
The role of ontologies in creating & 

maintaining corporate knowledge: a case 

study from the aero industry 

 

Derek Sleeman
1
, Suraj Ajit

1
, David W. Fowler

1
, & David Knott

2
 

1
Department of Computing Science, University of Aberdeen, Scotland, UK 

Email: d.sleeman@abdn.ac.uk, surajajit@yahoo.com, davidfowler0@googlemail.com 

2
Rolls Royce plc, Derby, UK 

Email: david.knott@rolls-royce.com 

 

Abstract. The Designers’ Workbench is a system, developed to support 

designers in large organizations, such as Rolls-Royce, to ensure that the design 

is consistent with the specification for the particular design as well as with the 

company’s design rule book(s). The evolving design is described against a jet 

engine ontology. Design rules are expressed as constraints over the domain 

ontology. To capture the constraint information, a domain expert (design 

engineer) has to work with a knowledge engineer to identify the constraints, 

and it is then the task of the knowledge engineer to encode these into the 

Workbench’s knowledge base. This is an error prone and time consuming task. 

It is highly desirable to relieve the knowledge engineer of this task, and so we 

have developed a tool, ConEditor+ that enables domain experts themselves to 

capture and maintain these constraints. The tool allows the user to combine 

selected entities from the domain ontology with keywords and operators of a 

constraint language to form a constraint expression. In order to appropriately 
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apply, maintain and reuse constraints, we believe that it is important to 

understand the assumptions and context in which each constraint is applicable; 

we refer to these as “application conditions”. We hypothesise that an explicit 

representation of constraints together with the corresponding application 

conditions and the appropriate domain ontology could be used by a system to 

support the maintenance of constraints. In this paper, we focus on the important 

role the domain ontology plays in supporting the maintenance of constraints. 

1 Introduction 

The context for the principal system reported here, ConEditor+ (Ajit, Sleeman, 

Fowler, Knott, & Hui, 2005; Ajit, Sleeman, Fowler, Knott, & Hui, 2007), is the 

Designers’ Workbench (Fowler, Sleeman, Wills, Lyon, & Knott, 2004) that has been 

developed to enable a group of designers to produce cooperatively a component that 

conforms to the component’s overall specifications and the company’s design rule 

book(s). One can view the design rule book(s) as an important repository of corporate 

knowledge, in a company whose expertise is principally in the design and maintenance 

of aero-engines. Moreover, we argue that the Designers’ Workbench is an interactive 

environment in which this corporate knowledge is applied; further, ConEditor+ allows 

engineers to capture and maintain (verify and refine) these constraints. Further, as we 

shall demonstrate, an ontology for describing jet engines has a central role in these 

systems.  

Engineering Design is constraint-oriented and much of the design process 

involves the recognition, formulation and satisfaction of constraints (Gross, Ervin, 

Anderson, & Fleisher, 1987; Lin & Chen, 2002; Serrano & Gossard, 1992; Ullman, 

2003). The engineering design process has an evolutionary and iterative nature as 

designed artifacts often develop through a series of changes before a final solution is 
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achieved. A common problem encountered during the design process is that of 

knowledge (e.g. constraint) evolution, which may involve the identification of new 

constraints or the modification or deletion of existing constraints. The reasons for such 

changes include development in the technology, changes to improve performance, 

changes to reduce development time and costs. Typically, maintenance involves 

various issues/problems: 

• Original experts are unlikely to be available: The transient nature of modern 

organizations and workforces, the rapid flow of knowledge and experience out 

of companies due to staff leaving make it difficult for new designers to properly 

use stored design knowledge and subsequently to maintain it. 

• Insufficient documentation provided: Several constraints may be applicable 

only in particular contexts. These contexts are often implicit to the designer 

formulating them but are not documented. In addition, many constraints are 

based on assumptions that have become false subsequently. These assumptions 

are often not made explicit. 

• Maintenance is time consuming and complex: Maintenance of constraints in an 

engineering design environment is a complicated process that can be 

complicated and time consuming to perform manually. Thus, there is a pressing 

need for tools to support maintenance of this kind of knowledge. 

• The evolutionary nature of constraints establishes the need to constantly update, 

revise, and maintain them. One needs to identify all the constraints that require 

modification. In addition, one needs to make sure that the knowledge base is 

consistent after making any changes. 

The issues faced in Knowledge Base (KB) maintenance within engineering were 

first raised by the XCON configuration system at Digital Equipment Corporation 
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(Barker & O'Connor, 1989; Soloway, Bachant, & Jensen, 1987). Initially it was 

assumed that knowledge-based systems could be maintained by simply adding new 

elements or replacing existing ones. However this “simplicity” proved to be illusory as 

indicated by the experience of R1/XCON (Coenen, 1992). 

1.1 Research Aims and Hypothesis 

 

Enabling domain experts to maintain knowledge in a knowledge-based system has 

long been an objective of the knowledge engineering community (Bultman, Kuipers, & 

Harmelen, 2000). This paper identifies a situation where it is highly desirable to 

eliminate the knowledge engineer from doing this laborious, error-prone and time-

consuming task. The paper reports on a system ConEditor+ that we have developed to 

enable domain experts themselves to capture and maintain constraints. Further, we 

hypothesize that it is important to capture the context in which a constraint is applicable 

in a system interpretable format and that this information (referred to as application 

conditions) together with the constraints and the domain ontology can be used by a 

system to support the maintenance of constraints. For us, the maintenance of constraints 

includes reducing the number of inconsistencies and also detecting redundancy, 

subsumption and fusion between pairs of constraints. In particular, we aim to exploit 

inferencing inherent in the domain ontology to support the maintenance of constraints. 

The main research question we plan to address is: 

 

Can an explicit representation of application conditions together with the constraints 

and the domain ontology help a system: a) reduce the number of inconsistencies and b) 

detect subsumption, redundancy, fusion and suggest appropriate refinements between 

pairs of constraints?  
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The rest of the paper is organized as follows: Section 2 provides an introduction to 

the Designers’ Workbench, and the domain ontology used; Section 3 describes the 

problem(s) faced in developing the knowledge base for the Workbench and the need for 

ConEditor and ConEditor+. Section 4 gives a brief overview of ConEditor+. Section 5 

then focuses on the maintenance aspects of constraints with a description of our 

approach. Section 6 describes how we extended the jet engine ontology and then used 

this in the refinement of constraints from that domain. Implementation of ConEditor+ is 

discussed in Section 7. Evaluation undertaken is described in Section 8 and is followed 

by discussion of related work in Section 9. Conclusions and plans for future work 

follow in Section 10.  

2 Introduction to the Designers’ Workbench 

Designers in Rolls-Royce, as in many large organizations, work in teams. Thus it is 

important when a group of designers are working on aspects of a common project, that 

the subcomponent designed by one engineer is consistent with the overall specification, 

and with those designed by other members of the team. Additionally, all designs have 

to be consistent with the company’s design rule book(s). Making sure that these various 

constraints are complied with is a complicated process, and so we have developed the 

Designers’ Workbench, which seeks to support these activities. 

The Designers’ Workbench (Fig. 1) uses an ontology (Gruber, 1995) to describe 

elements in a configuration task. Design rules are expressed as constraints over the 

ontology. The system supports human designers by checking that their configurations 

satisfy both physical and organizational constraints. Configurations are composed of 

features, which can be geometric or non-geometric, physical or abstract. When a new 

design is input into the system an engineering drawing is provided as a graphical 
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backcloth, and the various parts are annotated using the domain ontology. Fig.1 shows 

the result of such an annotation exercise; the relevant ontology displayed in the top 

right hand corner can be expanded to show sub-classes, properties, and relations. A 

graphical interface enables the designer to add new features, set property values, and 

perform constraint checks. If a constraint is violated, the affected features are 

highlighted and a report is generated. 

 INSERT FIGURE 1 HERE 

 The report gives the designer a short description of the constraint that is 

violated, the features affected by that violation, and a link to the source document. The 

designer can often resolve the violations by adjusting the property values of the affected 

features. On selecting a feature, the GUI displays a table of corresponding properties 

and their values. These property values can then be adjusted, and this often resolves the 

constraint violation(s). The ontology used by the Designers’ Workbench was created 

using the Protégé editor (Noy, Fergerson, & Musen, 2000), and the class hierarchy is 

shown in Fig. 2. The ontology is written in the Web Ontology Language (OWL) 

(McGuinness & Harmelen, 2004), and has 42 classes and 45 properties (of which 22 

are object properties and 23 are data-type properties). Most classes in the ontology 

correspond to features, and the properties correspond to parameters that can be set to 

instances of feature (data-type properties), or to connections to other features (object 

properties).  

INSERT FIGURE 2 HERE 

Fig. 3 shows the properties of a class (DiametralRingSeal) selected from the 

ontology. There are three datatype properties (in_static_joint, name, and 

owner) and six object properties (has_ferrule, has_housing, 
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has_coating, has_material, has_sealing_ring, and 

operating_temperature) that link to other entities in the design. Furthermore, 

two of the properties (has_ferrule and has_housing) are only defined for the 

class DiametralRingSeal, whereas the others are defined for classes that are 

ancestors of the class, and are inherited (as shown by the brackets around the 

rectangular icons in the screenshot). 

INSERT FIGURE 3 HERE 

 In the Designers' Workbench, the designer can select a feature class from the 

ontology and create an instance of that class. The values of the properties of a typical 

instance of the class DiametralRingSeal are shown in Fig. 4. In the Designers’ 

Workbench, property values are set by either typing values into a text box (for datatype 

properties), or by selecting an instance from a drop down menu (for object properties); 

also values can be left uninstantiated. This enables the designer to fill in the values that 

are known, and to check constraints, in an incremental way. 

INSERT FIGURE 4 HERE 

Example constraints defined over the ontology include: 

• The value of the maximum operating temperature of the material of each 

concrete feature must be greater than the prevailing environmental temperature; 

 

• The length of the bolt in a bolted joint must exceed the sum of the thicknesses 

of the clamped parts, plus the height of the nut. For simplicity, issues such as 

tolerances of dimensions have been ignored although these can be dealt with, 

for example by defining a Measurement class (as subclass of AbstractFeature), 

with properties dimension and tolerance. 
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The first constraint above will apply to all concrete features that have a ‘has_material’ 

property and an ‘environmental_temperature’ property defined. The second constraint 

above is more complicated, and applies to all bolts, nuts, and clamped parts that are 

parts of bolted joints. Constraints are handled in a two stage process: 

 

• Identify feature values that should be constrained; 

 

• Formulate a tuple(s) of values for each set of feature values, and check that the 

constraint is satisfied by these values. 

 

The constraint processing uses SPARQL Query Language (Prud'hommeaux & 

Seaborne, 2007) to find the constrained features and values. After using SPARQL to 

extract the constrained values, SICStus1 Prolog is used to check that the constraints 

hold. The SPARQL query that locates features affected by the material temperature 

constraint is: 

 

SELECT ?arg1,?arg2 WHERE 

(?feature,<dwOnto:has_material>,?mat), 

(?mat,<dwOnto:max_operating_temp>,?arg1), 

(?feature,<dwOnto:operating_temp>,?optemp), 

(?optemp,<dwOnto:temperature>,?arg2) 

USING dwOnto FOR <namespace> 

 

                                                 
2Swedish Institute of Computer Science, version 3.10, Accessed online 29 May 2008 at                                         

  http://www.sics.se/sicstus/  
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The values of the returned variables ?arg1 and ?arg2 are the material’s maximum 

operating temperature, and the current operating temperature, respectively. The check 

that the values must satisfy is represented by the Sicstus predicate 

 

op_temp_limit(MaterialMaxTemp, EnvironTemp) :-  

EnvironTemp =< MaterialMaxTemp. 

 

Using the values of the variables ?arg1 and ?arg2, the predicate 

op_temp_limit(MaterialMaxTemp, EnvironTemp) is formed, and checked. 

This process is repeated for each set of values returned by the SPARQL query, and for 

each constraint that has been specified. 

INSERT FIGURE 5 HERE 

3 Capturing the knowledge in the design rule books 

As noted above, the Designers’ Workbench needs access to the various constraints, 

including those inherent in the company’s design rule book(s). To capture this 

information, a design engineer (domain expert) worked with a knowledge engineer to 

identify the constraints, and it was then the task of the knowledge engineer to encode 

these into the Workbench’s knowledge base. This was an error prone and time 

consuming task. As constraints are explained succinctly in the design rule book(s), a 

non-expert often finds it very difficult to understand the context and formulate 

constraints directly from the design rule book(s), and so a design engineer has to help 

the knowledge engineer in this process. An example of a constraint as expressed in the 

rule book(s) is shown in Fig. 5. 

It would be useful if a new constraint could be formulated by an engineer in an 
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intuitive way, by selecting classes and properties from the appropriate ontology, and 

somehow combining them using a predefined set of operators. This would help 

engineers to input the constraints themselves and relieve the programmer of that task. 

This would also enable designers to have greater control over the definition and 

refinement of constraints, and presumably, to have greater trust in the results of 

constraint checks. This led initially to the development of a system, known as 

ConEditor (Ajit, Sleeman, Fowler, & Knott, 2004), which enables a domain expert to 

input and maintain constraints. ConEditor concentrated on the constraint capture and 

provided basic maintenance facilities such as syntax error checking, allowing users to 

read constraints from a file, edit the constraints and then write them to the same or a 

new file. Following encouraging results from a preliminary evaluation undertaken at 

Rolls-Royce, ConEditor was enhanced with additional features to support the 

maintenance of constraints and became known as ConEditor+. The paper refers to the 

latest version of the system, ConEditor+, throughout the paper. Details of the system 

and its maintenance features are given in subsequent sections. 

INSERT FIGURE 6 HERE 

4 ConEditor+ 

ConEditor+ is a system that has been developed to enable domain experts to 

capture and maintain constraints. ConEditor+’s graphical user interface (GUI) is shown 

in Fig. 6. A constraint expression can be created by selecting entities from the 

taxonomy (domain ontology) and combining them with a pre-defined set of keywords 

and operators from the high level constraint language, CoLan (Bassiliades & Gray, 

1995; Gray, Hui, & Preece, 2001). CoLan has features of both first-order logic and 

functional programming, and was designed to enable scientists and engineers to express 
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constraints in a computer environment themselves. 

ConEditor+’s GUI essentially consists of six components, namely: (A) Keywords 

Panel, (B) Menu Bar, (C) Functions Panel, (D) Taxonomy / Ontology Panel, (E) Tool 

Bar and (F) Result Panel (see Fig. 6). The user can then select the appropriate entities 

with the mouse and so form a constraint expression. The taxonomy in the top right hand 

window (displayed again separately in  

Fig. 7) shows that the class under discussion is ConcreteFeature, and the 

class ConcreteFeature contains the various properties has_coating, 

has_lubricant, has material, etc. Each property has a range class which, in 

turn, consists of more properties (e.g., has_material is a property that has the range 

class Material; further the class Material has properties density, 

max_operating_temp, etc.). The Taxonomy/Ontology Panel is used to select 

entities from the domain ontology. More details about the GUI can be found in (Ajit, 

2008). An analysis of the Rolls-Royce’s design rule book(s) showed that a number of 

constraints are expressed in tables and so ConEditor+ provides a mechanism for 

inputting tables. When a constraint is modified and saved, ConEditor+ stores the 

modified constraint as a new version together with the original constraint. Storing all 

the versions would enable designers to study the evolution of constraints. Each 

constraint is allocated a unique identification number (ID) that includes its version 

number. The system provides facilities to retrieve constraints using keyword-based 

searches, e.g. search and retrieve all the constraints containing the specified keyword(s) 

or find the constraint with the specified ID. 

INSERT FIGURE 7 HERE 

 

5 Maintenance of constraints 

Due to restricted availability of Rolls-Royce designers’ time and for simplicity, we 
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initially used a kite domain for our study (Eden, 1998; Streeter, 1980; Yolen, 1976) and 

so developed an ontology for kite design. In order to explain the concept of application 

condition, we consider the following constraint from the kite domain together with its 

associated application condition: 

Constraint – “The density of the cover material of the kite must be greater than 0.5 

ounces per square inch.” 

Application condition – “This is applicable only when there is a requirement to produce 

low cost kites for beginners. Kites for experts use lighter materials that are of higher 

quality and hence costlier.” 

As shown in the example above the application condition specifies the context in 

which the constraint is applicable. In order to tackle the various maintenance issues, our 

approach has the following stages: 

 

• Capture the “context” of a constraint, in a machine interpretable form, as an 

application condition associated with the constraint. 

• Use the application condition together with the constraint and the appropriate 

domain ontology to support the maintenance of constraints 

 

We have extended ConEditor+ so that the user (the domain expert) can associate an 

application condition with each constraint. Often, such information is implicit to the 

person who formulates the constraint. We believe that it is important to make the 

application conditions explicit so that they can be used for both maintenance and reuse 

of constraints. The assumptions on which a constraint is based may no longer be true 

and in such cases, it becomes necessary to deactivate or remove those constraints from 

the KB. Further, an application condition may not be relevant to a particular design 
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task. 

ConEditor+ captures both the constraints and the application conditions in the same 

language, CoLan. Both are then converted into a standard machine interpretable format 

known as Constraint Interchange Format (CIF) (Gray et al., 2001). We give below a 

typical constraint and its application condition in CoLan: 

 

constrain each k in Kite 

such that has_type(k) = “Flat” and has_shape(k) = “Diamond” 

to have tail_length(has_tail(k)) = 7 * spine_length(has_spine(k)) 

 

In the above constraint, the application condition (in italics) is introduced by the 

clause “such that”. This constraint states that the length of a tail of a kite needs to be 

seven times the length of the spine of the kite; however, this constraint is only 

applicable to flat diamond-shaped kites. 

In order to make it clear, we divide a constraint in CoLan into three parts namely 

antecedent, application condition and consequent. Thus, the above constraint consists 

of: 

 

Antecedent: constrain each k in Kite 

 

Application condition: such that has_type(k) = “Flat” and         

                 has_shape(k) = “Diamond” 

Consequent: tail_length(has_tail(k)) = 7 *                

         spine_length(has_spine(k)) 
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The clause “such that” is a part of CoLan language and it is used to express 

conditional statements. We have currently made use of this clause to represent 

application conditions. As part of the future work, we plan to change the naming 

conventions used by the properties in the ontology and also extend the CoLan language 

to include “when” instead of “such that” for enhanced readability. The above 

constraint can then be expressed alternatively as follows: 

 

constrain each k in Kite 

to have tail_length_of(tail_of(k)) = 7 * 

spine_length_of(spine_of(k)) 

when type_of(k) = “Flat” and shape_of(k) = “Diamond” 

 

INSERT FIGURE 8 HERE 

6 Extension of Jet Engine Ontology and Maintenance of a more Complex Set of 

Constraints  

After a successful application and evaluation of ConEditor+ in the domain of kite 

design, we decided to apply our approach to part of the considerably more demanding 

Rolls-Royce domain. As the initial Rolls-Royce KB (used by the Designers' 

Workbench) only covered a small part of the engine, it was decided to review some 

additional design rule books, and interviews were held with an appropriate domain 

expert at Rolls-Royce. We then extended the jet engine ontology to incorporate the 

additional concepts and properties obtained from these analyses.  

Fig. 8 shows a screenshot of the extended jet engine ontology developed using 

Protége. We then expressed all the constraints together with their application conditions 

against the extended jet engine ontology. There are a number of ways in which we can 

use the domain ontology together with the constraints and application conditions to 

support the maintenance of constraints. Refinement of the constraint KB is described, 

in some detail, below. 
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6.1 Redundancy  

 Redundancy occurs between constraints when all the components of a constraint 

(antecedent, application condition and consequent) are equivalent to the corresponding 

components of another constraint. Two types [(a) and (b)] of redundancy that make use 

of inferences from the domain ontology are described as follows: 

 

(a) Using Class Equivalence 

 In OWL (Bechhofer et al., 2004), owl:equivalentProperty is a built-in 

property that links a class description to another class description such that the two 

class descriptions involved have the same class extension (i.e., both class extensions 

contain exactly the same set of individuals). Consider constraints of the following form: 

 

(i) constrain each c in C1 

such that X  

to have Y 

 

(ii) constrain each c in C2 

such that X  

to have Y  

 

In the constraints above, c is a variable, C1 and C2 are classes, X and Y are properties. 

If C1 is an equivalent class (i.e. owl:equivalentClass) to C2 in the domain ontology, 

one can infer that the constraint (i) is equivalent to constraint (ii). ConEditor+ notifies 

the user (domain expert) of this fact and suggests that the user considers eliminating 

this redundancy. 
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(b) Using Property Equivalence 

 In OWL (Bechhofer et al., 2004), owl:equivalentProperty is a built-in 

property that is used to state that two properties have the same property extension (i.e. 

both properties contain exactly the same set of values). Consider constraints of the 

following form: 

 

(iii) constrain each c in C 

such that X1  

to have Y 

 

(iv) constrain each c in C 

such that X2  

to have Y  

 

In the constraints above, c is a variable, C is a class, X1, X2 and Y are properties. If X1 

is an equivalent property (i.e. owl:equivalentProperty)  to X2 in the domain 

ontology, one can infer that the constraint (iii) is equivalent to constraint (iv). 

ConEditor+ notifies the user (domain expert) of this fact and suggests that the user 

considers eliminating this redundancy. 

6.2 Subsumption  

 Subsumption occurs between a pair of constraints when one constraint “covers” 

all the conditions of another constraint i.e. constraint A subsumes constraint B, if B is 
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satisfied whenever A is satisfied. A type of subsumption that makes use of inferences 

from the domain ontology is described as follows: 

The rdfs:subClassOf construct is defined as part of Resource Description 

Framework (RDF) Schema (Brickley & Guha, 2004). It is used in OWL and the 

meaning is exactly the same, i.e., if the class description C1 is defined as a subclass of 

class description C2, then the set of individuals in the class extension of C1 should be a 

subset of the set of individuals in the class extension of C2. Consider constraints of the 

following form: 

 

(v) constrain each c in C1 

such that X  

to have Y 

 

(vi) constrain each c in C2 

such that X  

to have Y  

 

In the constraints above, c is a variable, C1 and C2 are classes, X and Y are properties. 

If C2 is a subclass (i.e. rdfs:subClassOf) of C1 in the domain ontology, one can infer 

that the constraint (v) subsumes constraint (vi). ConEditor+ notifies the user (domain 

expert) of this fact and suggests that the user removes / deactivates constraint (vi).  

 

6.3   Fusion of Classes 

 Fusion occurs between a pair of constraints when the two constraints can be 

combined together and replaced with another constraint, i.e. two constraints A and B 
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can be fused together and replaced by a constraint C if C is satisfied in the same 

situations that A and B are both satisfied. A type of fusion that makes use of inferences 

from the domain ontology is described below. Consider constraints of the following 

form: 

 

(vii)  constrain each c in C1 

     such that X  

    to have Y 

 

(viii)  constrain each c in C2 

     such that X  

     to have Y 

 

In the constraints above, c is a variable, C1 and C2 are classes, X and Y are properties. 

Let C3 be another class in the same domain ontology. If C1 and C2 are the only two sub 

classes (i.e. rdfs:subClassOf) of C3 in the domain ontology, and if every instance (or 

individual) of C3 is an instance of either C1 or C2, then the constraints (vii) and (viii) can 

be fused together and replaced by the constraint (ix) as follows: 

 

(ix)  constrain each c in C3 

     such that X  

     to have Y 

ConEditor+ notifies the user (domain expert) of this fact and suggests that the user 

considers fusing constraints (vii) and (viii) into (ix).  

            The reader is encouraged to refer (Ajit, 2008) for several other types of 
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redundancy, subsumption and fusion detected by ConEditor+. Also, all types of 

refinements implemented in ConEditor+ are expressed in a formal notation and 

logically proved. Inconsistency (or contradiction) detected by ConEditor+ is described 

below in Section 6.4. 

6.4 Inconsistency/Contradiction  

An inconsistency/contradiction occurs between a pair of constraints when the 

consequent of one constraint contradicts the consequent of another constraint while the 

antecedents and application conditions are equivalent i.e., constraint A contradicts 

constraint B or vice-versa if both constraints A and B are unsatisfiable. An example of 

this type of inconsistency follows: 

 

(x) constrain each c in Component 

such that name(component_coating(c)) = "silver" 

to have tensile_strength(component_material(c)) < 1390 

 

(xi) constrain each c in Component 

such that name(component_coating(c)) = "silver" 

to have tensile_strength(component_material(c)) > 1590 

 

By comparing the two constraints above, one can infer that the constraint (x) 

contradicts constraint (xi). ConEditor+ notifies the user (domain expert) of this fact and 

suggests that the user takes appropriate action (modify/delete) to resolve the 

inconsistency. 

6.5 Overview 
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ConEditor+ can also deal with the situation where a constraint needs to have multiple 

refinements applied before it is possible to determine whether another constraint is 

equivalent, subsumed, inconsistent or fusible. For example, consider the following two 

constraints: 

 

(xii)  constrain each s in SledKite                      

such that has_level(s) = “beginner” or  

has_wind_condition(s) = “strong”                                    

to have kite_line_strength(has_kite_line(s)) > 30 

 

(xiii)  constrain each c in ConventionalSledKite                      

such that has_class(c) = “beginner”                   

to have kite_line_strength(has_kite_line(c)) < 25 

 

If ConventionalSledKite is a subclass (i.e. rdfs:subClassOf)  of SledKite and 

has_level is an equivalent property (i.e. owl:equivalentProperty) to has_class 

in the domain ontology, then it can be concluded that the constraint (xii) contradicts 

(xiii). ConEditor+ notifies the user (domain expert) of this type of inconsistency and 

suggests that the user takes appropriate action (modify/delete) to resolve the 

inconsistency. 

 The concepts and properties used in the constraints here are taken from the 

domain ontology. Hence the units used for all the measurements are to be defined in the 

domain ontology, instead of explicitly specifying them in each constraint. As part of the 

future work, we plan to integrate the domain ontology with the engineering 

mathematics ontology developed by  (Gruber & Olsen, 1994) to incorporate physical 



 21 

dimensions, units of measure, etc. and enhance the ability to ensure that there is 

consistency between the units inherent in the constraints. 

7 Implementation 

Both the Designers’ Workbench and ConEditor+ are implemented in the Java 

programming language. The domain ontology in OWL (McGuinness & Harmelen, 

2004) is developed using the Protégé ontology editor (Noy et al., 2000) and accessed 

using Jena (HP, 2000). ConEditor+ converts the ontology in OWL into an equivalent 

P/FDM Daplex schema (Bassiliades & Gray, 1995) using a transformation program 

developed in Java. This conversion is currently required as we have used an existing 

constraint language (CoLan) that was developed for databases. The Daplex schema is 

used by a Daplex compiler within ConEditor+ to detect any syntactic errors among 

constraints. The constraints are initially expressed in CoLan and then converted into a 

standard semantic web2 enabled XML-Constraint Interchange Format (CIF) (Gray et 

al., 2001). ConEditor+ uses Jena to interpret the CIF representation of constraints and 

application conditions together with the OWL domain ontology to detect 

inconsistencies and refinements between pairs of constraints. The inferences made from 

the domain ontology play an important role in detecting inconsistencies and 

refinements.  

 ConEditor+ performs a static comparison of pairs of constraint expressions, i.e. 

ConEditor+ compares constraints at the syntactical level, rather than comparing the 

solution sets. So ConEditor+ is comparing pairs of constraints of the form e.g. P(x1, x2) 

& Q(x1,x3,a) and P(x1, x2) & Q(x1,x3,b). By looking at the values of the constants (a, 

                                                 
2 The semantic web is an evolving extension of the world wide web in which web content can be 

expressed in a form that can be understood, interpreted and used by computers to find, share and 

integrate information more easily. ((Berners-Lee, Hendler, & Lassila, 2001)) 
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b), the structure of the predicates (P, Q), and inferring the semantic relationships 

between the corresponding classes and properties in the constraints from the domain 

ontology, ConEditor+ determines whether there is an inconsistency, subsumption, 

redundancy or fusion. When a constraint is submitted to ConEditor+, it is compared 

with each constraint in the KB. Hence the time complexity is O(n). More details about 

the implementation and complexity of ConEditor+’s algorithm can be found in (Ajit, 

2008).  

8 Evaluation 

 An experiment conducted to address the main research question is described 

below. The aim of this experiment was to address the research question: 

Could an explicit representation of application conditions together with the constraints 

and the domain ontology help a system: a)  reduce the number of inconsistencies and  

b) detect subsumption, redundancy, fusion and suggesting appropriate refinements  

between pairs of constraints? 

 We studied the kite design domain and captured constraints together with the 

corresponding application conditions (rationales). We ran an experiment with 

ConEditor+ using: (I) KB1 containing 15 constraints together with their application 

conditions, (II) KB2 containing the same constraints without any application conditions.  

The reader is encouraged to refer to (Ajit, 2008) for the complete list of constraints and 

the corresponding application conditions that have been captured from the kite design 

domain. 

Results: For KB1, ConEditor+ detected 3 subsumptions, 0 inconsistencies, 3 

redundancies and 2 cases of fusion between pairs of constraints. For KB2, ConEditor+ 

detected 2 subsumptions, 5 inconsistencies, 3 redundancies and 4 cases of fusion 
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between pairs of constraints. The investigator confirmed that some of the 

inconsistencies, etc reported for KB2 were spurious, and concluded that the absence of 

application conditions have caused these to be reported by ConEditor+ (5 

contradictions and a number of inappropriate refinements). This is explained further 

below with the help of some examples. Let us consider two KBs, namely, KBA and 

KBB containing the following constraints: 

 

KBA (with application conditions): 

 

(i) constrain each k in Kite                      

such that has_level(k) = “beginner”                   

to have density(has_material(has_cover(k))) < 0.5 

 

(ii) constrain each k in Kite                      

such that has_level(k) = “advanced”                   

to have density(has_material(has_cover(k))) > 1.0 

 

KBB (without application conditions): 

 

(iii) constrain each k in Kite                      

to have density(has_material(has_cover(k))) < 0.5 

 

(iv) constrain each k in Kite                      

to have density(has_material(has_cover(k))) > 1.0 
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As shown above, the KBA contains two constraints [(i) and (ii)] with the corresponding 

application conditions. The KBB contains the same pair of constraints [(iii) and (iv)] 

without the corresponding application conditions. For KBA, ConEditor+ does not detect 

any inconsistency (or contradiction). For KBB, ConEditor+ detects an inconsistency 

between the two constraints [(iii) and (iv)]. Hence, it can be concluded that the absence 

of application conditions can cause a number of inconsistencies among constraints. 

Also, this can cause ConEditor+ to suggest inappropriate refinements as shown below: 

For example, let us consider two KBs, namely, KBC and KBD containing the following 

constraints: 

 

KBC (with application conditions): 

 

(v) constrain each k in Kite                      

such that has_level(k) = “beginner”                   

to have bridle_length(has_bridle(k)) > 3 * has_height(k) 

 and kite_line_strength(has_kite_line(k)) > 90  

 

(vi) constrain each d in Delta_kite                      

such that has_wind_condition(d) = “strong”                   

to have bridle_length(has_bridle(d)) > 3 * has_height(d) 

 

KBD (without application conditions): 

 

(vii) constrain each k in Kite                      

to have bridle_length(has_bridle(k)) > 3 * has_height(k) 

 and kite_line_strength(has_kite_line(k)) > 90  
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(viii) constrain each d in Delta_kite                      

to have bridle_length(has_bridle(d)) > 3 * has_height(d)  

 

Again, two KBs have been considered: KBC and KBD, with and without application 

conditions respectively. Delta_kite is a subclass of Kite in the domain ontology. 

Hence, for KBD, ConEditor+ inappropriately suggests the user (domain expert) 

considers deleting/deactivating constraint (viii) because constraint (vii) subsumes 

constraint (viii). 

 One can infer from the results of the experiment described above that an explicit 

representation of the application conditions together with the constraint reduced the 

number of inconsistencies and prevented ConEditor+ from suggesting inappropriate 

refinements. The results have demonstrated that an explicit representation of 

application conditions together with the constraints and the domain ontology could help 

a system in i) reducing the number of inconsistencies and ii) detecting subsumption, 

redundancy, fusion and suggesting appropriate refinements between pairs of 

constraints. 

 We performed usability studies of ConEditor at Rolls-Royce and obtained 

encouraging feedback from the design engineers. We also conducted an experiment to 

determine the usability of ConEditor+ using five subjects that included post-graduate 

engineering students from our university. The subjects were asked to answer an 

usability questionnaire and use a 5-point rating scale (1 being poor and 5 being 

excellent). The average rating given by the subjects was 3.8. The reader is encouraged 

to refer to (Ajit, 2008) for more information regarding the usability studies. Further, we 

conducted an experiment to determine the time taken by ConEditor+ to process 
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constraints (including application conditions) and detect inconsistencies, redundancy, 

subsumption and fusion. Four KBs containing 30, 60, 90 and 120 constraints (including 

application conditions) respectively were considered. For each KB, two types of tasks 

were performed for each refinement to determine the worst case and best case time. To 

determine the best-case time, the KB was organized such that ConEditor+’s comparison 

of the submitted constraint with the first constraint in the KB resulted in an 

inconsistency/ refinement. To determine the worst-case time, the KB was organized 

such that ConEditor+’s comparison of the submitted constraint with the last constraint 

in the KB resulted in an inconsistency/ refinement. The time was recorded 

programmatically for each task. The experiment was run in a computer with the 

following configuration: AMD Athlon 64-bit processor, clock frequency of 2.21 GHz, 

960 MB of RAM, operating system: Windows XP, JDK (Java Development Kit) 1.4.2 

and Jena 2.1. 

INSERT FIGURE 9 HERE 

 The time taken by ConEditor+ to report a syntax error in the submitted 

constraint was recorded programmatically and it was equal to 500 milliseconds. It can 

be observed from Fig. 9 that the average worst-case time taken by ConEditor+ for 

refinements essentially increases linearly as the KB size increases while the average 

best-case time taken is almost a constant. ConEditor+ uses Jena to parse the domain 

ontology, constraints and application conditions in CIF. Currently a file system (text 

files) is used to store the constraints. The increase in average worst-case refinement 

time could become non-linear for larger KBs that involve manipulation of information 

which cannot all be held in main memory. The semantic web technologies such as Jena 

face scalability issues, and work is being carried out by the semantic web community to 

tackle them. For large KBs containing thousands of constraints, we plan to use 3-store 
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(Harris & Gibbins, 2003) which is a RDF bulk storage and query engine developed 

within the AKT3 project to enable the efficient handling of large RDF KBs. Moreover, 

although the total number of design constraints formulated by Rolls-Royce is in the 

order of thousands, we expect that only a small subset (say in the order of hundreds) 

will be needed for any particular design. With this number of constraints, our earlier 

results, suggest that speed should not be an issue. 

9 Related Work 

     One of the first attempts to manage constraints for automation of computation in 

engineering applications was the work of (Harary, 1962) and (Steward, 1962). Since 

then there has been considerable amount of work done on the representation, use and 

management of constraints including the development of rule-based systems (Frayman 

& Mittal, 1987; Wielinga & Schreiber, 1997) and in the field of diagnosis (Felfernig, 

Friedrich, Jannach, & Stumptner, 2004). Constraint management done in systems above 

mainly refers to the detection of redundant and contradictory constraints during 

constraint solving whereas ConEditor+ detects redundant, subsumed, contradictory and 

fusible constraints prior to constraint solving. ConEditor+ compares pairs of constraints 

by looking at the values of the constants, and the structure of the predicates rather than 

by computing the solution sets of constraints. It became important to represent the 

defaults and preferences declaratively as constraints, rather than encoding them in the 

procedural parts of the program (Borning, Maher, Martindale, & Wilson, 1989). In 

most cases, domain-oriented or method-oriented tools (in the form of templates) were 

provided to capture constraints/rules from the domain experts. The cost of developing 

such tools is high, especially when their restricted scope is taken into account (Eriksson 

                                                 
3 Advanced Knowledge Technologies Project. More information on http://www.aktors.org/. 
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et al., 1995). In comparison to the above tools, ConEditor+ is a domain independent 

tool that can be used by domain experts to capture constraints using the appropriate 

domain ontology. These constraints are converted into a standard format (in CIF) for 

use by other systems. A similar tool for capturing constraints has been developed by 

(Gray & Kemp, 2006) for database schemas. This tool uses a diagrammatic 

representation in the form of a relationship graph to capture constraints. The principal 

disadvantage of this tool is that the diagram can become cumbersome for large database 

schemas.  

 CoLan is similar to the constraint language Galileo (Bowen, O'Grady, & Smith, 

1990) that has been used to support conceptual design and design knowledge 

representation. Both CoLan and Galileo are based on first-order logic and can be used 

to express both existentially and universally quantified constraints. However we believe 

CoLan provides better readability for domain experts compared to Galileo and other 

constraint programming languages such as the ILOG OPL language (Junker & 

Mailharro, 2003). Moreover CoLan was developed by one of our colleagues and we 

have the software to convert Colan into standard semantic web enabled XML CIF 

format. Also, Colan is mainly used in ConEditor+ as a declarative language for 

expressing constraints and not used for constraint programming. CoLan is converted 

into CIF which, in turn, is converted into a SPARQL query and a predicate in Prolog by 

the Designers’ Workbench for constraint processing. In comparison to SWRL 

(Horrocks et al., 2004), a semantic web rule language developed by the W3C, CIF can 

express fully quantified constraints. SWRL has now been extended to CIF/SWRL in 

order to express fully quantified constraints (McKenzie, Gray, & Preece, 2004).  

10 Conclusions and Future Work 
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           This paper describes a methodology to enable domain experts to capture and 

maintain constraints in an engineering design environment. An ontology is used to 

represent the domain knowledge and constraints are expressed against this ontology. 

The context is a system known as the Designers’ Workbench that has been developed 

to automatically check if all the constraints have been satisfied and if not, enable the 

designers to resolve them. To function, the Designers’ Workbench must be provided 

with a set of task specific requirements, and generic (company-wide) design 

constraints. Originally, the latter needed a knowledge engineer to study the design rule 

book(s), consult the design engineer (domain expert) and encode all the constraints into 

the Designers’ Workbench’s KB. We describe the tool ConEditor+ that has been 

developed to help domain experts themselves to capture and maintain engineering 

design constraints. 

              On the basis of the studies done in the domain of kite design and then in part of 

the Rolls-Royce domain, we have demonstrated the following aspects with the help of 

examples and experiments:  

(i) An explicit representation of application conditions together with the constraints and 

the domain ontology could help a system in: a) reducing the number of inconsistencies 

and b) detecting subsumption, redundancy, fusion and suggesting appropriate 

refinements between pairs of constraints. In particular, we have demonstrated how 

inferencing from the domain ontology (using owl:equivalentClass, 

owl:equivalentProperty, rdfs:subClassOf) together with an explicit 

representation of application conditions and constraints could be used by a system to 

support the maintenance of constraints. 
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(ii) ConEditor+ is a useful system that enables domain experts to capture and maintain 

constraints. ConEditor+'s inferencing done using the domain ontology plays an 

important role in supporting the maintenance of constraints. 

 INSERT FIGURE 10 HERE 

 The proposed architecture that shows how ConEditor+ fits into a wider 

framework is given in Fig. 10. A Design Standards author initially inputs all the design 

rules (constraints) into ConEditor+. The design constraints are then converted into a 

standard machine interpretable format (CIF). CIF is then processed by the Designers’ 

Workbench and converted into a SPARQL query and a Sicstus predicate. As can be 

seen from  

Fig. 10, it is planned to interface the Designers’ Workbench to a sophisticated 

knowledge-based engineering (KBE) system. The Designers' Workbench would then be 

called from the main system, the KBE, effectively as a sub-process to check the 

consistency of a design, or part of a design, produced by the KBE.  

In fact, Fig. 10 only represents one aspect (the design rule book) of the knowledge 

which is both generated and used in a contemporary knowledge-based engineering firm 

which is involved in design, manufacturing & maintenance. For example, there are a 

number of further additional knowledge repositories needed by today’s KBE systems, 

including: 

• Design templates (and conditions under which they should be used, i.e. 

application conditions)  

• Libraries of designs for components and their rationales 

• Requirements and constraints of the various manufacturing environments 

• Best practices as collected by several parts of the organization (including 

designers) 

• Requirements and constraints mandated by the several organizations which 

service the engines 
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• Feedback from the servicing and maintenance organizations which indicate 

which problems actually arise in the field, some analysis of their possible 

causes, and suggested remedies. 

The latter type of information is the focus of the IPAS project (www.3worlds.org), 

a DTI / Rolls-Royce funded project, which started in 2005. The last source of data 

quoted above makes it clear that there is an important Information Life Cycle inherent 

in the aero- industry, where information flows from Design to the Manufacturing units, 

and then to the Service / Maintenance facilities; the later in turn creates information 

which needs to be passed to designers so that future engines can be improved as a result 

of real-world feedback.  

Fig. 11 shows this cycle: 

INSERT FIGURE 11 HERE 

It is also clear that there are vast amounts of data and information available from a 

variety of sources, and to make this information inter-operational, there is potentially a 

major role for ontologies as many of the data / information sources use different 

terminologies. This is certainly an important role for ontologies in the IPAS project. In 

fact in both the projects undertaken with Rolls-Royce (AKT and IPAS) we are not only 

using standard ontology maintenance procedures, but we are encountering many of the 

problems of contemporary ontology engineering, namely: 

• ontology creation (seeking to develop ontologies systematically and to ensure that 

relevant aspects of trust and provenance are captured; deciding whether or not 

domain ontologies should be developed from high-level ontologies; 

• ontology evolution (an ontology developed for one engine may need to be 
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modified so that it is applicable to a future engine) and, 

• ontology modularization (for some services a sparse description of, say, the 

combustion chamber may be sufficient, but for other services much greater detail 

may be required). 
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FIGURE CAPTIONS: 

Fig. 1: A screenshot of the Designers' Workbench  

Fig. 2: The class hierarchy of the jet engine ontology used with the Designers' Workbench     

(screenshot from the OWLViz plugin for Protégé) 

Fig. 3: The properties of the class DiametralRingSeal from the jet engine ontology (screenshot 

from Protégé) 
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Fig. 4: The property values for a DiametralRingSeal instance (screenshot from Designers' 

Workbench) 

Fig. 5: A constraint as expressed in a rule book 

Fig. 6: A screenshot of ConEditor+ 

Fig. 7: Taxonomy/Ontology Panel 

Fig. 8: Ontology of a part of the Rolls-Royce domain in Protégé 

Fig. 9: Graph showing average refinement time taken by ConEditor+ versus number of 

constraints in KB 

Fig. 10: Proposed system architecture 

Fig. 11: The principal Information Life Cycle in the Aero-Industry 
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