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Abstract

The purpose of this paper is to extend the existing literature on the re-

lationship between international trade and climate change by introducing

non-tradeable goods and examining their role in the characterization of

the Pareto-e�cient environmental and trade policies. It is argued that

the presence of non-tradable goods does not impede the central planner

from imposing the Pigovian carbon taxes.
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1 Introduction

Climate change, in economic terms, is a global externality: emitting countries
ignore the damage they cause to others, thereby they are emitting more than it is
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desirable from a global perspective. But it is a particularly complex externality
given the asymmetric impact of the stock of emissions on the geographical distri-
bution and economic activity. Given the global aspect of this challenge, the liter-
ature (both theoretical and empirical) on the relationship between international
trade and climate change is fairly sizeable,1 with considerable attention being
paid to the characterization of Pareto-e�cient environmental and trade poli-
cies.2 This literature, however, has neglected the role of non-tradeable goods,
arguably a realistic feature of any economic environment. The importance of
non-tradeable goods to the characterization of implemented policies�due to the
substitution e�ect between tradeable and non-tradeable goods from the demand
and supply side� is well known in the trade literature.3

The objective of this paper is to extend the existing literature by examining
the role of non-tradeable goods. In particular, we ask whether the existence of
non-tradeable goods alters the characterization of Pareto-e�cient environmental
and trade policies that are derived from a model with tradeable goods only. We
�nd that that the answer to this question is: �it does not�. Speci�cally, we �nd
that, even with non-tradeable goods present, a Pareto-e�cient environmental
policy dictates that, in the presence of lump sum taxes, carbon taxes have a
Pigouvian form and are uniform across all (tradeable and non-tradeable) sectors
and countries while, in the absence of lump sum taxes, they are uniform across
all sectors in a given country but not across countries which is consistent with
the results of Keen and Kotsogiannis (2014).

2 Description of the model

The model is essentially that of Keen and Kotsogiannis (2014) appropriately
modi�ed to include non-tradeable goods. There are J countries, indexed by the
superscript j, each of which produces M = T + N goods: T of these goods
are tradeable and N are non-tradeable. The T tradeable goods are traded at a
T -vector of world prices given by pT � 0.4 The price vector of non-tradeable
goods in country j is denoted by pjN � 0.

International trade is subject to trade taxes (or subsidies), the vector of which
in country j is denoted by τ j . The commodity price vector of the tradeable

1Recent insightful surveys are by Copeland and Taylor (2004), Chen and Woodland (2013),
Jones et al. (2013).

2For contributions see, among others, Markusen (1975), Baumol and Oates (1988), Krutilla
(1991) Hoel (1996),Copeland (1994), Lubema and Wooton (1994), Neary (2006), Hatzipanay-
otou et al. (2008), Keen and Kotsogianis (2014) and Tsakiris et al (2014)

3See among others Dornbush (1974), Fukushima (1979), Clements (1982), Rivera-Batiz
and Almansi (1983).

4The following convention is used: if x = (x1, ..., xN ), then x � 0 means xn > 0 for all
n = 1, ..., N ; x > 0 means xn ≥ 0 for all n = 1, ..., N and at least one xn 6= 0; and x ≥ 0
means xn ≥ 0 for all n = 1, ..., N .
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goods in country j is thus given by the T -vector pjT = pT + τ j . The model is
very general in allowing for all types of trade taxes and subsidies.

Within each country there is a perfectly competitive private production sec-
tor. Producers in country j use factor endowments, denoted by vector vj , to
produce the M -vector yj of commodities. The production of each commodity
generates some pollutant (such as carbon emissions), with the M -vector zj de-
noting emissions produced by theM commodities in country j. Total emissions
in country j are thus given by ι′zj , where ι is the M -vector of 1s and a prime
indicates transposition. Each national government may impose carbon taxes on
the emissions from each commodity (sector), and the M -vector of carbon taxes
is given by sj . Hence, we allow for pollution taxes to be sector-speci�c.

Global emissions are therefore given by

k = ι′
J∑

j=1

zj . (1)

The production sector in country j is perfectly competitive and characterized
by a revenue function5

rj(pj , sj , vj) = max
yj , zj

{pj′yj − sj′zj : f j(yj , zj , vj) ≤ 0} , (2)

where f j (·) is the implicit production possibility frontier in country j. Following
from (2), and as an envelope property, the net output M−vector, yj , and the
vector of emissions, zj , are given by

rjpM (pj , sj , vj) = yj , (3)

rjs(p
j , sj , vj) = −zj . (4)

The consumption sector in country j is characterized by the expenditure func-
tion

ej(pj , uj , k) = min
xj
{pj′xj : U j(xj) ≥ uj} , (5)

where U j(xj) is the utility attained by consuming vector xj of commodities. No-
tice that pollution k a�ects utility (presumably negatively). Shephard's lemma
gives the M -vector of compensated demands, ejpM (pj , uj).

It is convenient to de�ne the net expenditure function in country j as6

Sj(pj , sj , uj , k) ≡ ej(pj , uj , k)− rj(pj , sj , vj) . (6)

5The revenue (expenditure) function has the standard properties of homogeneity, convexity
(concavity) and di�erentiability. For the properties of the revenue and expenditure function
see Dixit and Norman (1980) and Woodland (1982).

6The function Sj(·) has the properties of the underlying expenditure and revenue functions.
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The net expenditure function has the useful derivative properties that the vector
of compensated import functions, denoted by mj

T (·), is given by

mj
T

(
pj , sj , vj , uj , k

)
≡ Sj

pT
(pj , sj , vj , uj , k) = ejpT

(pj , uj , k)− rjpT
(pj , sj , vj) ,

(7)
where ejpT

denotes the T -vector of compensated demands for the tradeable

goods. Similarly, rjpT
denotes the net output T -vector of the tradeable goods.

The vector of emissions produced by country j is given by

zj
(
pj , sj , vj , k

)
≡ Sj

s(p
j , sj) = −rjs(pj , sj) . (8)

The vector of non-tradeable goods is given by

mj
N

(
pj , sj , vj , uj , k

)
≡ Sj

pN
(pj , sj , vj , uj , k) = ejpN

(pj , uj)− rjpN
(pj , sj , vj) = 0 .

(9)

Without loss of generality, the �rst commodity of the tradeable goods is taken
as the numeraire, with unit world price, and it is assumed to be untaxed by all
countries, so pj1 = 1 and τ j1 = 0 for all j = 1, ..., J .7

The equilibrium conditions for the world economy can be compactly expressed
as8

p′TS
j
pT

(
pj , sj , uj , k

)
+ bj = 0, j = 1, ..., J , (12)

J∑
j=1

Sj
q

(
pj , sj , uj

)
= 0 , (13)

ι′
J∑

j=1

Sj
s(p

j , sj) = k , (14)

J∑
j=1

bj = 0 , (15)

Sj
pN

(pj , sj , uj , k) = 0 , j = 1, ..., J , (16)

and Sj
q denotes the net expenditure function for the T − 1 tradeable goods in

country j. It is the presence of equation (16) that is central to the analysis here.

7For notational convenience, the price and trade tax vectors will be partitioned accordingly
to

p′T = (1, q′) ; pj′T = (1, qj′) ; qj′ = q′ + σj′ ; τ j′ = (0, σj′) , (10)

and so domestic prices are given by

pj′M = (pjT , p
j
N )′ =

(
(1, qj′), pj′N

)
. (11)

8The vector of endowments vj , since it is �xed, will be suppressed throughout.
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The J equations in (12) are the consumers budget constraints: They simply
state that the balance of trade de�cit (value of net imports at world prices)
plus any international transfers to (from) country j must be equal to zero. The
T −1 equations in (13) are the world market equilibrium conditions for the non-
numeraire tradeable commodities. Equation (14) speci�es that global emissions
are the sum of emissions produced by the J countries. Condition (15) requires
that the sum of international transfers be zero. Equation (16) represents the
market clearing conditions for the non-tradeable goods.

Given the tari� vectors τ j , j = 1, ..., J , the carbon tax vectors sj , j = 1, ..., J and
the vector b = (b1, ..., bJ)′ of international transfers satisfying (15), the national
budget constraints (12), the market equilibrium conditions (13), the global emis-
sions equation (14), and the market clearing for non tradeable goods (16) may
be solved for the competitive equilibrium world price vector for tradeable com-
modities, pT , the equilibrium price vector in country j of the non-tradeable
goods pjN , the level of global emissions, k, and the vector of national utility lev-
els, u = (u1, ...., uJ)′. The existence of a competitive equilibrium solution with
pjM � 0 is assumed. The di�erential comparative static system is therefore9

Adu+Bdq + CT dq̂ + CNdpN +Dds+ Edk + Fdb = 0 . (17)

To characterize Pareto optimality of the initial equilibrium it proves conve-
nient to use Tucker's Theorem of the Alternative (Mangasarian, 1969, p. 34),
which states that either the system in (17) has a solution with du > 0 (where
du > 0 is a semipositive vector with, that is, duj ≥ 0 for all j = 1, ..., J
and du 6= 0) for some perturbation (dq, dq̂, dpN , ds, dk, db)�so that the initial
equilibrium is Pareto ine�cient�or there is a vector y = (y1, y2, y3, y4, y5) ∈
RJ+(T−1)+1+T+JN (where y1 =

(
y11 , ..., y

J
1

)′ ∈ RJ , y2 =
(
y22 , ..., y

T
2

)′ ∈ RT−1,

y4 =
(
y14 , ..., y

T
4

)′ ∈ RT y5 =
(
y15 , ..., y

J
5

)′ ∈ RJN with yj5 =
(
yj15 , ..., y

jN
5

)
∈

RN ) such that

y′[B,CT , CN , D,E, F ] = 0, (18)

y′A� 0, (19)

in which case the initial equilibrium is Pareto e�cient. The analysis now pro-
ceeds to derive the Pareto e�cient climate and trade policies.10

3 Pareto-e�cient climate and trade policies

This section considers the characterization of Pareto-e�cient carbon tax and
trade tax policies. Starting from an initial equilibrium in which the world econ-
omy is characterised by Pareto-e�cient policies, no government can alter carbon

9The de�nitions of the matrixes A,B,CT , CN , D,E and F are given to the appendix(A).
10The details of the derivations are available upon request.
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or trade taxes to make one country better o� without making some other coun-
try worse o�. In the current framework, with both tradeable and non-tradeable
goods, the following results establish the two key features of any Pareto e�cient
allocation.

Proposition 1. In the presence of lump sum transfers across countries (and
with both tradeable and non-tradeable goods), Pareto e�ciency requires that in
every country j = 1, ..., J :

(a) carbon taxes are set at sj =
(∑J

i=1 S
i
k

)
ι, i.e. they are uniform across

production sectors within a country and also uniform across countries,
(b) trade tax vectors are equal, σj = σ, j = 1, ..., J , implying that domestic price
vectors of the tradeable goods are all equal
(c) the prices of non-tradeable goods are country-speci�c and satisfy pj′N = yj′5 /y4.

According to Proposition 1 Pareto e�ciency requires that�even in the presence
of non-tradeable goods�each country sets a Pigovian carbon tax in each of the
M sector to equate the marginal cost of an extra unit of carbon emissions, sj ,
to the marginal global damage that the extra unit of emissions causes through
climate change,

∑J
i=1 S

i
kι. The uniformity of carbon taxes within and across

countries follows from the fact that carbon emissions from each sector and coun-
try contribute equally, at the margin, to the stock of carbon in the atmosphere
and, hence, to climate change. Part (b) of the Proposition 1, implies equality
of domestic prices (of the tradeable goods) and the collinearity of the tari� vec-
tors across all countries. The importance of this is in emphasizing that�in the
presence of lump sum transfers�production e�ciency (for the tradeable goods)
is part of a Pareto e�cient allocation. To see this, recall that producer prices in
country j are pj′T = (1, q′) + (0, σj′) and so with σj = σ for j = 1, ..., J, it is the

case that pj′T = p′T for all countries j. Parts (c) of the Proposition 1 states the
Pareto e�cient country-speci�c prices of the non-tradeable goods. Notice that,
if it happens that yj5 = y5�and so the shadow value of non-tradeable goods is
the same across countries11�then the price vectors for non-tradeable goods are
collinear across countries (with a degree of collinearity 1/y4).

Clearly, as Proposition 1 shows, the presence of the non-tradeable goods does
not change the uniformity structure of carbon taxes within and across countries
nor the collinearity of the trade tax vectors. This is, perhaps, not surprising
(once seen) as�with redistribution being taken care of by lump sum transfers
and carbon taxes being uniform across allM sectors�non-tradeable goods have
no additional role to play, at a Pareto e�cient allocation, in pollution policies.

Therefore, the presence of non-tradeable goods does not change the uniformity
structure of carbon taxes within and across countries nor the collinearity of
the trade tax vectors. This is, perhaps, not surprising (once seen) as�with
redistribution being taken care of by lump sum transfers and carbon taxes being

11There is no reason, of course, to suppose that this will be the case.
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uniform across all M sectors�non-tradeable goods have no additional role to
play, at a Pareto e�cient allocation, in pollution policies.

It is therefore interesting to consider the possibility that international lump sum
transfers are unavailable. In this case, we obtain:

Proposition 2. In the absence of international lump sum transfers (and assum-
ing that the substitution matrix for each j country has maximal rank), Pareto
e�ciency requires that in every country j = 1, ..., J :

(a) carbon taxes are set such that yj1s
i =

(∑J
i=1 y

i
1S

i
k

)
ι, where yj1 is a scalar,

and so carbon taxes are uniform across production sectors within a country but
di�erent across countries in the sense that for any countries j and i they satisfy
sj = αijsi, where αij ≡ yi1/y

j
1, and

(b) trade tax vectors are collinear across countries in the sense that σj = αijσi,
j = 1, ..., J , implying that domestic price vectors are also collinear across coun-
tries
(c) the prices of the non-tradeable goods are country-speci�c and satisfy pj′N =

yj′5 /y
j
1.

Part (a) of the proposition simply states that in a Pareto e�cient allocation
carbon taxation re�ects the global changes in utility, taking into account the
cross country income implications of this (through the scalar multipliers yj1).
Part (b) is more striking, implying that the social planner uses tari�s (and so the
prices of the tradeable goods) as a redistribution device. Consistently with Keen
and Kotsogiannis (2014), there is generally global production ine�ciency for
the tradeable goods in the allocations characterized by Proposition 2. Though
increasing the net output of some good in some country without reducing the
net output of any other good or increasing emissions requires that both producer
prices and carbon taxes be equalized across countries, the proposition shows that
Pareto e�ciency allows for trade taxes, and hence domestic prices, to di�er
internationally. Turning now to non-tradeable goods (and their prices), one
notices that these prices also re�ect the redistribution motive of the central
planner. Clearly, in this case (and even if the shadow prices of the non-tradeable
goods where the same across countries in the sense that yj5 = y5) non-tradeable
price vector will not be collinear. What Proposition 2 implies is intuitive: The
central planner implicitly chooses goods prices either directly, in the case of
non-tradable goods, or indirectly, in the case of tradable goods, through tari�s
to correct any distributional misallocations. The presence of non-tradable goods
does not impede the central planner of imposing the Pigovian carbon taxes (of
part (a) of Proposition 2).
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4 Concluding remarks

This paper has extend the existing literature of international trade and climate
change examining the role of non-tradeable goods in the characterization of the
Pareto-e�cient environmental and trade policies. It is argued that the presence
of non-tradable goods does not impede the central planner of imposing the
Pigovian carbon taxes with the Pareto-e�cient carbon and trade taxes being
consistent with the �ndings of Keen and Kotsogiannis (2014).
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A Appendix

The matrices A,B,CT , CN , D,E and F are de�ned by

Adu ≡



p′TS
1
pTu 0 · · · 0
0 p′TS

2
pTu · · · 0

...
...

. . .
...

0 · · · · · · p′TS
J
pTu

S1
qu S2

qu · · · SJ
qu

0 0 · · · 0
0 0 · · · 0

S1
pNu 0 · · · 0
0 S2

pNu · · · 0
...

...
. . .

...
0 · · · · · · SJ

pNu




du1

du2

...
duJ

 ,

Bdq ≡



S1′
q

S2′
q
...
SJ′
q

0
0
0
0
0
...
0



dq ,

1

CT dq̂ ≡



p′TS
1
pT q 0 · · · 0
0 p′TS

2
pT q · · · 0

...
...

. . .
...

0 0 · · · p′TS
J
pT q

S1
qq S2

qq · · · SJ
qq

ι′S1
sq ι′S2

sq · · · ι′SJ
sq

0 0 · · · 0
S1
pNq 0 · · · 0
0 S2

pNq · · · 0
...

...
. . .

...
0 0 · · · SJ

pNq




dq1

dq2

...
dqJ

 ,

1Notice that the vector q is a�following the normalization of prices�T − 1-vector.
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CNdpN ≡



p′TS
1
pT pN

0 · · · 0
0 p′TS

2
pT pN

· · · 0
...

...
. . .

...
0 0 · · · p′TS

J
pT pN

S1
qpN

S2
qpN

· · · SJ
qpN

ι′S1
spN

ι′S2
spN

· · · ι′SJ
spN

0 0 · · · 0
S1
pNpN

0 · · · 0
0 S2

pNpN
· · · 0

...
...

. . .
...

0 0 · · · SJ
pNpN




dp1N
dp2N
...

dpJN

 ,

Dds ≡



p′TS
1
pT s 0 · · · 0
0 p′TS

2
pT s · · · 0

...
...

. . .
...

0 · · · · · · p′TS
J
pT s

S1
qs S2

qs · · · SJ
qs

ι′S1
ss ι′S2

ss · · · ι′SJ
ss

0 0 · · · 0
S1
pNs 0 · · · 0
0 S2

pNs · · · 0
...

...
. . .

...
0 0 · · · SJ

pNs




ds1

ds2

...
dsJ

 ,

Edk ≡



p′TS
1
pT k

p′TS
2
pT k
...

p′TS
J
pT k

J∑
j=1

Sj
qT k

−1
0

S1
pNk

S2
pNk
...

SJ
pNk



dk, Fdb ≡



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0
0 0 · · · 0
−1 −1 · · · −1
0 0 · · · 0
... 0 · · ·

...
...

... 0
...

0 0 · · · 0




db1

db2

...
dbJ
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B Appendix

Proof of Proposition 1:

Given the di�erentiability assumptions concerning the expenditure and revenue
functions the system�re-written here again for convenience�(12), (13), (14),
(15) and (16)

p′TS
j
pT

(
pj , sj , uj , k

)
+ bj = 0, j = 1, ..., J, (B.1)

J∑
j=1

Sj
q

(
pj , sj , uj

)
= 0, (B.2)

ι′
J∑

j=1

Sj
s(p

j , sj) = k, (B.3)

J∑
j=1

bj = 0, (B.4)

Sj
pN

(pj , sj , uj , k) = 0, j = 1, ..., J (B.5)

Equations (18) and (19) are necessary and su�cient conditions for Pareto opti-
mality in the present model.

The equations in (18) and (19) can be readily shown to be expressed as

y′A =
[
yj1p
′
TS

j
pTu + y′2S

j
qu + yj′5 S

j
pNu, j = 1, ..., J

]
� 0′, (B.6)

y′B =

[
J∑

j=1

yj1S
j′
q

]
= y′1S

′
q = 0′, (B.7)

y′CT =
[
yj1p
′
TS

j
pT q + y′2S

j
qq + y3ι

′Sj
sq + yj′5 S

j
pNq, j = 1, ..., J

]
= 0′, (B.8)

y′CN =
[
yj1p
′
TS

j
pT pN

+ y′2S
j
qp

N
+ y3ι

′Sj
spN

+ yj′5 S
j
pNpN

, j = 1, ..., J
]
= 0′,

(B.9)

y′D =
[
yj1p
′
TS

j
pT s + y′2S

j
qs + y3ι

′Sj
ss + yj′5 SpNs, j = 1, ..., J

]
= 0′,

(B.10)

y′E =
J∑

j=1

yj1p
′
TS

j
pT k +

J∑
j=1

y′2S
j
qk − y3 +

J∑
j=1

yj′5 S
j
pNk = 0, (B.11)

y′F =
[
yj1 − y4, j = 1, ..., J

]
= 0, (B.12)

where we follow the convention to denote matrices with elements for each j =
1, ..., J in the square brackets.
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Notice that combining (B.8) and (B.9) we have that

yj1p
′
T

[
Sj
pT q|Sj

pT pN

]
+ y′2

[
Sj
qq|Sj

qp
N

]
+ y3ι

′ [Sj
sq|Sj

spN

]
+ yj′5

[
Sj
pNq|Sj

pNpN

]
= 0′,

(B.13)
where [

Sj
pT q|Sj

pT pN

]
T×(M−1) , (B.14)[

Sj
qq|Sj

qp
N

]
(T−1)×(M−1)

, (B.15)[
Sj
sq|Sj

spN

]
M×(M−1) , (B.16)[

Sj
pNq|Sj

pNpN

]
N×(M−1) . (B.17)

(B.13) can be re-written as

yj1p
′
T

[
Sj
pT q|Sj

pT pN

]
+(0, y′2)

[
Sj
pT q|Sj

pT p
N

]
+y3ι

′ [Sj
sq|Sj

spN

]
+yj′5

[
Sj
pNq|Sj

pNpN

]
= 0′,

and so, after de�ning
ρ′ ≡ y4p′T + (0, y′2), (B.18)

a 1× T vector, as(
ρ′, yj′5

)[ Sj
pT q|Sj

pT pN

Sj
pNq|Sj

pNpN

]
+ y3ι

′ [Sj
sq|Sj

spN

]
= 0′. (B.19)

Equation (B.19) has used the fact that equation (B.12) implies that yj1 = y4
for all j = 1, ..., J and so y1 = y4ι (where ι is the unit vector).The implication
of this is that the marginal social utilities of income�given by yj1 for country
j�are the same across all countries.

Following (B.6) we also have that

y′A =

[(
ρ, yj5

)′ (
Sj
pMu

)
, j = 1, ..., J

]
� 0′, (B.20)

where Sj
pMu is an M − 1-vector. Similarly, following equation (B.10) we have

that

y′D =
[
yj1p
′
TS

j
pT s + y′2S

j
qs + y3ι

′Sj
ss + yj′5 SpNs, j = 1, ..., J

]
= 0′, (B.21)

=
(
ρ, yj5

)′ [ Sj
pT s

Sj
pNs

]
+ y3ι

′Sj
ss, j = 1, ..., J = 0′. (B.22)
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Equations (B.6)-(B.11) may therefore be re-expressed as

y′A =

[(
ρ, yj5

)′
Sj
pu, j = 1, ..., J

]
� 0′, (B.23)

y′B =

[
y4

J∑
j=1

Sj′
q

]
= 0′, (B.24)

y′C =

[(
ρ, yj5

)′ [ Sj
pT q|Sj

pT pN

Sj
pNq|Sj

pNpN

]
+ y3ι

′ [Sj
sq|Sj

spN

]
, j = 1, ..., J

]
= 0′, (B.25)

y′D =

[(
ρ, yj5

)′ [ Sj
pT s

Sj
pNs

]
+ y3ι

′Sj
ss, j = 1, ..., J

]
= 0′, (B.26)

y′E =
J∑

j=1

(
ρ, yj5

)[ Sj
pT s

Sj
pNs

]
− y3 = 0. (B.27)

Following from (B.25) and (B.26), equations y′C = 0′ and y′D = 0′ may be
combined together as

((
ρ′, yj5

)
, y3ι

′
) [

Sj
pT q|Sj

pT pN

Sj
pNq|Sj

pNpN

] [
Sj
pT s

Sj
pNs

]
[
Sj
sq|Sj

spN

] [
Sj
ss

]
 = (0, 0)

′
. (B.28)

Denoting

Sj
pp̂ ≡

[
Sj
pT q|Sj

pT pN

Sj
pNq|Sj

pNpN

]
,

Sj
sp̂ ≡

[
Sj
sq|Sj

spN

]
,

Sj
ps ≡

[
Sj
pT s

Sj
pNs

]
,

then (B.28) is equal to((
ρ′, yj5

)
, y3ι

′
)( Sj

pp̂ Sj
ps

Sj
sp̂ Sj

ss

)
= (0, 0)

′
. (B.29)

Homogeneity of the net expenditure function in price vector
(
pj′, sj′

)
implies

that2 (
pj′, sj′

)( Sj
pp̂ Sj

ps

Sj
sp̂ Sj

ss

)
= (0, 0)

′
(B.30)

holds as an identity.

2This follows from the fact that Sj
p

(
pj , sj

)
and Sj

s

(
pj , sj

)
are homogeneous of degree zero.

This implies that

Sj
ppp

j′ + Sj
pss

j′ = 0′

Sj
spp

j′ + Sj
sss

j′ = 0′.
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Notice now that (B.29) can be written as

((
y4p
′
T + (0, y′2), y

j
5

)
, y3ι

′
)( Sj

pp̂ Sj
ps

Sj
sp̂ Sj

ss

)
= (0, 0)

′
, (B.31)

whereas (B.30) can be written as (after multiplying by y4)(
(y4p

′
T + y4(0, σ

j′), y4p
j′
N ), y4s

j′
)( Sj

pp̂ Sj
ps

Sj
sp̂ Sj

ss

)
= (0, 0)

′
. (B.32)

Subtracting one from the other we have that

(((
y4σ

j′ − y′2
)
, y4p

j
N − y

j
5

)
,

(
y4s

j′ − y3ι′
))( Sj

pp̂ Sj
ps

Sj
sp̂ Sj

ss

)
= (0, 0)

′
.

(B.33)
This implies that

σj′ = y′2/y4, (B.34)

sj′ = y3ι
′/y4, (B.35)

pj′N = yj′5 /y4. (B.36)

Assuming that the substitution matrix for each country has maximal rank,(
pj′, sj′

)
is the only vector (up to a factor of proportionality) satisfying the

equality in equation (B.30).

Consequently, it must be the case that((
ρ′, yj5

)
, y3ι

′
)
=
(
pj′, sj′

)
(up to a factor of proportionality), implying that (choosing the factor of pro-
portionality to be y4 6= 0)

pj′ =
(
ρ′, yj′5

)
/y4, j = 1, ..., J, (B.37)

sj′ = (y3/y4) ι
′, j = 1, ..., J. (B.38)

Combining, we have that [
Sj
pp Sj

ps

Sj
sp Sj

ss

][
pj′

sj′

]
=

[
0′

0′

]
,

and so, upon transposing,

[
pj′ sj′

] [ Sj
pp Sj

ps

Sj
sp Sj

ss

]′
=
[

0′ 0′
]
.
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This shows that all domestic prices of the international traded goods must be
equal (proportional to one another)

pjT = ρ/y4, j = 1, ..., J,

the prices of the non-tradeable goods

pjN = yj5/y4, j = 1, ..., J,

and that carbon taxes are the same across countries and across sectors within
each country. For domestic prices of the international traded good to be equal,
the speci�c tari� vectors, σj′ = y′2/y4, must also be equal across countries.

To complete the proof, we next need to characterize carbon taxes. Following
(B.11)�and upon using the fact that ρ/y4 = pjT�we have that

y3 =
J∑

j=1

(
ρ, yj5

)[ Sj
pT k

Sj
pNk

]
=

J∑
j=1

(
ρ, yj5

)′
Sj
pk. (B.39)

We now know that, following from the homogeneity property of Sj

pj′Sj
pk ≡ S

j
k,

and so

y3 =
J∑

j=1

(
ρ, yj5

)′
Sj
pk = y4

J∑
j=1

(
pjT , p

j
N

)′
Sj
pk,

= y4
J∑

j=1

pj′Sj
pk = y4

J∑
j=1

(
Sj
k

)
. (B.40)

Substituting this expression for y3/y4 into (B.38), one obtains that

sj =

(
J∑

j=1

Sj
k

)
ι, (B.41)

as required.
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C Appendix

Proof of Proposition 2: The proof of this proposition makes use of the steps
(and the equations) of the proof of Proposition 1. In the absence of international
transfers, each country can only spend what it earns through production and net
tax revenue and this constraint on national budgets complicates the outcomes
of policy reforms. In terms of the model given by (12)-(15) and its di�erential
system (17), the international transfers are now set to zero and left unchanged.
Equation (B.12) no longer applies and so it is, therefore, no longer the case that
the dual variables satisfy the condition yj1 = y4, j = 1, ..., J .

Accordingly, the equations y′C = 0′ and y′D = 0′ now become (since ρ′ ≡
yj1p
′
T + (0, y′2)),

((
yj1p
′
T + (0, y′2), y

j
5

)
, y3ι

′
) [

Sj
pT q|Sj

pT pN

Sj
pNq|Sj

pNpN

] [
Sj
pT s

Sj
pNs

]
[
Sj
sq|Sj

spN

] [
Sj
ss

]
 = (0, 0) .

(C.1)
Equation (C.1) can be written as((

yj1p
′
T + (0, y′2), y

j
5

)
, y3ι

′
)( Sj

pp̂ Sj
ps

Sj
sp̂ Sj

ss

)
= (0, 0)

′
, (C.2)

whereas (B.30) can be written as (after multiplying by yj1)(
(yj1p

′
T + yj1(0, σ

j′), yj1p
j′
N ), yj1s

j′
)( Sj

pp̂ Sj
ps

Sj
sp̂ Sj

ss

)
= (0, 0)

′
. (C.3)

Subtracting one from the other we have that(((
yj1σ

j′ − y′2
)
, yj1p

j
N − y

j
5

)
,

(
yj1s

j′ − y3ι′
))( Sj

pp̂ Sj
ps

Sj
sp̂ Sj

ss

)
= (0, 0)

′
.

(C.4)
This implies that

σj′ = y′2/y
j
1, (C.5)

sj′ = y3ι
′/yj1, (C.6)

pj′N = yj′5 /y
j
1. (C.7)

It then follows that

y3 =
J∑

j=1

(
ρ, yj5

)′
Sj
pk =

J∑
j=1

yj1

(
pjT , p

j
N

)′
Sj
pk,

=
J∑

j=1

yj1p
j′Sj

pk =
J∑

j=1

yj1S
j
k. (C.8)
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Substituting this expression for (C.6), sj′ = (y3/y1) ι
′, j = 1, ..., J one obtains

sj =

(
J∑

i=1

yi1S
i
k

)
ι/yj1. (C.9)

as required.
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