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Abstract 12 

Despite the hazard caused by near-surface destructive horizontal displacements during 13 

earthquakes, field evidence for coseismic slip along horizontal discontinuities is exceptionally 14 

rare, mainly due to the lack of adequate exposure and markers. However, within the seismically 15 

active Dead Sea basin, the Late Pleistocene Lisan Formation contains vertical clastic dikes at 16 

maximum depth of 15 m that are sheared laterally and thereby provide unique profiles of such 17 

horizontal displacement. In order to investigate how coseismic horizontal shearing is distributed 18 

near the surface, we document a ~1 m thick brittle shear zone, comprising up to eleven slip 19 

surfaces that can be traced for tens of meters in the Lisan Formation. Displacements along 20 
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individual slip surfaces are up to 0.6 m and the total displacement across the shear zone is up to 21 

2.0 m. Displacement profiles and gradients indicate that the brittle shear zone formed by simple 22 

shear, and deformation was associated with slip partitioning and transfer between primary and 23 

secondary slip surfaces. Evidence for concurrent displacement along slip surfaces during a single 24 

event indicates that the brittle shear zone was formed during a coseismic event post 30 ka. We 25 

consider the mechanical effect of seismic-wave related transient stress, which when added to the 26 

initial static effective stress, may result in concurrent horizontal shear failure along detrital-rich 27 

layers in the Lisan Formation. The exceptional quality of exposures and markers enables us to 28 

document for the first time, the details of near-surface horizontal shearing, and indicates that 29 

displacement along horizontal bedding planes is a viable mechanism to absorb coseismic 30 

deformation in well-bedded near surface strata. 31 

 32 

Introduction 33 

Near-surface deformation could involve reactivation of preexisting joints or faults, and coseismic 34 

slip along other discontinuities such as bedding planes (Berberian, 1979; Aydin and Du, 1995; 35 

Roering et al., 1997; Berberian et al., 2000). In the case of sub-horizontal discontinuities, 36 

deformation is difficult to observe due to the typical lack of properly oriented vertical markers 37 

which would characterize such displacements. Indeed, observations of coseismic slip along 38 

horizontal discontinuities are exceptionally rare, despite the hazard caused by horizontal particle 39 

movement (i.e., destructive horizontal displacement) during near-surface seismic wave 40 

propagation.  41 

Lake sediments deposited in seismically-active regions are prone to be deformed and reworked 42 

to form earthquake-induced horizons and structures known as seismites (Seilacher, 1969). The 43 
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late Pleistocene lacustrine Lisan Formation, widely exposed around the Dead Sea basin, exhibits 44 

several types of world-class seismites recently reviewed by Agnon (2014). In detail, the Lisan 45 

Formation comprises ~ 40 m of thin (1-5 mm) alternating white authigenic aragonite and fine 46 

dark detrital laminae, with a 1 m thick gypsum layer at the top. It provides excellent exposures of 47 

slumped horizons, which are typically less than 1 m thick. Undeformed sequences of horizontal 48 

sediments may truncate and cap each slumped unit, providing evidence that these structures are 49 

soft-sediment and slump-generated rather than related to any later tectonic deformation of a 50 

lithified sequence (Alsop and Marco, 2011, 2013, 2014). These slump sheets were postulated to 51 

be formed at the bottom of the lake by the triggering action of seismic waves (El-Isa and 52 

Mustafa, 1986; Alsop and Marco, 2011). Intraclast breccia layers (‘mixed layers’) were formed 53 

simultaneously with small-scale faulting and formation of micro-topography (<1 m) on the 54 

bottom of the lake (Marco and Agnon, 1995, 2005; Begin et al., 2005). Documentation of these 55 

temporal and spatial relations led Marco and Agnon (1995, 2005) to suggest a causative 56 

relationship between faulting and breccia layers. Detailed studies of breccia layers provide ample 57 

examples for fundamental characteristics of earthquakes in the Dead Sea basin, such as long-58 

term temporal clustering, and repeated slip on the same fault planes for a limited time in the 59 

order of a few thousands of years (Marco et al., 1996; Marco and Agnon 2005). The Lisan 60 

Formation, including the slump sheets and the breccia layers, are cross-cut by hundreds of clastic 61 

dikes that have been studied in terms of fracture mechanics and magnetic-based fabric analyses 62 

(Levi et al., 2006a, b; 2008, 2009, 2011). These papers have demonstrated: (1) a physical 63 

connection between the sediment that infills dikes and clay-rich source layers in the Lisan 64 

Formation, (2) a similar mineral assemblage in both the source layers and clastic material within 65 

the dikes, and (3) a primary upward transport of clastic material within the dikes, and a 66 
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secondary horizontal transport near the source layer and below the upper gypsum layer of the 67 

Lisan Formation. Levi et al. (2006a, b) and Porat et al. (2007) concluded that the injection of 68 

clastic dikes was triggered by fluidization of the source layers during strong (M>6.5) early 69 

Holocene earthquakes along faults located at the seismically-active Dead Sea area. Levi et al. 70 

(2008) found that the emplacement of clastic dikes in the Ami'az Plain (Fig. 1) were associated 71 

with high pressure values (1-10 MPa), which probably evolved due to the passage of seismic 72 

waves through the soft lacustrine sediments. This conclusion was later supported by Shani-73 

Kadmiel et al. (2012, 2013), who used 2D numeric simulations to suggest that the seismic waves 74 

in the Ami'az basin are amplified during an earthquake.  Based on field observations and peak 75 

ground velocity calculations, Jacoby et al. (2014) proposed that the injection of clastic dikes at 76 

specific sites along the DST relates to local site effects and amplification processes.  77 

In the present study, we utilize unique profiles of horizontal displacement expressed by laterally 78 

sheared clastic dikes within the laminated section of the Lisan Formation. These profiles provide 79 

us with a rare opportunity to investigate how horizontal shearing is distributed near the surface. 80 

We address the question as to whether the near-surface deformation is the result of gravity-81 

driven sliding (slumping) or the product of coseismic shearing during an earthquake event. We 82 

show that the latter mechanism is more viable, and thereby expands our understanding of how 83 

deformation develops during a seismic event. 84 

 85 

Geologic Setting 86 

The Ami'az Plain study area is located along the southwestern margin of the Dead Sea basin, a 87 

continental depression bounded on the east by a major strike-slip fault and on the west by a 88 

series of oblique-normal faults (Fig. 1). This basin is one of several basins along the Dead Sea 89 
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Transform (DST) system. The DST system has accommodated ∼105 km of sinistral 90 

displacement between the African (Sinai) and Arabian plates since the Early-Middle Miocene 91 

(Quennell, 1956; Freund, et al., 1968; Bartov, 1974; Bartov et al., 1980; Eyal et al., 1981; 92 

Garfunkel 1981) (Fig. 1a). The incision of Wadi (Nahal) Perazim in the Ami'az Plain exposes the 93 

~40 m thick Lisan Formation, consisting mostly of alternating laminae of aragonite and fine 94 

detrital material (e.g., Begin et al., 1974). The aragonite precipitated chemically from the upper 95 

surface waters of Lake Lisan, whereas the fine detritus which contains minerals such as clay, 96 

quartz, calcite, dolomite and aragonite, was carried into the lake by annual floods. The Lisan 97 

Formation also contains several thick (>20 cm) green, clay-rich layers, which are mainly 98 

exposed in the lower and middle part of the section. The upper part of the Lisan Formation is 99 

marked by a ~1 m thick relatively competent gypsum layer. The age of the Lisan Formation, 100 

based on U–Th dating, ranges between ~70 and 14 Ka (Kaufman, 1971; Haase-Schramm et al., 101 

2004). 102 

The paleoseismic record from the Dead Sea basin, based on the breccia layers, reveals numerous 103 

moderate to strong earthquakes during both the late Pleistocene (e.g., Marco and Agnon, 1995; 104 

Begin et al., 2005) and also during the Holocene (Enzel et al., 2000; Ken-Tor et al., 2001; Begin 105 

et al., 2005). The strongest instrumentally recorded historical events in the Dead Sea basin are 106 

the M=6.2 Jericho earthquake of July 11, 1927, whose focal mechanism solution involved a left-107 

lateral motion (Ben- Menahem et al., 1976; Shapira et al., 1993), and the Mw=7.2 Gulf of Aqaba 108 

earthquake of November 22, 1995 (Klinger et al., 1999; Hofstetter, 2003). 109 

 110 

Sheared clastic dikes 111 
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The target section of this study is located on the Ami’az Plain, and is stratigraphically positioned 112 

within the Lisan Formation about 15 m below the top of the formation. The NNE-striking ~100 113 

m long outcrop is located north of the Flour cave (Fig. 1c) with an outstanding 20 m long 114 

exposure at the lower part of a vertical WNW-facing cliff of Wadi Perazim. This section was 115 

studied in great detail, together with several adjacent sections along Wadi Perazim. The main 116 

section consists of a 113 cm thick sequence of Lisan laminae sandwiched between two green 117 

clay-rich layers at the bottom and the top, which are 45 cm and 23 cm thick, respectively.  118 

Tens of sheared clastic dikes cross-cut the laminae between the two green clay-rich layers (Figs. 119 

2-6). The dikes are sub-vertical, up to 7 cm thick (e.g., Fig. 2a) and strike is ~WNW-ESE (Fig. 120 

2c). Another minor set of sub-vertical dikes strikes ~WSW-ENE, and a few inclined dikes are 121 

also observed between the two green clay-rich layers (Figs. 2a, 3). Most clastic dikes are 122 

connected to the green clay-rich layer at the bottom (hereafter termed the ‘lower source layer’) 123 

and consist of the same clay-rich detritus (Fig. 4). Inclined dikes are much more common in the 124 

upper part of the studied section and are connected to the green clay-rich layer at the top 125 

(hereafter termed the ‘upper source layer’). Mutual cross-cutting relations are observed between 126 

the sub-vertical dykes and the inclined dikes, indicating contemporaneous intrusion. A few large 127 

NE- and NW- striking clastic dikes, whose source layers are located in the lower part of the 128 

Lisan section, may be traced vertically for >15 m and cross-cut the entire Lisan section. These 129 

prominent dikes collectively form a semi-radial and tangential dike system within the Ami’az 130 

Plain (Marco et al., 2002; Levi et al., 2006a). 131 

In this study, we distinguish between dike sectors and dike segments. Dike sectors are 132 

disconnected sharp-edged parts of individual dikes that are displaced along slip surfaces. Dike 133 

segments are continuous or discontinuous in a vertical section, but are connected at a certain 134 
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level in the third dimension. Dike segmentation in the Lisan Formation was extensively studied 135 

by Levi et al. (2009), who demonstrated that segmentation formed during dike propagation. The 136 

formation of dike sectors has not previously been documented and is the focus of the present 137 

study. The horizontal slip surfaces cut and truncate the dikes into individual 2 to 40 cm high dike 138 

sectors that can be correlated across slip surfaces based on similarities in their thickness and 139 

orientation (Figs. 2-4). The general sense of shearing as observed in the field is always top-to-140 

the-north (or bottom-to-the-south; Figs. 2-6). The maximum apparent displacement measured 141 

along any individual slip surface is ~47 cm with an average of 15 cm. 142 

The slip surfaces are parallel and sub-horizontal, and generally concordant with the laminae in 143 

the Lisan Formation. They dip <1o toward the NNE and ENE, and form a series of bedding-plane 144 

shear zones (Figs. 2, 5). The ~1 m section between the upper and lower source layers is cut by 145 

eight to eleven slip surfaces, many of which can be continuously traced for more than 20 m. A 146 

light-gray ’gouge‘ up to 10 mm thick (5 mm average) forms narrow zones along the slip surfaces 147 

(Fig. 3). The gouge consists of reworked and crushed laminae of white aragonite and dark gray 148 

detritus, the mixing of which gives rise to its light-gray color. These narrow zones, hereafter 149 

termed gouge layers, can be traced laterally for tens of meters, but infrequently can be 150 

discontinuous (Fig. 4). Their thickness may vary locally and they typically thin next to displaced 151 

dike sectors (Figs. 3, 6). Occasionally, breccia zones up to 20 mm thick accompany the gouge 152 

layers, and consist of visible clasts of laminae and rare fragments of clastic dikes. 153 

 The breccia zones are much shorter than the gouge layers, and extend laterally for several tens 154 

of cm between adjacent displaced dike sectors (Fig. 6b). Irregular breccia zones are also 155 

observed next to dike walls (Fig. 4). Thick (>50 mm) zones of intense brecciation also appear at 156 

the base of the upper source layer (Fig. 5). 157 
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   158 

Displacement profiles 159 

The distributed displacement along a ~20 m long section was documented by correlating and 160 

marking five prominent and continuous slip surfaces with different colored nails. For 161 

convenience, these slip surfaces and associated gouge layers from bottom to top are hereafter 162 

denoted by letters, ‘a’ to ‘e’, respectively (Fig. 7). Apparent displacements along slip surfaces 163 

between matched pairs of adjacent dike sectors were measured by a ruler and caliper. 164 

The displaced sectors of five individual dikes could be fully traced from the lower to the upper 165 

source layers. Other displaced dike sectors could be only partially traced as their lower parts 166 

were covered by alluvial wadi sediments. The location of each clastic dike was documented 167 

along the scanline and denoted by ordered sites between 1 (southernmost site) and 29 168 

(northernmost site). The upper source layer was used as a reference datum for measuring the 169 

relative height of the slip surfaces. The maximum thickness of individual gouge layers was 170 

measured by caliper in order to test the possibility that thicker zones of gouge are associated with 171 

greater amounts of displacement. However, no such correlation was found between these two 172 

variables. 173 

Two sets of displaced dikes, each of which has a different orientation and amount of measured 174 

(apparent) displacements along individual slip surfaces, were used to calculate the net (true) 175 

displacement and its axial direction following the technique presented by Ramsay and Huber 176 

(1987, p. 537). Orientations and apparent displacements of two sets of displaced dikes used for 177 

the calculations are given in Figure 5. The average axial direction is 055-235º, and the true 178 

displacement is 15 cm. Calculations were performed in several localities with different slip 179 

surfaces and in each case remarkably similar axial directions were obtained. Consequently, the 180 
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apparent displacements were corrected into true displacements based on projection of the data 181 

into the true axial direction. Hereafter, the reported displacements are true displacements.   182 

Vertical displacement profiles from different sites of the five fully documented dikes 183 

(incorporating displacements measured along all slip surfaces) are shown in Figure 7a, while 184 

Figure 7b displays similar profiles but accounts only for displacements measured along the 185 

prominent ‘a-e’ slip surfaces. All profiles (excluding site 27) show similarities, characterized by 186 

(1) a triangular or bell-like shape due to maximum displacements at the middle of the section 187 

(i.e., along the ‘c’ or the ‘b’ slip surfaces), (2) a small decrease in displacement from the 188 

uppermost ‘e’ slip surface to the adjacent ‘d’ slip surface, and (3) a decrease in displacement 189 

from the ‘b’ slip surface toward the lower ‘a’ slip surface. The profile in site 27 shows 190 

comparable displacements in the uppermost (‘e’ and ‘d’) and lowermost (‘a’) slip surfaces, but a 191 

dissimilar profile in between. The maximum displacement is located near the middle of the 192 

studied section, but in two profiles (25 and 29) it is located along the ‘c’ slip surface (~60 cm) 193 

whereas in two others (16 and 20) along the ‘b’ slip surface (~50 cm). The displacement profiles 194 

in Figure 7a are more irregular than those in Figure 7b, due to displacements (<40 cm) along 195 

short (a few meters long) slip surfaces, not accounted for by the continuous, (tens of meters long) 196 

slip surfaces. The ‘b’ slip surface terminates northward, and it was not encountered at site 29 197 

(Fig., 7a, b). 198 

The cumulative displacement from lower to upper source layers, for each of the five fully 199 

documented dikes, is shown in Figure 8. The obtained profiles are similar to one another and 200 

show ‘S-like’ shapes. The maximum and minimum cumulative displacements are 2.00 m (site 201 

20) and 1.43 m (site 29), respectively (Fig. 8). The displacement deficit between these sites is 202 

~0.6 m over a lateral distance of ~10 m. 203 



10 
 

Horizontal displacement profiles for each of the five labeled slip surfaces were drawn along the 204 

~20 m scanline (Fig. 9a). The profile along the uppermost ‘e’ slip surface is quite flat with 205 

displacement values between 12 and 24 cm. The profile of the lowermost ‘a’ slip surface is 206 

somewhat similar to that of the uppermost ‘e’ slip surface, but displays slightly higher 207 

(maximum displacement 32 cm) and more variable displacement (Fig. 9a). The ‘d’ slip surface 208 

displays the lowermost displacement values among all profiles (maximum displacement 15 cm), 209 

with a constant decrease southward towards zero displacement at ~3 m (Fig. 9a). The 210 

displacement along the ‘c’ slip surface is most variable, with a maximum of 61 cm and >45 cm 211 

difference between adjacent sites (between sites 25 and 27). The profile along the ‘b’ slip surface 212 

has a triangle or a bell-like shape. The displacement has a maximum of 55 cm at ~8 m and 213 

constantly decreases northward, diminishing to zero at ~17 m. 214 

In order to test the possibility that the displacements along secondary slip surfaces compensate 215 

and account for ’missing‘ displacements and profile fluctuation along the primary slip surfaces, 216 

we added the displacements measured along the secondary slip surfaces to that measured along 217 

the primary (‘a-e’) slip surface in two different ways: (1) the displacement along a secondary slip 218 

surface is added to the nearest primary slip surface (Fig. 9b); (2) the displacement along a 219 

secondary slip surface located between two primary slip surfaces is proportionally partitioned 220 

between them based on the relative distance to the primary slip surfaces (Fig. 9c). The modified 221 

displacement profiles show only minor changes along the ‘a’ and ‘d’ slip surfaces, and no 222 

changes were recorded along the ‘e’ slip surface (Fig. 9b, c). The apex of the modified profiles of 223 

the ‘b’ slip surface was shifted to the south (Fig. 9b, c). The modified profiles of the ‘c’ slip 224 

surface, which initially displayed large displacement deficits (e.g., site 20 at ~9 m) demonstrate, 225 

after modification, a similar magnitude of displacements as their neighboring sites (Fig. 9b, c). 226 
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 227 

AMS analysis  228 

The Anisotropy of Magnetic Susceptibility (AMS) of gouge and breccia layers was measured in 229 

several sites to elucidate the fabrics developed by shearing. For comparison, the AMS fabrics of 230 

undeformed laminated Lisan rock, located away from the shear zones were also measured. A 231 

total of 36 specimens were collected from all outcrops. The samples of site 9 include a mixture 232 

of gouge and laminae in similar proportion because at this site the gouge was relatively narrow 233 

and does not exceed 10 mm. In site 30, a 20 mm thick gouge and breccia layer were sampled.   234 

The AMS was measured at the Geological Survey of Israel rock-magnetic laboratory using a 235 

KLY-4S Kappabridge (AGICO Inc., Brno, Czech Republic). The AMS is described by its three 236 

principal axes, k, k2 and k3, which correspond to the maximum, intermediate and minimum 237 

magnetic susceptibility magnitudes, respectively. These axes with their 95% confidence ellipses 238 

(Jelínek, 1978) were analyzed statistically with Anisoft42 software. Rock-magnetic properties of 239 

the Lisan laminae were studied by Ron et al., (2006) and Levi et al. (2006a, b; 2014). 240 

Figure 10 shows the projections of the AMS principal axes and their 95% confidence ellipses of 241 

the undeformed Lisan laminae and the breccia layer in site 30. The magnetic fabric of the 242 

undeformed Lisan laminae is characterized by well-grouped vertical k3 axes in the center of 243 

projection and scattered k1 and k2 axes along the girdle (Fig. 10a). The large and overlapping 244 

95% confidence regions of k1 and k2 axes represents an AMS fabric typical of ‘deposition’ 245 

(Tauxe, 1998). On the other hand, the fabric of the breccia layer is characterized by well-grouped 246 

k1, k2 and k3 axes with narrow 95% confidence regions (Fig. 10b). This is a distinctive ‘tectonic’ 247 

fabric that evolves due to particle rearrangement and preferred alignment of particles during 248 

shearing (Tauxe, 1998). The magnetic fabric of the gouge and laminae in site 9 (not presented) 249 
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also shows a ‘tectonic’ fabric, that is somewhat masked by the undeformed laminae that were 250 

included in the specimens during sampling. 251 

 252 

Discussion 253 

Brittle shear zone in the Lisan Formation 254 

Tens of small clastic dikes emplaced in the Lisan Formation were sheared into dike sectors along 255 

bedding-plane slip surfaces. Matching of pairs of dike sectors enabled documentation of the 256 

displacement profiles of the sheared dikes in between the two source layers. The result indicates 257 

that the ~1 m section in between the two source layers has characteristics of a brittle shear zone. 258 

In ductile deformation, displacement is continuous across the shear zone, whereas in brittle shear 259 

zones, the deformation is accommodated by several discontinuities or traction surfaces (Ramsay 260 

and Huber, 1983, 1987). The present discontinuities are slip surfaces accompanied by narrow 261 

zones (<10 mm) of reworked Lisan laminae along which displacements were accommodated. 262 

Several observations reveal that the deformation was driven mainly by simple shear 263 

displacement. First, the shear zone is characterized by displacement gradients that vary from top 264 

and bottom towards the center, with maximum displacement gradients (i.e., shear strains) in the 265 

center of the zone (Figs. 7, 8 and the section Displacement Profiles). Second, the sense of shear 266 

(axial direction of 055-235º) is consistent through the shear zone, but values of shear strain for 267 

individual dikes are variable (Fig. 2). Third, inclined clastic dikes which are oblique to the shear 268 

zone are displaced by different amounts, depending upon their initial angular relation to the zone 269 

(Fig. 5). Fourth, the lower and upper source layers seem to be unstrained, although the lack of 270 

markers above the upper source layer and limited exposures underneath the lower source layer 271 
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hamper the possibility of inferring that the simple shear was imposed on a thicker zone. Notably, 272 

simple shearing and the displacement of the clastic dikes could not be the result of flexural-slip 273 

folding, because the flat-laying Lisan beds are regionally almost horizontal. 274 

Our data suggest that the displacement, in the entire brittle shear zone, occurred simultaneously 275 

during a single rather than multiple events of simple shear. First, occasional rotation of dike 276 

sectors in between two parallel slip surfaces is always with the same sense and amount of 277 

rotation. This supports simultaneous slip distribution along these surfaces, because different 278 

senses of rotation would be expected with multiple non-coaxial slip events (Fig. 5). Second, the 279 

vertical displacement profiles are typically regular and similar (Fig. 7). Third, the cumulative 280 

displacement profiles which have a characteristic S-like shape (Fig. 8) could form only if the 281 

amount of displacement along individual slip surfaces were similar and comprise the same sense 282 

of motion. Fourth, calculations of the true axial direction were performed in several localities 283 

with different slip surfaces and in each case remarkably similar results of 055-235o were 284 

obtained. Fifth, narrow zones of gouge from different levels in the section show similar shear-285 

driven magnetic fabrics with co-parallel k1 axes. The mean direction of the k1 axes is 063-243o 286 

(Fig. 10b), which is remarkably similar to the axial direction of the true displacement (055-235o). 287 

It is well known that under conditions of laminar flow, k1 axes are commonly parallel to the 288 

transport direction (Rees and Woodall 1975; Hrouda 1982; Taira 1989; Tauxe 1998). 289 

Commonly, the magnetic fabrics of tectonic mélanges show k1 axes, which are oriented parallel 290 

to the shear direction as estimated from measurements of P–Y intersections (Tokiwa and 291 

Yamamoto, 2012). 292 

 293 

Termination of the brittle shear zone  294 
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The brittle shear zone cannot continue indefinitely and may terminate in either another 295 

deformational structure (e.g., later fault) or in an undeformed Lisan section. While wadi incision 296 

has not yet exposed the southern end of the shear zone, it can be traced for tens of meters 297 

northward. However, the exact termination is difficult to locate due to sporadic screes, highly 298 

weathered zones and inaccessible cliffs above the wadi floor. Tracing the tips of two prominent 299 

slip surfaces (‘b’ and ‘d’; Fig. 9), shows that these individual slip surfaces terminate within the 300 

undeformed Lisan sediments, which thus play a role in absorbing the imposed shear. The 301 

cumulative displacement decreases northward (e.g., ~2 m and ~1.4 m of cumulative 302 

displacement between site 20 and site 29 along the scanline; Fig. 8), suggesting that for constant 303 

rate of decrease the northern end of the shear zone could be located tens of meters from the 304 

studied outcrop. 305 

 306 

Strain partitioning and slip transfer in the brittle shear zone 307 

Most of the displacement within the shear zone is accommodated along the five primary ’a’ to 308 

‘e’ slip surfaces, which can be traced for tens of meters. The maximum shear strains (i.e., 309 

displacement gradients) were observed in the central part of the shear zone. However, the 310 

displacement along slip surfaces may vary considerably, with >60 cm difference between 311 

adjacent sites along the ‘c’ surface. In this part of the shear zone, the displacement was also 312 

accommodated by one to four secondary slip surfaces, which extend horizontally for no more 313 

than a few meters (Fig. 7a). In order to test the possibility that the displacements along secondary 314 

slip surfaces compensate for ’missing‘ displacements and profile fluctuation along the primary 315 

slip surfaces, we added the displacements measured along the secondary slip surfaces to that 316 

measured along the primary slip surface (Fig. 9b, c). The most striking changes are seen in the 317 
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modified profiles of the ‘c’ slip surface. In this profile, sites which initially show large 318 

displacement deficits demonstrate, after modification, a similar magnitude of displacements as 319 

their neighboring sites. These results show that slip was partitioned and transferred from the 320 

primary (‘c’) to secondary slip surfaces. However, the amount of displacement is not anywhere 321 

equal along the modified profiles (i.e., compare displacements at sites 16 and 29). We attribute 322 

these variations to the conceivable bell-like shape of the displacement profiles and displacement 323 

gradients along slip surfaces. This is well supported by the displacement profiles of the ‘b’ and 324 

‘d’ slip surfaces, in which the displacement continuously decreases toward the northern and 325 

southern peripheries (tips) of the slip surfaces, respectively. While a bell-shape profile of the 326 

displacement is commonly described for fault planes (e.g., Barnett et al., 1987; Fossen, 2010), it 327 

has seldom been described on bedding-plane slip surfaces until this study.  328 

The formation of several secondary slip surfaces and transfer of slip from the primary to 329 

secondary slip surfaces occurs where shear strain is relatively high. Thus, formation of new 330 

secondary slip surfaces and slip transfer were enhanced by shear strain at the center of the brittle 331 

shear zone. Slip transfer between primary and secondary faults was previously reported at a 332 

much larger scale in shear zones (e.g., Eyal et al., 1986; Reheis et al., 1996; Norris and Cooper, 333 

2001; Mouslopoulou et al., 2007). Recently, Eyal and Eyal (2015) showed that along the 334 

southwestern DST in Sinai (Egypt), kilometer-scale horizontal slip is transferred between strike 335 

slip faults via secondary strike-slip faults with measurements of displacement as accurate as ±50 336 

m. In the present study, the measurement of meter-scale bedding-plane slip and slip transfer 337 

could be as accurate as 1 cm, based on excellent vertical markers (i.e., clastic dikes) and the size 338 

of the studied outcrop. The secondary slip surfaces are not observed splitting from the primary 339 



16 
 

slip surfaces. Hence, it is more likely that high shear strain along primary slip surfaces initiated 340 

off-plane slip on adjacent, detrital-rich layers, thereby forming secondary slip surfaces. 341 

 342 

Origin of the brittle shear zone 343 

The analysis of the displacement profiles and field observations suggests that the brittle shear 344 

zone was formed during a coseismic event in the Dead Sea basin. This issue is discussed below. 345 

A series of slump sheets that translate towards the NE down a very gentle (<1°) slope are 346 

identified in Wadi Perazim to the south of the Flour cave (Alsop and Marco, 2012b). Hence, 347 

slump sheets do not interfere with the brittle shear zone located north of the Flour cave. It is 348 

unlikely that the formation of the brittle shear zone was driven by surficial slumping. First, 349 

small-scale (<10 cm), individual syn-depositional folds exposed within the shear zone are cross 350 

cut by clastic dikes (Fig. 6a), indicating that sediment injection postdate syn-depositional 351 

structures. Second, the underlying source layers of the injection structures should be buried at 352 

least several meters below the surface in order to satisfy conditions of overpressure and 353 

fluidization (Levi et al., 2008). This implies that thickness of the package of Lisan laminae that 354 

should slump to cause the horizontal shear was significantly larger (>1 m) than that identified 355 

anywhere along the margins of the Dead Sea, and may therefore also be more lithified. Third, the 356 

base of the oldest slump sheet and the top of the shear zone are located ~10 m and 15 m below 357 

the present surface, respectively. It is less likely that a surficial slumping process would cause a 358 

brittle failure several meters below the surface. Fourth, if the shear zone was part of toe of the 359 

slump then NE-SW contraction is expected. However, the brittle shear zone shows NE-SW 360 

elongation (i.e, two points along individual dikes were extended along the 055-235o axial 361 

direction), suggesting that it would not be located towards the contractional toe of the overlying 362 



17 
 

slumps. Fifth, if a package of Lisan laminae slides on top of each other downslope, the 363 

displacement should increase towards the NE. However, the measured displacement in the brittle 364 

shear zone actually decreases towards the NE (Fig. 8). Sixth, in one representative outcrop the 365 

axial direction of the true displacement (055-235º) deviates by more than 50o from the local dip 366 

of the Lisan beds. In this case, gravity-driven sliding is unlikely. Seventh, the analysis of the 367 

stress conditions during horizontal shearing (see below) supports the possibility that the shearing 368 

of the clastic dikes occurred after the retreat of Lake Lisan post 14 Ka, when gravity-driven 369 

sliding of sediments became unlikely. 370 

Begin et al. (2005) simulated the effects of strong earthquakes in Lake Lisan, and showed that 371 

seiche waves might form. Seiche-induced shear at the bottom of the lake could enhance the 372 

turbulent characteristics of the Lisan folds, and also lead to a component of reworking in the 373 

Lisan Formation (Wetzler et al., 2010; Alsop and Marco, 2012a). However, the influence of 374 

seiches or severe storm waves as triggering agents for dike shearing can be excluded because (1) 375 

dikes were sheared at least several meters below the bottom of the lake and the section directly 376 

above them is not convoluted (folded); (2) the vertical displacement profiles show maximum 377 

shear in the center of the section, rather than the expected continuous decrease of shear from the 378 

bottom of the lake downwards; and (3) the orientation of most dike sectors remains consistently 379 

subvertical, indicating that no folding occurred after dike injection. 380 

Late fluidization of the clay-rich source layers might induce shearing in the Lisan host rock by 381 

(1) reducing the effective normal stress, and (2) increasing the shear stress (strain) along weak 382 

discontinuities (i.e., detrital-rich laminae) during overpressure. Both mechanisms may result in 383 

shear stress exceeding the strength of the Lisan laminae. An analog could be the failure of weak 384 

bedding-planes in reservoirs by hydro-fracturing that arises due to injection-induced shearing 385 
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during production of hydrocarbons (Dusseault et al., 2001). In this scenario, at least two phases 386 

of fluidization and subsequent dike emplacement should occur. The first phase is represented by 387 

the sheared dikes and the second by a set of long straight clastic dikes that cross cut the dike 388 

sectors and the entire overlying section, indicating that they were emplaced after the formation of 389 

the brittle shear zone. The second phase of fluidization associated with the second set of long 390 

clastic dikes, might subsequently induce shear in the overburden. However, this situation is 391 

unlikely because (1) the long clastic dikes are exceptional straight and not segmented, indicating 392 

that their injection occurred after shear stress had ceased; and (2) reduction in effective stress and 393 

increase of shear stress due to fluidization would form higher shear displacement close to the 394 

source layer, contradicting the observed displacement profiles that show higher shear 395 

displacement values in the middle of the brittle shear zone (Fig. 7). 396 

The evidence for concurrent displacement along slip surfaces suggests that the brittle shear zone 397 

was formed during a coseismic event in the Dead Sea basin. We qualitatively assume a brittle 398 

failure (i.e., seismic event) on one of the first-order faults in the western boundary fault zone of 399 

the Dead Sea basin (Fig. 11) that gives rise to seismic waves in the adjacent Lisan sediments. 400 

The seismic waves form transient stress, which moves through the rock and adding up to the 401 

initial static stress. Detrital-rich layers, mainly composed of clays, in the Lisan section have quite 402 

low shear strength (Arkin and Michaeli, 1986), and at some point the change of the initial static 403 

stress by the transient stress may lead to concurrent shear failure along several clay horizons. In 404 

favorable conditions, the transient, coseismic stress state would facilitate the growth of a brittle 405 

shear zone, in which the direction of imposed simple shear is corroborated with the direction of 406 

the body waves. Price (1968) and Price and Cosgrove (1990) considered the formation of 407 

secondary fractures next to a first-order fault by analyzing the effect of transient stress on the 408 
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adjacent rock. They preferred to invoke transient stress that was developed by the P-waves, 409 

because the velocity of S-waves is much smaller than that of P-waves. However, transient stress 410 

due to S- and surface waves might be more relevant to the formation of bedding-plane slip, 411 

because these waves are expected to cause horizontal-parallel shearing near the surface. In the 412 

following section, we quantitatively analyze the possibility that transient stress would cause 413 

failure along bedding-planes in the Ami’az basin. 414 

 415 

Stress conditions during horizontal shearing  416 

Based on the previous discussion, horizontal shearing of clastic dikes is considered in terms of 417 

three sequential stages: (1) static state, in which the Lisan laminae are intact, although weak 418 

zones of detrital laminae exist and are prone to failure, (2) dynamic state, in which seismic waves 419 

radiate from a source located along the Dead Sea Transform, either within the Ami'az basin or 420 

several km away from it (Jacoby et al., 2014). The seismic waves arriving at the basin are 421 

reflected back and forth, and out of the multiple possible reflection paths some are horizontal; 422 

and (3) dynamic loading, in which amplified and possibly converted surface waves result in 423 

frictional shear failure of clastic dikes along horizontal bedding planes. 424 

The static state is considered by using the Coulomb failure criterion (Jaeger and Cook, 1979) for 425 

three geologic settings (Table 1): Setting A - the Lisan laminae are located 10 m below the 426 

bottom of the lake and are overlain by a 80 m deep water column; Setting B - the Lisan laminae 427 

are located 10 m below the bottom of the lake and are overlain by a 50 m water column; and 428 

Setting C - the Lisan laminae are located 15 m below the surface. The first two geologic settings 429 

represent ‘wet conditions’, which account for the fluctuation of the Lake Lisan water level 430 

(Bartov et al., 2002). The third setting represents ‘dry conditions’, which relates to the recession 431 



20 
 

of Lake Lisan post ~14 Ka. The shear strength of the laminated sequence of the Lisan Formation 432 

is influenced by its composition, grain size and texture. The laminated nature of the rock 433 

provides numerous potential slip surfaces, reducing the overall shear strength of the rock. An 434 

analysis of the Coulomb failure criterion of the laminated Lisan sequence in ‘dry conditions’ was 435 

carried out experimentally by Arkin and Michaeli (1986). 436 

The Mohr-Coulomb failure criterion relates the failure plane shear stress, τs,to normal stress σns 437 

𝜏𝑠 = 𝐶𝑜 + 𝜇𝜎𝑛𝑠,           (1) 438 

where Co is the cohesion, and μ is the coefficient of internal friction. The static stress conditions 439 

for the three geologic settings is calculated based on the values provided by Arkin and Micaheli 440 

(1986) for the laminated Lisan sequence (Table 1). 441 

The normal stress component acting on the horizontal bedding plane is calculated based on the 442 

weight of the overburden above the bedding plane, i.e., column of lake water and weight of the 443 

Lisan rock (Table 1). The shear stress acting parallel to the bedding plane and the abscissa in 444 

Mohr’s diagram is calculated based on the relation sns where is Poisson’s ratio of 445 

clay materials. The calculations show that settings A, B and C are on the verge of shear failure 446 

(Fig. 12). 447 

The dynamic state is considered during an earthquake, in which significant horizontal forces are 448 

formed. Ground motion amplification in the Ami’az basin could be the result of several 449 

mechanisms such as an edge effect generated by the border faults of the basin, and different 450 

densities of rocks in the basin (mainly friable clastics) and out of it (mainly dolostones), and 451 

geometrical focusing due to basin effect (Shani-Kadmiel et al., 2012). The amplification of 452 

ground motion is formed in a special geological basin structure and lithologic section (e.g., soft 453 
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rocks with low seismic velocity that overlie hard rocks with a high seismic velocity). Hence, the 454 

basin effect leads to amplification of ground motion and prolongs the duration of strong motions, 455 

which increases seismic loading and the formation of large displacement surface waves.  456 

It is unknown which type of seismic wave was associated with the shearing of the clastic dikes. 457 

Yet, we can calculate the horizontal particle displacement amplitude Da based on the relation  458 

𝑉𝑎 = 𝐷𝑎𝑓,           (2)  459 

where Va  is the peak horizontal ground velocity and f is the shear-wave frequency. For a range of 460 

Va=0.1-0.5 m/s and f =0.3-0.9 Hz suggested by Shani-Kadmiel et al. (2012) for the Ami’az Plain, 461 

the calculated Da is comparable to the observed horizontal displacements. Hence, the observed 462 

shear displacements are physically sound and may have occurred due to passing waves and their 463 

amplification. 464 

We consider the potential of dynamic loading associated with surface waves to form frictional 465 

failure on critically stressed Lisan laminae using the Coulomb failure criterion. We limit our 466 

analysis to initially static stress fields and surface-wave dynamic stress acting on horizontal 467 

surfaces. The analysis was formulated by Hill (2008, 2012), who calculated the dynamic stress 468 

pulse of surface waves that triggered frictional failure. For the present implication of Hill’s 469 

approach, the dynamic triggering is based on the premise (a) the laminated Lisan sequence was 470 

at least locally, in a state of near incipient failure and (b) a component of the dynamic stress 471 

field, δ(t), temporarily nudges the total stress acting on an optimally oriented surface greatly 472 

beyond the Coulomb failure threshold. In the present case study, the optimally oriented and 473 

mechanically weak zone is horizontal detrital-rich Lisan laminae, with the interfaces between 474 

these and aragonite laminae probably representing the most susceptible surface for shear failure. 475 
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Dynamic triggering implies that transient stress carried by seismic waves may lead to shear 476 

failure. The range of dynamic stress triggering greatly exceeds that of static stress triggering. 477 

Generally, the surface wave stress amplitude falls in the range of 0.5-1 MPa. Dynamic stress, d, 478 

of shear waves can be estimated by (e.g., Hill, 2012 a, b): 479 

𝜏𝑑 = 𝐺𝑉𝑎/𝑉𝑠,            (4)   480 

where G is the shear modulus of the rock and Vs is the shear wave velocity. We calculated the 481 

dynamic stress based on representative values of Va=0.1-0.5 m/s and f=0.3-0.9 Hz (Shani-482 

Kadmiel et al., 2012, Vs=100 m/s (e.g., Aboye et al., 2011; Bessason and Erlingsson, 2011) and 483 

G=100 MPa (Levi et al., 2008 and references therein) and obtained a dynamic stress of d≈ 0.1-484 

0.5 MPa. 485 

During the passage of surface waves, the local stress field fluctuates in both amplitude and 486 

orientation. Hill (2012) defines a time-dependent dynamic change in Coulomb failure stress 487 

δCFF(t) that acts during the passage of seismic waves: 488 

𝛿𝐶𝐹𝐹(𝛾, 𝑡) = 𝛿𝜏𝑑(𝛾, 𝑡) − 𝜇𝛿𝜎𝑛𝑑(𝛾, 𝑡),        (5) 489 

with d(γ, t) and σnd (γ, t) being the time-dependent shear stress and normal stress, respectively, 490 

imposed on the mechanically weak plane by seismic waves and γ is the incident angle from the 491 

source.  492 

The particle motion is depth-dependent. Thus, the amplitude of both τd (γ, t) and σnd (γ, t) 493 

changes with depth. Nevertheless, in the present case study, we impose σnd = 0.1 and 0.5 MPa, 494 

assuming that the stress amplitude of the surface waves are at least equal to that of the body 495 

waves. 496 
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For several wave incidence angles between 0 and 360º and imposing θ=60º (the angle between 497 

σnd and σ1), the values of δCFF (γ, t) for settings A-C were calculated (Fig. 12). Figure 13 498 

demonstrates the distribution of δCFF values calculated for setting A (Polygon #1), B (Polygon 499 

#2) and C (Polygon #3) for 0<γ<360º and 0.1≤d ≤0.5 MPa. A larger polygon with positive 500 

values of δCFF is more likely interconnected to dynamic triggering. 501 

Polygon #1 is relatively small and narrow with negative δCFF values. Polygon #2 is larger than 502 

Polygon #1 and one-third of it has positive δCFF values. Polygon #3 is the largest and almost 503 

entirely consists of positive values. This indicates that almost all of the observed displacements 504 

presented by Polygon #3 can be explained by dynamic triggering and frictional failure. Notably, 505 

setting C (‘dry conditions’) has a greater tendency to fail under a range of dynamic stress than 506 

settings A and B (‘wet conditions’). This tendency is hold even for the case of τd>0.5 MPa (and 507 

Va>0.5 m/s). Hence, the above calculations seem to support the possibility that the shearing of 508 

the clastic dikes occurred after the retreat of Lake Lisan post 14 Ka. We conclude that dynamic 509 

triggering provides a viable mechanism to explain shearing along bedding planes and formation 510 

of coseismic deformation. 511 

 512 

Age of the brittle shear zone 513 

The age of the Lisan formation, ranges between ~70 and 14 Ka (Kaufman, 1971; Haase-514 

Schramm et al., 2004). Based on the stratigraphic position of the Lisan section, the formation of 515 

the shear zone postdated ~30 Ka. The age of the long and undeformed dikes and their injection, 516 

based on optically stimulated luminescence (OSL) dating of the clastic-dike material ranges 517 

between 15 and 7 Ka, (Porat et al., 2007). These ages provide an approximate time interval for 518 

the emplacement of the present studied clastic dikes, which are older than 7 Ka (youngest age of 519 
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long and undeformed dikes) and younger than 30 Ka (depositional age of the Lisan Formation). 520 

Hence, it is likely that the coseismic event that initiated the formation of the brittle shear zone 521 

occurred during the Holocene, predating 7 Ka. The Holocene Ze’elim Formation exhibits 522 

plentiful seismites (e.g., Bookman et al., 2004), indicating that late Pleistocene to Holocene 523 

earthquakes have repeatedly affected the lake deposits on the western margin of the Dead Sea 524 

basin. Hence, we cannot reject the possibility that other shear zones in different locations and 525 

levels of the Lisan Formation exist, but so far remain undiscovered.  526 

 527 

Conclusions 528 

The well-laminated lacustrine Lisan Formation in the Ami’az basin contains numerous 529 

horizontal displaced dike sectors that form a prominent ~1 m thick brittle shear zone ~15 meters 530 

below the present surface (i.e., top of the Lisan Formation). The brittle shear zone comprises up 531 

to eleven slip surfaces, five of which are primary discontinuities that can be traced for tens of 532 

meters. Displacements along individual slip surfaces are up to 0.6 m and the total displacement 533 

across the shear zone is up to 2.0 m. Field observations and displacement profiles and gradients 534 

indicate that the brittle shear zone formed by simple shear. Deformation was associated with slip 535 

partitioning and transfer between primary and secondary slip surfaces, mainly at the center of the 536 

zone. Evidence for concurrent displacement along slip surfaces suggests that the brittle shear 537 

zone was formed during a coseismic event in the Dead Sea basin. It is likely that failure during a 538 

DST-related earthquake results in body or surface waves in the adjacent Lisan rock. 539 

Subsequently, these waves form transient stress, which moves through the rock and is added to 540 

the initial static effective stress. Detrital-rich layers in the section of the Lisan Formation have 541 

low shear strength. Therefore, a change of the initial static stress by the transient stress might 542 
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lead to concurrent horizontal shear failure along several of these layers during the late 543 

Pleistocene to Holocene. The exceptional quality of exposures and markers helps to document 544 

the effect of near-surface horizontal shearing due to a single coseismic event. Displacement 545 

profiles show the shearing distribution along horizontal slip surfaces, and provide indications for 546 

slip transfer and partitioning due to a strong earthquake. We suggest that displacement along 547 

horizontal bedding planes is a viable mechanism to absorb coseismic deformation in well-bedded 548 

strata near the surface. However, such deformation is typically difficult to measure in paleo- and 549 

recent earthquakes due to a lack of adequate exposures and markers. 550 
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Figure Captions 731 

Figure 1: Location maps. (a) general plate tectonic configuration of the sinistral Dead Sea 732 

Transform (DST), (b) regional setting of the Dead Sea basin. Solid lines – major faults at the 733 

surface; dashed lines – major faults in the subsurface (after Sneh and Weinberger, 2014). The 734 

Ami’az Plain study area is marked by a rectangle. (c) enlargement of the study area. Outcrops are 735 

located next to the Flour cave in Wadi Perazim. Traces of several first-order clastic dikes are 736 

marked by solid lines (after Marco et al., 2002). 737 

 738 

Figure 2: (a) Photograph of a sheared (top-to-the-north) clastic dike (site 16). Numbers mark 739 

nine individual dike sectors that are displaced along horizontal slip surfaces that are sub-parallel 740 

to the bedding. Locations of underlying and overlying source layers are indicated. (b) Schematic 741 

diagram illustrating a clastic dike displaced by bedding parallel slip surfaces between two source 742 

layers. (c) Stereoplot of poles to dike orientations (N=24) measured from sites along a ~50 m 743 

scanline, north of the Flour cave (see Fig. 1c for location). The majority of dikes trend WNW-744 

ESE, whereas a minority strike WSW-ENE. Contour intervals are 5% per 1% area. 745 

 746 

Figure 3: Inclined clastic dike displaced along a horizontal slip surface (top-to-the-north), 747 

associated with a bedding-parallel, gray gouge layer. The gouge thins beneath the northern dike 748 

sector. Inset: general view showing an array of three dike sectors displaced along two slip 749 

surfaces. Coin diameter is 25 mm and position of main photograph is boxed. 750 

 751 
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Figure 4: Photo (mirrored) and drawing of a stock-like structure in the lower source layer, which 752 

connects upward to a sub-vertical clastic dike. The upper part of the dike, not seen in the figure, 753 

is displaced (top-to-the-north) along a prominent and continuous slip surface associated with a 754 

several mm thick gray gouge layer. Several gouge layers marking discontinuous slip surfaces, 755 

where offset of the dike is less than the width of segment, do not cross the dike (e.g. 756 

displacement of the lowermost segment is less than the width of the dike). A zone of brecciation 757 

adjacent to the dike wall is also indicated.  758 

 759 

Figure 5: Photo (mirrored) and interpretative line drawing of a displaced clastic dike (top-to-the-760 

north), and five parallel, sub-horizontal slip surfaces that are marked by several mm thick gouge 761 

layers. Two sets of clastic dikes with different orientation and thickness are marked with light 762 

(dip to ENE) and heavy (dip to WSW) gray. They are displaced along individual slip surfaces 763 

and serve to calculate the true axial direction and net displacement (see text). A dike sector at the 764 

center of the photo is rotated relative to other sectors of the same dike, in between two adjacent 765 

slip surfaces, suggesting simultaneous shear along adjacent slip surfaces. Orientations of dike 766 

sectors are labeled (dip/dip direction), indicating that displacements are apparent in this view. 767 

Younger NE-dipping normal faults displace both laminae, clastic dikes and gouge layers. 768 

 769 

Figure 6: (a) Two dike sectors displaced across three sub-horizontal gouge layers marking slip 770 

surfaces. An angular enclave of folded Lisan laminae is clearly visible within a dike sector. The 771 

sharp contacts between the host rock and the enclave indicate that the dike was emplaced when 772 

the Lisan host rock was brittle and already folded. Dike smearing along the uppermost slip 773 

surface is indicated. The gouge thins underneath both segments. Coin diameter is 25 mm; (b) 774 
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Two displaced dike sectors. Lisan breccia with a fine gouge along the upper surface marks a sub-775 

horizontal shear zone. Brecciation is most prominent between the two dike sectors. Coin 776 

diameter is 25 mm. 777 

 778 

Figure 7: Vertical displacement profiles of five displaced clastic dikes offset along five major 779 

slip surfaces between the lower and upper source layers that serve as reference levels. (a) All true 780 

displacements, including those along short slip surfaces are shown. Five prominent slip surfaces 781 

extending for tens of meters are denoted by ‘a’ (lowermost surface), ’b’, ’c’, ‘d’ and ‘e’ 782 

(uppermost surface). (b) Only true displacements computed along prominent slip surfaces 783 

(labeled by letters) are shown. Locations of sites along the N-S scanline transect are indicated. 784 

 785 

Figure 8: Cumulative (total) displacement profiles computed between the lower and upper source 786 

layers for five displaced clastic dikes. The top of the lower source layer serves as a reference 787 

level. Locations of sites along the N-S scanline transect are shown at the bottom. The cumulative 788 

displacement decreases northward and therefore the displacement gradient (total displacement 789 

divided by height) between the two source layers decreases from 1.75 (site 20) to 1.25 (site 29). 790 

Notably, the displacement gradients are much higher in the middle part of the section. 791 

 792 

Figure 9: (a) Displacement profiles along the five prominent slip surfaces noted in the text. Sites 793 

13 and 29 are located at the southernmost and the northernmost ends of the scanline, 794 

respectively. (b) Modified displacement profiles in which displacements along short ’unlabelled‘ 795 

slip surfaces are added to the nearest labeled‘ slip surface. (c) Modified displacement profile in 796 
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which the displacement along a secondary slip surface located between two primary slip surfaces 797 

is proportionally partitioned between them based on the relative distance to the primary slip 798 

surfaces. Arrows indicate the relative change in displacement. The ‘e’ slip surface has not been 799 

changed. In site 20, secondary slip surfaces accommodate two thirds of the cumulative 800 

displacement at the zone next to the ‘c’ slip surface. In site 25, only one secondary slip surface 801 

exists (Fig. 7) and accommodates one third of the cumulative displacement next to the ‘c’ slip 802 

surface. In site 27, the displacement deficit along the ‘c’ slip surface is the maximum. 803 

 804 

Figure 10:  Lower-hemisphere, equal-area projections of AMS principal axes and their 95% 805 

confidence ellipses of (a) undeformed Lisan laminae, (b) ~20 mm thick gouge and breccia 806 

sampled from site 30. k1. k2, k3 axes are marked by squares, triangles and circles, respectively. 807 

 808 

Figure 11: Schematic sketch illustrating the orientation and kinematics of displaced clastic dikes 809 

in the Ami’az basin adjacent to the Western border fault zone and the Sedom diapir in the 810 

southwestern margin of the Dead Sea basin. The thickness of the Lisan Formation is highly 811 

exaggerated.  Notably, the maximum displacement of the sheared dike is located near the middle 812 

of the Lisan shear zone. 813 

 814 

Figure 12: Mohr’s diagram for static and dynamic loading. Static states of stress for geologic 815 

setting A, B and C are illustrated by circles. The solid line represents the Coulomb failure 816 

criterion for the Lisan Formation and the dashed line the failure criterion for the static stress state 817 

of geologic setting A (see Table 1). The effect of the dynamic loading is illustrated for geologic 818 
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settings A and C based on Hill’s (2008) method. The perturbation of the dynamic stress, τd, σnd 819 

and 2γ are imposed on the two static circles. The two horizontal dashed lines show the CFF(t) 820 

values of geologic setting A; positive values are above the failure criterion for static condition 821 

and negative values are below the line. 822 

 823 

Figure 13: Range of possible CFF(t) values versus range of 0 <γ<360º calculated using Hill’s 824 

(2008, 2012) method. The three polygons mark the CFF(t) values withd=0.5 MPa andd=0.13 825 

MPa. Polygons #1 #2 and #3 represent geologic settings A, B and C, respectively. 826 
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Geologic 

setting 

Lake 
depth 

(m) 

Lisan 
thickness  

(m) 

Cohesion 
Co, 

* 

(MPa) 

Angle of 

internal 

friction, 
Ø 

*, (º) 

Coefficient 
of internal 

friction,  μ 

Density 

of Lake 

Lisan, † 
(kg/m3) 

Density 

of Lisan 
Fm., 

*,§ 
(kg/m3) 

Poisson’s 

ratio, § 

n 

(MPa) 


(MPa) 

 
σ1 

(MPa) 

 
σ3 

(MPa) 

 

Shear   

,  modulus
§G,  

(MPa)  

A 80 10 0.065 33 0.53 1078 1650 0.4 1.01 0.67 2.16 0.62 100 

B 50 10 060.0 33 0603 1078 0.00 060 0.69 0.46 1.48 0.43 000 

C 0 15 060.0 33 0603 1078 0.00 060 0.24 0.16 0.52 0.15 000 

  

* Arkin and  Micaheli (1986) 

† Starinsky (1974)  

§ Levi el al. (2008) 

Table 1. Static stress and elastic parameters for geologic settings A-C 
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