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Abstract: Plant diseases caused by pathogenic bacteria or fungi cause major economic 

damage every year and destroy crop yields that could feed millions of people. Only by a 

thorough understanding of the interaction between plants and phytopathogens can we hope 

to develop strategies to avoid or treat the outbreak of large-scale crop pests. Here, we 

studied the interaction of plant-pathogen pairs at the metabolic level. We selected five 

plant-pathogen pairs, for which both genomes were fully sequenced, and constructed the 

corresponding genome-scale metabolic networks. We present theoretical investigations of 

the metabolic interactions and quantify the positive and negative effects a network has on 

the other when combined into a single plant-pathogen pair network. Merged networks were 

examined for both the native plant-pathogen pairs as well as all other combinations. Our 

calculations indicate that the presence of the parasite metabolic networks reduce the ability 

of the plants to synthesize key biomass precursors. While the producibility of some 

precursors is reduced in all investigated pairs, others are only impaired in specific plant-

pathogen pairs. Interestingly, we found that the specific effects on the host’s metabolism 

are largely dictated by the pathogen and not by the host plant. We provide graphical 

network maps for the native plant-pathogen pairs to allow for an interactive interrogation. 

By exemplifying a systematic reconstruction of metabolic network pairs for five pathogen-

host pairs and by outlining various theoretical approaches to study the interaction of plants 

and phytopathogens on a biochemical level, we demonstrate the potential of investigating 
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pathogen-host interactions from the perspective of interacting metabolic networks that will 

contribute to furthering our understanding of mechanisms underlying a successful invasion 

and subsequent establishment of a parasite into a plant host. 

Keywords: plants; pathogens; metabolic networks; genome; enzymes; metabolites; 

metabolic impairment; visualization 

 

1. Introduction 

Photosynthetic organisms form the basis of all food webs and higher land plants are the primary 

energy and carbon source for terrestrial ecosystems and fundamental to feed the human population. 

However, all of the approximately 300,000 plant species regularly suffer pathogen and herbivore 

attacks [1]. The annual yield of crop plants is severely diminished by the regular outbreaks of plant 

diseases, a large part of which is caused by pathogenic fungi and bacteria. Considering that some of 

these pathogens are estimated to account for a loss in crop yield that could feed tens of millions of 

people, the socio-economic impact of microbial plant pathogens cannot be overestimated. Thus, the 

need for a systematic and comprehensive understanding of the detrimental impacts of pathogens on 

plants is evident. 

Several plant-pathogen systems are increasingly well understood at the molecular level, including 

the complex signaling pathways that orchestrate the various defense responses of plants. The 

interactions of host plants with their bacterial and fungal pathogens are described by using a “zigzag” 

model that consists of pathogen-associated molecular pattern-triggered immunity (PTI) and, 

subsequently, effector-triggered immunity (ETI) that depends on effector proteins that are secreted by 

the pathogen and recognized by plant cells [2]. Even though there is much progress made in examining 

the underlying molecular events, insights in the regulation and changes of plant metabolism during 

pathogen invasion are only recently emerging, supported by new sophisticated methods for metabolite 

analyses. Thus far, the description of metabolism has been targeting almost exclusively the plant side 

of the interaction (e.g. [3]) with few studies using mix-cell cultures to distinguish between plant and 

pathogen metabolism (e.g. [4]).  

After infection, when the pathogen has established itself in the host, it will heavily depend on host 

metabolism and, as a consequence, the metabolism of pathogen and host become tightly interlinked. 

This generally imposes severe nutrient losses of the plant to the pathogen. It has been shown that 

several bacterial and fungal pathogens are able to manipulate host metabolism, e.g. sucrolytic 

enzymes, such as cell wall invertase, to turn the infected tissue into a carbohydrate sink that provides 

hexoses to the pathogen [5]. However, pathogens exhibit different life-styles and colonize various 

tissues of plants, where they differentially interact with plant cells. Some biotrophic bacteria colonize 

the apoplast and feed on nutrients of the apoplastic fluids, whereas some biotrophic fungi establish 

structures inside of the host cells (haustoria) that allow an in-cell nutrient exchange. After a biotrophic 

phase, hemi-biotrophic pathogens eventually destroy plant cells to feed on the remnants, as 

necrotrophic pathogens do [6]. Furthermore, it has been shown that several obligate pathogens and 

symbionts have lost parts of their metabolic networks, because products of the respective proteins are 
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continuously supplied by the plant host [7,8] and latest studies indicate that this process is rather driven 

by genetic drift than by selection [9]. Thus, metabolic networks of obligate pathogens may lack  

crucial reactions. 

With regard to molecular interactions in host-pathogen systems, previous studies have investigated the 

gene expression changes in several host-pathogen systems [10,11] especially to investigate the host’s 

defense mechanism. Integrated in silico metabolic models have also been created with the goal to 

characterize the pathogen’s metabolism in the host-environment, e.g. bacteria in mammalian hosts [12,13]. 

However, large-scale metabolic analyses considering multiple hosts (especially plants) and pathogens 

together have not been reported yet as whole-genome scale metabolic models had not been available yet. 

Previous studies have tried to overcome this limitation by incorporating transcriptomics data [14] 

Rapid advancement in genome sequencing [15] and annotation [16,17] made possible the study of 

interactions between plants and related pathogens from the genome-wide perspective. We used the 

published genome sequences of five plant species and those of associated five parasitic microbial 

organisms to derive models of their metabolic networks. As a central selection criterion for the plant-

pathogen pairs investigated here, we required that the complete genomic sequence is available to allow 

for a genome-wide annotation of all proteins, and thus, enzymes and associated metabolic reactions. 

The derived network models are intended to serve as a basis for future theoretical investigations of the 

metabolic interactions between plants and phytopathogens. As a first approximation, we assumed free 

exchange of nutrients between host and pathogen. This is, of course, a simplification, since membranes 

are present between pathogen and host, and pathogens are known to specifically employ amino acid 

and sugar transporters to gain access to nutrients [18], or may modify host cell membrane structure to 

alter nutrient leaking into the apoplast.  

We present an intuitive graphical interface, which allows for an easy, graphics-supported inspection 

of interacting plant-pathogen network pairs. This tool is intended to give microbiologists and 

biochemists the possibility to visualize and manually explore the network interactions, as we expect 

increasing availability of genomic and metabolic data of organismic interactions. We then present 

some initial analyses of the effects of merging two metabolic networks. In particular, we analyze and 

quantify positive and negative effects of one network on another when merged. Both the positive and 

negative effect measures are based on the notion of the 'metabolic scope' [19], which is defined as the 

set of metabolites an organism is in principle capable of producing if a defined combination of nutrient 

metabolites is present. For the positive measure, we calculate the metabolic gain [20] describing by 

how many metabolites the biosynthetic potential of a pair of networks is increased compared to the 

sum of the two networks in isolation. As a negative measure, we introduce the 'metabolic impairment', 

which quantifies the impact of a pathogen on the ability of the host plant to produce necessary biomass 

precursors. This approach was also inspired by studies on interacting bacterial communities that 

investigated their effective metabolic overlap [21]. By focusing on the mutual gain as well as 

impairment resulting from pathogens invading the plant host, our study complements other approaches 

that investigated the mutual biosynthetic support in parasite-host relationships from a metabolic 

network perspective [22,23]. Our emphasis lies specifically on the consequences of the interaction 

rather than the mutual metabolic “input” requirements. With our study, we wish to further illustrate the 

potential of approaching plant-pathogen interactions from a metabolic network perspective. 
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2. Methods 

2.1. Plant-Pathogen pairs, Sequence Information 

In this project, five pairs of plant-pathogen were selected (Table 1). The rust fungus Melampsora 

larici-populina is a major threat in European poplar plantations [24]. Biotrophic rust fungi are some of 

the most devastating pathogens of crop plants. The biotrophic bacterium Xanthomonas oryzae pv. 

Oryzae causes bacterial blight of rice (Oryza sativa L.), which can cause reductions of rice yields of as 

much as 50% in some areas [25]. The necrotrophic fungal pathogen Sclerotinia sclerotiorum causes 

stem rot or white mold on soil-borne plants in more than 500 species of plants globally [26], including 

the important feedstock soybean (Glycine max). The plant model species Arabidopsis thaliana is 

infected by the hemi-biotrophic pathogen Pseudomonas syringae pv. Tomato [1] and this interaction is 

widely used to study the underlying mechanisms of pathogen attack [6]. The biotrophic fungi Ustilago 

maydis can cause smut disease in maize [27], even though this pathogen is not a major pest in crop 

plants. All protein sequences used to build the species-specific metabolic networks for all 10 species 

were downloaded from the NCBI protein database (see description in Table 2). The non-redundant 

“NR” database used in the BLAST [28] analysis was downloaded as of Jan 9, 2011. 

Table 1. Overview of the selected plant-pathogen pairs investigated in this study and 

associated key biological aspects. NCBI taxonomy numbers are given in the parentheses 

next to the species’ NCBI Taxonomy names. 

Pathogen Plant Pathogen type Unicellular/ 

multicellular 

Tissue 

colonisation 

Obligate 

pathogen 

Pseudomonas 

syringae pv. 

tomato (323) 

Arabidopsis thaliana 

(3702) [1] 

Bacterium/ 

hemi-biotrophic [6] 

unicellular apoplast no 

Xanthomonas 

oryzae pv. Oryzae 

(64187) 

Oryza sativa (4530) [25] Bacterium/ 

biotrophic [29] 

unicellular apoplast no 

Ustilago maydis 

(5270) 

Zea mays (4577) [27] Fungus/ 

biotrophic [27] 

multicellular apoplast and cells yes 

Melampsora 

larici-populina 

(203908) 

Populus trichocarpa 

(3694) [30] 

Fungus/ 

biotrophic [30] 

multicellular apoplast and cells yes 

Sclerotinia 

sclerotiorum 

(5180) 

Glycine max (3847) [31] Fungus/ 

necrotrophic [32] 

multicellular apoplast no  
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Table 2. The number of protein sequences in the investigated organisms (downloaded from NCBI as 

of July 2011). The second column lists the abbreviations for each organism used in the following parts 

of the article. 

Organism pair Abbreviation Number of proteins 

Arabidopsis thaliana [33] At 221,677 

Pseudomonas syringae pv. Tomato [34] Ps 41,274 

Oryza sativa [35] Os 257,407 

Xanthomonas oryzae pv. Oryzae [25,36] Xo 29,011 

Zea mays [37] Zm 101,421 

Ustilago maydis [38] Um 14,433 

Populus trichocarpa [39] Pt 87,553 

Melampsora larici-populina [40] Ml 16,384 

Glycine max [41] Gm 35,645 

Sclerotinia sclerotiorum  Ss  30,901 

2.2. Species-Independent Reaction Models 

We built draft genome-wide metabolic networks for each plant and its pathogen based on the 

MetaCyc reference metabolic network [42], and the protein databases Pfam [43], UniProt [44], and 

NCBI. The annotation of enzymes in the genomes of the 10 species investigated here was based 

primarily on applying hidden Markov models (HMMs). First, all reactions from MetaCyc with at least 

one annotated protein sequence were extracted. If for such a reaction a corresponding Pfam domain 

was annotated, the associated profile-HMM as provided by Pfam was used for further computations. If 

no Pfam family was annotated, but a four-digit EC number for the reaction was given, all protein 

sequences annotated with the corresponding EC number were downloaded from UniProt and used to 

build HMM-models (see below). If fewer than 20 protein sequences were available for a given EC 

number, standard BLAST [28] with a score cut-off of 50 and an E-value threshold of 10ିଵ଴ was used 

to collect additional significant sequence hits from the non-redundant sequence database “NR” to 

allow creating HMM-models with a sufficient number of sequences. 591 HMMs were derived from 

Pfam, 1192 HMMs from UniProt associations with EC-numbers, and 399 HMMs needed additional 

protein sequences obtained by BLAST searches. Afterwards, all reaction-specific protein sequences 

were aligned using the multiple sequence alignment program MAFFT [45]. The resulting multiple 

sequence alignments were converted into a reaction-specific profile HMM using the HMMER program 

[46]. HMMER transforms a multiple-sequence alignment into a probability based position-specific 

scoring system. Finally, all protein sequences from each species were searched with HMMER using all 

reaction-specific HMMs. For every reaction HMM, the protein with the lowest E-value score and 

below the cut-off of 1 was assigned the annotation associated with the respective HMM. The workflow 

is shown in Figure 1. Thus, a given HMM is assigned to only one protein in a species’ genome at most. 

While in reality a particular enzyme may exist in multiple isoforms, for the purpose of network 

reconstruction a reaction can proceed as long as there is at least one enzyme catalyzing it. However, a 

single protein may carry more than one annotation as it may be identified as the best hit by more than 

one HMM. First, proteins may indeed carry out multiple reactions (e.g. acting on different substrates), 

and secondly, using the bioinformatics annotation protocol alone, ambiguous assignments cannot be 



Metabolites 2013, 3                            

 

 

6

easily resolved, but would require experimental verification. For the sake of network capacity, we 

decided to accept ambiguous, but significant assignments. 

Figure 1. Enzyme annotation workflow applied in this study. For every reaction, enzyme 

sequences were extracted from databases and used to build reaction-specific and species-

independent profile hidden Markov models (HMMs). Using the HMMER software, these 

reaction HMMs are then used to scan the organism’s protein sequence set resulting in E-

values that reflect the probability that a particular protein acts as an enzyme and catalyzes 

the reaction that is captured by the specific HMM [47]. 

 

2.3. Network Curation and Gap-Filling 

The draft metabolic network models derived by the method explained in the previous section were 

further curated by removing reactions that are stoichiometrically inconsistent in the sense that the sum 

formulas on both sides of the chemical equations do not yield the same number of atoms. Mass-

balance was checked in reactions for which all involved compounds are annotated with a chemical 

formula. If elements were net-produced or net-consumed violating mass conservation (neglecting 

protonation state and water production/consumption), the reaction was removed. Reactions marked 

spontaneous in the MetaCyc database were added to all organism-specific metabolic networks. The 

resulting plant networks were then extended using the method introduced in [47]. Briefly, the 

metabolic networks are assumed to produce essential biomass precursors (amino acids, nucleotides) 

from autotrophic nutrients consisting of carbon dioxide, water, oxygen, protons and all other inorganic 

metabolites found in the MetaCyc database. Further, we added ribulose bisphosphate to ensure the 

functioning of the Calvin cycle. If the draft network is not able to produce the essential biomass 

precursors, a greedy approach identifies reactions from the MetaCyc database that should be added to 



Metabolites 2013, 3                            

 

 

7

the network to fulfill this requirement. It was not possible to apply this approach to the pathogen 

networks, because their nutrient requirements are presently largely unknown. 

2.4. Interaction Analysis of Metabolic Networks 

When two metabolic networks interact, they can exhibit positive or negative effects on each other. 

If the networks “cooperate” and combine their biochemical resources, increased biosynthetic 

capabilities may result from the interaction. A concept to quantify this symbiotic effect was introduced 

in [20], where the ‘metabolic gain’ was defined. The gain exists for any combination of initially 

available metabolites, called the seed. To calculate the gain, two networks are combined by simply 

forming the union of their biochemical reactions. Then, the scope of the seed, which is defined as the 

set of metabolites that can be produced from the seed as determined by the method of network 

expansion [19], is calculated for the individual networks and the combined network. The gain is then 

defined as the number of metabolites in the scope of the combined network minus the number of 

metabolites in the union of the scopes of the single networks. The asymmetric gain describes the 

positive effect on the individual organism, by subtracting the number of metabolites in the scope of a 

single network from the number of metabolites in the scope of the combined networks intersected with 

all compounds from the single network. To calculate the gain, we used as seed the combination of 

nutrients on which the plant networks can grow (see above), i.e. produce all necessary  

biomass precursors. 

Calculating negative effects of one network on another is less straightforward than capturing 

positive effects. To measure how the pathogen can impair the plant network, we first determined 

minimal combinations of nutrients on which the pathogen can survive (i.e. produce all necessary 

biomass precursors). Typically, the minimal nutrient seed compound set consisted of three to six 

compounds depending on the pathogen. In addition, water, oxygen, and protons were always provided. 

We employed the method described in [48] with the modification that the nutrient compounds are 

restricted to metabolites present in the plant network. In this way, possible nutrient combinations, 

which the pathogen may extract from the plants, were determined. The method was based on a 

statistical sampling procedure and is therefore repeated 10,000 times for each pathogen network. To 

favor small molecules as nutrients, the sampling was not performed according to a uniform random 

number distribution, but by using a Boltzmann-factor-based shuffling procedure (for details see [49]), 

using the compound masses, m, as "energies" and a “thermodynamic beta” of 0.05 1/Da. Two 

compounds with the mass difference ∆݉  are then exchanged with the probability of 

݉݅݊ሺ݁ି௕௘௧௔∗∆௠, 1ሻ. For each solution, i.e. a set of nutrients on which the pathogen can thrive, the 

possible negative effect on the plant network caused by the withdrawal of the corresponding 

metabolites was determined as follows: All reactions that use as substrate at least one of the 

determined pathogen nutrient compounds were removed from the plant network. This corresponds to 

the extreme scenario in which the pathogen extracts the entire compounds from the plant and reactions 

requiring this compound in the plant are no longer possible. Employing network expansion [19], this 

reduced network was then used to determine, which biomass compounds that are essential for the plant 

can still be produced. The relative impairment is then defined as the fraction of minimal nutrient 

combinations, for which a particular essential biomass compound can no longer be produced. For 
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example, a relative impairment of 0.3 for the plant biomass component lysine means that in 30% of all 

calculated minimal nutrient combinations one or several nutrients have been removed by the pathogen 

from the plant, which render lysine not producible. It is in the nature of this analysis that only the 

effect of the pathogen on the host is evaluated. Therefore, no ‘symmetric’ score, as in the case of the 

positive effects discussed above, exists. 

Vectors containing the impairment scores were defined to characterize impairment patterns of host-

pathogen interactions and pairwise distances between these vectors were calculated. Based on these 

distances, we applied Multidimensional Scaling (MDS) to visualize similarities of the impairments in a 

two-dimensional diagram. The 'cmdscale' routine of R was used for the MDS computations. 

2.5. Network Comparison and Multidimensional Scaling (MDS) 

The metric for the comparison of metabolic networks was based on Jaccard coefficients (JC) 

applied to sets of present reactions. The Jaccard coefficient between two sets is defined as the number 

of elements in the intersection divided by the number of elements in the union of the two sets. It is one 

for identical sets and zero for completely disjoint sets. We defined the Jaccard distance between two 

networks as ݀ሺܰ1, ܰ2ሻ ൌ 1 െ ,ሺܰ1ܥܬ ܰ2ሻ, where JC is the Jaccard coefficient as defined above. 

2.6. Network Visualization 

For all five pairs of plant and pathogen, we mapped the reactions onto the KEGG [48] reference 

metabolic pathway map based on the MetaCyc annotation. If there was no corresponding KEGG 

reaction annotation in MetaCyc, the EC number was used to map between KEGG and MetaCyc. Using 

the KEGG html-based visualization, all pathway maps can be zoomed in and out and can be queried. 

All metabolic network maps for all five plant-pathogen pairs are available as Supplementary Material 

1; the related reactions for all the species are available as Supplementary Material 2. 

3. Results 

3.1. The Genome-Scale Metabolic Networks 

Our established annotation workflow (see Figure 1) resulted in 10 genome-scale metabolic draft 

networks, five representing the metabolism of plants and five the metabolism of phytopathogens, 

respectively. 

The applied extension method suggested adding one reaction (catalyzed by imidazoleglycerol 

phosphate synthase) to all plant networks in order to produce histidine. No alternative reactions were 

found. Because no sequence information for enzymes catalyzing this reaction is available, a closer 

inspection whether these enzymes are indeed coded in the genome was not possible. For Arabidopsis 

thaliana, several reactions were additionally suggested in order to produce thymidine triphosphate 

(TTP). For the metabolic networks of Glycine max and Zea Mays, more reactions had to be added to 

enable the network to produce required biomass precursors from carbon dioxide and inorganic 

material. The numbers of added reactions are given in Table 3. 
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Table 3. Statistics of the number of reactions (annotated and after removing 

stoichiometrically inconsistent ones (‘curated’) and number of metabolites (connected to 

curated reactions) in all 10 organisms studied. The percentage values in the fourth column 

represent the percentage of curated reactions. In the final column, the numbers of reactions 

added to the plant networks during the gap filling process are denoted. This is not 

applicable (NA) to the pathogenic networks. 

Organism Kingdom No. reactions 

(annotated) 

No. reactions (curated) No. metabolites 

(curated) 

No. of added 

extension reactions 

At Planta 3,608 3,316 (91.9%) 3,560 2 

Ps Bactera 3,223 2,964 (92.0%) 3,175 NA 

Os Planta 3,680 3,357 (91.2%) 3,617 1 

Xo Bacteria 3,026 2,799 (92.5%) 3,064 NA 

Zm Planta 3,606 3,315 (91.9%) 3,596 4 

Um Fungi 3,398 3,107 (91.4%) 3,398 NA 

Pt Planta 3,758 3,442 (91.6%) 3,653 1 

Ml Fungi 3,368 3,084 (91.6%) 3,356 NA 

Gm Planta 3,380 3,130 (92.6%) 3,446 4 

Ss Fungi 3,505 3,200 (91.3%) 3,493 NA 

MC  9,531 8,780 (92.1%) 7,755 NA 

 

The sizes of the networks, measured in terms of numbers of reactions and numbers of metabolites, 

are summarized in Table 3. On average, plant networks are larger than pathogen networks (݌௧ି௧௘௦௧ ൌ
0.01) with 3082 curated reactions present on average in plants, 2906 in fungi, and 2690 in bacteria. 

Despite its significance, the difference in size of the plant and bacterial metabolic networks is 

surprisingly small. It has to be borne in mind that the employed network reconstruction procedure 

relied on mapping known enzyme sequences onto novel protein sequences. As a consequence, these 

networks are biased to well-known and common enzymatic reactions. Thus, due to limitations in our 

current knowledge, the large secondary metabolism of plants is hugely underrepresented. 

Beyond the size differences, the question whether the content of the networks are rather similar or 

display significant differences; i.e. whether the set of enzymes and reactions are overlapping or 

disjoint. Judged by the Jaccard distance of present reactions as a measure to compare two metabolic 

networks (see Methods), the five plant metabolic networks are most similar to each other (Figure 2), 

whereas the pathogen networks are much more heterogeneous. The metabolic networks of the bacterial 

pathogens (Xo and Ps) clearly differ from those of fungal species (Um, Ml, Ss) with the bacterial 

species representing the most distinct networks compared to all other species considered here. In fact, 



Metabolites 2013, 3                            

 

 

10

the metabolic reaction-based similarities of the networks reflect the respective evolutionary origin of 

the 10 different species (Figure 2).  

Figure 2. Pairwise network-network overlap based on the Jaccard distance for present 

metabolic reactions in the 5 plant and 5 phytopathogen genomes investigated in this study. 

The values of the respective Jaccard indexes are visualized by grey-scale.  

  

3.2. Visualization of Pathogen-Plant Metabolic Networks 

A central goal of our work was to establish draft networks for various plant-pathogen pairs, which 

may offer a platform for further investigations. To facilitate the inspection of how the host and the 

pathogen networks are overlapping and interacting, we generated navigable pathway maps that are 

based on the KEGG [48] metabolic maps. As an example, Figure 4 displays the visualization of the 

interacting network pair Pseudomonas syringae pv. Tomato and Arabidopsis thaliana. Green edges 

represent Arabidopsis thaliana specific reactions, yellow edges represent Pseudomonas syringae pv. 

Tomato specific reactions, black reactions are common to both networks. Grey edges represent 

reactions not contained in any of the two species. All network pairs are accessible as interactive maps 

with links to the corresponding KEGG metabolite and reaction entries in the Supplementary Material 1. 
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Figure 3. Interacting metabolic networks of Pseudomonas syringae pv. Tomato and 

Arabidopsis thaliana based on KEGG. Black edges represent common reactions between 

Pseudomonas syringae pv. Tomato and Arabidopsis thaliana, green edges represent 

Arabidopsis thaliana specific reactions, yellow edges represent Pseudomonas syringae pv. 

Tomato specific reactions, all other edges represent reactions not contained in either 

organism. 

 

3.3. Network Analysis of Plant-Pathogen Network Pairs 

The pathogen gaining its resources from the host, thus inflicting damage to it, constitutes the 

hallmark of any host-pathogen relation. This relation is asymmetric in the sense that the host can 

survive better in the absence of the pathogen, while in general, the pathogen is dependent on nutrients 

or other components provided by the host. At the metabolic level, it is therefore plausible to assume 

that the presence of the metabolism of the pathogen has a negative effect on the plant metabolism, 

whereas the existence of the plant metabolism is positive for the pathogen. To analyze and quantify 

negative and positive effects of interacting metabolic networks, we calculated a ‘gain’ measuring the 

positive effect and an ‘impairment’ measuring the negative effect that one network has on the other. 

Essentially, the gain measures the number of metabolites, which can be produced more by a combined 

network compared to the sum of the single networks and the impairment is assessed by calculating the 

negative effect that removal of required nutrients of the pathogen has on the host’s capability to 

produce essential biomass precursors (details are given in the relevant section in Methods).  

We calculated the metabolic gain for each plant-pathogen pair by assuming the photoautotrophic 

plant seed consisting of carbon dioxide and inorganic nutrients. As described in the relevant paragraph 

in the Methods, we calculate a symmetric gain, which describes the overall increase of producible 

metabolites, and asymmetric gains, which specify the advantages for each partner by only including 
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metabolites occurring in the network of the respective interacting partner. This plant asymmetric gain 

describes how many new compounds could in principle be synthesized by the plant if all metabolic 

reactions in the pathogen could be used constructively. While this may seem irrelevant considering that 

pathogens do not help their hosts but rather exploit them, it is nevertheless an interesting theoretical 

exercise, because a transition from pathogenic exploitation to symbiotic mutualism can occur, and vice 

versa. For example, type III secretion systems that are crucial for the pathogenicity of P. syringae, are 

also active in the plant growth promoting Pseudomonas fluorescens SBW 2528 [50], and haustoria are 

established by pathogenic fungi, e. g. powdery mildew, as well as by symbiotic mycorrhiza (here 

called arbuscules). Some symbionts may have evolved from pathogens and adapted to their hosts by 

providing them with valuable chemical substances [51]. It is plausible to assume that pathogens, at 

least to some degree, may also be physiologically beneficial to their host’s metabolism.  

The plant asymmetric gain varies considerably for the five pairs. By far the highest value is 

observed for Glycine max with Sclerotinia sclerotiorum. Therefore, the metabolism of the parasite S. 

sclerotiorum appears to have a high potential to be of use for its host. It can be speculated that in 

evolutionary terms this parasitism has some chance to evolve into a symbiotic relationship, because 

both partners can – at least at the metabolic level – in principle benefit considerably from each other. 

Except for one pair (Gm/Ss) where it is relatively even, the asymmetric gain is considerably higher for 

all pathogens relative to the plant hosts in all pairs. This is not surprising considering that we 

performed our calculation under the assumption that only inorganic nutrients are available. Clearly, the 

parasites cannot utilize this combination without presence of the plants. Interestingly, the symmetric 

metabolic gain and the plant asymmetric gain do not seem to be correlated with network distance. 

Intuitively, one would expect that the larger the network overlap (small Jaccard distance), the smaller 

the gain, because the networks have essentially the same metabolic capacity, and conversely, the 

smaller the overlap (large Jaccard distance), the larger the gain. However, no significant correlation, 

even slightly negative rather than the expected positive correlation, was found between the gain or 

asymmetric gain and the Jaccard distance (with the Pearson correlation coefficients and associated p-

values of r=-0.25, p=0.68, and r=-0.10, p=0.87, respectively). For example, Glycine max and 

Sclerotinia sclerotiorum exhibit the largest gain amongst the five pairs (191 (symmetric), 238 

(asymmetric)), whereas the network distance of 0.145 is rather moderate. By contrast, Arabidopsis 

thaliana and Pseudomonas syringae exhibit a rather large Jaccard distance of 0.216, but the metabolic 

gain is only 1 (symmetric) and 34 (asymmetric). 

Table 4. Overview of the metabolic gain and Jaccard distance for all five plant-pathogen pairs. 

 gain asymmetric gain plant asymmetric gain pathogen Jaccard distance 

At - Ps 1 34 146 0.216 

Gm – Ss 191 238 220 0.145 

Os – Xo 21 68 214 0.223 

Pt – Ml 2 14 301 0.140 

Zm - Um 8 19 308 0.122 
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To assess the negative impact of pathogens on the hosts, we calculated how the presence of 

the pathogens impairs the production of essential biomass precursors in the host networks (see 

Methods). To allow for a systematic analysis, we determined the impairment not only for the 

specific interactions of pathogens on their natural hosts, but extended the analysis to all 

combinations of host-pathogen pairs. Effectively, the non-natural plant-pathogen pairs produced 

in silico serve as a null-model to which any specific effects of the actual plant-pathogen 

combinations can be contrasted. The result is depicted in Figure 4 in which the shadings of the 

squares indicate the impairment scores in a logarithmic scale. A white square represents a score 

of less than 0.01, a black square of a score close to 1.  

Figure 4. Relative impairment scores for essential biomass precursors for all investigated 

host-pathogen pairs. Impairment scores are indicated by grey-scale in a logarithmic scale. 

White squares indicate an impairment score of less than 0.01, black squares a score of 1. 

The network pairs are grouped by pathogens so that each panel displays the effect of one 

particular pathogen on each of the five plant networks and the complete MetaCyc network 

(MC). Native plant-pathogen pairs are highlighted in bold face. 

  
 

Interestingly, only few biomass precursors show a high score while most precursors are only 

marginally impaired. Only for histidine, lysine, methionine and thymidine triphosphate (TTP) scores 
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over 0.05 are observed. Histidine is strongly impaired in all investigated plant-pathogen pairs with 

scores between 0.25 and 0.85. Methionine and cysteine are also rather uniformly impaired in all pairs, 

but with considerably lower scores (between 0.05 and 0.08 for methionine and between 0.03 and 0.04 

for cysteine). By contrast, the impairment of lysine and TTP is very heterogeneous throughout the 

investigated plant-pathogen pairs. While the production of thymidine triphosphate is strongly impaired 

by the pathogens X. oryzae (0.40-0.65), U. maydis (0.95-0.96) and S. sclerotiorum (0.99), it is only 

weakly impaired by the other two pathogens P. syringae (0.03) and M. larici-populina (0.03-0.06). 

This means that for U. maydis and S. sclerotiorum for almost all predicted nutrient combinations, 

removal of the nutrients leads to a disability of the host network to produce the essential nucleotide 

phosphate TTP. Interestingly, their metabolic networks exhibit a low pairwise distance (0.144) so it 

can be speculated that the mechanism is similar, despite the fact that S. sclerotiorum is a nectrotrophic 

parasite, while U. maydis is biotrophic. On the other hand, the network of M. larici-populina, the third 

fungal pathogen which is also biotrophic, also exhibits a low distance to S. sclerotiorum and U. 

maydis, but the impairment on host networks is considerably different. Similarly, lysine is 

considerably impaired by the pathogens U. maydis (0.18-0.21) and M. larici-populina (0.25-0.29), but 

only marginally by the other three pathogens (scores below 0.02).  

The observation that only a subset of biomass precursors is susceptible to impairment may result 

from a general, non-plant-specific, vulnerability of the respective synthesis pathways. To investigate 

the general fragility of these synthesis pathways, we have included the network comprising all 

reactions from MetaCyc [52] as a hypothetical host network. The impairment of the pathogens on the 

MetaCyc network (marked MC) is displayed in the top row of each panel in Figure 4. Histidine, for 

example, is as strongly impaired in the MetaCyc network as it is in the plant networks, suggesting that 

the full set of reactions does not provide a higher robustness for histidine synthesis when compared to 

the plant-specific synthesis pathways. Lysine production is impaired in the MetaCyc network only by 

the two pathogens U. maydis and M. larici-populina, which also impair lysine production in the plant 

networks. However, the considerably lower impairment scores (0.12 and 0.09, respectively) indicate 

that the full set of MetaCyc reactions provides more alternative synthesis routes and thus displays an 

increased robustness against competition by the pathogens. An interesting pattern is observed for the 

impairment of TTP. The pathogens U. maydis and S. sclerotiorum, which strongly impair TTP 

production in plant networks, also exhibit the strongest effect on the full network, albeit with a lower 

impairment score (0.64 and 0.27, respectively). By contrast, X. oryzae, which also strongly impairs 

TTP in plant networks, has only a negligible effect on the full network (<0.01). This indicates that in 

the case of X. oryzae other metabolic routes exist in MetaCyc, which could circumvent the removal of 

the required nutrients, while this is not the case for U. maydis and S. sclerotiorum. 

As a general tendency, the impairment patterns appear to be largely determined by the pathogens 

and rather independent of the host species. For a systematic investigation of the similarities in the 

impairment patterns, we quantify the overall effect of a pathogen on a host by the vector containing as 

elements the 28 impairment scores for the biomass precursors and calculated the pairwise Manhattan 

(1-norm) distances. These distances were used to perform a multi-dimensional scaling [53] to visualize 

similarities and differences. The resulting plot (Figure 5) highlights that pairs containing the same 

pathogens (same colors) are always grouped together, confirming that the impairment pattern is largely 

determined by the pathogen. Furthermore, it can be observed that in most cases the impairment on the 
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full MetaCyc network (squares) is clearly distinguished from the impairment on the plant networks. 

The only exception is P. syringae, which displays a similar effect on the full network as on the plant-

specific networks. This exception can be explained by the fact that P. syringae mainly impairs the 

production of histidine. However, as discussed above, histidine production is almost equally impaired 

in the full MetaCyc network as in the plant-specific networks. 

Figure 5. Multi-dimensional scaling (MDS) of all pairwise impairment patterns. Each 

colored symbol represents one host-pathogen pair, where hosts are characterized by 

different symbols and pathogens by different colors. Similar impairment patterns are 

located near each other in the plot. Axes denote the two-dimensional space in which the 

respective data points were placed by the MDS procedure.  

 

4. Discussion and Conclusions 

The metabolic level constitutes an important layer of molecular organization as it is closely linked 

to the species’ phenotype. Here, we investigated the consequences of merging the metabolic networks 

of plants and their microbial pathogens mimicking pathogen attack of the respective plant. We 

explored the effects of an unrestricted exchange of the entire complement of all metabolites of two 

organisms as determined from genome-wide network reconstructions. As in reality the exchange of 

metabolites will be confined to a much smaller number of compounds due to the compound-specific 

transport across biomembranes, the approach presented here can be seen as a limiting case of plant-

pathogen interactions. Our study constitutes a first attempt to gauge the negative and positive effects of 

joint metabolic networks between plants and their microbial phytopathogens. 
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Homology based metabolic network reconstruction has been applied successfully to many 

organisms [54,55]. For a newly sequenced genome, this method is the most direct strategy to explore 

the biochemical repertoire of an organism. One limitation for this method is that for a substantial 

number of enzymes, no sequence information exists. For 43% of all MetaCyc reactions, no 

DNA/protein sequences are presently available. As a consequence, important reactions may be missed. 

Modern high-throughput metabolic profiling experiments can possibly mitigate the limitations from 

this missing information, because it is a plausible assumption that for every observed metabolite 

enzymes utilizing it as a substrate or producing it must exist [56]. Thus, the presence of a particular 

enzymatic activity can be postulated even in the absence of sequence information. Inevitably, a 

sequence homology based transfer of functional annotation relies on sequence identity-cutoffs, which 

may either be overly restrictive - leading to unnecessarily small networks - or too permissive - leading 

to many false positive enzyme annotation. Confirmation of the annotated functions can only be 

achieved by experimental enzyme assays.  

Inevitably, these uncertainties also apply to the networks reconstructed for this study. In principle, 

for some of the organisms investigated here, well-curated metabolic networks exist, such as AraCyc 

[57] for A. thaliana. However, we decided against using the curated networks, but applied the same 

annotation workflow used for the other organisms for which no pre-existing metabolic database was 

available. Thereby, possible methodological and systematic differences when comparing results for the 

different species were avoided. Our method was based on deriving HMMs for every enzyme-catalysed 

reaction and to apply those models in whole-genome scans. In the case of A. thaliana, this resulted in a 

high number of consistent annotations compared to AraCyc, but also yielded annotations for which no 

corresponding enzyme annotation was available. Specifically, of the 3316 reactions present in our 

Arabidopsis network, 1764 were also present in AraCyc, 1552 were contained in our set only, and 

1556 were unique to AraCyc. The latter set included almost exclusively those reactions for which no 

corresponding enzyme information was available. Thus, they cannot be contained in our set. Reactions 

contained in our set only were all statistically significant and represent either alternative annotations to 

enzymes for which another EC number with different substrate specificity was already assigned, or 

they were not yet annotated previously in AraCyc. The comparison with AraCyc highlights the 

importance to apply the same annotation pipeline to all organisms to ensure consistency. It further 

illustrates that different annotation pipelines (AraCyc has not been constructed using HMMs) result in 

quite different networks, pointing at possible future approaches to improve current Biocyc databases. 

Our network reconstruction workflow included a gap filling step (Table 3), in which enzymatic 

reactions were added that are essential in the sense that all biomass precursors must be producible from 

the available nutrients. This was only possible for the plant networks as for the pathogens, defined 

culture media are not known. It is, however, conceivable that the missing enzymes are contributed by a 

symbiont as, for example, reported for carotenoid synthesis in the whitefly Bemisia tabaci by its 

endosymbiont Portiera aleyrodidarum [58]. In fact, two of the four added reactions in Glycine max 

exist in its pathogen Sclerotinia sclerotiorum, one involved in the histidine biosynthesis and the other 

in inositol-5-phosphate. In the four added reactions in Zea mays, one reaction exists in its pathogen 

Ustilago maydis, also involved in inositol-5-phosphate biosynthesis. However, without the added 

reactions, the plant networks would not have been able to photoautotrophically accumulate biomass, 

which contradicts our biological knowledge as the plants studied here can live without the pathogen. 
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Unless the plants live in an obligate symbiosis, reactions that need to be present in the plants for their 

self-sustained growth have to be added to the plant network. For the added reactions of the other three 

plants, there is no equivalent reaction existing in their pathogens. 

There are several powerful tools and resources for visualization of genome-wide metabolic 

networks based on a manually drawn network map [48,59]. However, there is presently no tool 

specifically designed to visualize host-pathogen metabolic networks. Here, we exploited the KEGG 

mapping functionalities to accomplish this task. We thus provide the means to biochemists and 

microbiologists to easily and visually inspect the interaction of two metabolic networks of a plant host 

and a disease-causing parasite. 

The targeted reconstruction of pairs of networks representing the metabolism of a pathogen and its 

host is a prerequisite for future theoretical analyses of their interaction at the metabolic level. While 

visual inspection is highly useful, especially for the expert with the trained eye, many features and 

properties are far from obvious and can only be uncovered by computational analyses. Here, we 

presented two approaches to how the interaction of metabolic networks can be quantified. A positive, 

synergistic effect is captured by the metabolic gain previously defined in [20]. To this end, we 

calculated how many new metabolites might be produced from carbon dioxide and inorganic nutrients 

in a combined network consisting of all reactions of the host and the pathogen. We found that this 

number varies considerably (from 1 in the pair At/Ps to 191 for Gm/Ss) and does not appear to be 

correlated with the dissimilarity of the network pairs as judged by the Jaccard distance. To estimate 

how the availability of producing necessary biomass precursors and, therefore, growth is impaired by 

the presence of another organism, we introduced here as a new measure the 'metabolic impairment'. 

Our analysis is unbiased in the sense that it only uses the reconstructed metabolic networks, but not 

any other prior biological information except that plants alone can grow on carbon dioxide as the only 

carbon source. From the pathogen network, many different possible nutrient combinations, which can 

sustain growth, are computed and the effect of removing these nutrients from the host network on the 

host's capability to grow is determined. We considered the nutrient drained by the pathogen completely 

absent to the plant. Obviously, this may not be the case in reality. However, this assumption allowed 

for the simplest treatment of the problem and can furthermore be seen as an extreme and limiting case. 

When investigating the impairment in all 25 plant-pathogen pairs (Supplementary Material 3), we 

found that the amino acids histidine, lysine, and to a lesser extent methionine, as well as the nucleotide 

phosphate TTP are particularly vulnerable in all investigated pairs; i.e. the pathogens were found to 

frequently remove compounds that are essential for their production in plants. Whether this finding can 

be explained by intrinsic properties of metabolism in general is not yet clear. However, a comparison 

with the negative effect on the complete MetaCyc network indicated that intrinsic network properties 

are at least partially responsible for the dominating appearance of certain biomass precursors. 

Interestingly, also in a different unbiased network analysis TTP stood out among the nucleotide 

phosphates. In [60], it was found that the metabolic scope of TTP in the global network comprising all 

reactions known to date was considerably smaller than that of the other deoxy-nucleotides, which 

essentially means that, while TTP can be produced from any other nucleotide and water as sole 

substrates, the reverse is not possible. A robustness analysis of the E. coli network [47] has also 

illustrated that TTP, methionine, and histidine are particularly vulnerable if reactions are randomly 

deleted from the network.  
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A key finding of this study was that the impairment pattern is largely determined by the pathogen. 

For every pathogen, the impairment scores for the different biomass precursors were similar regardless 

with which of the five plants the pathogen was paired. As three of the five selected pathogens were 

fungi and two bacteria, the results can also be analyzed with regard to kingdom-specific effects. 

However, no strong segregation of fungi and bacteria was evident (Figure 5). Clearly, the number of 

representatives (3 and 2 species, respectively) is too low to allow definitive statistical conclusions. 

With an increased availability of more fully sequenced plant species and associated pathogen genomes, 

the question of kingdom-specific effects needs to be revisited. Similarly, for conclusions with regard to 

life-style characteristics of the pathogens, more network pairs will be necessary. Nonetheless, we 

believe that the current study introduces appropriate theoretical concepts for the investigation of plant-

pathogen metabolic network effects. An interesting extension of our investigation would be to pair a 

large number of networks including pathogens and non-pathogens with the host networks and repeat 

the impairment analysis. If the producibility of the same metabolites is particularly impaired also in 

such a randomized approach, the hypothesis that some intrinsic features of the amino-acid synthesizing 

pathways are responsible for our observation is supported. 

The approaches presented here may provide valuable insight into possible mechanisms of how 

pathogens exploit their hosts and on which particular metabolites they depend. Such hypotheses 

generated by our modeling approach are in principle testable by experimental techniques. For example, 

metabolite exchange fluxes between host and parasite can in principle be measured using isotope 

labeling techniques. As more such information becomes available, the network analysis must be 

further refined. To this end, it will become necessary to generate highly curated metabolic network 

models for the purpose of performing constraint-based modeling such as Flux Balance Analysis (FBA, 

[61]). With these models, flux distributions can be predicted, which for example lead to a maximal 

biomass production of the pathogen and experimental validation or falsification will lead to a 

continuous improvement of the metabolic models and our understanding on the metabolic exchanges 

between plants and phytopathogens. 

Supplementary Material  

(1) Navigable metabolic network maps for the plant-pathogen pairs At-Ps, Gm-Ss, Os-Xo, Pt-Ml, 

and Zm-Um. 

(2) The reactions list for all the species used in this research and MetaCyc. 

(3) Various plant-pathogen impairment profile plots. 
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