1% of the
administered dose [21]. Consequently, the dietary relevant
concentrations used in the present study may be insufficient
to illicit an antioxidant effect in vivo. Bioactivity may only
be apparent at greater doses which are not nutritionally
achievable. For example, decreased serum TBARS has been
observed in rats fed 2–10-fold greater doses of quercetin than
used in the present study [22]. However, the results of the
present study support previous observations of limited in
vivo bioactivity of dietary flavonoids. For example, studies
in growing rats did not show any vitamin E sparing effects
of flavonoids such as quercetin and catechin [23], and
supplementation of pigs with green tea polyphenols did not
enhance tissue vitamin E levels or plasma antioxidant capac-
ity [24]. Moreover, consumption of green tea extracts for 3
weeks did not influence plasma vitamin E concentrations and
cardiovascular risk markers in healthy men [25].

In conclusion, several flavonoid aglycones effectively sup-
pressed lipid peroxidation of microsomal preparations but
analogous effects were not observed in vivo. Consequently,
quercetin, myricetin, and kaempferol are not effective nutri-
tional antioxidants in the vitamin E deficient rat model
when compared with the effectiveness of dα-tocopherol.
However, in the present study we did not determine potential
metabolites derived from the compounds. Consequently
indirect redox effects not involving suppression of lipid
peroxidation such as stimulation of the antioxidant response
element cannot be excluded [26]. Never the less, results of
the present study support the conclusion of a recent review
[5] that a direct antioxidant effect of flavonoids in vivo with
dietary achievable intakes is questionable. This does not
exclude the possibility that the marked antioxidant efficacy
of some flavonoids in vitro can be exploited in future drug

development aimed at addressing clinical conditions where
oxidative stress is an underlying pathology. For example, a
systematic review of medicinal plants used in folk medicine
[27] indicated that several increased serum antioxidant
capacity and/or decreased indices of lipid peroxidation in
animals and humans. Whether such effects can be ascribed
to flavonoids per se is currently unclear. However, studies
assessing their use as potential chemopreventative agents
appear warranted.
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