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Abstract

We investigate the suitability of selected measures of complexity based on recurrence quantification analysis and
recurrence networks for an identification of pre-seizure states in multi-day, multi-channel, invasive electroencephalo-
graphic recordings from five epilepsy patients. We employ several statistical techniques to avoid spurious findings due
to various influencing factors and due to multiple comparisons and observe precursory structures in three patients.
Our findings indicate a high congruence among measures in identifying seizure precursors and emphasize the current
notion of seizure generation in large-scale epileptic networks. A final judgment of the suitability for field studies,
however, requires evaluation on a larger database.

Keywords: Recurrence plot, recurrence quantification analysis, recurrence network, EEG, pre-seizure state, epilepsy.

1. Introduction

Recurrence plots (RPs) are graphical representations
of times during which two states of a system are neigh-
bors in phase space [1]. They have been widely used
over the last 25 years as a tool to study changes and
transitions in the dynamics of a system (even high-
dimensional), or to detect synchronization and cou-
pling [2–4]. This has been achieved by using the visual
aspects of structures encountered in RPs as well as dif-
ferent statistical quantification approaches [2, 3]. One
important and widely used approach is recurrence quan-
tification analysis (RQA), which is based on diagonally
and vertically aligned recurrence points in the RP [5, 6].
These lines characterize the temporal interdependences
between individual observations or segments of the
phase-space trajectory. Several substantial measures of
complexity (MOC) have been defined on the base of
these temporal structures of the RP and are related to
predictability, stationarity, or intermittency. RQA has
demonstrated its potential through many successful ap-
plications in different fields [7]. Among others, they
were applied to electroencephalographic (EEG) data

from epilepsy patients as well as from epileptic rats.
For example, Acharya and colleagues [8] have used
RQA measures to classify EEG data from normal, dur-
ing seizures (ictal), and between seizures states (inter-
ictal). Further, RQA measures have been reported to ex-
hibit sudden abrupt changes occurring up to some min-
utes before seizure onsets [9–12]. The latter findings
can contribute to better understand this neurological dis-
order that affects about 65 million individuals world-
wide [13] as well as to develop alternative therapies, e.g.
based on the prediction of seizures [14–20], particularly
for the 20–30 % of patients that remain poorly treated or
untreated [21]. It remains elusive, however, whether the
described phenomena can be regarded as seizure precur-
sors, since their statistical validity has not sufficiently or
not at all been investigated, and since the analyzed EEG
recordings were of rather short duration.

Recently, another quantification approach has been
introduced that combines time series recurrence with
complex networks [22–24]. Here, the recurrence ma-
trix is considered as the adjacency matrix of an undi-
rected and unweighted complex network. The result-
ing recurrence network (RN) can be characterized with
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well-known network measures, i.e., further diagnostic
tools become available for time series analysis [25, 26].
In contrast to RQA, where the MOC characterize the
dynamical properties of the system, these network-
based measures capture the geometric properties asso-
ciated with a trajectory in phase space [24]. Such com-
plementary information can be useful when studying
regime changes [25], characterizing different dynam-
ics [27, 28], or even for the detection of coupling direc-
tions [29]. First applications in different scientific dis-
ciplines have demonstrated the usefulness of these ad-
ditional characteristics. Very promising findings have
been discussed, e.g., by Lang and colleagues [30] in a
RN-analysis of synchronous EEG time series from nor-
mal subjects and from epilepsy patients. Among other
findings, the authors observed that RNs of normal sub-
jects exhibited a sparser connectivity and a smaller clus-
tering coefficient compared to those of epilepsy patients
(cf. [31]). These findings have been confirmed by an-
other study, reporting an increasing degree of structural
complexity in the EEG of normal subjects compared to
the EEG from epilepsy patients [32].

It has been suggested that the conceptual difference
between RQA and RN measures may allow to capture
complementary aspects of the underlying dynamics un-
der investigation, and that the combined use of both
quantification approaches may improve the detection of
dynamical changes [24]. In certain applications, how-
ever, a higher performance of RN measures in compar-
ison to that of RQA measures has been observed. For
example, this has been reported in Ref. [33] where a
classification of healthy women and preeclamptic pa-
tients based on cardiovascular time series has been per-
formed with the aim of performing early prediction of
preeclampsia. Another example is found in Ref. [27],
where a classification of periodic and chaotic behavior
is performed using short time series of observables from
continuous-time dynamical systems.

We observed a lack of literature describing such a
comparison of performance between RQA and RN mea-
sures when applied to time series from complex sys-
tems such as the brain, and in particular in the analysis
of EEG data. In the present work, we compare selected
RQA and RN measures for a specific problem of multi-
variate EEG data analysis. In particular, we investigate
the suitability of these measures for an identification of
pre-seizure states in multi-day, multi-channel, invasive
EEG (iEEG) recordings.

2. Data and methods

2.1. Patient characteristics and data
We analyze iEEG recordings from five epilepsy pa-

tients (see Table 1 and Fig. 1) who underwent presurgi-
cal evaluation of drug-resistant epilepsy at the Univer-
sity of Bonn Epilepsy Program [34]. The patients signed
informed consent that their clinical data might be used
and published for research purposes. Further, the study
protocol had received prior approval by the ethics com-
mittee of the University of Bonn.

ID age/gender Depi FH FR Nrs Nsz Drec

1 37/f 5 R MT 70 7 169
2 55/m 10 L LT 20 6 232
3 44/f 44 L LT 52 5 220
4 22/m 19 L LT 62 7 167
5 35/f 6 R LT 70 7 141

Table 1: Clinical data. ID: patient identification number; age (yrs.) and
gender: female (f), male (m); Depi: duration of epilepsy (yrs.); FH:
focal hemisphere, left (L), right (R); FR: focal region, MT mesial as-
pects of temporal lobe, LT lateral aspects of temporal lobe; Nrs: num-
ber of recording sites; Nsz: number of seizures; Drec: duration of iEEG
recording (hrs.)

(a)

(b)

Figure 1: Example of iEEG data for an inter-ictal (a) and a pre-
ictal/ictal period (b) of patient 3 from recording sites within the epilep-
tic focus (red), from its neighborhood (orange), and from a remote
brain region (green). The latter two time series were shifted to en-
hance readibility, and amplitude values were normalized to zero mean
and unit variance. The gray-shaded area marks the initial phase of the
seizure.

The iEEG data was recorded from chronically im-
planted intrahippocampal depth and/or subdural grid
and strip electrodes (on average of 54 contacts) with a
total recording time of 929 h during which 32 seizures
(five to seven seizures per patient) occurred. The data
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was band-pass-filtered between 0.1 and 70 Hz, sampled
at 200 Hz using a 16 bit analog-to-digital converter, and
referenced against the average of two recording contacts
outside the focal region. Reference contacts were cho-
sen individually for each patient. Some recording gaps
have been encountered and they were mainly due to di-
agnostic procedures that required the patient to be tem-
porarily disconnected from the recording system.

2.2. RQA- and RN-based measures of complexity

The basis of the MOC that we here used to charac-
terize the iEEG is the recurrence plot (RP). It was intro-
duced to visualize the time-dependent behavior of the
dynamics of a system and particularly the recurrences
of the phase-space trajectory to a certain state [1, 2].
Let us consider x as an exemplary univariate time series
with T sampling points and let xi denote the value of
x at discrete time i. In order to observe the recurrences
of states from this time series, we compute the T × T
matrix

Ri, j = Θ(ε − |xi − x j|), i, j = 1, . . . ,T (1)

where Θ(·) is the Heaviside function, ε is a predefined
threshold, and | · | denotes absolute value. In general,
Eq. (1) can be applied on phase-space trajectories in Rm

(where m is the dimensionality and the absolute value
is replaced by a norm [2]), but here we apply it on time
series directly (i.e., without embedding of time series
in the phase space, similarly to Ref. [35]). This choice
is motivated by the fact that several recurrence prop-
erties are invariant under embedding [36] and by the
highly non-stationary character of brain dynamics [37–
39], which complicates the choice of appropriate em-
bedding parameters. Moreover, embedding can cause
spurious correlations which affect mainly the recurrence
analysis of stochastic signals [40].

An RP is a graphical representation of the above de-
fined matrix R. For the coordinate (i, j) of an RP we
choose black color to plot a point if Ri, j = 1, i.e., in the
recurrent case, and white color otherwise. An example
is shown in the left part of Fig. 2 for 10.24 s of an iEEG
recording. The white and black points can form different
lines and structures, which are related to the properties
of the underlying dynamics.

Among these lines and structures encountered in an
RP, we consider in our analysis the white vertical, black
vertical, and black diagonal lines, respectively (see right
part of Fig. 2). These lines are commonly used in RP-
based analyses [2, 5–7]. The lengths of white vertical
lines are an estimator of the recurrence time [41, 42].
A black vertical line marks a time length in which a

state does not change or changes very slowly, and is
thus related to laminar states. A black diagonal line oc-
curs when a segment of the trajectory runs parallel to
another segment, and is thus related to the divergence of
states [2]. By counting how many times a length of a line
occurs in an RP, we evaluate the frequency distributions
of the respective lengths of these three types of lines.
From the frequency distributions, we compute the fol-
lowing MOC: determinism (DET), laminarity (LAM),
and mean recurrence time (MRT) [2].

Furthermore, we use MOC that characterize complex
networks, in particular the average shortest path length
(APL) and network transitivity (Cl). The analogy be-
tween the recurrence matrix and the adjacency matrix
of an undirected and unweighted complex network [23,
24] allows us to apply complex network measures on
RPs in order to quantify the geometrical properties of
the system’s attractor encoded in the RP. For more de-
tails on this approach we refer to Refs. [23, 24, 43]. A
brief description including the mathematical equations
of the MOC considered in the present work is given in
the appendix.

Using a sliding-window analysis, we calculated
time profiles of the above mentioned MOC separately
for each iEEG time series from each channel. Non-
overlapping windows of 4096 data points, correspond-
ing to a duration of 20.48 s, were used in accordance
with previous studies [44, 45]. This window length
can be considered as a compromise between the re-
quired statistical accuracy for the calculation of a mea-
sure and the approximate stationarity within a win-
dow’s length [46, 47]. A fixed value of the threshold
ε = 0.3, Eq. (1), was chosen following the discussion
in Refs. [40, 48] and the data in each analysis window
were normalized to zero mean and unit standard devia-
tion.

2.3. Investigating the suitability of MOC for an identi-
fication of pre-seizure states

We tested whether time profiles of the MOC carry
potential information about seizure precursors by esti-
mating their classification performance in terms of their
ability to distinguish between inter-ictal and pre-ictal
(before a seizure) periods. Following Mormann and col-
leagues [44], we here assumed the existence of a pre-
ictal period with a duration of 30 min [49, 50]. In or-
der to exclude effects from the post-ictal period (after a
seizure), data recorded within 1 h after the electrical on-
set of a seizure was discarded from the analysis. Even-
tually, we defined inter-ictal periods to include all data
except from the pre-ictal, ictal, and post-ictal periods.
In cases where the time interval between two successive
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Figure 2: (a) Exemplary recurrence plot of 10.24 s iEEG recording (T = 2048 data points). The corresponding recurrence matrix was calculated
using the recurrence threshold ε = 0.3. (b) Enlargement of the area marked by the red rectangle (lower left corner). The green, blue and magenta
double arrows exemplify a white vertical, black vertical, and black diagonal line, respectively.

seizures was less than the assumed pre-ictal duration
plus one hour, the maximum amount of data available
from the seizure onset back to the end of the post-ictal
phase of the preceding seizure was used. Applying these
selection criteria reduced the number of seizures acces-
sible for our analysis to 26.

For each channel, we then investigated whether the
MOC amplitude values allow us to distinguish between
inter-ictal and pre-ictal periods. To do so, we tested the
separability of the pre-ictal Ppre and inter-ictal Pint dis-
tributions of MOC amplitude values in terms of sensi-
tivity and specificity using receiver operating charac-
teristic (ROC) statistics. With this statistics, a thresh-
old for amplitude values is continuously shifted across
Ppre and Pint. The ROC curve is obtained by plotting
sensitivity (ratio of true positives to total number of
positives) against one minus specificity (ratio of true
negatives to total number of negatives)1. The capabil-
ity of the considered MOC to distinguish between inter-
ictal and pre-ictal periods was then quantified using the
area under the ROC curve (AUC). For identical dis-

1The definitions of sensitivity and specificity are based either on
the ROC hypothesis of a pre-ictal decrease (H↓; MOC amplitude val-
ues from Ppre are lower than those of Pint) or on a pre-ictal increase
(H↑; vice versa). For H↓, the terms ‘positive’ and ‘negative’ corre-
spond to whether an amplitude value is below, respectively above the
threshold, while the terms ‘true’ and ‘false’ indicate whether values
below the threshold belong to Ppre and values above the threshold be-
long Pint or not. For H↑, these correspondences need to be adjusted
accordingly.

tributions Ppre and Pint (i.e., periods are indistinguish-
able) AUC = 0.5, while for distributions that are com-
pletely non-overlapping, values of 0 or 1 are attained,
depending on the ROC hypothesis used for the defi-
nition of sensitivity and specificity (pre-ictal decrease:
AUC > 0.5; pre-ictal increase: AUC < 0.5). We per-
formed analyses for both ROC hypotheses and selected
the larger one thus achieving an AUC value that is al-
ways ≥ 0.5 by construction.

Next, in order to test whether the predictive perfor-
mance – as quantified by the largest AUC value – is bet-
ter than random, we employed the concept of seizure
time surrogates [51]. With this Monte-Carlo-based re-
sampling technique, the original seizure times are re-
placed with times randomly chosen in the inter-ictal in-
terval (seizure time surrogates) using the total number
of original seizures and the distribution of inter-seizure
intervals as constraints. In addition, seizure time surro-
gates were not allowed to coincide with original seizure
onset times or to fall into a recording gap. For each pa-
tient and each channel, ROC analysis was repeated for
100 seizure time surrogates (the available data from pa-
tient 3 allowed to generate 20 seizure time surrogates
only), and the significance of a given predictive per-
formance was determined by calculating the fraction
of AUC values obtained with seizure time surrogates,
which exceeded AUC values obtained with the original
seizure times.

Eventually, we controlled for falsely rejected null hy-
potheses due to multiple testings (1370 hypothesis tests
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for five MOC and for a total of 274 channels) by apply-
ing the Benjamini-Hochberg procedure [52] with a false
discovery rate of 0.1.

3. Results and Discussion

Figure 3: Time profiles of the measures of complexity DET, LAM,
MRT, APL, and Cl (from top to bottom) estimated from iEEG data of
patient 3. Data recorded from within the epileptic focus (red), from
its neighborhood (orange), and from a remote recording site (green).
Moving average over 60 windows corresponding to 20.48 min. There
was a recording gap on day 3. Seizures are marked by black vertical
lines, and tics on x-axes denote midnight.

In Fig. 3 we show, as an example, time profiles of
the MOC calculated from iEEG data of patient 3, which
were recorded from within the epileptic focus (as de-
fined by the pre-surgical workup), from its neighbor-
hood (not more than two electrode contacts apart), and
from a remote recording site. The temporal variability
of the RQA-based measures DET and LAM appears

to increase with an increasing distance to the epilep-
tic focus, while the reverse appears to hold for MRT.
The temporal means of these MOC decrease with an
increasing distance to the epileptic focus, and similar
observations could be made for all other patients. This
finding is in line with previous studies that employed
other measures of complexity [53–62]. In contrast, no
such clear dependence of the temporal mean could be
observed for the RN-based measures APL and Cl, al-
though their evolutions exhibit some periodic temporal
structure that appears to be related to daily rhythms. In-
deed, estimating their power spectral densities (Lomb–
Scargle periodogram [63]) revealed a strong component
at about 24 h (data not shown) particularly for record-
ings from remote sites and near the epileptic focus when
using APL and for recordings from remote sites and
from within the epileptic focus when using Cl. Similar
observations could be made for all other patients, and
comparable dependences on daily rhythms had been re-
ported for global and local statistical measures of func-
tional epileptic brain networks [19, 45, 64].

With the methods described in Sec. 2.3, we observed
statistically significant differences between MOC val-
ues from the pre-ictal and inter-ictal periods in three
out of five patients. In patient 1, both LAM and MRT
indexed the dynamics of the same remote brain site
(one recording site) to carry information predictive of
impending seizures. Both MOC attained lower values
during the 30 min pre-ictal periods than during inter-
ictal periods. In patient 3, all RQA-based MOC pro-
vided predictive information (pre-ictally increased val-
ues, see Fig.4) from the dynamics near the epileptic
focus (two recording sites). In addition, APL identi-
fied other nearby brain sites (two recording sites) to
carry potential seizure precursor dynamics (pre-ictally
decreased values). With both APL and Cl remote but ad-
jacent brain regions (one recording site each) could be
identified, however, either through pre-ictally increased
(APL) or decreased values (Cl). In patient 4, all RQA-
based MOC provided predictive information (pre-ictally
decreased values) from the dynamics of the epileptic fo-
cus (one recording site), of nearby (one site) and of re-
mote brain regions (five sites). In addition, similar in-
formation could be achieved with Cl from the dynamics
of remote brain regions (three sites).

When judging the predictive performance of RQA-
and RN-based measures, we note first that the RQA-
based measures DET, LAM, and MRT pinpointed the
same brain region to carry predictive information in all
patients. Although these MOC assess different charac-
teristics of an RP, they here provided redundant spa-
tial information. Nevertheless, seizure precursors were
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Figure 4: Frequency distributions of the inter-ictal (dashed lines) and
pre-ictal (solid lines) values of the measures of complexity DET,
LAM, and MRT (from top to bottom) estimated from iEEG data of
patient 3. Data from a recording site near the epileptic focus carrying
predictive information.

mostly found in brain regions off the epileptic focus,
which would favor the recent concept of seizure gener-
ation in an epileptic network rather than from a circum-
scribed area of the brain (epileptic focus) [19]. Pre-ictal
alterations of these MOC (increase vs. decrease) exhib-
ited a high interindividual variability, rendering an in-
terpretation of the pre-seizure brain dynamics difficult.

Second, RN-based measures APL and Cl identified
precursory structures in two patients only, and partic-
ularly Cl clearly decreased during the 30 min pre-ictal
periods. If Cl is interpreted as a global measure of
the effective dimensionality of the underlying attractive
set [65], its pre-ictal decline is in line with previous ob-
servations using other dimensionality estimates [66]. As
with the RQA-based measures, APL and Cl also identi-
fied seizure precursors in brain regions off the epileptic
focus.

Third, taking into account the redundancies provided
by RQA-based MOC, both RQA- and RN-based mea-
sures had a comparable predictive performance, which
compares to the one seen previously for other linear and
nonlinear univariate measures [44].

4. Conclusion

We investigated the suitability of selected mea-
sures of complexity based on recurrence quantifica-

tion analysis (RQA) and recurrence networks (RN)—
characterizing dynamical and geometrical properties of
a system—for an identification of pre-seizure states in
multi-day, multi-channel, invasive EEG recordings from
five epilepsy patients. We employed a number of down-
stream statistical techniques to avoid spurious findings
due to various influencing factors and due to multiple
comparisons. With these approaches, statistically signif-
icant precursory structures could be identified in three
patients. Findings indicate a high redundancy in predic-
tive information that can be achieved with RQA-based
measures. In the two patients for which RN-based mea-
sures identified precursory structures, these measures
did not provide additional information about brain re-
gions from which possible precursors emerge. We thus
conclude that the combined use of both quantification
approaches does not appear to improve the detection
of dynamical changes preceding seizures in the human
epileptic brain. Clearly, a final judgment of the suitabil-
ity of these recurrence-based time series analysis ap-
proaches for seizure prediction studies needs to be eval-
uated on a larger data base.
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Appendix A. Measures of complexity

The following measures of complexity have been
used and their description is detailed in Refs. [2, 23, 24,
41, 42]:

1. Determinism (DET) is the percentage of recur-
rence points which form a diagonal line of mini-
mal length lmin. It quantifies the predictability of
the system. Processes with stochastic behavior will
render a DET value which tends to 0, while it will
be equal to 1 for purely periodic processes.

DET =

∑T
l=lmin

lP(l)∑T
i, j=1 Ri, j

, (A.1)

where P(l) denotes the frequency distribution of
the lengths l of the diagonal lines in the RP.

2. Laminarity (LAM) is the percentage of recur-
rence points which form a black vertical line of
minimal length vmin. It represents slowly changing
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states and, thus, the occurrence of laminar states in
the system. High values of LAM are an indication
of dynamics that is trapped more often to certain
states.

LAM =

∑T
v=vmin

vP(v)∑T
v=1 vP(v)

, (A.2)

where P(v) denotes the frequency distributions of
the lengths v of black vertical lines.

3. Mean recurrence time (MRT) is the average length
of white vertical lines in the RP.

MRT =

∑T
w=1 wP(w)∑T
w=1 P(w)

, (A.3)

where P(w) denotes the frequency distribution of
the lengths w of white vertical lines. MRT esti-
mates the main time-scale of variations (e.g., for
an harmonic oscillation it corresponds to the pe-
riod length) [67].
In accordance with previous works [2], the mini-
mal lengths were chosen as lmin = 2 and vmin = 2.

As mentioned in section II, by considering the
phase space vectors as nodes of a network and their
recurrences in the phase space as links, an anal-
ogy between the recurrence matrix and the adja-
cency matrix of an undirected and unweighted net-
work can be built. The network is represented by an
adjacency matrix A, which is the recurrence ma-
trix from which the identity matrix is subtracted
(Ai j = Ri j − δi j; where δi j is the Kronecker delta
used to avoid self-loops in the network).

4. Average shortest path length (APL) is the average
length of shortest paths between all pairs of nodes
in the network and is given by:

APL =
1

T (T − 1)

T∑
i, j=1

di j, (A.4)

with the minimum number of links di j that have to
be crossed to move from node i to node j. Discon-
nected pairs of nodes are not included in the aver-
age. In recurrence networks, APL characterizes the
average phase space separation of states [24].

5. Network transitivity (Cl) considers the average
probability that two neighbors of any state are also
neighbors and is given by:

Cl =

∑T
i, j,k=1 A jkAi jAik∑T

i, j,k=1 Ai jAik
. (A.5)

Cl can be interpreted as a global measure of the
underlying attractive set’s effective dimensional-
ity [65].
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