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Summary

The fungal cell wall is a dynamic organelle required for
cell shape, protection against the environment and, in
pathogenic species, recognition by the innate immune
system. The outer layer of the cell wall is comprised of
glycosylated mannoproteins with the majority of these
post-translational modifications being the addition of
O- and N-linked mannosides. These polysaccharides
are exposed on the outer surface of the fungal cell wall
and are, therefore, the first point of contact between
the fungus and the host immune system. This review
focuses on O- and N-linked mannan biosynthesis in
the fungal pathogen Candida albicans and highlights
new insights gained from the characterization of
mannosylation mutants into the role of these cell wall
components in host–fungus interactions. In addition,
we discuss the use of fungal mannan as a diagnostic
marker of fungal disease.

Introduction

Candida albicans is an opportunistic fungal pathogen of
humans, which is part of the natural flora of the oral, genital
and gastrointestinal tracts. The maintenance of coloniza-
tion over dissemination is achieved through an intricate
balance of fungal proliferation and host immune recogni-
tion and control. During periods of immune suppression,
caused by chemotherapy, trauma, age and cancer, C. albi-
cans is able to overcome the immune system, disseminate
and cause life-threatening systemic disease. The asso-
ciated mortality rates of systemic fungal disease are
reported to be up to 40%, which is higher than that reported
for most bacterial infections (Almirante et al., 2005; Klevay

et al., 2008; Leroy et al., 2009). It is also a frequent
mucosal pathogen, with more than 75 million women suf-
fering from vaginitis each year (Sobel, 2007).

The interplay between C. albicans and the host immune
system is largely mediated by components of the fungal
cell wall including mannans, β-glucans and chitin. The
structural organization of the fungal cell wall has been
extensively reviewed elsewhere (Bowman and Free,
2006; Latgé, 2007; Gow and Hube, 2012), but compre-
hensive reviews on fungal mannan biosynthesis are
limited. This review focuses on O- and N-mannan biosyn-
thesis, the role(s) of mannans in innate immune recogni-
tion, and the use of fungal mannan as a diagnostic marker
for invasive candidaemia.

The cell wall

The fungal cell wall is a dynamic structure important for
maintaining cell shape, protection and stability against
environmental stresses and outwardly directed turgor
pressure and for immunogenicity. The cell wall must be
physically robust, but also flexible enough to permit cell
expansion, cell division and morphogenesis. The wall must
also be permeable to allow egress of secreted proteins and
the import of solutes, but sufficiently impermeable to
protect the inner skeletal layer from environmental hydro-
lases. The cell wall is comprised of three major polysac-
charides, chitin, glucans and mannans. In C. albicans,
these polysaccharides are organized as two layers: an
inner skeletal layer of chitin and β1,3-linked glucan and an
outer layer of β1,6-glucan and cell wall proteins anchored
to the skeletal layer via a glycosylphosphatidylinositol
(GPI) remnant. These proteins include cell wall remodel-
ling enzymes involved in cell wall biogenesis (Douglas
et al., 1997; Dünkler et al., 2005), modification of the prop-
erties of the nascent and mature polysaccharides, and
proteins essential for adhesion (Buurman et al., 1998;
Hoyer, 2001) and biofilm formation (Nobile et al., 2006;
Zhao et al., 2006), all of which influence the pathogenesis
of the organism. The cell wall and secreted proteins of
C. albicans are highly decorated with elaborate carbohy-
drate structures comprised of α- and β-linked mannose
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units referred to as mannoproteins. Mannose sugars are
incorporated into three structures: linear O-linked mannan,
highly branched N-linked mannan and phospholipoman-
nan. Protein mannosylation occurs during protein synthe-
sis in the endoplasmic reticulum (ER) and is further
elaborated as the protein is passed through the Golgi
apparatus. Initially, sugars (i.e. mannose and glucose) are
added to dolichol phosphate acceptors, from which are
then incorporated into C-, N-, O-mannosylation, as well as
GPI anchors. On the other hand, in the Golgi, the donor of
mannosyl residues is GDP-mannose. Initiation of manno-
sylation in C. albicans has been reviewed elsewhere
(Mora-Montes et al., 2009), and this review will focus on
the transglycosylases involved in the elaboration of O- and
N-mannan structures.

C. albicans mannosylation mutants

Studies exploring the role(s) of mannosylation in fungal
biology and virulence have been informed by the creation

of a series of C. albicans mannosylation mutants with
truncations in the normal wild-type structures of both O-
and N-linked mannan. Because these mutants express
stably altered mannan structures on their cell surface
(Fig. 1), these mutants have been used as tools to explore
the importance of specific mannan epitopes on cell func-
tion, pathogenesis and immune recognition (Table 1).

O-mannosylation mutants

As discussed above, the C. albicans O-mannan is a
simple linear carbohydrate comprised of a series of
α1,2-linked mannose units (typically, 1–5 residues). The
initial α-mannose residue is attached to the hydroxyl
group of serine/threonine residues through the actions of
PMT1, PMT2, PMT4, PMT5 and PMT6 (Prill et al.,
2005). Mnt1 and Mnt2 are partially redundant α1,2-
mannosyltransferases required for the addition of the first
and second α1,2-mannose units onto the α-mannose
(Munro et al., 2005). Deletion of MNT1 and MNT2 alone,

Fig. 1. N- and O-linked glycosylation structures of the C. albicans mannosylation mutants. Asterisks highlight structures, which are predicted
from comparisons with S. cerevisiae, but have not yet been experimentally determined for C. albicans.
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or in combination, results in truncation of the O-mannan
(Buurman et al., 1998; Munro et al., 2005). Recent
biochemical characterization of the MNT gene family
suggests that MNT1 may be required for further elabo-
ration of the O-mannan chain (Díaz-Jiménez et al.,
2012). Deletion of the PMT gene family, and MNT1
and MNT2 reduced the capacity for biofilm formation
and resulted in increased sensitivity to cell wall perturb-
ing agents such as Calcofluor White, Congo Red and
SDS (Table 1), suggesting that O-mannosylation is
important for the general integrity of the cell wall (Timpel
et al., 1998; Munro et al., 2005; Prill et al., 2005;
Peltroche-Llacsahuanga et al., 2006). Although a signifi-
cant amount of redundancy is expected between the
PMT family members, PMT2 is the only member that
has been shown to be essential for viability (Prill et al.,
2005), suggesting that Pmt2 may play additional roles
compared to the other family members. Likewise, Pmt1
and Pmt6 are required for the adhesive properties of the
fungus to epithelial cells (Timpel et al., 1998; 2000;
Murciano et al., 2011). All mutants involved in the bio-
synthesis of O-mannan that have been studied show
attenuated virulence in the murine systemic infection
model, and most also have adhesion defects (Buurman
et al., 1998; Timpel et al., 1998; Munro et al., 2005;
Rouabhia et al., 2005) confirming the importance of
O-mannan in fungus-host interactions (Table 1).

N-mannosylation mutants

N-mannan core. The core structure of N-mannan is
a dolichol pyrophosphate anchored oligosaccharide
comprised of three glucose, nine mannose and two N-
acetylglucosamine residues (Glc3Man9GlcNAc2). After
attachment to asparagine residues within the polypeptide
chain via the OST complex (Kelleher and Gillmore, 2006),
this oligosaccharide is processed in the endoplasmic
reticulum by three glycosidases (Cwh41, Rot2 and Mns1).
These glycosidases remove the three terminal glucose
units and one additional α1,2-mannose units, forming the
mature core (Man8GlcNAc2). The processed core is similar
in structure in all eukaryotes, but the pattern of elaboration
of the outer N-mannan chains is fungal specific. Prevention
of core processing by deletion of these genes not only
affects the structure of the core, but also alters the structure
of the outer chain branched N-mannan (Mora-Montes
et al., 2007), suggesting that these processing steps are
key regulators of N-mannan biosynthesis. Deletion of
MNS1, CWH41 and ROT2 results in increased floccula-
tion, decreased growth and lower phosphomannan
content (Mora-Montes et al., 2007). These changes in
cell wall composition also result in reduced secretion of
pro-inflammatory cytokines from human monocytes, cor-
relating with attenuated virulence in the murine model of

systemic candidiasis (Mora-Montes et al., 2007). There-
fore, full processing of the core N-mannan is important for
virulence (Table 1).

Branched N-mannan. The outer chain branched mannan
is attached to the N-mannan core through an α1,6-
backbone. Addition of the first α1,6-mannose is catalysed
by a single mannosyltransferase, Och1. Therefore, the
N-mannan of the och1 mutant has no branched outer
chain mannan, but the core N-mannan contains addi-
tional mannose residues (Bates et al., 2006; Fig. 1).
Deletion of och1 results in significant shortening of the
mannan fibrils (Netea et al., 2006), and the activation of
the cell salvage pathway, resulting in an elevation in the
levels of chitin and glucan, and hence a thickened cell
wall (Bates et al., 2006). The α1,6-mannose backbone is
extended by the enzyme complexes mannan polymerase
I (M-Pol I) and mannan polymerase II (M-Pol II). In Sac-
charomyces cerevisiae, M-Pol I is composed of Mnn9
and Van1, while M-Pol II is composed of Mnn9 and
Anp1 (Hashimoto and Yoda, 1997; Jungmann and Munro,
1998). Deletion of the C. albicans Mnn9 orthologue
results in a 50% decrease in total mannan levels, and a
phenotype characterized by increased flocculation of
yeast cells, reduced growth rates, osmotic sensitivity and
abnormal morphogenesis (Southard et al., 1999). There-
fore, it is likely that Mnn9 is the major contributor to the
extension of the α1,6-backbone in C. albicans. The
backbone is then elaborated with extensive branches
composed of α1,2-mannose. In S. cerevisiae, the initial
α1,2-mannose unit is attached to the backbone via the
actions of Mnn2, which are then extended with additional
α1,2-mannose units by Mnn5. BLAST searches of the
C. albicans genome identify a family of related genes,
which are putative Mnn2 and Mnn5 orthologues (Hall et al.,
2013). Bai et al. characterized one of the family members
and confirmed that the encoded protein had both α1,2- and
α1,6-mannosyltransferase activity, but was unable to
complement the S. cerevisiae mnn2Δ mutant, and was
hence designated an Mnn5 orthologue (Bai et al., 2006).
A more detailed systematic characterization of this gene
family suggests that three members have redundant
Mnn2 activity, while the other three members display
Mnn5-like activity (Hall et al., 2013). The C. albicans
mnn5Δ mutant also showed a reduced ability to synthe-
size O-mannan (Bai et al., 2006). Deletion of Mnn2 and
Mnn5 orthologues in C. albicans resulted in shortened
mannan fibrils protruding from the cell wall, while deletion
of all six genes abolished visible mannan fibrils (Fig. 2),
with only α1,6-mannose present in the N-mannan side-
chain (Hall et al., 2013; Fig. 1). Biochemical evidence
suggests that Mnt5 is also required for the addition of the
second α1,2-mannose unit to the outer chains from the
N-linked mannan (Díaz-Jiménez et al., 2012), suggesting
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that there may be a degree of functional redundancy in
the mannan biosynthetic pathways in C. albicans.

The α1,2-mannnose chains are capped with α1,3-
mannose via the actions of Mnn1 (Yip et al., 1994;
Romero et al., 1999). The C. albicans MNN1 gene family
contains 6 members, but only deletion of MNN14 attenu-
ates virulence (Bates et al., 2013), suggesting a degree
of functional redundancy between family members. In
contrast to S. cerevisiae, the C. albicans N-mannan
contains β1,2-mannose, which forms part of both the
acid-stable and acid-labile mannan fractions (see
below), which are attached through the actions of β1,2-
mannosyltransferases (BMTs). Bmt1 and Bmt3 are
required for the addition of the first and second β1,2-
mannose units respectively (Mille et al., 2008). However,
removal of β1,2-mannose from the acid-stable mannan
fraction did not affect growth, morphology or compromise
the cell wall integrity (Mille et al., 2008). Therefore, the
functional significance of β1,2-mannosylation remains to
be clarified. However β-mannan plays important roles in
immune recognition (see later).

Phosphomannan. The β1,2-mannose moiety, linked to
the branched N-glycan through a phosphodiester bond, is
commonly known as phosphomannan (PM), or acid-labile
mannan. Loss of this mannan fraction is characterized by
a reduced ability of C. albicans to bind the cationic dye
Alcian Blue, due to the loss of negative charge in the cell
wall, as a result in the reduction of phosphate content. In
S. cerevisiae, the PM is attached to the outer N-mannan
chains via Mnn4 and Mnn6 (Karson and Ballou, 1978;
Nakayama et al., 1998). ScMNN6 encodes the manno-
sylphosphate transferase (Odani et al., 1997), while
ScMnn4 is a positive regulator of ScMnn6 (Odani et al.,
1996). Deletion of the putative C. albicans MNN4 ortho-
logue impairs Alcian Blue binding to the C. albicans cell
wall, confirming that it also participates in the attachment
of PM to the outer N-mannan chains (Hobson et al.,
2004), although it has not been confirmed if CaMnn4 is

acting as the mannosylphosphate transferase, or a posi-
tive regulator of CaMnn6. However, the C. albicans
mnn4Δ mutant does maintain β1,2-mannose in the acid-
stable fraction (Hobson et al., 2004; Singleton et al.,
2005). The PM glycoconjugate is extended by a family
of BMTs, which attach a series of β1,2-mannose residues
to the initial α1,2-mannose. Bmt2, Bmt3 and Bmt4
are required for the addition of the first, second and
third β1,2-mannose units of the acid-labile mannan
respectively (Mille et al., 2008). Deletion of the α1,2-
mannosyltransferases mnt3Δ, and mnt5Δ together also
results in reduced Alcian Blue binding (Mora-Montes
et al., 2010), suggesting they are also involved in
elaboration/attachment of the PM to the N-mannan,
although O-mannan can also incorporate PM. Removal of
the PM, by deletion of MNN4, increases the net hydro-
phobicity of the cell wall (Singleton et al., 2005), and
increases the resistance of the N-mannan to acetolysis
(Hazen et al., 2007), which cleaves α1,6-linkages. This
increased resistance suggests that Mnn4, in addition to
regulating the addition of PM to the α1,2-mannan side-
chain, may also have a global affect on the synthesis of
acid-stable mannan. The PM is important for macrophage
phagocytosis (McKenzie et al., 2010). In comparison,
removal of O- or N-mannan resulted in increased phago-
cytosis (McKenzie et al., 2010), and increased exposure
of β-glucan, which would increase recognition through the
phagocytic receptor Dectin-1 (see below).

Other enzymes. The majority of the mannosyltrans-
ferases are metalloenzymes which require a metal ion
cofactor [predominately manganese (Mn2+)] for function-
ality (Bai et al., 2006). Therefore, ion transport within the
ER and Golgi network is an important factor for mannan
biosynthesis. Pmr1 is a P-type ATPase required for
transporting divalent cations (Ca2+/Mn2+) into the Golgi
and maintaining manganese homeostasis. Disruption of
PMR1 results in shortening of the branched N-mannan
and O-mannan (Fig. 1), presumably due to the inhibition
of several mannosyltransferases as a result of insufficient
concentrations of cations within the Golgi (Bates et al.,
2005). However, in comparison with the och1Δ mutant,
the pmr1Δ has a thinner glucan-chitin layer and longer,
but less dense mannan fibrils.

Phospholipomannan

Phospholipomannan (PLM) is comprised of manno-
sylated sphingolipids, sharing a mannose moiety similar
to that of PM, composed of β1,2-mannose, covalently
linked to the lipid domain by a phosphodiester bond with
an α-mannose unit. Deletion of MIT1 (Mannose Inosi-
tolphosphoceramide mannose Transferase) totally elimi-
nated mannan from C. albicans PLM (Mille et al., 2004),

Fig. 2. TEM of the cell wall in selected mannosylation mutants.
The sextuple mnn2Δ mutant contains deletions in all six MNN2
genes (mnn2Δ/mnn21Δ/mnn22Δ/mnn23Δ/mnn24Δ/mnn26Δ). Uridine
auxotrophy was complemented by the integration of the CIp10
plasmid at the RPS1 locus. The scale bar represents 0.2 μm.
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suggesting that Mit1 is the sole transferase responsible
for the addition of mannan to this lipid. The PLM is then
elaborated with β-mannose units, via the actions of Bmt5
and Bmt6 (Mille et al., 2012). Disruption of PLM signifi-
cantly affected the C. albicans cell wall stress response
due to calcium and SDS, but not Calcofluor White (Mille
et al., 2004). Interestingly, blastospores shed PLM during
early stages of macrophage phagocytosis, and the
released PLM binds the surface of the macrophage
(Jouault et al., 1998), where it participates in immune
recognition of the fungal pathogen (see below).

In general, glycosylation mutants display similar pheno-
types. For example, all glycosylation mutants studied, so
far, show increased flocculation. For some of the mutants
(och1Δ, mnt1Δ/mnt2Δ) this can be explained by a cell
separation defect, at cytokinesis (Munro et al., 2005).
However, this defect has not been observed for all the
glycosylation mutants. One possible explanation is that
the alterations to the glycosylation status of the cell wall
affects the charge of the cell and hence the tendency
to aggregate. It is also possible that the disruption of
key regulatory cell wall processes affects the activity of
glucanase and chitinase enzymes required for cell-
separation after cytokinesis. However, Gregori et al.
recently showed that sub-MIC concentrations of the
β-glucan synthase inhibitor caspofungin induce floccula-
tion in an Efg1-, Als1-dependent manner, which could be
inhibited by high concentrations of exogenous sugars
(Gregori et al., 2011). Alternatively, overexpression of Als3
has been shown to induce flocculation. Expression of
ALS proteins in the glycosylation mutants has not been
studied, but evidence suggests that in addition to the
glycome, the cell wall proteome is also altered in some
mannosylation mutants, perhaps by inducing the unfolded
protein response (Bates et al., 2005). Therefore, it is pos-
sible that manipulation of mannosylation alters many
properties of the cell wall, which results in increased cell–
cell adhesion, and could serve as an alternative mecha-
nism for protection from the environment.

Effects of the environment on mannan composition

The fungal cell wall is dynamic, and its composition is
mediated by components of the surrounding environment.
For example, the presence of echinocandin antifungals
results in increased chitin synthesis to compensate for the
depletion of glucan, to maintain cell wall integrity (Walker
et al., 2008). Recent investigations into the mannan com-
position have shown that the environment also modulates
the structure of the protruding mannan fibrils. At the
molecular level, NMR data suggest that the structural
composition of the mannan is dependent on growth con-
ditions (Kruppa et al., 2011; Lowman et al., 2011). Growth
in alternative carbon sources reduced chitin and glucan

levels and also diminished the mannan fibrillar layer (Ene
et al., 2012). Moreover, damage to the mannosylation
structures upregulates PMT1, PMT2 and PMT4 in an
Msb2-, Cek1-, Ace2-dependent manner (Cantero and
Ernst, 2011). Therefore, different growth conditions are
likely to activate cell wall signalling cascades to varying
degrees, altering the expression of cell wall biosynthesis
genes, and affecting the mannan composition. For a
detailed review of cell wall signalling pathways we direct
readers to the following recent review (Ernst and Pla,
2011).

Contribution of mannan to fungal immune recognition

Like many pathogens, C. albicans is detected and cleared
predominantly through the actions of the innate immune
system. Recognition of invading microbes is achieved by
a variety of receptors on the surfaces of epithelia and
myeloid cells. These include toll-like receptors (TLRs),
C-type lectins (CTLs) and Nod-like receptors (NDLs),
which bind to specific epitopes on the pathogen surface
(Medzhitov et al., 1997; Yang et al., 1998; Ariizumi et al.,
2000). These so-called pathogen recognition receptors
(PRRs) and pathogen-associated molecular patterns
(PAMPs) now form the basis of our understanding of
innate immune recognition. For example, TLR2, TLR4,
dectin-2, Mincle, DC-SIGN and galectin-3 have major
roles in the recognition of fungal mannans (Fradin et al.,
2000; Tada et al., 2002; Porcaro et al., 2003; Taylor et al.,
2004; Rouabhia et al., 2005; McGreal et al., 2006), TLR9
recognizes fungal DNA (Miyazato et al., 2009), and
dectin-1 and complement receptor 3 (CR3) are the major
PRRs involved in the detection of β-glucans (Thornton
et al., 1996; Brown and Gordon, 2001).

Participation of O-mannan to immune recognition

O-mannan is predominately recognized by TLR4 (Netea
et al., 2006). Deletion of TLR4 results in reduced neutro-
phil infiltration and enhanced fungal burden in the perito-
neal exudates, lymph nodes and spleen (Gasparoto et al.,
2010). Co-incubation of oral epithelial cells with purified
C. albicans cell wall components confirmed that these
PAMPs only induced expression of TLR4, but epithelial
cytokine production was independent of TLR4 (Wagener
et al., 2012). However, a recent study highlighted that
TLR4 recognition, is largely dependent on the C. albicans
strain under investigation (Netea et al., 2010). In this
study, the susceptibility of TLR4−/− mice to C. albicans
infection correlated with the dependence on TLR4 recog-
nition, with disease progression unaltered in TLR4−/− mice
when infected with a C. albicans strain known to be
independent of TLR4 recognition (Netea et al., 2010).
Therefore, data regarding TLR4 recognition should be
interpreted with caution.
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Participation of N-mannan to immune recognition

N-mannan is recognized by a multitude of receptors, which
are expressed on different immune cells. The mannose
receptor (MR) is an endocytic receptor thought to recog-
nize terminal α1,2-/α1,3-mannose residues (Kéry et al.,
1992; Netea et al., 2008). The MR is cleaved by a metal-
loproteinase producing a functional soluble (sMR) receptor
(Martínez-Pomares et al., 1998). The role of sMR in innate
immunity has not been clarified, but the sMR may function
to bind soluble mannan or degraded particles from phago-
cytosis events and present them to CR-Fc+ cells surround-
ing the infection site (Martínez-Pomares et al., 1998).

Due to the phagocytic nature of the MR, fungal cells
with a low mannan content in their cell wall have reduced
phagocytosis rates (Keppler-Ross et al., 2010). Indeed,
mutants with truncations in N- (mns1), phosphomannan
(mnn4) and O-linked mannan (mnt1/mnt2) exhibited
delays in engulfment, but not in the rate of macrophage
migration and chemotaxis towards Candida cells (Lewis
et al., 2012). This is also true of neutrophils, where man-
nosylation mutants (for example, och1Δ, pmr1Δ and
mnt1Δ/mnt2Δ) displayed a reduced phagocytosis index
(Sheth et al., 2011). In neutrophils, at least, the decreased
phagocytosis rate was found not to be due to lack of
recognition, since neutrophils still had yeast bound to their
surface. Instead, the reduced phagocytic index of the
mannan-deficient mutants seemed to be due to the failure
of the neutrophils to engulf the mutants (Sheth et al.,
2011). In contrast, alterations in other cell wall compo-
nents, including glucan and chitin, did not markedly affect
the efficiency of macrophages to phagocytose fungal cells
(Keppler-Ross et al., 2010). The MR is also responsible
for the majority (70%) of dendritic cell (DC) recognition
and internalization of C. albicans (Cambi et al., 2008).
This recognition is mainly based on interactions with α1,2-
or α1,3-mannose, with the och1Δ and pmr1Δ mutants
displaying reduce phagocytosis rates, while the mnt1Δ/
mnt2Δ, mnn4Δ mutants, and the serotype B strains were
still efficiently phagocytosed by DCs (Cambi et al., 2008).

Although the majority of C. albicans recognition by DCs
occurs via the MR, DCs also express the C-type lectin-like
receptor, DC-SIGN. DC-SIGN recognizes a variety of car-
bohydrate structures, including fructose and branched
α-mannan (Cambi et al., 2008), and can phagocytose
Candida cells through the recognition of mannan (Cambi
et al., 2003). The mouse orthologue of DC-SIGN,
SIGNR-1, works in concert with Dectin-1 to enhance the
oxidative burst in macrophage cell lines (Takahara et al.,
2011). Although DC-SIGN and SIGNR-1 are orthologues,
they show distinct epitope specificity. For example,
DC-SIGN only recognizes α-mannose residues with a free
non-reducing end (i.e. α-mannose units at the end of the
polymers), while SIGNR-1 can also recognize α-mannose

units capped with additional α-mannoses, or β-mannose
residues (Takahara et al., 2012).

In addition to the MR and DC-SIGN, the C-type lectin-like
receptor, dectin-2 (Clec4n), has recently been identified as
recognizing high mannose containing epitopes (> 7 termi-
nal or branched α-mannose residues) (McGreal et al.,
2006), although the exact epitope (i.e. terminal, or
branched α-mannose units) recognized by dectin-2 is
unknown (Saijo et al., 2010). Deletion of dectin-2 results in
increased kidney fungal burdens and accelerated neutro-
phil infiltration, with Candida growth observed in the pelvis
(Saijo et al., 2010), confirming that α-mannan recognition
via dectin-2 is crucial for fungal detection and removal.
Dectin-2 recognition enhances secretion of IL-1β, IL-23
and IL-6 and hence activates a protective Th17 response to
the invading pathogen, as well as a less potent Th1
response (Saijo et al., 2010). In conjunction with this,
C. albicans purified mannan is capable of inducing prosta-
glandin production from human PBMCs. β-Glucan only
enhanced prostaglandin levels in concert with TLR2
ligands (Smeekens et al., 2010). Furthermore, prostaglan-
din production is regulated via dectin-2 and hence by
mannan-stimulation (Suram et al., 2010). Therefore,
fungal mannan appears to play a critical role in inducing
Th17 responses, presumably through the actions of
CD14++/CD16− subsets of circulating monocytes which
have elevated expression of the MR on their surface
(Smeekens et al., 2011), to fungal pathogens.

The β-mannan which caps the branches of N-mannan
is recognized by galectin-3 (Fradin et al., 2000). Although
galectin-3 can bind to a variety of β1,2-epitopes, only
recognition of antigenic factor 5 (phosphate bound β1,2-
mannose units) or factor 6 (terminal α1,3-mannose units)
exert fungicidal effects on C. albicans. These affects are
specific for Candida species that display β1,2-linked
mannose on their surface, as galectin-3 does not bind
fungal cells that lack this epitope (for example S. cerevi-
siae) (Kohatsu et al., 2006). Macrophages isolated from
galectin-3 deficient mice exhibited normal levels of uptake
and phagocytosis of Candida (Jouault et al., 2006), sug-
gesting that recognition of β1,2-mannan is not important
for fungal eradication. However, more recently Linden
et al. have shown that Candida parapsilosis induces
galectin-3 secretion from neutrophils, and propose that
soluble galectin-3 functions as a pro-inflammatory
autocrine/paracrine signal to enhance neutrophil phago-
cytosis (Linden et al., 2013).

In addition to the receptors described above, the C-type
lectin-like receptor, Mincle which is expressed on mac-
rophages, has been proposed to recognize α-mannose
units, but not complete mannan polysaccharides
(Yamasaki et al., 2009). However, some conflicts exist in
the literature regarding the role of Mincle in fungal infec-
tions. Mincle−/− mice do not show increased susceptibility
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to systemic candidiasis, but they do display increased
kidney burdens compared to control mice (Wells et al.,
2008), suggesting that Mincle may play a role in fungal
clearance. In agreement with this, TNFα secretion
was reduced by 30% in Mincle−/− bone marrow-derived
macrophages after stimulation with C. albicans (Wells
et al., 2008). In contrast, Mincle specifically recognizes
Malassezia, and not C. albicans or Aspergillus species
(Yamasaki et al., 2009). The differences observed in this
study might, in part, be attributed to the different C. albi-
cans strains used in each study, which potentially has
been attributed to the ability of different organisms to
express different α-mannose epitopes.

Participation of phospholipomannan to
immune recognition

Addition of purified PLM to macrophage-like cells (J774)
stimulates pro-inflammatory cytokine secretion, suggest-
ing that PLM contributes to innate immune recognition
of C. albicans (Jouault et al., 1994; 1998). TLR knockout
mice confirmed that PLM was recognized by TLR2,
although bone marrow-derived macrophages from
TLR4−/− and TLR6−/− mice also showed reduced cytokine
signalling in response to purified PLM, suggesting that
these receptors may also function in the recognition of
PLM (Jouault et al., 2003). However in keratinocytes,
PLM induced pro-inflammatory cytokine secretion (IL-6
and IL-8) was shown to be TLR2 dependent (Li et al.,
2009). Therefore, the role of PLM in innate immune rec-
ognition may depend on the site of infection.

Mannan and fungal diagnostics

Early detection of invasive candidaemia (IC) is essential
for a good prognosis, with mortality rates increasing from
15% (antifungal treatment initiated immediately after posi-
tive blood culture), to 40% when treatment is delayed by
72 h (Garey et al., 2006). Despite the new developments
in disease diagnostics, Candida infections are still hard
to diagnose, with many cases going unreported until
autopsy. Diagnosis is now based on the non-invasive
detection of circulating polysaccharides from the fungal
cell wall in blood samples. Two of the diagnostic tests
focus on circulating mannan levels, while the other is
directed against β-glucan.

Mannan antigen detection

Mannan comprises up to 7% of the dry weight of C. albi-
cans and is non-covalently attached to the surface of the
pathogen, and as a result is released into the circulation
(Fukazawa, 1989). Therefore, patients with invasive can-
didaemia tend to have high circulating levels of mannan in
their blood (mannanaemia). The first commercially avail-

able kit for the detection of mannan was Pastorex antigen
agglutination kit, which gave varied results with a high
percentage of false positives (Bailey et al., 1985; Lemieux
et al., 1990). Currently, the conventional kit for testing
sera for the presence of fungal mannan is the Platelia
Candida antigen kit from Bio-Rad, which is based on an
enzyme-linked immunosorbent assay (ELISA). The kit uti-
lizes the rat monoclonal antibody EB-CA1, which recog-
nizes chains of α1,2-mannose from the fungal cell wall
in a size-dependent manner, with five units being the
minimum for efficient binding (Jacquinot et al., 1998). This
assay assumes that mannan serum concentrations above
0.5 ng ml−1 are positive for candidaemia, and can lead to
the identification of patients with candidaemia 7 weeks
earlier than blood cultures (Nihtinen et al., 2011). The
Platelia assay has a specificity of over 80% with a sensi-
tivity of around 60% (Sendid et al., 1999; Alam et al.,
2007; Mikulska et al., 2010; Mokaddas et al., 2011).
However, increased sensitivity can be observed (70–
100%) by decreasing the recommended cut-off, but this
increases false positives (Ellis et al., 2009; Mikulska et al.,
2010). An alternative method is to use the assay in com-
bination with another test like the anti-mannan antibody
detection kit (Arendrup et al., 2010; Mikulska et al., 2010).
Initially there were concerns over the use of mannan as a
diagnostic tool due to natural colonization of Candida.
However, under these circumstances the mannan level
remains within the cut-off (i.e. below 0.5 ng ml−1), while
they are greatly elevated in patients with invasive candi-
daemia (Mokaddas et al., 2010). Therefore, detection of
mannan is a reliable diagnostic marker for invasive can-
didaemia. One factor that influences the accuracy of such
diagnostics is the clearance of mannan from the circula-
tion. Therefore, for high-risk patients, such as those on
immune suppressive therapy, or with neutropenia consist-
ent monitoring of circulatory mannan levels may prove
more beneficial than one-off measurements.

Anti-mannan antibody detection

As discussed in the previous section, mannan is immune-
stimulatory and as a consequence antibodies are gener-
ated against it, the presence of which can then be used as
a diagnostic tool to identify patients with fungal infections.
The detection of anti-mannan antibodies is taken advan-
tage of in the Platelia Candida Ab assay kit. This assay
involves the use of Candida mannan coated plates, to
which sera from the patient is applied. The presence of
the antibodies is achieved through a sandwich ELISA.
Several studies have reported that the average sensitivity
of the kit to detect patients infected with Candida is 60%
with a range between 44% and 100%. However, the anti-
mannan test is less specific than the Platelia Candida
antigen kit, due to high circulation of mannan antibodies
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from uninfected, but heavily colonized individuals (Odds
and Evans, 1980), and the reduced antibody response
in immune suppressed patients (Jones, 1990). It was
reported that use of the anti-mannan antibody test in
combination with the mannan antigen test increases the
sensitivity to 80–90% (Mikulska et al., 2010). Greater
accuracy can also be achieved through the combined
testing for Candida mannan and β-glucan, or Candida
mannan, β-glucan and Candida DNA (Alam et al., 2007).
The use of these biological markers to detect IC in high-
risk patients has proven successful in the early detection
of infection, producing positive results up to 7 days before
a positive blood culture.

Other fungal species

Although much of the knowledge we have on the fungal cell
wall has been based on studies from S. cerevisiae and
C. albicans, which have similar cell wall structures, new
insights are now coming from studies of other pathogenic
fungi. These studies confirm that the structural organiza-
tion of some elements of the fungal cell wall are well
conserved, with most fungi having a common core com-
prised of chitin and β-glucan in the inner wall layer and an
outer layer of glycoproteins. The ratio of the components
and the major carbohydrate components and the amount
of glycoprotein in the wall vary significantly. For example,
chitin forms only 2–5% of the dry weight of the C. albicans
cell wall, while it accounts for over 10–20% of the dry
weight of the walls of Aspergillus or Neurospora species.
In Aspergillus species, the glucan layer is comprised of
β1,3- and β1,4-glucan, while C. albicans contains β1,3-
and β1,6-glucan (Fontaine et al., 2000). Some fungi have
considerably less glycoproteins in their cell wall than
C. albicans, and these proteins are glycosylated with poly-
saccharide structures other than mannan. In Aspergillus
fumigatus, and Malassezia furfur the glycoproteins are
glycosylated with polysaccharides composed of mannose
and galactose monosaccharides, known as galactoman-
nan (Latgé et al., 1994; Shibata et al., 2009), and circulat-
ing galactomannan levels are the most commonly used
diagnostic marker for invasive aspergillosis (Rohrlich et al.,
1996). In addition, long complex glycosylation structures
such as the N-mannan in C. albicans are not present in
filamentous fungi, but instead N-mannans are often shorter
and terminate in galactofuranose (Leitão et al., 2003;
Morelle et al., 2005). In some fungi, a polysaccharide
capsule surrounds the cell wall. Cryptococcus neoformans
and C. gattii are surrounded by a glucuronoxylomannan
(GXM) and galactoxylomannan (GalXM) capsule, which
forms a physical barrier protecting the fungus from the
environment and host immune defences (O’Meara and
Alspaugh, 2012). The capsule is also a major diagnostic
marker, which can be visualized by India ink staining, or

quantified through the detection of Cryptococcal antigen
(CrAg) by latex aggregation, ELISA or lateral flow (Kozel
and Bauman, 2012; O’Meara and Alspaugh, 2012).

Conclusions

The fungal cell wall is a dynamic structure important for
maintaining cell shape, protection against environmental
stress and immune recognition. The outer most layer of
the fungal cell wall is comprised of glycosylated proteins,
the carbohydrate structures of which serve as PAMPs that
trigger immune recognition. A series of glycosylation
mutants, which express altered mannan epitopes on the
cell surface, have shed light on the role of different
mannans in fungal immune recognition. Many of these
mutants show similar phenotypic characteristics including
increased flocculation, decreased growth rates, abnormal
morphogenesis, temperature sensitivity, increased sensi-
tivity to cell wall perturbing agents and a reduced ability
to active host immune responses, all of which result in
attenuated virulence. However, immune responses are
dependent on the type of immune cell. For example, the
mutants which are defective in mannan (och1Δ, mnt1Δ/
mnt2Δ and mns1Δ) show a reduced ability to activate
peripheral blood monocytes (Munro et al., 2005; Bates
et al., 2006; Mora-Montes et al., 2007), but are phagocy-
tosed by macrophages at a higher rate than wild type
(McKenzie et al., 2010), suggesting that recognition in
monocytes is predominately driven by mannan through
the TLR4 and the MR, while macrophage recognition is
predominately mediated by β-glucan, through dectin-1.
Moreover, during tissue invasion, where fungal β-glucan
exposure is increased, the immune stimulation becomes
more dependent on β-glucans (Wheeler et al., 2008). It is
also important to consider that local host environmental
signals can strongly influence cell wall structure and com-
position and so immune recognition of the wall is pre-
sented with a moving target (Kruppa et al., 2011; Lowman
et al., 2011). During the infection process, C. albicans will
be exposed to a plethora of signals including environ-
ments of different pH and CO2 levels, different carbon
sources (Ene et al., 2012), etc., all of which may individu-
ally or simultaneously impact on the cell wall altering the
way in which the immune system sees the fungus. The
affect of host environmental cues on the fungal cell wall is
currently an understudied area of fungal biology, but this
area is important if we want to fully understand the extent
of the interactions that occur between the host and patho-
gen during infection.
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