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The paper presents an analytical approach to predicting the effect of intra- and interlaminar cracking on residual stiffness 

properties of the laminate, which can be used in the post-initial failure analysis, taking full account of damage mode 

interaction. The approach is based on a two-dimensional shear lag stress analysis and the Equivalent Constraint Model of 

the laminate with multiple damaged plies. The application of the approach to predicting degraded stiffness properties of 

multidirectional laminates under multi-axial loading is demonstrated on cross-ply glass/epoxy and carbon/epoxy 

laminates with transverse and longitudinal matrix cracks and crack-induced transverse and longitudinal delaminations.  

 
Introduction 

Failure process of fibre-reinforced composite laminates subjected to multi-axial loading involves sequential accumulation 

of intra- and interlaminar damage in the form of matrix cracking and delamination. Intralaminar matrix cracks parallel to 

the fibres in the off-axis plies is the first damage mode observed. Depending on the laminate stacking sequence, these 

cracks are either arrested at the interface or cause interfacial failure leading to delamination and/or cracking in the 

adjacent layers due to high interlaminar stresses at the interface.  

 

Development of intra- and interlaminar damage in composite laminates has been the subject of numerous studies in the 

literature, see e.g. our reviews [1, 2]. More recently, Rebiere and Gamby [3, 4] proposed an energy criterion based on the 

computation of the partial strain energy release rates associated with transverse cracking, longitudinal cracking and crack-

induced delamination and used it to predict initiation of these damage modes in symmetric cross-ply laminates subjected 

to uniaxial loading. Lim and Li [5] evaluated the energy release rate associated with matrix cracking and crack-induced 

delamination and used them to critically evaluate damage mode transition from transverse cracking to delamination. 

Blazques et al [6] employed boundary element method to carry out a numerical study of the stress state in the 

neighbourhood of matrix crack-induced delamination in a cross-ply laminate in order to clarify the mechanisms of 

damage interaction between transverse cracking and delamination. Maimi et al [7, 8] carried out a comprehensive study 

of matrix cracking and crack-induced delaminatons, proposing a model to simulate stress-strain state of the damaged ply 

and using it to analyse evolution of matrix cracking and crack-induced delamination. Garcia et al [9] modelled transverse 

cracking onset and growth in cross-ply laminates using a coupled stress and energy criterion. Intra- and interlaminar 

cracking in composite laminates under impact loading and four point bending was investigated by Shi et al [10] and Shi 

and Soutis [11], respectively. 

 

Multidirectional laminates subjected to multiaxial loading may still be capable of carrying load after matrix cracking has 

occurred. In the laminate, in-plane shear and normal stresses can be transferred, to some extent, back into the damaged 

lamina via the neighbouring laminae. Owing to this stress transfer damaged lamina within the laminate retains certain 

amount of load-carrying capacity. In-situ stiffness of a damaged lamina constrained within the laminate depends on the 

damage configuration and stiffnesses and thicknesses of neighbouring laminae. Prediction of the post-initial failure 

behaviour of a laminate requires accurate information regarding the properties of the damaged lamina.  

 

This paper describes a method of predicting the effect of intra- and inter-laminar damage on the stiffness properties of the 

laminate which can be used in the post-initial failure analysis, taking full account of damage mode interaction. The 

approach is based on the Equivalent Constraint Model (ECM) of the damaged laminate [12-21]. Closed form expressions 
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are given for the In-situ Damage Effective Functions which characterise degraded stiffness properties of each damaged 

ply; for a given damaged ply they explicitly depend on the damage parameters (matrix crack density and relative 

delamination area) associated with that ply and implicitly on the damage parameters associated with other damaged plies. 

 

The application of the approach to predict the degraded stiffness properties of multidirectional laminate with multilayer 

inter- and interlaminar damage is shown for cross-ply glass/epoxy and carbon/epoxy laminates damaged by transverse 

and longitudinal matrix cracks and crack-induced transverse and longitudinal delamination. 

 

Equivalent Constraint Model 

Figure 1 shows a schematic of the cross-ply snm ]90/0[  laminate damaged by transverse and longitudinal delaminations 

growing from the tips of transverse cracks in the 90
o
 plies and longitudinal cracks in the 0

o
 plies. Transverse and 

longitudinal cracks are assumed to be spaced uniformly and to span the full thickness and width of the 90
o
 and 0

o
 plies, 

while delaminations are assumed strip-shaped. Spacings between longitudinal and transverse cracks are denoted 

respectively 12s  and 22s , while the length of longitudinal and transverse delaminations are denoted 12l  and 22l , 

respectively. A set of Cartesian co-ordinates with the origin in the centre of the laminate is introduced, with x1-axis 

coinciding with the fibre direction in the 90o lamina and x3-axis directed through the laminate thickness. The laminate is 

subjected to general in-plane biaxial tension ( 11σ  and 22σ ) and shear loading ( 12σ ). 

 

In order to analyse in-situ constrain effect on the stiffness of a particular cracked lamina, the Equivalent Constraint Model 

(ECM) of the damaged laminate is employed [22-24]. In the ECM laminate, all the laminae below and above the 

damaged lamina under consideration are replaced with homogeneous layers (I and II) having the equivalent constraining 

effect (Fig. 2). In-plane stiffness properties of the equivalent constraint layer can be obtained from the laminated plate 

theory once their stresses and strains are known from micromechanical analysis. Theoretically, ECM does not impose any 

restrictions onto the laminate lay-up, and the approach was applied to analysis of quasi-isotropic laminate with matrix 

cracking in all but °0  layers by Zhang and Herrmann [25]. 

 

Application of the ECM approach to cross-ply laminate damaged by transverse and longitudinal matrix cracks and 

transverse and longitudinal crack-induced delaminations is schematically shown in Fig. 3. Instead of considering the 

damaged laminate configuration shown on Fig. 1, the following two ECMs are analysed instead. In ECM1 (Fig. 3a), the 

0
o
 lamina (layer 1) contains damage explicitly, while 90

o
 lamina (layer 2), damaged by transverse cracking and transverse 

delaminations, is replaced with the homogeneous layer with reduced stiffness properties. Likewise, in ECM2 (Fig. 3b), 

the 90
o
 lamina (layer 2) is damaged explicitly, while the damaged 0

o
 lamina is replaced with the homogeneous layer with 

reduced stiffness. All the quantities associated with the 0o lamina (layer 1) will be henceforth denoted by a sub- or 

superscript (1), whereas those associated with the 90
o
 lamina (layer 2) with a sub- or superscript (2).  

 

The reduced stiffness properties of the µ th
 layer ( 2,1=µ ) damaged by transverse cracking and transverse delaminations 

(if 2=µ ) or splitting and longitudinal delamination (if 1=µ ) can be calculated from the laminated plate theory, 

provided stresses and strains in the explicitly damaged µ th
 layer are known from the analysis of the µECM  (i.e. ECM1 

if 1=µ  and ECM2 if 2=µ ). The reduced elastic properties of the equivalently constraining layer µκκ ≠,  required in 

the analysis of the µECM  are supposed to be determined from the analysis of the κECM . Thus, the problems for ECM1 

and ECM2 are inter-related, damage coupling effect is included in the residual stiffness analysis. 

 

 

Stress analysis 

Due to the periodicity of damage configuration in the µECM , only their representative segments (Fig. 3), containing 

either a pair of splits or a single transverse crack as well as two strip-shaped delaminations, need to be considered. As the 

representative segments are symmetric with respect to the mid-plane and their material and geometry are noteworthy 

uniform in direction perpendicular to the 30xxµ  plane, the analysis can be further restricted to one quarter of the 

representative segments. The representative segments of ECM1 and ECM2 can be segregated into perfectly bonded 

( µµµ sx <<l ) regions and locally delaminated ( 2,1, =< µµµ lx ) regions, with no frictional contact between the layers 

in the latter. 

In the perfectly bonded regions ( µµµ sx <<l ) of the µECM , stresses can be determined from the equilibrium equations  
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Here )(µτ j  are the peak shear stresses at the (0/90) interface of the µECM  in the 30xxµ  plane; 2,1,,~ ),( =qp
k

pq

µσ  are the 

in-plane microstresses in the kth layer of the µECM , i.e. the stresses averaged across the thickness of the k
th layer and the 

width of the µECM  as indicated below  
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In the locally delaminated region ( µµ l≤x ) of the µECM , the in-plane microstresses in the explicitly damaged 
µ th

 

layer vanish, i.e. 

2,1,,0~ ),( == µσ µµ
µ jj           (3) 

The in-plane microstresses are related to the total stresses ijσ  applied to the laminate by the following equilibrium 

equations  

21

)2,()1,( /2,1,,)1(~~ hhjiijijij ==+=+ χσχσσχ µµ        (4) 

It is assumed that both the explicitly damaged and the equivalently constraining laminae in the µECM  are homogeneous 

orthotropic, and their constitutive equations, in terms of the in-plane microstresses and microstrains, can be written as  
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where ]ˆ[ )(µ
Q  denotes the in-plane stiffness matrix of the explicitly damaged µ th layer (a circumflex (^) is used for 

representing the elastic properties of the undamaged material), and µκκ ≠],[ )(
Q  denotes the in-plane stiffness matrix of 

the homogeneous orthotropic material of the equivalently constraining κ th layer. The in-plane constitutive equations can 

also be written in terms of strains as  

































=
















),(

6

),(

2

),(

1

)(

66

)(

22

)(

12

)(

12

)(

11

),(

6

),(

2

),(

1

~

~

~

ˆ00

0ˆˆ

0ˆˆ

~

~

~

µµ

µµ

µµ

µ

µµ

µµ

µµ

µµ

µµ

σ
σ
σ

ε
ε
ε

S

SS

SS

        (6a) 

µκµκ
σ
σ
σ

ε
ε
ε

κµ

κµ

κµ

κ

κκ

κκ

κµ

κµ

κµ

≠=
































=
















2,1,
~

~

~

00

0

0

~

~

~

),(

6

),(

2

),(

1

)(

66

)(

22

)(

12

)(

12

)(

11

),(

6

),(

2

),(

1

S

SS

SS

      (6b) 

where ]ˆ[ )(µ
S , µκκ ≠],[ )(

S  denote the in-plane compliance matrices of the explicitly damaged µ th
 layer and 

equivalently constraining κ th layer, respectively.  

In order to determine the in-plane microstresses in the perfectly bonded region from the equilibrium equations, Eq. (1), 

the interface shear stresses )(µτ j  are expressed in terms of in-plane displacements 2,1,),( =ju
k

j

µ . Here, it is assumed that 
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the out-of-plane shear stresses 2,1,
),(

3 =j
k

j

µσ  vary linearly with 
3x , which corresponds to a parabolic variation of the in-

plane displacements. Besides that, it is assumed that in the 0
o
-lamina linear variation of the out-of-plane shear stresses 

2,1,
)1,(

3 =jj

µσ , is restricted to the region of about one ply thickness (i.e. the nominal thickness of the pre-preg used to 

make the laminate). We assume that all layers of the laminate have thicknesses in the multiples of the nominal ply 

thickness. For laminates with thick 0
o
-layer this appears to offer a more reasonable description of the cracked laminate 

behaviour. Thus, here the out-of-plane shear stresses are assumed to vary as follows  
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where sh  is the thickness of the shear layer, sm  is the number of plies in the shear layer, and t is the ply thickness. After 

some mathematical calculations and equation rearrangements (see, e.g., Appendix A in [26]), the interface shear stresses 

are obtained as  

)~~( )2,()1,()()( µµµµτ jjjj uuK −=           (8) 

where the shear lag parameters jK  are functions of ply properties  

2,1,/,
ˆ)2/)1(1(ˆ

ˆˆ3
1)2(

31

)1(

32

)2(

3

)1(

3 ==
−++

= jhh
GhGh

GG
K s

jj

jj

j η
ηη

      (9) 

Here, 2,1,ˆ )(

3 =kG
k

j  are the out-of-plane shear moduli of the k
th

 layer. As the presence of aligned microcracks does not 

affect the value of the out-of-plane shear moduli (this fact is emphasised by marking them with a circumflex (^)), the 

shear lag parameters jK  are the same for ECM1 and ECM2. 

The equilibrium equations, Eq. (1), along with expressions for the interface shear stresses, Eq. (8), the laminate 

equilibrium equations, Eq. (4), and constitutive equations, Eq. (6), provide a full set of equations, which are required for 

determining the in-plane microstresses 2,1,~ ),( =µσ µµ
µ jj  in the perfectly bonded regions of the representative segment of 

the µECM . For instance, )1,1(

11

~σ  can be found from the following set of 8 equations with respect to 8 variables  
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After some rearrangement, this and other similar sets of equations can be reduced to the single differential equations  
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where )(
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1 ,,,, µµµµµ ΩΩΩLL  are the laminate constants depending on the layer compliances µκκµ ≠,,ˆ )()(

ijij SS , shear 

lag parameters jK  and the layer thickness ratio 21 / hh=χ . In detail, they are presented in Appendix B of [26]. Given the 

stress-free boundary conditions at the crack/split surfaces, solutions to Eqs. (11) are  
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where µs  is crack/split half-spacing and µl  is crack/split tip delamination half-length (Figs. 1, 3). Once the in-plane 

microstresses, Eq. (12), in the explicitly damaged µ th
 layer of the µECM  are known, the laminate macrostresses can be 

found as  
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The reduced stiffness properties of the layer µ , damaged by transverse cracking or splitting and delaminations, can be 

determined by applying the laminate plate theory to the µECM  after replacing the explicitly damaged layer with an 

equivalent homogeneous one. The constitutive equations for the homogeneous layer equivalent to the explicitly damaged 

µ th
 layer are  
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Where in order to satisfy compatability the macrostrains are assumed to be  

6,2,1,,~

2

1 ),(),(),( =≠=== ∫
−

jdx
s

s

s

jjjj µκεεεε
µ

µ

µ
κµ

µ

κµµµ
      (15) 

Stiffness of a damaged lamina 

The in-plane reduced stiffness matrix ][ )(µ
Q  of the homogeneous layer equivalent to the µ th

 layer of the µECM  is  
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The In-situ Damage Effective Functions )(
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22 , µµ ΛΛ  introduced in [21-23] can be expressed in terms of macrostresses 

and macrostrains in the µ th layer of the µECM  as  
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On substituting macrostresses, calculated from Eqs. (13), and macrostrains, calculated from Eq. (15), into Eq. (18), the 

closed form expressions for IDEFs are obtained. They represent )(

66

)(

22 , µµ ΛΛ  as functions of relative cracking/splitting 
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density µµµ shD
mc

/= , relative delamination area µµµ sD
ld

/l= , the layer compliances µκκµ ≠,,ˆ )()(

ijij SS , shear lag 

parameters jK  and the layer thickness ratio χ   

),,,ˆ,,( )()()()( χκµ
µµ

µµ
jijij

ldmc

qqqq KSSDDΛ=Λ         (19) 

In detail, the closed form expressions for the IDEFs for the µ th layer of the µECM  are 
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where the constants 2,1,, )()( =iii

µµ αλ  (Appendix C of [26]) depend solely on the layer compliances µκκµ ≠,,ˆ )()(

ijij SS , 

shear lag parameters jK  and the layer thickness ratio χ . The modified compliances µκκ ≠,)(

ijS  of the equivalently 

constraining' κ th
 layer of the µECM  are determined from the analysis of the κECM  and therefore are functions of the 

IDEFs )(

66

)(

22 , κκ ΛΛ . Thus, the IDEFs for the µ th
 layer depend implicitly on the damage parameters 

κκκκκκ l/,/ hDshD
ldmc ==  associated with the κ th

 layer. 

 

The IDEFs for both layers form a system of simultaneous nonlinear algebraic equations  
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22
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This system is solved computationally using a direct iterative procedure. It is carried out in such a way that the newly 

calculated IDEFs 
)(µ

qqΛ  are used to evaluate the reduced stiffnesses of the equivalently constraining κ th
 layer repeatedly 

until the difference between two iterative steps meets the prescribed accuracy. Consequently, all four IDEFs 

2,16,2,
)( ==Λ kq

k

qq  are determined as functions of damage parameters ldldmcmc
DDDD 2121 ,,, . If interactions between 

damage modes in different laminae are neglected, IDEFs associated with the µ th
 layer will depend only on damaged 

parameters for that layer. 

 

Verification of the ECM/2-D shear lag approach in absence of crack-induced delaminations was carried out in [15, 17, 19, 

27]. After comparison with other existing models by Hashin [28], Tsai and Daniel [29] and Henaff-Gardin et al [30, 31] 

describing stiffness reduction of CFRP and GFRP cross-ply laminates due to transverse cracking and splitting, the 

following conclusions were reached in [15]. As far as the reduction of the Young's modulus is concerned, the ECM/2-D 

shear la approach is in very good agreement with other models. Its predictions are closer to the lower bound established 

by Hashin [28] than the results of Henaff-Gardin et al [30,]. For the Poisson's ratio, the ECM/2-D shear lag approach 

predictions are close to those of Henaff-Gardin et al [30], although for small values of the damage parameter (relative 

crack/split spacing) the reduction predicted by the ECM/2-D shear lag approach is greater than of Henaff-Gardin et al [30. 

Predictions based on the variational approach of Hashin [28] are far away from these results. The shear modulus 

reduction ratio predicted by Tsai and Daniel [29] is, in the most of cases, within 10% of the ECM/2-D shear lag approach 

value.  

 

It is worth mentioning here that the model of Tsai and Daniel [29] and the present ECM/2-D shear lag approach yield 

exactly the same analytical expression for the shear modulus reduction ratio due to transverse cracking, if the thickness of 

the shear layer in the ECM/2-D shear lag approach is taken equal to that of the 0
o
 lamina, i.e. if 1hhs = : 
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For transverse cracking combined with splitting, Tsai and Daniel [29] suggested a semi-empirical expression for the shear 

modulus reduction ratio based on the "superposition" of solutions for a single set of cracks as  
1
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The value of the shear modulus reduction ratio obtained by Tsai and Daniel [29] using the finite difference iteration 

appeared to be within 1% of the value given by Eq. (23). The present ECM/2-D shear lag model, if the interaction 

between transverse cracks and splits is neglected and the shear layer has the thickness of the 0
o
 lamina, yields an 

expression  

1

2

)2,2(

2

1

)1,1(

2

)2,2(

2

2

)1,1(

2

1

2

)2,2(

2

)2,2(

2

2

1

)1,1(

2

)1,1(

2

1

2

)2,2(

2

1

)1,1(

2

)2,2(

2

2

)1,1(

2

1

tanhtanhtanh
1

tanh1

tanhtanh1*

−














+++×

×













−=

mcmc

mcmc

mc

mc

mc

mc

mcmc

mcmc

G

DD

DD

D

D

D

D

DD

DD

λλ
λλ

λ
λχ

λ
λ

χ

λλ
λλ

ρ

    (24) 

It may be seen from Eqs. (23) and (24) that the two expressions differ by the underlined terms and GG ρρ ≤* . In absence 

of splitting )0( 1 =mc
D  they are both reduced to Eq. (22). In some cases, though, the error of the semi-empirical 

expression, Eq. (23) suggested by Tsai and Daniel [29] can be as big as 20%. The ECM/2-D shear lag approach is in good 

agreement with the results of Henaff-Gardin et al [30] for the shear modulus reduction. 

 

Results and discussion 

Stiffness degradation in cross-ply laminates due to different damage modes and their combinations is examined below. 

All results given below were obtained taking into account the interaction between damage modes in the adjacent layers. 

Up to 12 iterations are required to solve a set of simultaneous non-linear equations, Eqs. (21) with accuracy of 910− . The 

number of iterations increases along with the crack density and relative delamination area. 

 

Figure 4 shows stiffness degradation in E-glass/LY556 epoxy [26] ]0/90/0[  and ]0/90/0[ 8
 cross-ply laminates as the 

function of the transverse crack density 2C  in the °90  layer. The layers thicknesses 1h  and 2h  are determined from the 

laminate lay-up, thickness of the shear layer is taken as ths = . Longitudinal Young’ modulus, shear modulus and major 

Poisson’s ratio are normalised by their values in the undamaged state. As can be seen from Fig. 4a,b, all these properties 

undergo degradation as the matrix crack density increases, with Poisson’s ratio appearing to be the most affected by 

transverse cracking. The thickness of the °90  layers play an important role, since the thicker the °90  layer, the bigger 

reduction is observed. Transverse ply thickness and the thickness ratio of °90  layer to constraining °0  layers are the 

important parameters controlling resistance to matrix cracking. Zhang, Fan and Soutis [23] proposed to use a resistance 

curve, analogous to the R-curve concept of classical fracture mechanics, as a measure of the composite resistance to crack 

initiation and growth 

))exp(1(),(),( 0IC

mc

R

mc

R

mc
RDGGGDGDG −−+==σ       (25) 

where G  is the strain energy release rate associated with matrix cracking, RG  is the laminate resistance to matrix 

cracking, 
ICG  is the critical energy release rate for damage nucleation, and 

0G  and R  are laminate constants. Parameters 

ICG , 0G  and R  are not independent of stacking sequence, but remain constant as long the thickness ratio of the 

constraining layer to °90  remains the same. 

 

When a cross-ply laminate is subjected to biaxial loading matrix cracking may occur concurrently in both plies leading to 

formation of transverse and longitudinal matrix cracks. The combined effect of these cracks on stiffness properties of 

]0/90/0[  laminate is shown in Fig. 5 for the case when the longitudinal and transverse crack densities are equal. 

In cross-ply laminates with thick °90  layer subjected to uniaxial loading strip-shaped delaminations begin to initiate and 

grow from the tips of matrix cracks at the °° 90/0  interface. The effect of these delaminations on stiffness properties of 

]0/90/0[ 8  laminate is shown in Fig. 6 as a function of relative delamination area. Transverse crack density is taken as 2 

cracks/cm, and the values of normalised stiffness properties for 02 =D  correspond to stiffness degradation due to matrix 

cracking without delamination. It can be seen from Fig. 6 that crack-tip delamination contributes significantly to stiffness 

degradation of the laminate, and therefore has to be taken into account in the post-initial failure models. 

 

Figure 7 shows stiffness degradation in T800H/3631 carbon/epoxy 6,4,2,]90/0[ =nsn  cross-ply laminates containing 

transverse cracks and delaminations. Longitudinal Young’s modulus, in-plane shear modulus and Poisson’s ratio, 

normalised by their values in the undamaged state, are plotted as a function of transverse crack density. The relative 

delamination area is 10%, which corresponds to 1.0/ =sl . For the axial modulus, predictions are compared to 

experimental data obtained by Takeda and Ogihara [32] and appear to be in good agreement. However, predictions show 

that reduction in shear modulus and Poisson’s ratio due to crack tip delamination is more significant.  
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Henaff-Gardin et al [31] observed damage development in cross-ply s]90/0[ 44  T300/914 carbon/epoxy laminates during 

thermal cycling. The cycle consisted of cooling to –200
o
C and heating to +90

o
C. Crack density in the 90

o
 and 0

o
 plies was 

measured, however the size of growing delaminations that accompanied longitudinal cracks was not. In Fig. 8a, 

predictions of reduction in the longitudinal Young’s modulus, shear modulus and Poisson’s ratio, normalised by their 

values in the undamaged state, are shown along with the measured crack densities in the 90
o
 and 0

o
 plies as a function of 

number of cycles. As cracks develop, the shear modulus and Poisson’s ratio undergo significant reduction, while 

reduction in axial modulus remains less than 5%. This indicates that the shear modulus and the Poisson’s ratio could be 

much better parameters to characterise stiffness degradation of the laminate than the longitudinal modulus. 

 

Since the size of the delamination area was not measured during cycling, reduction of stiffness properties of s]90/0[ 44  

T300/914 laminate due to delaminations was predicted using assumed delamination sizes. Strip-width of the transverse 

delamination was set to zero, while that of the longitudinal delamination allowed to vary from zero to 50%. In other 

words, longitudinal delaminations were assumed to have propagated from the crack tip to one quarter of the distance 

between two cracks. This seems to be a reasonable assumption, consistent with X-ray radiographs obtained by Henaff-

Gardin et al [31]. In Figs. 8b and 8c, predicted reductions of the longitudinal, transverse and shear moduli as well as 

Poisson’s ratio, normalized by their values in the undamaged state, are plotted as function of the relative delamination 

area. The axial modulus appears to be unaffected by the growth of delamination, while transverse modulus is further 

reduced, but not significantly (Fig. 8b). The reduction in the shear modulus is more pronounced than in the Poisson’s 

ratio (Fig. 8c). Crack densities in 90
o
 and 0

o
 plies were taken as C2=4.5 cracks/cm and C1=3 cracks/cm respectively, 

which corresponds to saturation values reached during –200
o
C/+90

o
C cycling. Under uniaxial loading, longitudinal 

delaminations appear to be more important than the transverse ones, since they result in isolation of the portions of the 

load-bearing 0o plies, which become prone to fibre breakage. Under biaxial loading, the importance of one set of 

delaminations over the other depends very much on the biaxiality and ply thickness ratios. 

 

 

Conclusions 

Although the approach described in this paper has not attempted to predict ultimate laminate failure, it does present a 

methodology for predicting degraded stiffness properties of the laminae and hence the laminate, in the case when there 

are various kinds of intra- and interlaminar damage interacting with each other are present in the same and/or adjacent 

plies of the laminate. The approach is based on the Equivalent Constraint Model (ECM) of the damaged laminate and 

takes into account damage mode interaction. Our predictions show that the effect of longitudinal matrix cracking is more 

pronounced on the Poisson’s ratio than on the shear modulus; however the reduction in the shear modulus due to 

transverse delamination is the most significant when compared to the reduction observed in the axial or transverse elastic 

moduli. 

Theoretically, ECM does not impose any restrictions onto the laminate lay-up, and the approach based on ECM was 

successfully applied to the prediction of degraded stiffness properties due to matrix cracking in all but °0  layers of quasi-

isotropic laminates. It should be noted that for the model to be applied the type, location and amount of damage present 

need to be specified. For this accurate and reliable structural health monitoring (SHM) techniques are urgently required, 

see Soutis and coworkers [33-35]. Also the triggering of resin cracking and delamination could be delayed to higher 

applied loads if tougher resin systems are employed, Jumahat et al. [36]. 
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Figures 

Figure 1. Cross-ply laminate damaged by transverse and longitudinal matrix cracks and transverse and longitudinal crack-

induced delaminations. 

Figure 2. Equivalent Constraint Model (ECM) of a damaged laminate: a) initial laminate; b) ECMk. 

Figure 3. Representative segments of the two equivalent constraint models: a) ECM1; b) ECM2. 

Figure 4. Normalised stiffness properties of E-glass/LY556 epoxy cross-ply laminates as a function of transverse crack 

density in the °90  layer: a) ]0/90/0[  laminate; b) ]0/90/0[ 8  laminate. No damage in the °0  layer (uniaxial tensile 

loading, static or fatigue). 

Figure 5. Normalised stiffness properties of E-glass/LY556 epoxy ]0/90/0[ cross-ply laminate as a function of transverse 

crack density in the °90  layer, equal to longitudinal crack density (equi-biaxial tensile static or fatigue loading). 

Figure 6. Normalised stiffness properties of E-glass/LY556 ]0/90/0[ 8 cross-ply laminate as a function of transverse 

delamination area. Transverse crack density 2 cracks/cm (uniaxial tensile loading). 

Figure 7. Stiffness reduction due to transverse crack tip delaminations in T800H/3631 carbon/epoxy cross-ply laminates 

as a function of crack density: a) s]90/0[ 2 ; b) s]90/0[ 4 ; c) s]90/0[ 6 . 

Figure 8. Stiffness reduction in a s]90/0[ 44  T300/914 carbon/epoxy laminate subjected to –200
o
C/+90

o
C thermal 

cycling: a) stiffness reduction due to matrix cracking and matrix crack density as a function of number of cycles; b) 

longitudinal and transverse moduli reduction due to longitudinal crack tip delamination as a function of delamination area 
ldD ; c) shear modulus and Poisson’s ratio reduction due to longitudinal crack tip delamination as a function of 

delamination area ld
D . 
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