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Abstract

Stock market investment decisions of individuals are positively correlated with

those of co-workers. Sorting of unobservably similar individuals to the same work-

places is unlikely to explain our results, as evidenced by the investment behavior

of individuals that move between plants. Purchases made under stronger co-worker

purchase activity are not associated with higher returns. Moreover, social interac-

tion appears to drive the purchase of within-industry stocks; an investment mistake.

Overall, our results suggest a strong influence of co-workers on investment choices,

but not an influence that improves the quality of investment decisions.
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1 Introduction

The social psychology literature emphasizes the strength of face-to-face communication

between individuals that frequently interact in producing and altering beliefs.1 In the

finance literature, Hong, Kubik and Stein (2004), show that social interaction leads to

greater stock market participation. In this paper we examine the role of social interaction

in the workplace on the investment decisions of individual investors. Conversations at

work occasionally center on the stock market and, we conjecture, can influence behavior.

For example, investors pick among a dizzying number of individual stocks when evalu-

ating which stock to purchase, and may obtain information from discussions with their

colleagues, or make inferences based on hearing about their choices. Conversations with

colleagues about stocks can also raise awareness of, or trust in, equity markets and make

trading more likely (Guiso and Japelli, 2005, Guiso et al., 2008).2

We use unique data from Norway to examine whether individual investors are affected

by their co-workers. We also analyze whether co-worker influence appears to improve

the quality of investment decisions. In order to address the influence of co-workers on

investment choices, we combine two data sources. The matched employer—employee data

(which covers the full population of Norway) identifies co-workers at plant level (i.e., the

same business address) over a ten-year period. We combine the employer-employee dataset

with a complete record of common stock transactions made by individual investors at the

Oslo Stock Exchange over the same period. We focus on individuals that make at least

one purchase of common stocks over the sample period.3 We omit individual-years where

the individual is employed by a listed company or a subsidiary of a listed company to

avoid capturing mechanic effects of company stock plans.

The results suggest strong social interaction effects. For example, a one standard

1In a classic study by Asch (1955) individuals alone and in groups compared the lengths of line
segments. The lengths were suffi ciently different that when responding alone very few wrong answers
were given. Yet when placed in a group in which all other members were instructed to give the same
wrong answers, individuals frequently gave wrong answers.

2For suggestive evidence, Shiller (1984) cites surveys from the 1950s and 1960s where the answers
to the questions ’Do you own any stocks’ and ’Do you have any friends or colleagues who own any
stocks’were practically identical. In a case study with a randomized trial design, Duflo and Saez (2003)
document workplace social influence in the decision to enroll in a tax deferred account retirement plan.

3In a draft version of the paper we also studied stock market participation and obtained similar results.
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deviation increase in the fraction of co-workers that make a purchase in a given month is

associated with a 41 percent increase in the probability of making a purchase. Moreover,

conditional on making a purchase, a one standard deviation increase in the fraction of co-

workers that purchase a particular stock is associated with a striking 195 percent increase

in the fraction of that month’s purchases invested in the same stock.

Stock purchases could be correlated inside plants for other reasons than social interac-

tion (e.g., Manski, 1993). The literature highlights correlated unobservables, endogenous

group membership, and reflection as obstacles for estimation of causal effects.4 We con-

trol for fixed effects in order to address correlated unobservables. For example, plant fixed

effects control for unobservables such as company culture, composition of the workforce,

and industry affi liation.5 Other fixed effects control for geographical differences in invest-

ment behavior (a preference for local stocks, for example) and for individuals following

simple decision rules such as picking stocks based on their recent performance record. On

top of this, we control for socio-demographic variables at the individual-year level.

Workers with similar unobserved characteristics, such as risk preferences, access to

information, or investment style, could self-select to plants in a pattern not captured

by the controls. To address endogenous group membership, we analyze the investment

behavior of individuals that move between plants (the data allow us to identify whether

these individuals also move from their zip code). The idea is that future co-workers are

unlikely to influence via social interaction but may still exhibit correlated behavior due

to similarity along unobservables. Thus if unobserved similarities drive the results, we

would expect the correlation with future co-workers to be of comparable magnitude to

4These concepts can be illustrated with an example. Suppose that purchases are correlated across
individuals in the same plant. The correlation could be due to receiving the same news (correlated
unobservables), because they have similar investment style (endogenous group membership) or because
of social interaction. Under social interaction, the group affects the individual and the individual affects
the group, in which case it is not straightforward to back out the structural parameters of social influence
from the estimated correlations. This is the ‘reflection problem’of Manski (1993), referred to as the
‘simultaneity problem’in Moffi t (2001).

5These are ‘contextual and ecological effects’in the terminology of Manski (1993), which should be
contrasted to the endogenous social effects. Lee (2007) and Lee et al. (2010) analyze how fixed effects
alleviate the problem of correlated unobservables in identification of endogenous social effects. Blume et
al. (2010) surveys the literature.
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the correlation with current co-workers.

Figure 1. See the appendix for a detailed caption.

In Figure 1, the blue dashed line illustrates how the correlation in purchasing behavior

with individuals that become co-workers after Month 0 evolves over time. Up to three

months before the move, the correlation in purchasing activity with these future peers is

close to zero. Thus endogenous group membership seems to be of minor concern. The

red solid line illustrates how the correlation with individuals that are co-workers prior to

the move evolves over time. Prior to Month 0 the correlation is significantly higher than

the correlation with future co-workers. We discuss Figure 1 further in Section 3.2.

Does social interaction improve the quality of investment decisions? The literature on

information cascades (Bikhchandani et al., 1992, Banerjee, 1992, Ellison and Fudenberg,

1993) posits that imitating co-workers can make investment decisions better informed

and improve investment returns. Or, individuals can learn investment principles such as

diversification and hedging from co-workers. On the other hand, information transmitted

at the workplace could be noise or even false rumors, or involve imitation of unsound
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practices (March, 1991).6 The welfare implications are obviously quite different.

We address whether social interaction improves investment quality in two ways. Us-

ing the calendar time portfolio approach (e.g., Odean, 1999, Seasholes and Zhu, 2010),

we analyze whether risk-adjusted investments returns are higher when co-workers pur-

chase that stock more intensely. We find that purchases made under strong ‘purchase

pressure’do not outperform purchases made under weak purchase pressure. Hence the

social interaction effects we document do not seem rooted in diffusion of value-relevant

asymmetric information. Second, the empirical literature has shown that individual in-

vestors miss out on opportunities to reduce risk (see Benartzi and Thaler, 2007, and

Campbell, 2006, for overviews). One investment mistake that has been abundantly doc-

umented is the tendency to hedge poorly against fluctuations in future labor income by

holding own-company or own-industry stocks. As a stark example, employees of Pfizer,

Inc., invest almost 90% of the value of their defined contribution plan in Pfizer common

stock (see Cohen, 2008). We analyze whether the impact of co-workers is larger for the

purchase of within-industry stocks than for other stocks, and find strong affi rmative evi-

dence. Moreover, within-industry stock purchases made under stronger peer pressure are

not associated with significantly higher investment returns. Taken together these results

suggest that investment mistakes can be propagated by social interaction.

Overall, the findings suggest that individuals are strongly influenced by their co-

workers, but this influence does not improve, and sometimes reduces, the quality of their

investment choices. At the normative level, we offer advice to individual investors them-

selves: listening to co-workers is unlikely to improve the quality of investments.

The paper connects to several ongoing debates. First, much of the existing work on

social interaction among individual investors (Hong et al., 2004, Ivkovíc and Weissbenner,

2007, Brown et al., 2008, Kaustia and Knüpfer, 2012) is based on analysis of large groups,

such as regions or neighborhoods, where identification of social effects is diffi cult (e.g.,

6An anecdote relayed by Benartzi and Thaler (2007, p.94) in the context of 401(k) pension plan
choices by employees in a supermarket chain in Texas provides a nice illustration of this point: “The
plan provider noticed that participants’behavior in each supermarket was remarkably homogeneous, but
the behavior across supermarkets was fairly heterogeneous. It turns out that most of the supermarket
employees considered the store butcher to be the investment maven and would turn to him for advice.
Depending on the investment philosophy of the butcher at each individual location, employees ended up
being heavily invested in stocks or heavily invested in bonds.”
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Moffi tt, 2001).7 We construct peer groups at a much more local level, the workplace,

and find evidence of strong social interaction effects even after accounting for correlated

unobservables, endogenous group membership, and reflection. Our evidence contrasts

with Feng and Seasholes (2004), who in a small-group environment (trading rooms in

China) do not find evidence of social interaction effects. It also contrasts with Beshears

et al. (2011) which finds negative co-worker peer effects (“boomerang effects”) in the

adoption of a simplified 401(k) plan.

Second, we provide empirical evidence on whether information obtained through social

interaction is useful or not. The theoretical literature on information cascades (Bikhchan-

dani et al., 1992, Banerjee, 1992, Ellison and Fudenberg, 1993) posits that information

cascades in social groups are (at least on average) rooted in value-relevant information.

We fail to find affi rmative evidence for this hypothesis; the root of social interaction in

our setting seems to at best be noise. We also contribute to the discussion on what

explains investment mistakes. While the extant literature attempts to explain invest-

ment mistakes with individual characteristics such as IQ, wealth, income or genetics (e.g.,

Campbell, 2006, Cohen, 2008, Cronqvist and Siegel, 2013), we emphasize the role of social

interaction.8

The remainder of this paper is organized as follows. Section 2 presents the data.

Section 3 presents results on the timing of purchases and Section 4 presents results on

stock selection. Section 5 analyzes whether purchases that are highly correlated with

co-workers are associated with abnormal returns. Section 6 concludes.

2 Data

The dataset is proprietary and has been collected from three sources. First, a record of all

common stock trades made between January 1994 and December 2005 on the Oslo Stock

7The same point can be made about much of the literature on social interaction in economics (e.g.,
Bertrand et al., 2000, and Moretti, 2011). Whilst our focus is social interaction in a naturally occurring
group, a related literature considers social interaction effects under randomized group formation (e.g.,
Bursztyn et al., 2013, Dahl et al., 2012).

8The economics literature emphasizes positive spillover effects, e.g., Mas and Moretti (2009) on worker
productivity. Our findings have an interesting parallel in the medical literature; Christakis and Fowler
(2007) provide evidence consistent with obesity in the U.S. spreading through social interaction.
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Exchange (OSE) by Norwegian residents was collected from Verdipapirsentralen (the Nor-

wegian Central Securities Depository). For each transaction made by an individual, the

data contain the (anonymized) ID of the individual, the transaction date, the ticker of

the security and the number of shares bought or sold. To preserve anonymity, the trade

records of the 20 most active investors are not contained in the data. Second, we obtained

from the OSE daily ticker prices and other company information such as market capi-

talization and company ID numbers. We supplemented this information with data from

Borsprosjektet (the OSE-project) at the Norwegian School of Economics. Third, from

the government statistical agency, Statistics Norway, we obtained register data on the

sociodemographic characteristics of investors. The data comes from government registries

assembled for tax-collection purposes, and is highly reliable.9

For each individual-year, the data includes the ID of the plant at which the individual is

employed (the plant ID stays fixed through ownership changes), the ID of the individual’s

spouse and children and the zip code in which the individual lives. We also identify other

family members: parents, grandparents, grandchildren, siblings, uncles, aunts, cousins,

nieces and nephews. The socioeconomic variables include income and wealth, age, gender,

education, and employer variables such as industry (five-digit NACE code) and an unique

employer ID number.10 For individuals that change firms during the sample period, the

Statistics Norway data contain the end date of employment at the old firm and the start

date of employment at the new firm. Huttunen et al. (2011), contains a further description

of the job start and job end variables.

2.1 Sample Selection

The starting point for the sample selection is individuals that are employed full-time

for at least one year between 1994 and 2005, and moreover purchase common stocks

on the Oslo Stock Exchange at least once during the same period (about 12% of the

population). We omit individual-years where the individual is employed part-time, or

9The data is described in more detail in Døskeland and Hvide (2011), which also discuss the Norwegian
institutional environment, including questions about representativity and the Norwegian pension system.
10NACE stands for Nomenclature Generale des Activites Economiques dans I‘Union Europeenne and

is a European industry standard classification system equivalent to the SIC system in the US.
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employed by a listed company or a subsidiary of a listed company. This exclusion is

done to ensure that employee stock ownership plans, which would imply a near-mechanic

correlation in purchasing behavior at the plant level, are not driving the results (in Norway,

purchases up to NOK 1500 in own-company stock are subject to a tax break). We also

exclude individual-years of employment in Financial Services (NACE codes 65, 66, and

67) as a simple way to eliminate professional investors from the sample (the results are

slightly stronger if we keep these industries). These restrictions define a sample of about

170, 000 individuals. The co-worker peer group of these individuals is defined somewhat

more broadly; we include part-time employees (and, for family and zip code peer groups,

individuals employed in the financial sector). The family peer group contains the spouse,

children, parents, grandparents, grandchildren, siblings, uncles, aunts, cousins, nieces and

nephews of the individual. The geographic peer group contains all individuals that live

in the same zip code as the individual. We refer to an individual in the sample or in one

of the peer groups that makes at least one purchase of stock during the period 1994 to

2005 as an ‘investor’.

For the purchase decision analysis of Section 3, we keep individuals where a) at least

one co-worker is an investor (i.e., purchases stocks at least once between 1994 and 2005),

b) at least one person in the same zip code is an investor, and c) at least one other family

member is an investor. The purchasing activity of co-workers is our main explanatory

variable, and we impose b) and c) in order to control for the purchasing activity of zip

code and family members (these controls would not be defined otherwise). We also require

that the sociodemographic variables are non-missing (this requirement only affects a small

fraction of individual years). This leaves us with 97, 264 unique individuals over the entire

period. In Panel A of Table A2 of the Appendix we provide sociodemographic descriptive

statistics of the sample individuals (a random year for each individual has been selected).

In the year 2000, the sample individuals are spread over about 2, 600 zip codes and roughly

18, 000 plants.

The stock selection analysis of Section 4 conditions on a purchase having been made

(by definition) and therefore implies different sample selection criteria. For an individual-

month to be included in the sample we require that the individual, at least one co-worker

and one person in the zip code make a purchase in that month. Panel C of Table A2
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of the Appendix provides descriptive statistics of the 118, 432 unique individuals present

in the stock selection analysis. The sociodemographic characteristics are similar to the

sample used when examining the decision to purchase a stock (covered in Section 3). The

sample is somewhat larger than in Section 3 because we exclude the family peer group.

Restricting the analysis to individuals that have family members that purchase stocks

in the same month would leave us with only 2, 800 unique individuals. In unreported

regressions we have verified that the results are very similar for this subsample, even after

controlling for family members stock selection.

In Section 3.2 and Section 4.2 we consider individuals that move between plants. For

a move to be included in the analysis we require that the termination date of the old job

and the start date of the new job are both non-missing from the data. This means, for

example, that individuals that start a job fresh from education or move from abroad are

excluded. We lose about half of the moves in the database due to this restriction. At the

time of the move, we require that the individual did not change plant in the preceding

year nor in the following year (in order to focus on jobs that are not of a temporary

nature).11 We focus on stock market activity during the twelve months prior to leaving

the old plant, and twelve months after moving to the new plant, which means that we

consider moves that occur between January 1995 and December 2004. These criteria leave

us with 14, 284 unique individuals in the purchase decision analysis of Section 3.2. Panel

B of Table A2 contains descriptive statistics on these individuals for a random year. For

all the sociodemographic variables, including age, income, wealth, and all the peer group

variables, including plant and zip code size, the movers are on average very similar to the

overall sample.

11Additionally, we require that the investor moves at most four times between 1993 and 2005, that the
start date at the new plant is later than the stop date at the previous plant, and that the unemployment
spell (if any) lasts less than 6 months. These three criteria exclude only a very small fraction of moves.
For some individuals plant information is missing at the end of year t−2. For these individuals we require
them to have worked at the old plant for at least 18 months.
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3 The Purchase Decision

In this section we relate the decision of an individual to purchase common stocks in a given

month with purchasing activity of co-workers. The motivation is simple; more trading

by co-workers is expected to create more “buzz”about the stock market, and make the

individual more likely to also trade. As our analysis includes a very large number of fixed

effects, we use a linear probability model as our benchmark.

3.1 Basic Results

We estimate the following relation at the individual-month level,

buyi,t = βBuyplanti,t + bΓ+ εi,t. (1)

buyi,t is a dummy that equals one if individual i purchases a stock in month t, and zero if

not. Buyplanti,t is the fraction of co-workers that purchase a stock that month (not including

i himself) at the plant where individual i works. Table 1 presents descriptive statistics

of our main dependent and independent variables. In equation (1), the estimated β will

capture the extent to which the individual’s purchasing activity is correlated with that

of his co-workers. Γ is a column vector of control variables and b is a row vector of

coeffi cients. The sociodemographic controls include: age, wealth, labor income, sex and

the number of years of education, and various powers thereof (see the caption to Table

2 for specifics). For income and wealth we use the values reported in last year’s tax

return. As additional controls, we include Buyfami,t and Buyzipi,t . These variables control

for correlation in timing of purchases within the zip code and inside the family, and are

defined in the same manner as Buyplanti,t . Importantly, all of these variables exclude the

individual since otherwise there would be a mechanical relation between the individual

and the peer group. We include a set of month dummies (132 in total) that controls for

time-varying aggregate patterns in trading behavior. To control for contextual effects,

we include plant fixed effects. For the same reason we include zip code fixed effects. We

report t-statistics based on robust standard errors clustered (two-way) around time and

plant. Similar regression models that link individual behavior to mean group behavior have
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been used by e.g., Bertrand et al. (2000), Duflo and Saez (2002), Ivkovíc and Weissbenner

(2007).

Panel A of Table 2 presents the empirical results. Column (3) is the main specification.

The estimated β is positive and highly significant. In terms of economic magnitude, in

column (3) a one standard deviation increase in co-worker trading activity (Buyplanti,t )

results in an increase in trading activity of 40.90% relative to the unconditional mean.12

In column (4) we account for time-variant changes at the plant or zip code level by

including yearly plant and zip code fixed effects. The point estimate of β is similar to

that reported in column (3). In addition, we have considered specifications without fixed

effects. In this case, the point estimates and economic magnitudes are larger than for (3).

We can note that the zip code level correlation in trading behavior is significantly

reduced when workplace peer effects are introduced; the introduction of co-workers reduces

the impact of neighbors by roughly 20% (comparing column (2) to (3)). In contrast,

the impact of workplace peers is much less affected by the introduction of neighbors (3%

reduction, when going from column (1) to (3)). This is what we would expect if the positive

correlation at zip code level is partially driven by co-workers that live close to each other.

Additionally, in unreported analysis we find that the introduction of sociodemographic

controls reduces impact of the neighborhood peers while the impact of co-workers is less

affected.

The results could be driven by events in the industry or in the region, such as writings

in industry journals or in local newspapers. In (5), we account for time-variant industry-

specific events by including monthly industry-level fixed effects. This affects the estimated

co-worker peer effect only to a minor extent. We account for time variant local events by

including a fixed effect for each municipality-month combination in our dataset (there are

459 municipalities in Norway). The results, reported in column (6), are similar to those

reported in column (3).13

12The estimated impact of family and neighbors is lower; a one standard deviation increase is associated
with an increase in trading activity of 23% and 19% respectively.
13We have also considered the influence on non-coworkers on the individual as a placebo test. We

constructed an analogue to Buyplant for all non-coworkers (Buynon−plant), capturing the purchasing
intensity of non-coworkers. Since each of our plants represent a small fraction of the economy there is
very limited variation across plants in Buynon−plant and therefore collinearity with our time fixed effects.
When we exclude time fixed effects we find that Buynon−plant is postively related to the individual’s
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In the stock market participation model of Hong et al. (2004) some investors are sus-

ceptible to social influence and some are not. In unreported analysis we analyze whether

sociodemographic characteristics are related to the strength of co-worker peer effects. We

find that co-workers exert a greater influence on males. We find no relation to age or the

level of education.

The extant literature has documented that individual investors have a preference for

local stocks (e.g., Coval and Moskowitz, 1999 and Huberman, 2001) and stocks from their

industry of employment (Døskeland and Hvide, 2011). In unreported analysis we create

new dummy variables that indicate whether the purchase made was local (the firm’s

headquarter is not more than 100 kilometers away from the zip code where the individual

lives) or within the industry of emplyoment (the stock two digit NACE code matches

that of the plant). Using these dummy variables we verify that co-worker peer effects are

present across local, non-local, same-industry and different-industry stocks. In Section 4,

where we study stock selection we also verify that those results are not restricted to local

and same-industry stocks (see Table 9).14

We have also examined whether the peer effects that we document are restricted to

particular industries. In Table A3 we estimate a separate co-worker peer effect for each

of 36 industries that represent a significant proportion of the sample (no single industry

accounts for more than 12% of the investor observations). These results strongly indicate

that correlation in trading behavior among co-workers is universal across industries.

Social interaction can also affect sell decisions. Sells are restricted to stocks already

owned by the individual (very few individual investors go short), and we therefore expect

co-workers to have a positive effect on individual sells, but a weaker effect than on pur-

chases (for a related argument, see Barber and Odean, 2008). To investigate the role of

social interaction in sells, we define selli,t, a dummy variable that takes the value 1 if the

individual makes a sale in month t and otherwise is 0. Our main explanatory variable

purchase decision. This is not surprising since Buynon−plant captures economy-wide sentiment. However,
as expected, the economic impact of non-coworkers is limited when compared to actual co-workers (less
than one fifteenth).
14In unreported regressions we find that co-worker same-industry purchases have a greater effect on

individual same-industry purchases than on co-worker non same-industry purchases. This is not surprising
if the co-worker and the individual actually purchase the same stock. Since we actually examine whether
the individual purchases the same stocks as his co-workers in Section 4 we omit these results for brevity.
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is Sellplanti,t which is the fraction of the individual’s co-workers making a sale in month t.

In Panel B of Table 2 we re-estimate equation (1) using sale analogues. We consider the

same specifications as in Panel A. Our results do suggest a positive peer effect on sells, but

significantly smaller than on purchases; in column (3) a one standard deviation increase

in Sellplanti,t is associated with a 14.33% increase (relative to the unconditional mean) in

the likelihood that the individual makes sale in that month. The vector Γ contains the

same controls as in Panel A.

A drawback of the linear probability model is that it may imply predicted probabilities

outside the unit interval. In Panel C we re-estimate equation (1) using the conditional

fixed effects logit estimator.15 We report odds ratios of our main variables and z-statistics

based on standard errors clustered around plant.16 Consistent with the results in Panel

A, we find that the effect of Buyplanti,t is statistically significant at the one percent level.

In specification (3), the co-worker peer effect has an odds-ratio of 10.24. This implies

that if Buyplanti,t goes from zero to one the odds increases roughly ten-fold. Overall, the

conditional fixed effects analysis complements our LPM results and it is reassuring that

the results are qualitatively similar.

3.2 Changes in Place of Work

Workers with similar unobserved characteristics, such as risk preferences or investment

style, could self-select to the same plants in a pattern not captured by the control variables.

The data allow us to track individuals that move between plants down to a monthly level.17

Workers that move between plants allow for a placebo test: we analyze how individual

15As pointed out by Chamberlain (1980) this estimator avoids the incidental parameter problem (Ney-
man and Scott, 1948) that would arise if using a probit or logit model where the fixed effects are estimated.
This is particularly useful in our context since we have 164, 713 postcode-plant categories implying rela-
tively few observations per fixed effect.
16When using the conditional fixed effects logit it is natural to report odds ratios. The reason is that

all of the independent variables affect marginal effects in the logit setting and the fixed effects (postcode-
plant in our context) are not estimated. Greene (2012) p. 763 notes “Because the fixed effects are not
estimated, it is not possible to compute probabilities or marginal effects with these estimated coeffi cients,
and it is a bit ambiguous what one can do with the results of the computations.”We only cluster in the
plant dimension since the conditional fixed effects estimator cannot accomodate standard errors clustered
in multiple dimensions (see, Cameron and Miller, 2010).
17Bodnaruk (2009) uses investor moves to show that individuals shift their portfolios towards stocks

that become local.
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purchases relate to the purchase activity of future co-workers. The idea is that future

co-workers are unlikely to influence via social interaction but may still exhibit correlated

behavior due to similarity along unobservables. Thus if unobserved similarities drive

the results, we would expect the correlation with future co-workers to be of comparable

magnitude to the correlation with current co-workers.

Considering workers that move between plants also provides us with an intuitive way

to deal with the reflection problem, i.e., that the estimated coeffi cients in Table 2 reflect

both the influence of the group on the individual and the influence of the individual

on the group. One can argue that recently arrived individuals are much less likely to

influence the incumbent group at the new plant than vice versa (at least for some time),

and that identification of peer effects is in that case quite sharp. Of course one can think

of exceptions to this rule, such as an academic department hiring a new star scientist, or

a firm hiring a new manager. The much more common experience, according to the social

psychology and sociology literature, is that listening and adaptation is the prevalent mode

in a new job at least for a few months (e.g., van Maanen, 1976, Moreland, 1985, Ashfort

and Saks, 1996). For example, Ashfort and Saks (1996, p.149) state that ‘Individuals are

particularly susceptible to influence during role transitions, such as organizational entry,

because of the great uncertainty regarding role requirements.’

To analyze the impact of new and former co-workers, we interact the fraction of old

and new co-workers that make a purchase in a given month with dummy variables that

indicate whether that month is prior to leaving (joining) the old (new) plant or not (for

more than 80 percent of moves, the individual moves straight from the old plant to the

new plant, without gap months. In this case, these two dummy variables are just the

complements to each other). The variable Buyold beforei,t is the fraction of old co-workers

that make a purchase prior to the individual leaving the old plant (this variable takes

the value 0 after leaving the old plant), and the variable Buyold afteri,t is the fraction of old

co-workers that make a purchase after the individual has left the old plant (this variable

takes the value 0 before leaving the old plant). The variables describing the purchase

activity of new plant co-workers, Buynew before
i,t and Buynew after

i,t , are defined in the same

manner. Additionally, we restrict the sample to 12 months before the individual leaves

the old plant and 12 months after joining new plant. We exclude the month in which
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the individual leaves the old plant and the month when he joins the new plant because

they cannot be clearly assigned to either before or after the move. Later on, we take the

analysis one step further and estimate separate effects for each month. We estimate,

buyi,t = β1Buy
old before
i,t +β2Buy

old after
i,t +β3Buy

new before
i,t +β4Buy

new after
i,t +bΓ+εi,t. (2)

Estimating equation (2) allows us to track how the correlation in behavior with different

co-workers evolves over time. It is conceivable that trading frequency changes in con-

nection with a move (for example due to severance packages or time constraints). The

vector Γ therefore includes, in addition to the same sociodemographic control variables

and fixed effects as in column (3) of Table 2, dummies for the number of months before

leaving from the old plant, and dummies for the number of months prior to joining the

new plant.

We start out by focusing attention to the months prior to leaving the old plant.

Column (1) of Table 3 considers the effect of co-workers at the old plant before leaving.

The estimated coeffi cient is similar to the estimated coeffi cient on co-workers for the

overall sample, in column (3) of Table 2.

In column (2) of Table 3 we perform the placebo test, by relating individual purchases

to that of future co-workers. The coeffi cient on future co-workers is positive, but small

and barely significant. This suggests that endogenous group membership is not a major

concern. In column (3) we include both current and future co-workers. The placebo

coeffi cient from (2) is reduced by more than a fourth while the coeffi cient on Buyold beforei,t

is not significantly affected. In column (4)-(6) we perform the same exercise on months

after joining the new plant. The coeffi cient on new co-workers in column (5) is again very

similar to the overall sample, column (3) of Table 2. We can note that the coeffi cient on

new co-workers is not substantially affected by including a control for previous co-workers,

as seen from column (6). Note also that the correlation with previous co-workers cannot

be used as a placebo test, because the individual is likely to stay in touch with his old

co-workers.

Column (7) shows that the correlation with old co-workers significantly drops after the

individual leaves the old plant (the before-after difference is significantly different from
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zero at the one percent level). In (8) we address the reflection problem by considering

the correlation with new co-workers the year after the individual has joined the plant.

As argued above, β4 in (8) is likely to be mainly driven by influence from the incumbent

group of workers on the individual. The estimated β4 similar to that reported in column

(5).

In column (9) we include all sample months and consider the full specification described

in equation (2). All the coeffi cients are similar to those reported in (1)-(8). Finally, in

column (10) we restrict the sample to those individuals that do not change the municipality

where they live or the municipality where they work in conjunction with the change in

plant. The results are similar.

In order to consider how the relation with the two peer groups evolves over time in

more detail, we move to the monthly level. Let t denote event time in months; for example

t = −12 denotes 12 months prior to leaving the old plant and t = 12 denotes 12 months
after joining the new plant. Furthermore, define 25 dummy variables {1t}t=−12,12. Each
dummy equals 1 for month t and 0 otherwise (e.g., 13 = 1 if t = 3 and 0 otherwise). We

interact {1t} with Buyplant oldi,t and Buyplant newi,t and estimate the following regression,

buyi,t =
12∑

t=−12
(βold,tBuy

plant old
i,t + βnew,tBuy

plant new
i,t )1t + bΓ+ εi,t. (3)

The vector Γ contains the same controls as used when we estimated (2) and are described

in the caption to Table 2.18 The coeffi cients βold,t and βnew,t capture the correlation with

old and new co-workers in month t, after controlling for fixed effects. The results of this

18The regression specification in (3) is a slight simplification of the actual regression specification. First,
in order to capture the less than 20 percent of the sample that moves with a gap month between the old
plant and the new plant, in fact we estimate

buyi,t =

13∑
i=−13

βtBuy
plant old
t × 1old,t +

13∑
i=−13

βtBuy
plant new
t × 1new,t + bΓ+ εi,t (4)

where {1old,t} and {1new,t} are dummies that are complements only for moves with no gap. For the
less than 20 percent of moves where the number of gap months g exceeds zero, we keep the gap months
but drop the g months on each extremity of the time window. For example, if an individual has g = 1
then we drop the twelfth month before leaving the old plant and the twelfth month after joining the new
plant. Second, in order to calculate the moving average of coeffi cients, presented in Figure 1, we include
interaction effects for month 13 prior to leaving the old plant and month 13 after joining the new plant.
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regression are exhibited in Figure 1.

In Figure 1, the blue dashed line depicts how newly employed individuals are influ-

enced by their peers. The sharp ascent of the blue line around Month 0 reveals that

the correlation with new co-workers is initially low but becomes substantial after a very

short period in the new job. This is consistent with the individual gradually becoming

socialized and adopting the investment behavior of his peers. The red solid line in Figure

1 illustrates how the correlation with past co-workers evolves over time (Month 0 is the

month when the individual leaves the old plant). The correlation with old co-workers

decreases significantly when the individual leaves the old plant.

These findings give strong support to the notion that social interaction in the workplace

influences individuals’decision to purchase stocks; we find it striking how the correlation

with different sets of peers evolves in a pattern that reflects proximity to those co-workers.

3.3 Can shocks at the plant-month level drive the results?

The results could be driven by events at the plant-month level, such as visits from equity

brokers or from investment advisors. We deal with this issue in two ways. First, if plant-

month shocks are behind the results, we would expect a similar correlation in trading

behavior between pairs of individuals at small and large plants. On the other hand, if

social interaction drives our results we would expect stronger correlation between individ-

uals at a small plant than at a large plant, simply because two individuals are more likely

to engage at a small plant. To test this hypothesis, for each month we rank all plants into

ten size deciles, based on number of employees. We then sample two individuals from

each plant-month and estimate the within-plant correlation in purchasing activity across

size deciles. For each of the plant size deciles we estimate the following regression,

buyi,t = βbuyj,t + bΓ+ εi,t (5)

where buyj,t is a dummy variable that takes the value 1 if the co-worker j made a purchase

in that month and otherwise it is 0.19 As before, we include Buyfami,t , Buyzipi,t as well as

19Bayer et al. (2008) use a similar regression strategy to study the role of informal networks in job
hiring.
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sociodemographic controls, month and plant fixed effects.

Panel A of Table 4 presents our point estimates of β for all size deciles. We also

tabulate the mean number of employees for each size decile. In smaller plants the effect of

co-workers is much larger than in larger plants. It is striking that as the number of workers

increases from 4.74 (decile 1) to 21.91 (decile 4) the peer effect is reduced threefold.

In order to benchmark the peer effect we assign each individual a ‘placebo co-worker’

and examine the influence that they have on the individual’s trading decision. Using the

selected individuals we randomly assign them a co-worker from a different plant within

their size decile and then we re-estimate equation (5) using the buying intensity of the

placebo co-worker. Panel B of Table 4 tabulates the associated point estimates of the

effect of placebo peers on the purchase decision of our individuals. As expected, the

impact of placebo peers is economically marginal and it is only statistically significant for

one size decile.

Figure 2 plots the effect (β from estimating (5)) of co-workers (solid red line) and

placebo co-workers (dashed blue line) for different plant sizes. There is a sharp decrease

in the effect of co-workers (y-axis) as we go from decile one to decile five. Additionally,

in deciles one through four the effect co-workers is significantly greater than the effect of
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placebo peers.

Figure 2. See the appendix for a detailed caption.

Another way to deal with the possibility of shocks at the plant-month level is to exploit

that some subset of workers are more likely engage. Peer groups are likely to form along

sociodemographic patterns. For example, females may talk more with females than with

males, and individuals in the same age group may be more likely to talk. In Table A4

of the Appendix we follow Duflo and Saez (2002) and regress individual purchases on

purchases made for each subgroup separately on the purchase decision. Similar to in

Duflo and Saez (2002), the estimated peer group coeffi cients are more often than not

larger within subgroups than between.

4 Stock Selection

In this section we consider the relation between an individual’s stock selection and the

stock selection decisions made by her co-workers. The motivation is simple; co-workers

are likely to discuss their stock selection decisions and thereby attract attention to the
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stocks selected. The regression methodology is similar to the one applied by Ivkovíc and

Weisbenner (2007) in the study of industry selection.

We create a variable fi,t,s, which equals the fraction of total purchases by investor i

in month t that is made in stock s. Note that we restrict our attention to only those

months in which the individual makes at least a purchase (to study stock selection). An

advantage of considering the stock selection decision is that it is less influenced by liquidity

shocks than the purchase decision. The dependent variable, fi,t,s, is defined for all stocks

present in that month, and
∑

s fi,t,s = 1 by construction. As main explanatory variable

we construct an analogous variable, F planti,t,s , which is the fraction of purchases made by

individual i’s co-workers (excluding the individual’s purchases) that is invested in stock

s. Again this variable is only defined if at least one co-worker makes a purchase in month

t (if we did not condition on a purchase, the variable would confound stock selection with

the decsion to be active). Table 5 provides descriptive statistics. The mean fraction of

total purchases invested in a stock is 0.49%, which makes intuitive sense since there are

roughly 200 stocks on the Oslo Stock Exchange over the sample period.

4.1 Basic Results

To relate individual stock selection to that of her co-workers, we estimate the following

regression:

fi,t,s = βF planti,t,s + bΓ+εi,t,s (6)

The coeffi cient β captures the extent to which stock selection of an individual is correlated

with that of co-workers. To capture that a particular plant has a preference for a particular

stock we include fixed effects for each stock-plant combination in Γ. These control, for

example, for the possibility that a plant has a business relationship with a particular

listed company. To account for local bias and other geographical effects, we include zip

code-stock fixed effects. We also include monthly stock dummies (one for each stock)

to control for time-varying aggregate patterns in the demand for individual stocks (such

as individual investors pursuing ‘glitter stocks’as in Barber and Odean, 2008, or stocks

with strong prior performance, as in Benartzi, 2001). As additional controls, we include

zip code level stock selection, F zipi,t,s, which is defined in the same manner as F
plant
i,t,s . Both
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F planti,t,s and F zipi,t,s sum to 1 across stocks in a given month.

The results are presented in Table 6. In the regressions we have 87, 812, 052 stock se-

lection decisions, which corresponds to roughly 440, 000 purchase months or 3.7 purchase

months per investor in the sample (the individual trading patterns reported here are sim-

ilar to those found in Døskeland and Hvide, 2011). Column (3) is the main specification;

the estimated β coeffi cient is positive and highly significant. In terms of economic mag-

nitude, in column (3) a one standard deviation increase in the fraction of co-workers that

purchase the same stock results in a 195% increase relative to the unconditional mean.20

In columns (4) to (8) we consider alternative fixed effects. As evidenced by column (4),

the introduction of plant-year-stock and postcode-year-stock fixed effects does not qualita-

tively alter the results. Neither does introducing municipality-stock fixed effects (column

(6)).21 ,22

4.2 Changes In Place of Work

To analyze the impact of new and former co-workers on stock selection, we interact the

fraction of old and new co-workers that make a purchase in a particular stock in a given

month with dummy variables that indicate whether that month is prior to leaving (joining)

the old (new) plant or not. For example, the variable F old beforei,t,s is the fraction invested in

stock s by old co-workers prior to the investor leaving the old plant. After the departure

date the variable takes the value 0. Similarly, the variable F old afteri,t,s is the fraction invested

by co-workers at the old plant in stock s after the individual has left the plant. Before

20We can note from column (2) and (3) that the correlation with geographical neighbors drops when
co-worker stock selection is included. The converse is not the case; the correlation with co-workers is
hardly affected by introducing neighbors, as seen by contrasting (1) and (3). This is consistent with
correlation at the zip code partly proxying for social interaction in the workplace.
21Recall that we do not control for family group stock selection, as this would leave us with a very small

sample size. We have verified that the estimated coeffi cient on F planti,t,s is very similar for this subsample

also after controlling for F fami,t,s .
22Similar to in the purchase analysis we examine the effect of non-coworkers on stock selection. We

calculate Fnon−planti,t,s as the fraction of non-coworker purchases invested in stock s in month t. Unfor-

tunately, there is little variation across individuals in Fnon−planti,t,s in a particular month which implies

that there is collinearity between Fnon−planti,t,s and our month× stock fixed effects. When we exlcude our
month × stock fixed effects we find that both Fnon−planti,t,s and F planti,t,s are statistically and economically
significant.
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that the variable takes the value of 0. The variables describing the stock selection of

new plant co-workers, F new before
i,t,s and F new after

i,t,s are defined in the same manner. As in

the purchase decision analysis, we restrict the sample to 12 months before the individual

leaves the old plant and 12 months after joining the new plant. The above mentioned

selection criteria leaves us with 6, 458 individuals. The sociodemographic characteristics

of these individuals with respect to age, income, wealth etc. are very similar to that

covered in the other parts of the paper. We estimate,

fi,t,s = β1F
old before
i,t,s + β2F

old after
i,t,s + β3F

new before
i,t,s + β4F

new after
i,t,s + bΓ+εi,t,s. (7)

To control for geographical differences in preferences for certain stocks we include zip code-

stock fixed effects in Γ. As additional controls, we include zip code level stock selection,

F zipi,t,s. The sample size is not suffi cient to include plant-stock fixed effects, which means

that the level of the coeffi cients estimated in the present section will be contaminated

by plant-specific preferences for particular stocks, and the analysis mainly has interest in

illustrating differences between the estimated coeffi cients in equation (7).

The results are presented in Table 7. We start out by confining attention to the months

prior to leaving the old plant. In column (1) we consider the effect of co-workers at the

old plant before leaving. In column (2) we relate individual purchases to that of future

co-workers. The coeffi cient is noticeably smaller than the coeffi cient measuring the effect

of current co-workers found in column (1). The magnitude and statistical significance of

the coeffi cient is likely to be related to the omission of plant-stock fixed effects. In column

(3) we include as regressors both the stock selection of current and future co-workers.

Neither of the coeffi cients from (1) or (2) are much affected. In columns (4)-(6) we repeat

the exercise of the previous three columns, but we now focus on the 12 months after the

individual has joined the new plant. Notably, the coeffi cient on the stock selection new

co-workers is not affected by including a control for previous co-workers, as seen from

column (6).

In columns (7)-(9) we combine the period before the move with the period after joining

the new plant. Column (7) shows that the correlation with new co-workers significantly

increases after the individual joins the new plant (the before-after difference is significantly
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different from zero at the one percent level). As in Section 3.2, the difference between

these two coeffi cients is likely to be largely driven by influence from the incumbent group

of workers on the individual. In column (9) we consider the full specification described

in Equation (7). All the coeffi cients are similar to those reported in (1)-(8). Finally, in

column (10) we restrict the sample to those individuals that do not change the municipality

where they live or the municipality where they work in conjunction with the change in

plant.

Similar to in Section 3.2, we now examine the evolution of the relation between co-

worker stock selection and investor stocks selection. We estimate the following regression

fi,t,s =
12∑

t=−12
(βold,tF

plant old
i,t,s + βnew,tF

plant new
i,t,s )1t + bΓ+ εi,t,s (8)

The vector Γ contains the same controls as equation (7). The coeffi cients βold,t and βnew,t

capture the correlation with old and new co-workers in month t, after controlling for fixed

effects. The results of this regression are exhibited in Figure 3.

Figure 3. See the appendix for a detailed caption.

23



In Figure 3 we plot the interacted peer coeffi cient against the number of months

before the move. Figure 3 looks similar to Figure 1.23 Prior to the move the effect of

old co-workers is greater than the effect of new co-workers. However, following the move

the effect of new co-workers surpasses that of old co-workers. This indicates that the

investment decisions of individuals is most affected by those peers that they interact the

most with.

We also verify that the estimated peer effect gets smaller as the plant size increases

(the stock selection analogue to section 3.3). From each plant and month we keep the

stock selection decision of one individual and one of his co-workers. We divide all of our

plants into ten size deciles and for each decile we estimate the following regression:

fi,t,s = βfj,t,s + bΓ+εi,t,s (9)

where fj,t,s is the allocation of co-worker j to stock s in month t. We control for stock

selection at the postcode level by including F zipi,t,s in Γ. We also include plant-stock and

month-stock fixed effects. As before our standard errors are clustered both at the time

and plant level. Panel A of Table 8 presents our point estimates of β for all size deciles.

The point estimate for size decile one is more than five times as large as the point estimate

for decile ten. The mean number of employees in size decile one is 7.22 versus 1, 464.67

for decile ten.

We benchmark the peer effect by re-estimating equation (9) when the individual is

paired with a random non-coworker in the same size decile. Panel B of Table 8 tabulates

the associated point estimates of the effect of placebo peers on the stock selection decision

of our individuals. As expected, they are markedly lower than those reported in Panel A.

23Recall that we do not include plant-stock fixed effects, so that the level of the estimates will be
affected by plant-specific preferences for particular stocks. Thus we are mainly interested in the difference
between points on the red versus points on the blue line.
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Figure 4. For a detailed caption see the appendix.

Figure 4 plots the effect (β from Eq. (9)) of co-workers (solid red line) and placebo

peers (dashed blue line) for different plant sizes. There is a rapid decrease in the peer

effect when going from decile one to four (the mean plant in size decile four has 61.87

employees). From decile four to ten there seems to be a more gradual decrease. However,

the effect of co-workers is greater than that of placebo peers for all size deciles.

4.3 Same-Industry and Local Purchases

In the previous sections we found a close relation between the investment decisions of the

individual and his / her co-workers. However, it is still an open question whether this

is beneficial. In this section we take a first step (see also Section 5) in considering the
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effect of social interaction on the quality of investment decisions by considering whether

social interaction contributes to the purchase of stocks that most likely are poor hedges

of income risk (same-industry stocks, Døskeland and Hvide, 2011) and exposure to local

economic conditions (local stocks, e.g., Coval and Moskowitz, 1999).24 ,25 Thus, purchases

of same-industry and local stocks are likely to be less than ideal from a diversification

perspective.26

On the other hand, it is likely that local and same-industry stocks are salient objects

of workplace conversations and thus peer group effects might be stronger for local and

same-industry stocks than for non-local and different-industry stocks. To this end, in

what follows we examine co-worker peer effects for these different types of stocks.

For each individual employed in the private sector, the dataset contains an employer

two-digit NACE code at year-end. For each stock on the OSE, we have the primary

NACE codes at year-end from 1996 to 2005 (for 1995 we impute the NACE codes from

1996). Following Døskeland and Hvide (2011), we define an same-industry stock as a

stock where the worker two-digit NACE code matches the NACE code of the stock.

We classify all stocks as being local to the individual if the distance from the place of

residence of the individual to the stock headquarters is less than 100 km. We create four

new dependent variables f same−industryi,t,s , fdiff.−industryi,t,s , f locali,t,s and fnon−locali,t,s to capture the

individual’s selection of same-industry, different-industry, local and non-local stocks. For

example, f same−industryi,t,s is the fraction of total same-industry purchases made in month t

invested in stock s. The other variables are defined analogously. Table A6 of the Appendix

presents descriptive statistics of the dependent variables.

In Table 9 we re-estimate equation (6) using the new dependent variables. In col-

umn (1) to column (4) we consider local , non-local, same-industry and different-industry

stocks, respectively. We include month-stock, plant-stock, and zip code-stock fixed effects

24The extant literature has documented that the return of within-industry stocks are correlated with
labor income (see Baxter and Jermann, 1997, and Eiling, 2013).
25In the same vein, Massa and Simonov (2006) show that investors invest in stocks that have a high

correlation with their non-financial income suggesting that investors do not use the stock market for
hedging.
26Purchases of same-industry stocks could be a hedge against negative shocks to own-firm performance.

As the stock price of firms in the same industry tend to be strongly correlated, this does not seem likely.
Purchases of local stocks could be a hedge against shocks in the local price level.
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in all specifications. The point estimate of F planti,t,s is always positive and statistically signif-

icant indicating that our previous results are not driven by individual investor preferences

for local or same-industry stocks. As expected we find evidence that same-industry and

local stocks are salient objects of conversation in the workplace. Although peer effects

affect the selection of all four types of stock, the economic impact of social interaction

on stock selection is larger for same-industry and local stocks than for their counterparts.

A one standard deviation increase in the allocation of co-workers to a particular stock

increases the individuals allocation to that stock by 211% for same-industry stocks and

134% for different-industry stocks. The corresponding numbers for local and non-local

stocks are 183% and 157%, respectively. Thus, the results confirm that the economic

impact is largest for those stocks that we expect to be discussed most frequently at the

workplace. Additionally, these results suggest that one possible cause of local bias and

within-industry bias is that social interaction centers around these kind of stocks. Finally,

from a diversification perspective both local and same-industry stocks are arguably less

than ideal and therefore this highlights that social interaction might lead to a sub-optimal

portfolio allocation.

5 Should You Listen To Your Co-workers?

The literature on information cascades (Bikhchandani et al., 1992; Banerjee, 1992; Ellison

and Fudenberg, 1993) posits that imitating co-workers can make investment decisions

better informed and improve investment returns. In this section we evaluate how peer

pressure affects the performance of stock purchases using calendar time methodology (see,

Odean, 1999, and Seasholes and Zhu, 2010). We measure peer pressure as the fraction of

co-worker purchases allocated to stock s in excess of the economy-wide allocation to stock

s. Hence, we rank all purchases made according to:

F planti,t,s − F
non−plant
i,t,s (10)
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where F non−planti,t,s is the fraction of non-coworkers purchases allocated to stock s in month

t.27 Effectively, F non−planti,t,s controls for economywide trends. This implies that we consider

instances when co-workers are more enthusiastic about a stock than the economy as

a whole. This is important since some stocks are more popular choices by individual

investors and therefore they will experience greater peer pressure mechanically.

Purchases made under above (below) median peer pressure are sorted into the high

(low) peer pressure portfolio. This implies that each purchase is given a unique entry

into either the high or low peer pressure portfolio. For purchases made in month t we

consider the difference in return between the high peer pressure and the low peer pressure

purchases (HP −LP )t in subsequent months.28 To evaluate investor performance we run
the following regression,

(HP − LP )t = α + β1MKTt + β2SMBt + β3HMLt + β4MOMt + εt (11)

where the risk factors MKT , HML, SMB and MOM , are all calculated for Norway by

Ødegaard (2013).

In Panel A of Table 10 we examine the returns to peer purchases over different holding

periods. We report monthly percentage alphas. For all holding periods, 1, 3, 6, 9 and

12 months, the abnormal return to the high minus low peer pressure portfolio is not

statistically or economically significant. To verify that this result is not driven by the

median cutoff in terms of peer pressure, in unreported results we also divide all purchases

into quintiles on the basis of their peer pressure and examine the relative performance

of extreme quintiles. Again, for all holding periods we do not find that peer pressure is

associated with abnormal performance. Each column in Panel B of Table 10 examines the

return to the peer pressure portfolio for a particular month after purchase. We consider

the performance of the (HP −LP )t portfolio in months t+2, t+3, t+4, t+5 and t+6.

27We have also ranked purchases in terms of Buyplanti,t − Buynon−planti,t which captures more general
stock market enthusiasm since it does not condition on the investor purchasing the same stock as his
co-workers. The results suggest that there is no information in the enthusiasm of co-workers.
28Since we consider the performance of purchases in month t + 1 and onwards we abstract from per-

formance from the purchase day until the end of month t. Barber and Odean (2000) account for the
performance within the purchase month and concludes that this does not qualitatively affect investor
performance.
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For all of these months we find that abnormal returns are insignificant.

The existing literature has documented evidence in favour of individual investors hav-

ing superior performance when making local investments (Ivkovíc and Weisbenner, 2005,

and Massa and Simonov, 2006). Thus, it could well be that peer pressure is associated

with abnormal performance when local or same-industry stocks are being discussed in the

workplace. To that end, we separately consider all purchases of same-industry (same 2

digit NACE code) and local (headquartered within 100 km) stocks and then sort these

purchases in terms of peer pressure. As before, purchases with above (below) median peer

pressure are classified as having high (low) peer pressure. Panels C, D, E and F of Table

10 display the results from estimating (11) using as depedendent variable the difference in

return between high and low peer pressure purchases of same-industry, different-industry,

local and non-local stocks, respectively. In general, all of the panels confirm the previous

findings that peer pressure is not associated with abnormal returns. Interestingly, high

pressure same-industry purchases outperform low pressure same-industry purchases by

0.42% per month (Panel C). Although economically significant, the difference is mea-

sured with significant error and not statistically significant. Over a three month period

the positive returns turn negative and when considering a horizon of 9 to 12 months the

high peer pressure portfolio underperforms the low pressure portfolio, but again the per-

formance difference is not statistically significant. For different-industry purchases the

difference between high and low pressure purchases are universally economically and sta-

tistically insignificant. Taken together, the evidence does not suggest that listening to

co-workers adds value to purchases.

In contrast, for local purchases there is weak evidence that high peer pressure pur-

chases actually underperfom low peer pressure purchases. Over all horizons the difference

is negative. When considering a three month horizon the monthly underperfomance is

−0.083% and statistically significant at the 10% level.

Taken together these results suggest that it is unlikely that information about stock

fundamentals is transmitted among co-workers. Overall, the results of this section com-

bined with the findings of the previous sections of the paper lead us to conclude that

individual investors follow the advice of their co-workers even though the advice does not

contain value pertinent information.
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6 Conclusion

This paper addresses whether co-workers influence investment choices. We employ com-

prehensive data from Norway that covers a large number of individual investors over a

ten-year period. We find that the stock market behavior of individual investors is highly

correlated with the stock market behavior of their co-workers. Sorting of unobservably

similar individuals to the same workplaces is unlikely to drive the results, as evidenced

by the trading behavior of individuals that move between plants. As one would expect if

the correlations are driven by social interaction (and not shocks at the plant level), the

results are considerably stronger for small than for large plants.

The results point to social interaction as an important element in the investment be-

havior of individuals. Existing evidence in favor of social interaction comes from relatively

large peer groups, such as regions or neighborhoods. However, these findings are subject

to several interpretations (e.g., Moffi t, 2001). One contribution of the analysis is to focus

on peer effects at a much more local level, the workplace, and to show that the measured

social interaction effects are large even after accounting for correlated unobservables, en-

dogenous group membership, and reflection.

We also analyze whether social interaction leads to better economic outcomes for the

individuals that are affected. First, our evidence suggests that social interaction does

not result in a superior portfolio allocation. Social interaction results in the purchase of

same-industry and local stocks, both less than ideal from a diversification perspective.

Second, we examine the performance of purchases made under greater peer pressure and

we do not find evidence suggesting abnormal returns.

Overall, the findings suggest that individuals are strongly influenced by their co-

workers, but this influence does not improve, and sometimes reduces, the quality of their

investment choices. At the normative level, we offer advice to individual investors them-

selves: listening to co-workers is unlikely to improve the quality of investments.

A recent literature addresses the co-movement of aggregate individual investor trading

and asset returns (e.g., Kumar and Lee, 2006, Barber and Odean, 2008). One of the ideas

of this literature is that individual investors can affect asset prices if their trades are

suffi ciently correlated due to ‘social movements’(Shiller, 1984). A social movement needs
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to start somewhere; we demonstrate that the workplace is a plausible candidate. Finally,

our results have implications for theory. We find that purchases that are made under

greater purchase activity by peers are not associated abnormally low or high returns. The

latter stands in contrast to standard models of information cascades where agents are

rational and ex-ante beliefs are homogenous (see Edmond, 2008, for an exception), and

suggests the relevance of behavioral theories of information cascades.
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Figure 1: New and former co-workers 
 

 
 

Figure 1: The above figure plots the slope coefficients from regression equation (3). The dependent variable is the dummy 
variable buyi,t that takes the value 1 if the investor makes a purchase in month t and 0 otherwise. Our main independent 
variables are the fraction of old (new) co-workers that make a purchase in month t interacted with 27 dummy variables, 
one for each of the 13 months prior leaving the old plant to 13 months after joining the new plant. We average three 
consecutive coefficients and in Figure 1 we plot the estimated coefficients from 12 months prior to leaving the old plant to 
12 months after joining the new plant. We exclude investors that leave their job in December and join the new plant in 
January. 
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Figure 2: Plant size and peer effects 
 
 

 
 

Figure 2: The above figure plots the slope coefficients from estimating equation (5). In each month we divide 
all of our plants into size deciles in terms of the number of employees. From each plant we sample two 
individuals (investor i and co-worker j). We relate the purchase decision of i (buyi,t) to that of j (buyj,t) by 
estimating the regression described in equation (5) for each size decile. The red solid line plots the estimated 
slope coefficients from the regressions. The blue dashed line labeled “placebo effect” plots the corresponding 
slope coefficients after matching investor i with a randomly chosen worker from a different plant in the same 
size decile. 
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Figure 3: Stock selection new and former co-workers 
 
 

 
 

Figure 3: The above figure plots the slope coefficients from regression equation (8). The dependent variable is, 
fi,t,s, the fraction invested by investor i in stock s in month t. Our main independent variables are the fraction 
invested in stock s in month t of old (new) co-workers interacted with 27 dummy variables, one for each of the 
13 months prior leaving the old plant to 13 months after joining the new plant. We average three consecutive 
coefficients and in Figure 3 we plot the estimated coefficients from 12 months prior to leaving the old plant to 12 
months after joining the new plant. We exclude investors that leave their job in December and join the new 
plant in January. 
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Figure 4: Stock selection in plants of different size 
 

 
 

Figure 4: In each month we divide all of our plants into size deciles in terms of the number of employees. From 
each plant we sample two individuals (investor i and co-worker j). We relate the stock selection decision of i 
(fi,t,s) to that of j (fj,t,s) by estimating the regression described in equation (9) for each size decile. The red solid 
line plots the estimated slope coefficients from the regressions. The blue dashed line labeled “placebo effect” 
plots the corresponding slope coefficients after matching investor i with a randomly chosen worker from a 
different plant in the same size decile. 
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Table 1: Trading of individuals and peers 
 
We present descriptive statistics on trading of individuals and their peers. In Panel A we consider stock purchases. buyi,t is a dummy 
variable that takes the value 1 if individual i makes a purchase in month t, otherwise it is 0. ݕݑܤ௜,௧௣௟௔௡௧, ݕݑܤ௜,௧௙௔௠௜௟௬ and ݕݑܤ௜,௧௭௜௣ are the 
fraction of plant, family and zip code peers that make a stock purchase in month t. In Panel B we consider stock sales. selli,t is a 
dummy variable that takes the value 1 if individual i makes a stock sale in month t, otherwise it is 0. ݈݈ܵ݁௜,௧௣௟௔௡௧, ݈݈ܵ݁௜,௧௙௔௠௜௟௬ and ݈݈ܵ݁௜,௧௭௜௣ are 
the fraction of plant, family and zip code peers that make a stock sale in month t. Variables are described in Table A1 of the Appendix. 
 
Panel A: Investor Purchases 

 Variable Mean Median Std. Dev. Min Max N Individual trading   buy 0.0519 0 0.2219 0 1 6,025,608     Peer trading   Buy୮୪ୟ୬୲ 0.0469 0 0.1160 0 1 6,025,608 Buy୸୧୮ 0.0453 0.0388 0.0369 0 1 6,025,608 Buy୤ୟ୫୧୪୷ 0.0267 0 0.1361 0 1 6,025,608 
 
Panel B: Investor Sales 
 Variable Mean Median Std. Dev. Min Max N Individual trading   sell 0.0444 0 0.2059 0 1 6,025,608    Peer trading  Sell୮୪ୟ୬୲ 0.0396 0 0.1025 0 1 6,025,608 Sell୸୧୮ 0.0226 0 0.1249 0 1 6,025,608 Sell୤ୟ୫୧୪୷ 0.0382 0.0339 0.0292 0 1 6,025,608 
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Table 2: Peer and Investor Trading  
 
In Panel A (B) the dependent variable is the dummy variable buy (sell) that takes the value 1 if the investor makes a purchase (sale) in that month and 0 otherwise. In Panel A the 
main explanatory variables are the fraction of plant, family and zip code peers that make a stock purchase in month t (ݕݑܤ௜,௧௣௟௔௡௧, ݕݑܤ௜,௧௙௔௠௜௟௬ and ݕݑܤ௜,௧௭௜௣ respectively). In Panel B we 

consider the analogous explanatory variables for sales (݈݈ܵ݁௜,௧௣௟௔௡௧, ݈݈ܵ݁௜,௧௙௔௠௜௟௬ and ݈݈ܵ݁௜,௧௭௜௣). The sociodemographic variables that we control for are: Age, Age2, LogIncome, 
LogIncome2, LogIncome3, LogWealth, LogWealth2, LogWealth3, LogIncome×LogWealth, Male and Education. In some specifications we include time (month), plant and zip, and 
zip-plant interaction fixed effects. In specification (4) we include plant×year, zip×year, and zip×plant×year fixed effects. In specification (5) we include month×industry (NACE 2) 
fixed effects and in specification (6) we include month×municipality fixed effects. t-statistics (in parentheses) are based on robust two-way (plant and time) clustered standard 
errors. Specifications in Panel C are identical to those in Panel A except that we use the conditional logit as estimation method. We condition on our zip×plant categories and 
introduce month dummies. We report odds ratios and z-statistics (in parentheses). Our z-statistics are based on robust standard errors clustered around plant. *, **, and *** indicate 
statistical significance at the 10%, 5%, and 1% level, respectively. Variables are described in Table A1 of the Appendix. 
 
Panel A: Investor purchases  
 (1) (2) (3) (4) (5) (6)Buyplant 0.189*** 0.183*** 0.180*** 0.162*** 0.179*** (8.66) (9.11) (8.09) (14.37) (11.67) Buyzip 0.339*** 0.272*** 0.431*** 0.209*** -0.052*** (4.59) (4.76) (8.56) (12.68) (-3.89) Buyfamily 0.090*** 0.099*** 0.088*** 0.087*** 0.098*** 0.095*** (14.12) (15.11) (13.87) (12.21) (18.44) (18.19) Sociodemographic Yes Yes Yes Yes Yes YesTime FE Yes Yes Yes No No No Plant FE Yes Yes Yes No No No Zip FE Yes Yes Yes No No No Plant×Year FE No No No Yes No No Zip×Year FE No No No Yes No No Time×Industry FE No No No No Yes NoTime×Municipality FE No No No No No Yes N 6,025,608 6,025,608 6,025,608 6,025,608 6,025,608 6,025,608R2 0.253 0.248 0.254 0.361 0.052 0.055
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Panel B: Investor sales 
 
 (1) (2) (3) (4) (5) (6)Sellplant 0.063*** 0.062*** 0.044*** 0.091*** 0.092*** (9.38) (9.30) (5.64) (17.21) (15.11) Sellzip 0.173*** 0.160*** 0.329*** 0.196*** -0.072*** (6.26) (6.14) (12.02) (11.48) (-6.41) Sellfamily 0.061*** 0.063*** 0.060*** 0.055*** 0.078*** 0.075*** (16.38) (17.30) (16.76) (15.08) (23.26) (22.87) Sociodemographic Yes Yes Yes Yes Yes YesTime FE Yes Yes Yes No No No Plant FE Yes Yes Yes No No No Zip FE Yes Yes Yes No No No Plant×Year FE No No No Yes No No Zip×Year FE No No No Yes No No Time×Industry FE No No No No Yes NoTime×Municipality FE No No No No No Yes N 6,025,608 6,025,608 6,025,608 6,025,608 6,025,608 6,025,608R2 0.246 0.246 0.247 0.353 0.035 0.041
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Panel C: Conditional logit estimations 
 
 (1) (2) (3)Buyplant 11.775*** 10.24***(15.98) (16.54)Buyzip 206.618*** 45.242***(9.35) (10.42)Buyfamily 3.441*** 3.943*** 3.293***(39.86) (52.86) (39.39)Sociodemographic Yes Yes YesTime dummies Yes Yes YesN 3,697,776 3,697,776 3,697,776Pseudo R2 0.080 0.067 0.083
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Table 3: New and Former Co-workers 
 
We examine the relative impact of new and former co-workers before and after the investor leaves (joins) the old (new) plant. To do so, we create two dummy variables that take the value of 1 
for months before (after) the investor leaves the old plant and 0 otherwise. Similarly, we create two dummy variables that take the value of 1 for months before (after) the investor joins the new 
plant and 0 otherwise. We interact these four dummy variables with ݕݑܤ௜,௧௣௟௔௡௧ (of the old and new plant) to generate the independent variables ݕݑܤ௜,௧௢௟ௗ ௕௘௙௢௥௘, ݕݑܤ௜,௧௢௟ௗ ௔௙௧௘௥, ݕݑܤ௜,௧௡௘௪ ௕௘௙௢௥௘ and ݕݑܤ௜,௧௡௘௪ ௔௙௧௘௥. We estimate the following regression: 
௜,௧ݕݑܾ  = ௧ߙ + ௜,௧௢௟ௗ ௕௘௙௢௥௘ݕݑܤଵߚ + ௜,௧௢௟ௗ ௔௙௧௘௥ݕݑܤଶߚ + ௜,௧௡௘௪ ௕௘௙௢௥௘ݕݑܤଷߚ + ௜,௧௡௘௪ ௔௙௧௘௥ݕݑܤସߚ + ௜,௧௙௔௠௜௟௬ݕݑܤହߚ + ௜,௧௭௜௣ݕݑܤ଺ߚ + ࢣ࢈ +  ௜,௧ߝ
 
where ࢣ includes the sociodemographic variables listed in the caption to Table 2. In addition to month, plant and zip code fixed effects; we include zip×plant fixed effects. We also include 
dummies for the number of months before leaving from the old plant (time prior leaving), and dummies for the number of months prior to joining the new plant (time prior joining). There is one 
dummy variable for each month starting from 12 months before the investor leaves (joins) the old (new) plant to 12 months after (month 0 is omitted). In specification (10), we only consider 
those individuals that do not change the municipality where they live or work in conjunction with the plant move (i.e., they shift plant within the municipality). t-statistics (in parentheses) are 
based on robust two-way (plant and time) clustered standard errors. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Variables are described in Table 
A1 of the Appendix. 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)Buy୭୪ୢ ୠୣ୤୭୰ୣ 0.193*** 0.192*** 0.189*** 0.193*** 0.196*** (5.56) (5.60) (5.77) (5.89) (5.53)  Buy୭୪ୢ ୟ୤୲ୣ୰  0.149*** 0.128*** 0.150*** 0.125*** 0.161***  (3.98) (4.29) (4.11) (4.33) (4.26)  Buy୬ୣ୵ ୠୣ୤୭୰ୣ  0.0365* 0.0257 0.0454*** 0.0315** 0.0429**  (1.87) (1.52) (2.45) (1.99) (2.52)  Buy୬ୣ୵ ୟ୤୲ୣ୰  0.189*** 0.180*** 0.186*** 0.180*** 0.168***  (5.20) (5.50) (5.23) (5.59) (4.44)  Buy୸୧୮ 0.0745 0.0978** 0.0730 0.109** 0.0977** 0.0848* 0.0911** 0.0941*** 0.0765* 0.0958** (1.46) (1.84) (1.44) (2.21) (2.14) (1.89) (2.18) (2.78) (1.95) (1.98)  Buy୤ୟ୫୧୪୷ 0.0729*** 0.0742*** 0.0727*** 0.0664*** 0.0662*** 0.0646*** 0.0685*** 0.0690*** 0.0675*** 0.0652*** (6.05) (6.14) (6.03) (5.40) (5.33) (5.27) (7.35) (7.30) (7.21) (6.42)  Sociodemographic Yes Yes Yes Yes Yes Yes Yes Yes Yes YesTime FE Yes Yes Yes Yes Yes Yes Yes Yes Yes YesPlant FE Yes Yes Yes Yes Yes Yes Yes Yes Yes YesZip FE Yes Yes Yes Yes Yes Yes Yes Yes Yes YesTime prior leaving FE Yes Yes Yes No No No Yes Yes Yes YesTime prior joining FE No No No Yes Yes Yes Yes Yes Yes Yes  N 76,788 76,788 76,788 90,595 90,595 90,595 167,383 167,383 167,383 118,044Adj. R2 0.346 0.342 0.346 0.305 0.309 0.310 0.316 0.316 0.319 0.336
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Table 4: Interaction in peer groups of different size 
 
We examine the impact of co-workers in peer groups of different size. We sample two individuals from each plant and month (the individual and one co-worker). In each 
month we rank all remaining plants according to plant size (the number of workers employed at the plant) into ten deciles. We estimate the following regression for each size 
decile: 
 
௜,௧ݕݑܾ  = ௧ߙ + ௝,௧ݕݑଵܾߚ + ௜,௧௙௔௠௜௟௬ݕݑܤଶߚ + ௜,௧௭௜௣ݕݑܤଷߚ + ࢣ࢈ +  ௜,௧ (5)ߝ
 
where ܾݕݑ௝,௧ takes the value of 1 if the co-worker makes a purchase in month t and otherwise takes the value 0. The vector ࢣ includes the sociodemographic variables listed in 
the caption to Table 2 as well as time and plant fixed effects. In Panel A we present point estimates of ߚଵ with corresponding t-statistics (standard errors are clustered around 
plant and time), the number of individual month observations used in the regression and the mean number of employees in the size decile. In Panel B we present our ‘placebo 
analysis’. We now randomly pair each individual in the remaining sample to a co-worker of a different plant in the same size decile. We re-estimate (5) while replacing ܾݕݑ௝,௧ 
with the corresponding buying intensity of the placebo co-worker. In Panel B we present the estimates of ߚଵ with t-statistics. The number of observations and the mean 
number of employees are identical to those in Panel A by construction. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Variables 
are described in Table A1 of the Appendix. 
 
Panel A: Size Decile (1) (2) (3) (4) (5) (6) (7) (8) (9) ௝,௧ݕݑܾ(10) 0.0750*** 0.0492*** 0.0411*** 0.0161* -0.00312 0.00611 0.000974 -0.00297 0.00537 0.0180*** (9.26) (6.82) (4.47) (2.43) (-0.52) (0.95) (0.18) (-0.51) (0.98) (2.99)  N 97,452 97,381 97,417 97,379 97,403 97,404 97,404 97,392 97,404 97,344Mean # Employees 4.74 9.63 15.11 21.91 30.74 41.93 57.72 82.73 131.18 464.52

 
Panel B: Size Decile (1) (2) (3) (4) (5) (6) (7) (8) (9) ௝,௧ݕݑܾ(10) -0.0044 0.0002 -0.0063* 0.0009 -0.0037 0.0010 0.00215 -0.00144 -0.0018 -0.0001 (-1.32) (0.07) (-2.05) (0.26) (-1.24) (0.32) (0.62) (-0.42) (-0.48) (-0.03)N and Mean # Employees are identical to those in Panel A by construction.
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Table 5: Descriptive statistics on investor and peer stock selection 
 
We present descriptive statistics on the stock selection decision of individuals and peers. fi,t,s is the fraction 
invested by investor i in stock s in month t. ܨ௜,௧,௦௣௟௔௡௧ and ܨ௜,௧,௦௭௜௣ is the average fraction invested in stock s in month t 
by plant and zip code peers, respectively. Variables are described in Table A1 of the Appendix. 
 
Individual and peer stock selection 

 Variable Mean Median Std. Dev. Min Max N Individual stock selection   f 0.0049 0 0.0620 0 1 87,812,052    Peer stock selection   Fplant 0.0049 0 0.0486 0 1 87,812,052Fzip 0.0049 0 0.0331 0 1 87,812,052 
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Table 6: Peer Effects and Stock Selection 
 
We present the results of pooled panel regressions relating the fraction of purchases invested in a particular stock by the investor to the fraction invested in that 
stock by the investor’s peers. The dependent variable fi,t,s is the fraction of purchases invested in stock s in month t by the investor. ܨ௜,௧,௦௣௟௔௡௧ and ܨ௜,௧,௦௭௜௣ is the fraction 
of purchases invested in stock s in month t by plant and zip code peers respectively. We include month×stock fixed effects in all specifications. In specification 
(8) we also include plant×stock, zip×stock and zip×plant×stock fixed effects. t-statistics (in parentheses) are based on robust two-way (plant and time) clustered 
standard errors. *, ** and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Variables are described in Table A1 of the Appendix. 
  (1) (2) (3) (4) (5) (6) (7) (8) f f f f f f f fFplant 0.201*** 0.196*** 0.266*** 0.309*** 0.323*** 0.288*** 0.243***(11.15) (11.37) (10.44) (16.90) (14.72) (17.42) (15.25)Fzip 0.111*** 0.0835*** 0.211*** 0.116*** 0.0984*** 0.107*** 0.0682***(6.53) (6.65) (5.19) (11.74) (11.28) (12.17) (6.48)Time×Stock FE  Yes Yes Yes Yes Yes Yes Yes YesPlant×Stock FE Yes Yes Yes No No No No NoZip×Stock FE Yes Yes Yes No No No No YesPlant×Year×Stock FE No No No Yes No No No NoZip×Year×Stock FE No No No Yes No No No NoNace2×Stock FE No No No No Yes No No YesMunicipality×Stock FE No No No No No Yes No NoNace2×Year×Stock FE No No No No No No Yes No

N 87,812,052 87,812,052 87,812,052 87,812,052 87,812,052 87,812,052 87,812,052 87,812,052R2 0.457 0.446 0.458 0.497 0.214 0.211 0.222 0.346
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Table 7: Stock Selection, New and Former Co-workers 

 
We examine the relative impact of new and former co-workers before and after the investor leaves (joins) the old (new) plant (as in Table 3). To do so, we create 
two dummy variables that take the value of 1 for months before (after) the investor leaves the old plant and 0 otherwise. Similarly, we create two dummy 
variables that take the value of 1 for months before (after) the investor joins the new plant and 0 otherwise. We interact these four dummy variables with the 
variable ܨ௜,௧,௦௣௟௔௡௧ (of the old and new plant) to generate the independent variables ܨ௜,௧,௦௢௟ௗ ௕௘௙௢௥௘, ܨ௜,௧,௦௢௟ௗ ௔௙௧௘௥, ܨ௜,௧,௦௡௘௪ ௕௘௙௢௥௘  and ܨ௜,௧,௦௡௘௪ ௔௙௧௘௥. We estimate: 
 ௜݂.௧.௦ = ߙ + ௜,௧,௦௢௟ௗ ௕௘௙௢௥௘ܨଵߚ + ௜,௧,௦௢௟ௗ ௔௙௧௘௥ܨଶߚ + ௜,௧,௦௡௘௪ ௕௘௙௢௥௘ܨଷߚ + ௜,௧,௦௡௘௪ ௔௙௧௘௥ܨସߚ + ௜,௧,௦௭௜௣ܨହߚ +  ௜,௧,௦ߝ
 
where ௜݂.௧.௦ is the fraction of month t purchases invested in stock s by investor i. ܨ௜,௧,௦௭௜௣ is the average fraction invested in stock s in month t by zip code peers. We 
include month×stock and NACE2×stock fixed effects. In specification (10) we only consider those individuals who do not change the municipality of 
employment or residence surrounding the shift in plant. t-statistics (in parentheses) are based on robust two-way (plant and time) clustered standard errors. *, **, 
and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. Variables are described in Table A1 of the Appendix. 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)f f f f f f f f f fF୭୪ୢ ୠୣ୤୭୰ୣ 0.176*** 0.170***  0.189*** 0.189*** 0.186*** (7.02) (7.24)  (8.11) (8.37) (7.33)   F୭୪ୢ ୟ୤୲ୣ୰  0.209*** 0.167*** 0.208*** 0.163*** 0.162***  (7.57) (6.88) (7.07) (7.18) (6.36)   F୬ୣ୵ ୠୣ୤୭୰ୣ  0.108*** 0.0917***  0.137*** 0.115*** 0.124***  (4.19) (4.32)  (5.98) (6.15) (4.77)   F୬ୣ୵ ୟ୤୲ୣ୰  0.200*** 0.193*** 0.208*** 0.193*** 0.207***  (10.96) (8.05) (8.58) (9.25) (7.71)   F୸୧୮ 0.0564*** 0.0605*** 0.0544*** 0.0619*** 0.0646*** 0.0619*** 0.0587*** 0.0629*** 0.0534*** 0.0487*** (3.53) (3.80) (3.44) (4.64) (5.06) (4.91) (5.75) (5.68) (5.34) (4.02)   Time×Stock FE Yes Yes Yes Yes Yes Yes Yes Yes Yes YesNace2×Stock FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes   N 448,622 448,622 448,622 529,507 529,507 529,507 900,111 900,111 900,111 640,872R2 0.272 0.266 0.274 0.315 0.309 0.321 0.254 0.253 0.262 0.294
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Table 8: Interaction in peer groups of different size 
 
We examine the impact of co-workers in peer groups of different size. We sample two individuals from each plant and month (the individual and one co-worker). In each 
month we rank all plants according to plant size (the number of workers employed at the plant) into ten deciles. We estimate the following regression for each size 
decile: 
 
 ௜݂,௧,௦ = ଵߚ ௝݂,௧,௦ + ݌݅ݖݏ,ݐ,݅ܨଶߚ + ࢣ࢈ +  ௜,௧,௦ (9)ߝ
 
where ௝݂,௧,௦ is the fraction of co-worker j’s purchases allocated to stock s in month t. We control for the stock selection of neighbors by including ܨ௜,௧,௦௭௜௣. The vector ࢣ 
includes plant×stock and month×stock fixed effects. In Panel A we present point estimates of ߚଵ with corresponding t-statistics (standard errors are clustered at the plant 
and time level), the number of individual month observations used in the regression and the mean number of employees in the size decile. In Panel B we present our 
‘placebo analysis’. We now randomly pair each individual in the remaining sample to a co-worker of a different plant in the same size decile. We re-estimate (9) while 
replacing ௝݂,௧,௦ with the corresponding stock allocation of the placebo co-worker. In Panel B we present the estimates of ߚଵ with t-statistics. The number of observations 
and the mean number of employees are identical to those in Panel A by construction. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, 
respectively. Variables are described in Table A1 of the Appendix. 
 
Panel A: Size Decile (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)௝݂,௧,௦ 0.218*** 0.141*** 0.087*** 0.067*** 0.063*** 0.050*** 0.047*** 0.036*** 0.037*** 0.041*** (15.54) (12.43) (9.65) (7.77) (6.55) (5.82) (5.60) (4.08) (4.86) (4.96)  N 2,155,146 2,155,076 2,155,097 2,155,066 2,155,082 2,155,096 2,155,085 2,155,074 2,155,109 2,155,132Mean # Employees 7.22 20.73 39.02 61.87 91.56 130.49 184.68 270.23 433.77 1,464.67

 
Panel B: Size Decile (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)௝݂,௧,௦ 0.012** 0.018** 0.018** 0.013* 0.015* 0.013 0.010 0.009 0.007 -0.004 (1.97) (2.40) (2.33) (1.86) (1.94) (1.59) (1.27) (1.10) (0.90) (-0.57)N and Mean # Employees are identical to those in Panel A by construction.
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Table 9: Stock Selection of Local and Same-Industry Stocks 
 
We investigate the relation between the stock selection of peers and the stock selection of investors in local and 
same-industry stocks. The dependent variable ௜݂,௧,௦ is the fraction of total purchases invested in stock s in month t 
by investor i. ܨ௜,௧,௦௣௟௔௡௧ and ܨ௜,௧,௦௭௜௣  is the average fraction invested in stock s in month t by plant and zip code peers 
respectively. In specification (1), we only consider stocks that are local to the investor (stocks headquartered 
closer than 100 km to the investor); thus our dependent variable ௜݂,௧,௦ measures the fraction of local purchases 
invested by the individual in stock s. In specification (2), we only consider non-local stocks. Specification (3) 
considers only same-industry stocks (defined as in Døskeland and Hvide, 2011), while specification (4) 
considers different-industry stocks. We include month×stock, plant×stock, zip×stock and zip×plant×stock fixed 
effects. t-statistics (in parentheses) are based on robust two-way (plant and time) clustered standard errors. *, ** 
and *** indicate statistical significance at the 10%, 5% and 1% level, respectively. Variables are described in 
Table A1 of the Appendix. 
 

 (1) (2) (3) (4) 
 Local Non-Local Same-Industry Diff.-Industry F୮୪ୟ୬୲ 0.218*** 0.151*** 0.381*** 0.136*** 

 (9.50) (9.75) (12.07) (9.85) 
   F୸୧୮ 0.0666*** 0.0810*** 0.106*** 0.0703*** 
 (6.19) (4.96) (5.92) (5.13)    Time×Stock FE Yes Yes Yes Yes Plant×Stock FE Yes Yes Yes Yes Zip×Stock FE Yes Yes Yes Yes    N 24,714,288 53,266,715 2,442,980 75,710,195 Adj. R2 0.513 0.444 0.741 0.434 
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Table 10: Peer pressure and returns 
 
We present regression results relating peer pressure to returns. In each month we rank all purchases in terms of their peer pressure, ܨ௜,௧,௦௣௟௔௡௧ −  ௜,௧,௦௡௢௡ି௣௟௔௡௧, formally, the allocation ofܨ
co-workers to stock s in excess of the economy average (ܨ௜,௧,௦௡௢௡ି௣௟௔௡௧) allocation to stock s. Purchases with above (below) median peer pressure are placed in the High Pressure 
(Low Pressure) portfolio. Purchases are kept in the portfolio from the last day of the purchase month until the end of the holding period (up to one year later). As dependent 
variable we use the time-series of monthly differences between the mean return of the High Pressure portfolio and the mean return of the Low Pressure portfolio (HP-LP). We 
estimate the following regression, 
 

ܲܪ  − ܮ ௧ܲ = ߙ + ܭܯଵߚ ௧ܶ + ௧ܤܯଶܵߚ + ௧ܮܯܪଷߚ + ௧ܯܱܯସߚ +  ௧, (11)ߝ
 
where ܭܯ ௧ܶ, ܵܤܯ௧, ܮܯܪ௧, and ܯܱܯ௧, are the Fama-French and the Carhart (1997) factors calculated for Norway by Ødegaard (2013). In Panel A, we present regression 
results for holding periods 1, 3, 6, 9 and 12 months. Panel B presents our return results for the individual months t+2 to t+6. We report monthly percentage alphas. In Panel C, we 
consider whether peer pressure affects the performance of same-industry purchases. To do this, in each month we rank all same-industry purchases in terms of peer pressure and 
as before above (below) median purchases are placed in the High (Low) Pressure portfolio. Thus, we re-estimate (11) with our dependent variable ܲܪ − ܮ ௧ܲ based on only same-
industry purchases. Panel C reports point estimates of ߙ over several holding periods. Panel D, E and F are identical to Panel C except that we only consider different-industry, 
local and non-local purchases, respectively. We report Newey and West (1987) standard errors with 3 lags. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% 
levels, respectively. 
 
Panel A: Holding periods and returns 
 

 Holding period 1 month 3 months 6 months 9 months 12 months alpha std error alpha std error alpha std error alpha std error alpha std errorHigh pressure 0.319 (1.130) 0.142 (1.107) 0.125 (1.080) 0.088 (1.066) 0.014 (1.051)Low pressure 0.333 (1.133) 0.148 (1.111) 0.122 (1.083) 0.076 (1.068) 0.010 (1.054)High-Low -0.014 (0.023) -0.006 (0.016) 0.003 (0.011) 0.011 (0.010) 0.005 (0.011)
  

Panel B: Monthly returns to peer trading  Month t+2 t+3 t+4 t+5 t+6 alpha std error alpha std error alpha std error alpha std error alpha std errorHigh pressure 0.026 (1.150) 0.025 (1.110) -0.151 (1.104) 0.486 (1.113) 0.006 (1.154)Low pressure 0.018 (1.150) 0.068 (1.119) -0.186 (1.104) 0.476 (1.118) 0.035 (1.154)High-Low 0.008 (0.030) -0.043 (0.0316) 0.034 (0.0239) 0.010 (0.018) -0.029 (0.024)
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Panel C: Peer pressure and same-industry investments  Holding period 1 month 3 months 6 months 9 months 12 months alpha std error alpha std error alpha std error alpha std error alpha std errorHigh pressure 0.790 (1.293) -0.042 (1.199) -0.088 (1.144) 0.026 (1.124) -0.114 (1.087)Low pressure 0.374 (1.249) -0.105 (1.179) -0.056 (1.169) 0.150 (1.165) 0.074 (1.128)High-Low 0.416 (0.259) 0.063 (0.233) -0.032 (0.161) -0.124 (0.174) -0.188 (0.164) 
Panel D: Peer pressure and different-industry investments  Holding period 1 month 3 months 6 months 9 months 12 months alpha std error alpha std error alpha std error alpha std error alpha std errorHigh pressure 0.328 (1.129) 0.164 (1.111) 0.137 (1.079) 0.084 (1.063) 0.007 (1.049)Low pressure 0.338 (1.131) 0.164 (1.113) 0.134 (1.083) 0.075 (1.067) 0.001 (1.054)High-Low -0.010 (0.023) 0.001 (0.017) 0.003 (0.011) 0.009 (0.010) 0.006 (0.012) 
Panel E: Peer pressure and local investments  Holding period 1 month 3 months 6 months 9 months 12 months alpha std error alpha std error alpha std error alpha std error alpha std errorHigh pressure 0.089 (1.151) -0.069 (1.133) 0.027 (1.118) 0.058 (1.105) -0.001 (1.087)Low pressure 0.170 (1.154) 0.014 (1.135) 0.049 (1.116) 0.075 (1.106) 0.017 (1.088)High-Low -0.081 (0.064) -0.083*** (0.031) -0.022 (0.025) -0.017 (0.028) -0.018 (0.028) 
Panel F: Peer pressure and non-local investments  Holding period 1 month 3 months 6 months 9 months 12 months alpha std error alpha std error alpha std error alpha std error alpha std errorHigh pressure 0.430 (1.145) 0.250 (1.115) 0.179 (1.079) 0.107 (1.062) 0.019 (1.047)Low pressure 0.453 (1.142) 0.258 (1.118) 0.164 (1.081) 0.083 (1.064) 0.008 (1.051)High-Low -0.023 (0.038) -0.008 (0.029) 0.015 (0.019) 0.025* (0.015) 0.011 (0.016) 
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Appendix 
 
Table A1: Definitions of Regression Variables 
 Variable Description of Variable Trade Variables (monthly) ܾݕݑ௜,௧ Takes the value 1 if investor i makes a stock purchase in month t otherwise 0. ݈݈݁ݏ௜,௧ Takes the value 1 if investor i makes a stock sale in month t otherwise 0.ݕݑܤ௜,௧௣௟௔௡௧ The fraction of co-workers that make a purchase in month t.ݕݑܤ௜,௧௙௔௠௜௟௬ The fraction of family members that make a purchase in month t.ݕݑܤ௜,௧௭௜௣ The fraction of neighbors living in the same zip code that make a purchase in month t. ݈݈ܵ݁௜,௧௣௟௔௡௧ The fraction of co-workers that make a sale in month t.݈݈ܵ݁௜,௧௙௔௠௜௟௬ The fraction of family members that make a sale in month t.݈݈ܵ݁௜,௧௭௜௣ The fraction of neighbors that make a sale in month t.ݕݑܤ௜,௧௢௟ௗ ௕௘௙௢௥௘ In months before the individual leaves the old plant, this is the fraction of co-workers at the old plant making a stock purchase in month t. After the move this variable takes the value 0. ݕݑܤ௜,௧௢௟ௗ ௔௙௧௘௥ In months after the individual leaves the old plant, this is the fraction of co-workers at the old plant making a stock purchase in month t. Before the move this variable takes the value 0. ݕݑܤ௜,௧௡௘௪ ௕௘௙௢௥௘ In months before the individual joins the new plant, this is the fraction of co-workers at the new plant making a stock purchase in month t. After joining the new plant this variable takes the value 0.ݕݑܤ௜,௧௡௘௪ ௔௙௧௘௥ In months after the individual joins the new plant, this is the fraction of co-workers at the new plant making a stock purchase in month t. Before joining the new plant this variable takes the value 0.ݕݑܤ௜,௧௡௢௡ି௣௟௔௡௧ The fraction of non-coworkers that make a purchase in month t.

Stock Selection Variables (monthly) ௜݂,௧,௦ The fraction of total investor purchases by investor i invested in stock s in month t. ܨ௜,௧,௦௣௟௔௡௧ The fraction of total co-worker purchases invested in stock s in month t.ܨ௜,௧,௦௙௔௠௜௟௬ The fraction of total family purchases invested in stock s in month t.ܨ௜,௧,௦௭௜௣ The fraction of total neighbor purchases invested in stock s in month t.ܨ௜,௧,௦௢௟ௗ ௕௘௙௢௥௘ In months before the individual leaves the old plant, this is the fraction of total purchases of co-workers at the old plant invested in stock s in month t. After the move this variable takes the value 0.ܨ௜,௧,௦௢௟ௗ ௔௙௧௘௥ In months after the individual leaves the old plant, this is the fraction of total purchases of co-workers at the old plant invested in stock s in month t. Before the move this variable takes the value 0. ܨ௜,௧,௦௡௘௪ ௕௘௙௢௥௘ In months before the individual joins the new plant, this is the fraction of total purchases of co-workers at the new plant invested in stock s in month t. After the move this variable takes the value 0.ܨ௜,௧,௦௡௘௪ ௔௙௧௘௥ In months after the individual joins the new plant, this is the fraction of total purchases of co-workers at the new plant invested in stock s in month t. Before the move this variable takes the value 0.ܨ௜,௧,௦௡௢௡ି௣௟௔௡௧ The fraction of total non-coworker purchases invested in stock s in month t. 
Individual-Stock Variables (yearly) Local stock A dummy variable that takes the value 1 if the headquarters of the stock is located within 100km of the place of residence of the investor, otherwise 0. Same-industry stock A dummy variable that takes the value 1 if the investor's two digit NACE code of employment matches the two digit NACE code of the stock, otherwise 0.Socio-demographic Control Variables (yearly) Income The income reported by the individual in the previous year’s tax return. Reported in Norwegian Kroner.  Wealth The total wealth reported in the individual’s tax return for the previous year. Reported in Norwegian Kroner. Age Investor age at the end of the year.Male A dummy variable that takes the value 1 if the individual is male and 0 otherwise. Education The number of completed years of schooling.
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Appendix  
 
Table A2: Descriptive Statistics of Peer groups and Socio-demographic Variables 
 
This table presents descriptive statistics on our sample individuals. The rows Plant size, Zip size and Family size present descriptive 
statistics on the size of the individual’s plant, zip code and family respectively (excluding the individual). The rows Plant investors, 
Zip investors, and Family investors presents descriptive statistics on the number of investors (i.e., individuals that trade at least once 
over the period 1994 to 2005 and are therefore included in the individual’s peer group) in the individuals respective groups. 
Additionally, we provide descriptive statistics on the socio-demographic variables wealth, income, age, male and education. The USD 
NOK exchange rate was 8.77 in December 2000. Number of trades is the number of months in our sample that the individual makes at 
least one trade. Panel A samples a random year of each individual that is present at one time in our trade analysis. Analogously, Panel 
B samples a random year of each individual present in our mover analysis (see section 3.2). In Panel C, we consider a random year of 
all individuals present in our stock selection analysis (Section 4). 
 
Panel A: Variable Mean Median Std. Dev. Min Max NPlant size 391.74 78 884.76 1 7,845 97,264Zip size 3,715.22 2,390 4,360.69 5 44,195 97,264Family size  6.60 5 5.46 1 122 97,264Plant investors 122.78 13 333.74 1 2,428 97,264Zip investors 224.00 145 277.43 1 3,213 97,264Family investors  1.92 1 1.33 1 18 97,264Wealth (NOK) 802,271.58 322,028 10,451,753.75 0 2,127,096,064 97,264Income (NOK) 381,028.56 336,231 227,873.71 0 9,773,526 97,264Age 37.30 36 8.95 21 69 97,264Male  0.76 1 0.43 0 1 97,264Education 13.08 13 3.39 0 21 97,264Number of trades 4.83 1 9.11 1 129 97,264

 

 
Panel B: Variable Mean Median Std. Dev. Min Max NPlant size 325.05 59 826.28 1 7,845 14,284Zip size 3,912.70 2,393 4,758.11 13 44,195 14,284Family size 6.23 5 5.17 1 79 14,284Plant investors 74.42 11 221.07 1 2,428 14,284Zip investors 239.77 150 308.49 1 3,213 14,284Family investors 1.88 1 1.28 1 17 14,284Wealth (NOK) 653,248.91 323,650 4,501,711.67 0 414,171,968 14,284Income (NOK) 397,649.71 342,800 246,819.21 900 9,773,526 14,284Age 36.73 36 7.87 21 65 14,284Male  0.80 1 0.40 0 1 14,284Education 13.36 13 3.48 0 21 14,284Number of trades 5.83 2 10.21 1 129 14,284
 
Panel C: Variable Mean Median Std. Dev. Min Max NPlant size 501.86 156 956.53 1 7,845 118,432Zip size 3,613.26 2,424 3944.25 13 44,195 118,432Plant investors 158.17 37 315.16 1 2,731 118,432Zip investors 389.59 253 463.23 1 5,400 118,432Wealth (NOK) 1,035,361.47 468,494 8,698,890.60 0 2,127,096,064 118,432Income (NOK) 450,049.26 391,600 279,455.05 0 13,387,700 118,432Age 42.52 42 11.22 20 70 118,432Male  0.80 1 0.40 0 1 118,432Education 12.87 12 3.64 0 21 118,432Number of trades 6.36 2 10.68 1 129 118,432
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Appendix 
 
Table A3: Industry Decomposition of Investors, Firms and Co-worker Peer effects 
 
This table presents descriptive statistics on the industries that our investors work in (column 2) and the industries that are represented 
on the Oslo Stock Exchange (column 3). Additionally, we decompose the co-worker peer effect depending on the industry of 
employment of the investor. Financial firms, NACE codes 65, 66 and 67 have been excluded from the sample. For this table, we only 
consider industries that represent at least 0.4% of investor observations (i.e., the industry has at least roughly 423 investors). This 
restriction implies a loss of less than 3% of the complete sample. To decompose the co-worker peer effect across industries we 
estimate the following regression ܾݕݑ௜,௧ = ௧ߙ + ෍ ௝ଷ଺ߚ

௝ୀଵ ௜,௧௣௟௔௡௧ݕݑܤ × ௝ܫ + ௜,௧௙௔௠௜௟௬ݕݑܤଷ଻ߚ + ௜,௧௭௜௣ݕݑܤଷ଼ߚ + ࢣ࢈ +  ௜,௧ߝ

where Ij is a dummy variable that takes a value of 1 if the investor works in industry j and 0 otherwise. Column 4 reports our point 
estimates of the peer effect for our 36 industries. The vector ࢣ of control variables includes the socio-demographic control variables 
listed in the caption to Table 2. In addition to time (month), plant and zip fixed effects; we include zip-plant interaction fixed effects. t-
statistics (in column 5) are based on robust two-way (plant and time) clustered standard errors. *, **, and *** indicate statistical 
significance at the 10%, 5%, and 1% level, respectively.  
 Industry (NACE code) Investors OSE Firms Coefficient t-statFishing, fish farming (5) 484 2 0.107** (4.00)Oil and gas extraction. Oil and gas services (11) 5,199 19 0.503*** (5.24)Food products and beverages (15) 2,277 4 0.275*** (4.37)Wood and wood products (20) 592 2 0.106*** (2.73)Publishing, printing, reproduction (22) 1,837 5 0.215*** (3.91)Chemicals and chemical products (24) 1,889 2 0.910** (19.12)Other non-metallic mineral products (26) 516 2 0.111*** (2.14)Basic metals (27) 1,885 2 0.801*** (8.34)Fabricated metal products (28) 859 1 0.098*** (3.39)Machinery and equipment (29) 1,822 7 0.161** (4.41)Electrical machinery and apparatus (31) 737 4 0.280*** (2.44)Radio, TV, communication equip (32) 838 7 0.538*** (5.24)Instruments, watches and clocks (33) 753 4 0.200*** (2.58)Motor vehicles, trailers, semi-tr.(34) 618 2 0.821*** (5.91)Other transport equipment (35) 2,990 2 0.240** (2.85)Furniture, manufacturing (36) 865 4 0.451*** (2.50)Electricity, gas and water supply (40) 1,395 3 0.148*** (3.56)Construction (45)  5,807 2 0.057*** (4.58)Motor vehicle services (50) 1,671 0 0.063*** (3.79)Wholesale trade, commission trade (51) 8,041 8 0.152*** (3.40)Retail trade, repair personal goods (52) 3,362 6 0.079*** (6.96)Hotels and restaurants (55) 1,359 2 0.045 (1.45)Land transport, pipeline transport (60) 1,460 2 0.070** (2.12)Water transport (61)  1,952 42 0.422*** (4.66)Air transport (62) 760 2 0.100** (2.03)Services for transport and travel agencies (63) 1,558 0 0.086*** (4.07)Post and telecommunications (64) 2,976 5 0.631*** (4.94)Real estate activities (70) 1,477 8 0.208*** (4.96)Computers and related activities (72) 4,703 20 0.272*** (5.14)Research and development (73) 1,275 3 0.445*** (3.40)Other business activities (74) 11,628 8 0.116*** (6.92)Public administration, defense and social security (75) 8,357 0 0.051*** (2.80)Education (80) 5,730 0 0.324** (1.96)Health and social services (85) 6,258 0 0.008 (0.53)Interest groups (91) 723 0 0.049*** (3.31)Cultural and sporting activities (92) 1,141 2 0.077*** (3.68)

Total 95,794 182 
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Appendix 
 
Table A4: Subsample analysis 
 
This table examines whether peer effects are stronger among co-workers that are more likely to interact. We classify co-workers along 
the dimensions of sex, tenure, age, education and wealth. We sort co-workers in each year and plant into two groups depending on sex 
(Panel A), median tenure (Panel B), median age (Panel C), median education (Panel D), and median wealth (Panel E). For each group 
of co-workers we calculate the fraction of individuals that make a purchase in that month (ݕݑܤ௜,௧ீ௥௢௨௣ ଵ ௣௟௔௡௧   and ݕݑܤ௜,௧ீ௥௢௨௣ ଶ ௣௟௔௡௧). For 
both groups (for example, males are Group 1 and females are Group 2) we estimate the following regression: 
௜,௧ீ௥௢௨௣ ௝ݕݑܾ   = ௧ߙ + ௜,௧ீ௥௢௨௣ ଵ ௣௟௔௡௧ݕݑܤଵߚ + ௜,௧ீ௥௢௨௣ ଶ ௣௟௔௡௧ݕݑܤଶߚ + ௜,௧௙௔௠௜௟௬ݕݑܤଷߚ + ௜,௧௭௜௣ݕݑܤସߚ + ࢣ࢈ +  .௜,௧ߝ
 
The column Group 1 reports point estimates of ߚଵ and ߚଶ when the individual belongs to Group 1. We also report the p-value of the F-
test of a difference between ߚଵ and ߚଶ. Column 2 presents the corresponding results when the individual belongs to Group 2. The 
vector ࢣ of control variables includes the socio-demographic control variables listed in the caption to Table 2. In addition to time 
(month), plant and zip fixed effects; we include zip plant interaction fixed effects. t-statistics (in parentheses) are based on robust two-
way (plant and time) clustered standard errors. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, 
respectively.  
  Group 1 Group 2  A Group 1: male and group 2: female ݕݑܤ௜,௧௠௔௟௘ ௣௟௔௡௧ 0.260*** 0.244***  (11.05) (13.32) ***௜,௧௙௘௠௔௟௘ ௣௟௔௡௧ 0.276ݕݑܤ   0.400***  (11.33) (15.31)  P-value of test coeff. diff. 0.2896 0.0000  N 2,499,192 923,820  B Group 1: below median tenure and group 2: above median tenure ݕݑܤ௜,௧௟௢௪ ௧௘௡௨௥௘ ௣௟௔௡௧ 0.287*** 0.198***  (9.66) (8.25) ***௜,௧௛௜௚௛ ௧௘௡௨௥௘ ௣௟௔௡௧ 0.171ݕݑܤ   0.226***  (10.06) (8.10)  P-value of test coeff. diff. 0.0000 0.0012  N 1,803,516 1,559,964  C: Group 1: below median age and group 2: above median age ݕݑܤ௜,௧௟௢௪ ௔௚௘ 0.230*** 0.217***  (10.09) (10.22) ***௜,௧௛௜௚௛ ௔௚௘ 0.196ݕݑܤ   0.237***  (10.73) (9.23)  P-value of test coeff. diff. 0.0007 0.0345  N 2,117,232 1,893,984  D: Group 1 below median education and group 2: above median education ݕݑܤ௜,௧௟௢௪ ௘ௗ௨௖௔௧௜௢௡ 0.290*** 0.217***  (10.71) (9.88) ***௜,௧௛௜௚௛ ௘ௗ௨௖௔௧௜௢௡ 0.184ݕݑܤ   0.228***  (11.00) (9.30)  P-value of test coeff. diff. 0.0000 0.22223  N 1,892,928 1,852,272  E: Group 1: below median wealth and group 2: above median wealth ݕݑܤ௜,௧௟௢௪ ௪௘௔௟௧௛ 0.248*** 0.200***  (10.23) (9.29) ***௜,௧௛௜௚௛ ௪௘௔௟௧௛ 0.188ݕݑܤ   0.264***  (10.54) (9.67)  P-value of test coeff. diff. 0.0000 0.0000  N 1,668,420 2,180,760  
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Appendix 
 
Table A5: Descriptive statistics on investor and peer stock selection of local and same-industry stocks 
 
We examine individual stock selection of same-industry, different-industry, local and non-local stocks (examined in 
Table 9). A local stock is headquartered less than 100km from the residence of the individual. Same-industry stocks 
have the same two digit NACE code as the employer of the individual. 
 
Stock selection of local and same-industry stocks 

 Variable Mean Median Std. Dev. Min Max NIndividual stock selection   flocal 0.0070 0 0.075 0 1 24,714,288fnon-local 0.0044 0 0.059 0 1 53,266,715fsame-industry 0.0203 0 0.134 0 1 2,442,980fdiff.-industry 0.0047 0 0.061 0 1 75,710,195
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