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Abstract Following the recent development of a sta-

ble event-detection algorithm for hard-sphere systems,

the implications of more complex interaction models

are examined. The relative location of particles leads

to ambiguity when it is used to determine the interac-

tion state of a particle in stepped potentials, such as the

square-well model. To correctly predict the next event

in these systems, the concept of an additional state that

is tracked separately from the particle position is intro-

duced and integrated into the stable algorithm for event

detection.
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Square well; Stepped potential; Collision detection;

1 Introduction

Particle dynamics is the numerical solution for the mo-

tion of a collection of discrete bodies, each of which may

represent objects ranging in size from atoms/molecules

(molecular dynamics) to grains of sand or the ice in

an avalanche (granular dynamics). There is a variety

of particle dynamics approaches but common to all is

the integration of Newton’s equation of motion to de-

termine the trajectory of the particles. Event-driven

particle dynamics (EDPD) is one approach which in-

tegrates Newton’s equation of motion exactly through

piece-wise analytic solutions of the particle trajectories.

Severin Strobl · Thorsten Pöschel
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Fig. 1 The potential energy φSW (rij) of the square-well
model as a function of the separation distance, rij = |rij | ≡
|ri − rj |, between two particles i and j. The inter-particle
energy only changes in discrete steps at distances of rij = σ1
and rij = σ2. The numbered arrows indicate the four event
types of the model generated by these steps: (1) Capture (en-
ter the well), (2a) Release (escape the well), (2b) Bounce
(remain in the well), and (3) Core (hard-sphere collision).

This avoids truncation error which arises if a numerical

integration technique is used, but restricts the simula-

tion to interactions where piece-wise analytic solutions

can be found. One such class of compatible interactions

are discrete potentials, such as the square-well model

shown in Fig. 1. As there are no forces acting between

discontinuities in the potential, the analytical solution

to the dynamics is a simple ballistic motion of the parti-

cles. When particles cross a discontinuity, the instanta-

neous energy change results in an impulse and this event

must be detected and processed at the exact time it oc-

curs. The time of the next event is calculated a priori

and the system is advanced forward in time directly to

the instant of the event: i.e., the progression of time is

event-driven. This allows EDPD implementations to be

computationally efficient, particularly for dilute or stiff

systems, as the uninteresting time between interactions

and hence events is skipped.
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In a recent paper [4] we demonstrated that the EDPD

algorithm must be carefully constructed to ensure its

numerical stability. Although the EDPD algorithm is

exact, its implementation is sensitive to round-off er-

ror. In hard-sphere systems, round-off error manifests

as overlapping/interpenetrating particles which is diffi-

cult to resolve as the dynamics is undefined in this state.

If particles begin to interpenetrate, the stable algorithm

executes additional events to ensure the interpenetrat-

ing particles do not continue to approach and, thus,

increase their overlap [4]. Key to the stable algorithm

is the definition of valid and invalid states but this dis-

tinction is only straightforward for hard interactions.

For example, particles interacting via a square-well po-

tential (see Fig. 1) may overlap (rij < σ1) which is

always an invalid state, but they can also be either in

a captured state within (σ1 ≤ rij ≤ σ2) or an uncap-

tured state outside of the well (rij ≥ σ2). As a particle

pair cannot energetically occupy both states, only one

region is valid at a particular point in their trajectory.

Thus, for stepped or multi-state interactions such as the

square-well or stepped Lennard-Jones potentials [10],

the valid state dynamically changes with time.

In this paper, the stable algorithm of Ref. [4] is ex-

tended to interactions with dynamically changing valid

states. In Sec. 2, the numerically calculated position is

demonstrated to be an unreliable indicator for the cur-

rent state of the particle and additional logical state

tracking is recommended. The extended stable algo-

rithm for square wells is then outlined in Sec. 3. In

Sec. 4, it is demonstrated that states must be tracked

even for virtual/zero-impulse events. Finally, the track-

ing of states is validated for two example configurations

in Sec. 5, illustrating the challenges with conventional

approaches, before the conclusions are drawn in Sec. 6.

2 Ambiguity of particle state

When simulating systems with multiple valid states, it

is crucial that the current valid state can be determined

during the simulation in a reliable manner. The simplest

approach is to try to use the position of the particles to

compute the current state. Unfortunately, calculating

the valid state this way is not always unambiguous. The

difficulty stems from the fact that the captured state,

rij ∈ [σ1, σ2], and uncaptured state, rij ∈ [σ2,∞), are

both closed sets which include the point rij = σ2. This

is required as rij = σ2 is the point of transition between

the two states. As events are instantaneous, there can

be no change in position during the transition. The am-

biguity of particle state is thus not a numerical artifact,

but is always encountered even in a precise simulation

devoid of the peculiarities of floating point calculations.

To illustrate this further, consider the basic algorithm

for the simulation of particles interacting via a square-

well potential [1]:

1. For each particle pair:

(a) If they are uncaptured:

Test for capture events (type 1, compare Fig. 1).

(b) If they are captured:

Test for bounce/release (type 2) and core (type

3) events.

2. Sort the events to determine which one occurs first.

3. Move the system forward to the time of the first

event, t+∆t.

4. For the interacting particle pair:

(a) If they are uncaptured:

Execute a capture event (type 1).

(b) If they are captured:

Execute a bounce/release (type 2) or core (type

3) event.

5. Return to step 1

In steps 1 and 4, the capture state of the particles

must be determined. Consider the case where the next

event to occur arises from the rij = σ2 discontinuity

and is either a capture or a release/bounce event. The

particles will be moved in step 3 to the moment of inter-

action and will lie exactly on the well edge at rij = σ2.

At this point, the position has become ambiguous for

testing the particle state and this failure occurs for all

such events. In Fig. 2 two examples of square-well par-

ticles interacting via different event types are sketched.

Independent of the original state (uncaptured or cap-

tured), during the event both particles have a separa-

tion distance rij = σ2 leading to the ambiguity in the

type of the event to execute.

In fact, in real implementations the ambiguity is not

limited to a single point in the separation distance, but

expands to an interval around the discontinuity due to

the limited precision of floating point calculations. This

is illustrated for hard spheres in Fig. 3 of Ref. [4] where

particles moved during a core event have a distribution

of separation distances, either slightly smaller or larger

than the expected value. In square-well systems, this

implies that particles moved into position for a well

event will end up distributed both inside and outside of

the well, regardless of which side they are on originally.

While it might seem tempting to resolve the ambiguity

at the discontinuity by taking into account the sign of

the relative velocity in addition to the position of the

particles, the distribution of the separation distance on

both sides of the discontinuity impedes this approach.

The first published EDPD implementation by Alder

and Wainwright [1] reduces the effects of this inaccu-

racy by storing the separation distance, rij , calculated
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Fig. 2 Two configurations of a pair of particles i and j inter-
acting via a square-well potential which lead to an ambiguity
in the interaction state. The relative velocity vij ≡ vi − vj

and its post-event value v′ij are indicated by the arrows. In
the left case, uncaptured particles enter the well of the poten-
tial (event type 1 in Fig. 1) and their capture state changes.
In the right case, two captured particles bounce on the well
discontinuity (event type 2b in Fig. 1) and do not change their
capture state. In both cases, the position before (t = ∆t−)
and after (t = ∆t+) the event is identical, thus it cannot be
used to determine the capture state immediately before or
after an event.

in step 1 and uses it in step 4 to determine the cap-

ture state. As this separation is calculated before the

particles are moved into place for the event there is a

lower probability of failure; however, there is no inher-

ent guarantee in this approach that the stored position

calculated in step 1 is always unambiguous and free

from error. The dynamics do not exclude particles from

being located at or near a discontinuity during event de-

tection. In fact, a particle which has just executed an

event must be located near a discontinuity and ambi-

guity must arise immediately in the next iteration of

step 1. Alder and Wainwright do not specify how event

detection is carried out in this case [1].

There are a number of approaches in the literature

which try to resolve the ambiguity arising from parti-

cles near to a discontinuity. One approach is to per-

form “corrections” to ensure that particles numerically

transfer to the correct side of the discontinuity. This

may be achieved through the addition or subtraction

of a small quantity to the time of the next event [7].

Alternatively, the position may be directly changed to

“nudge” the particles over the corresponding disconti-

nuity after processing the current event (e.g., see the

source code of Ref. [9]). Unfortunately, both methods

rely on empirically determined correction factors, which

depend on the system studied and may introduce other

errors if another event occurs at around the same time.

For example, if a third particle is in close proximity then

stretching the event time may cause an interaction to

be missed.

The infinitely-thin hard rods system [5] is particu-

larly interesting as it naturally exhibits a large number

of repeated re-collisions between pairs of particles which

have just collided. To prevent spurious re-detection of

collisions which have just been executed, a minimum re-

collision time computed from the underlying dynamics

is enforced. This requires the storage of the last event

of each particle to correctly apply the minimum re-

collision time restriction. This approach is highly ap-

pealing as it uses some additional logical (not floating

point) state to enforce that the correct system dynam-

ics is generated.

It appears that, for systems where the valid states

change with time, the simplest robust approach is to ex-

plicitly track the current state of particle pairs as addi-

tional logical information within the system. In square-

well systems, the required logical state is boolean (“cap-

tured” or “uncaptured”) but in multi-step potentials

there may be many logical states.

Initialization of the logical state may take place from

the positional information only when the configuration

is first generated (using an arbitrary choice to resolve

the rij = σ2 case). For all later times, the logical state

must be stored and loaded along with the rest of the

configurational information whenever the simulation is

suspended or resumed. As the logical state only changes

when the correct “transfer” event is executed, and only

logically consistent events are tested, all ambiguity is

eliminated. The stable implementation for square-well

molecules is now outlined.

3 Stable event detection in square wells

The introduction of logical states requires some modi-

fications to the stable algorithm for event detection as

outlined in Ref. [4]. At the core of the stable algorithm

lies the definition of an overlap function, f(t), which in-

dicates whether a pair of particles is in a valid state or

not at the time t. The square-well system is composed

of multiple applications of the overlap function fBB for

two closed balls, which has the following form:

fBB(t+∆t, σ) = [rij(t) +∆tvij(t)]
2 − σ2 , (1)

where vij(t) ≡ vi(t) − vj(t) is the relative velocity,

and σ is the average diameter of the two balls. This

function is negative if the balls are overlapping, positive

if they are apart, and zero if they are in contact. Thus

event detection for the intersection of two closed balls

is transformed into the solution for the roots of fBB.

The time derivative of an overlap function ḟ(t) can

be used to distinguish whether a currently invalid state
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(f(t) < 0) is either improving or stable in time (ḟ(t) ≥
0) or deteriorating (ḟ(t) < 0). For fBB this corresponds

to

ḟBB(t+∆t) = vij(t) · [rij(t) +∆tvij(t)] . (2)

Following the algorithm in Ref. [4], a stable EDPD al-

gorithm is defined as:

When testing for interactions between a pair of par-

ticles at a time, t, consider all logically valid overlap

functions. For each overlap function, f , an event oc-

curs after the smallest non-negative time interval, ∆t,

that satisfies the following condition:(
f (t+∆t) ≤ 0

)
and

(
ḟ (t+∆t) < 0

)
. (3)

This algorithm prevents errors in positional state from

deteriorating once they are detected. If the two parti-

cles are uncaptured then only capture events are log-

ically valid and are tested for using fBB(t, σ2). If the

two particles are already captured, then core events are

tested for using fBB(t, σ1) and release/bounce events

must also be tested for using −fBB(t, σ2). The nega-

tive of an overlap function is its inverse which results in

−fBB becoming a test for when the particles will exceed

the well distance σ2 and become disjoint. Both core and

bounce/release events are tested for at the same time

and the earliest event is taken as the next event. As

these functions represent distinct invalid state volumes

in rij , there is no chance of ambiguity through simulta-

neous events from both overlap functions. A reference

implementation of the event-detection algorithm using

the logical state and the corresponding overlap func-

tions is given in Appendix A.

4 Virtual states

In Sec. 2, logical states are introduced for systems with

dynamic valid states and applied in the context of dis-

crete potentials. In these systems, the different logical

states have a direct relationship to potential energy

changes in the interaction potential; however, there are

many cases where additional state tracking is desirable

even though it is not associated with any physical ac-

tion or impulse. These states may hence be considered

as virtual states as they have no physical meaning. One

example are neighbor-lists where the simulation domain

is divided into small subvolumes or neighborhoods to

optimise the search for the next event [8,6]. Each neigh-

borhood corresponds to a different virtual state for each

particle, and only particle pairs in neighboring states

are actually tested for events. It is vital that, even in

these virtual state systems, the logical state is tracked

and used to guarantee the correct dynamics.

The simplest example of this is a particle simula-

tion where a virtual wall divides the simulation domain

into two half-spaces. Virtual walls may be used to track

transport properties such as the mass flux of particles

across the wall, as well as form part of a neighbor-list

implementation. The wall is virtual as it is merely a

bookkeeping device and is penetrable by all particles.

The wall divides the simulation space into two closed

half-spaces. A suitable overlap function for one of these

half-spaces is

fHS(t+∆t) = n̂ · [ri(t+∆t)− c] , (4)

where the half-space is defined by a normal n̂ perpen-

dicular to the virtual wall and a point c in the plane.

The direction of the normal depends on which side of

the wall the particle is currently on. As the overlap

function is required to be positive for valid states, the

normal must point into the half-space the particle is

currently located in. If a particle is located either ex-

actly or numerically close to the virtual wall it is un-

reliable to determine the current half-space (and hence

the direction of the normal) from the position. There-

fore the side of the wall the particle is located on must

be tracked as additional logical state.

5 Validation

To illustrate the significance of state tracking, simu-

lations of two model systems are performed. The first

model is a square-well potential (Fig. 1) with parame-

ters σ2 = 3σ1, and ε = −kB T . The second model is an

equivalent square-shoulder potential where ε = +kB T .

These potentials are the prototypes of more complex in-

teraction models such as general stepped potentials [10].

Both simulations use N = 32 000 particles and a re-

duced number density of N σ3
1/V = 10−3. Simulations

are run for 10 000 events per particle and an instru-

mented version of the DynamO [3] simulation package

is used to collect statistics on inconsistencies which arise

in the logical and physical state.

For the square-well system, the probability of in-

consistencies arising during event processing is approx-

imately 1.4× 10−7 for each event, while for the square-

shoulder system it is approximately 2.6 × 10−7. Al-

though these events occur relatively infrequently the re-

sults can be catastrophic. The implementation of Alder

and Wainwright [1] becomes stuck and repeatedly ex-

ecutes identical release events (type 2a in Fig. 1). The

simulation cannot proceed forward in time and the ki-

netic energy increases with each event. The logical states

algorithm proposed here is able to continue the simula-

tion and maintains the total energy to machine preci-

sion.
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The rare nature of the inconsistency explains why

it was not reported earlier in the literature; however,

simulations of 1010 events or more (e.g., see Ref. [2]) are

now commonplace, thus care must be taken to ensure

the simulation remains unconditionally stable.

6 Conclusions

In conclusion, the physical and virtual state of an EDPD

simulation must not be derived from the position of the

particles except during initialisation. This information

must instead be tracked as additional logical state and

used to enforce that the correct event sequences are

both detected and executed. The logical states repre-

sent a crucial part of the state of the system as a whole

so, if the simulation is suspended, all logical states must

be stored and restored accordingly once the simulation

is restarted. During the runtime of the EDPD simula-

tion the logical states must only evolve via the execu-

tion of the correct transfer events. For example, for the

previously examined square-well model, only the event

types 1 and 2a (Fig. 1) for particles entering or leaving

the square well lead to a change in the logical state for

this pairing of particles.

Unlike the configurational state (which is inherent

to each particle in the system), logical state may be re-

quired for each possible pairing of interacting particles.

Thus the number of stored states may scale as O(N2)

in the number of particles, N . To avoid difficulties in

scaling to large systems, efficient hashed implementa-

tions are recommended where only variations from the

most common state are stored. Typically, this reduces

the required storage to O(N).

If the idea of logical states is combined with the

stable algorithm for event detection, inherently stable

EDPD simulations are possible.This is shown in Sec. 5

for simulations of systems using square-well or square-

shoulder potentials. Furthermore simulations of more

complex interaction models without any artificial mod-

ification of the list of predicted events or interference

with the dynamics of the system are enabled.
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A Stable algorithm for square-well molecules

The calculation of the event times in Sec. 3 is expressed in
terms of the ball-ball overlap function, fBB, as given in Eq. 1.
This operation is especially sensitive to round-off error in the

floating point representation, therefore two numerically ro-
bust subroutines which analyse fBB are presented here. Both
use the quadratic equation to solve for the roots of fBB;
however, each has different safeguards against numerical er-
rors. The first algorithm, BallBallIntersectionTime (Algo-
rithm 1), calculates the time until two balls begin to intersect.
The second, BallBallDisjointTime (Algorithm 2), calculates
the time until two balls become disjoint. Both subroutines
return +∞ if no event is detected and use the appropriate
numerically stable form of the quadratic equation.

Function BallBallIntersectionTime(rij , vij , σ)
a←− vij · vij

b←− rij · vij

c←− rij · rij − σ2

arg ←− b2 − a c
if b ≥ 0 or arg ≤ 0 then return +∞
return max(0, c / (

√
arg − b))

Algorithm 1: A stable algorithm for detection when

two initially disjoint balls begin to intersect. In terms

of the overlap function, this determines the time until

fBB ≤ 0 and ḟBB < 0 or returns +∞ if this does not

occur in the future.

Function BallBallDisjointTime(rij , vij , σ)
a←− vij · vij

b←− rij · vij

c←− rij · rij − σ2

arg ←− b2 − a c
if a = 0 then return +∞
if arg ≤ 0 then return max(0,−b / a)
if b > 0 then

return max(0, (
√
arg − b) / a)

else
return max(0, −c / (

√
arg + b))

end

Algorithm 2: A stable algorithm for detecting when

two initially intersecting balls become disjoint. This

determines the time until fBB ≥ 0 and ḟBB > 0 or

returns +∞ if this does not occur in the future.

The introduction of the logical state and the overlap func-
tion requires some changes to the detection of events as out-
lined in step 1 of the basic algorithm given in Sec. 2. The mod-
ified algorithm is presented in SWEventTime (Algorithm 3).
The logical state is required as input to this function and
must be tracked seperately. For the square-well model, this
is a single Boolean value per particle pair indicating whether
the particles are captured or not. The specialized routines of
Algorithms 1 and 2 are then used to determine the roots of
the overlap function. In the case of a captured particle pair,
both discontinuities at σ1 and σ2 are accessible and the min-
imum of the respective event times has to be selected.
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