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1Institute for Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen, UK
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The explosive percolation (EP) paradigm is used to propose a new method (‘explosive immuniza-
tion’) for immunization and targeted destruction of networks. The ability of each node to block
the spread of an infection (or to prevent the existence of a large cluster) is estimated by a score.
The algorithm proceeds by first identifying low score nodes that are not vaccinated / destroyed,
similarly as links that do not lead to large clusters are first established in EP. As in EP, this is done
by selecting the worst node from a finite set of randomly choosen ‘candidates’. Tests on several real-
world and model networks suggest that the method is more efficient and faster than any existing
immunization strategy. Due to the latter property it can deal with very large networks.

Network robustness is a major theme in complex-
systems theory that has attracted much attention in re-
cent years [1]. Two specific problems are immunization
of networks against epidemic spreading (of infections dis-
eases, computer viruses, or malicious rumors), and the
destruction of networks by targeted attacks. At first sight
these two look completely different, but they can actu-
ally be mapped onto each other. The key observation is
that infections spreading in a population use the network
of contacts between hosts for their spread. Accordingly,
from the viewpoint of the infection, immunization corre-
sponds to an attack that destroys the network on which
it can spread. Vaccination of hosts (network nodes) is
often the most effective way to prevent large epidemics.
Other strategies include manipulating the network topol-
ogy [2–4] or introducing heterogeneity in transmission of
the infection [5–7].

The main task both in network immunization and in
targeted attacks is to find those nodes (“blockers”) whose
removal is most efficient in destroying connectivity. Im-
portant blockers (“superblockers”) are often assumed [8]
to be equivalent to “superspreaders”, i.e. the most effi-
cient nodes in spreading information, supplies, market-
ing strategies, or technological innovations. Identifying
superspreaders is the subject of a vast literature [1] but,
as pointed out in, e.g., Ref. [9], identifying superblock-
ers is not the same as finding superspreaders. Indeed, a
node in a densely connected core will in general be a good
spreader [10], but it will be in general a very poor blocker,
since the infection can easily find ways to go around it.

Here we devise a strategy which identifies superblock-
ers. Vaccinating such nodes provides an efficient way to
fragment the network and reduce the possibility of large
epidemic outbreaks. We focus on “static” immunization
which aims at fragmenting the network before a possi-
ble outbreak occurs (“dynamical” immunization strate-
gies where one tries to contain an ongoing epidemic were
studied, for instance, in [11]). In our approach, the net-
work consists of N nodes out of which qN are vaccinated;
the rest are left susceptible to the infection. The size of an
invasion will depend on the fraction of immunized nodes,

q, the type of epidemic (e.g. SIR or SIS [12]) and its
virulence. However, the maximum fraction of nodes in-
fected at any time will always be bounded by the relative
size S(q) of the largest cluster of susceptible nodes, G(q).
Keeping S(q) as small as possible will therefore ensure
that epidemic outbreaks of any type are as small as they
can be for a vaccination level q [8, 13]. For large net-
works, N → ∞, the aim of immunization is to fragment
them so that S(q) = 0 [8]. The immunization threshold
qc is defined as the smallest q-value at which S(q) = 0.
Although qc is not well defined for finite N , it can never-
theless be estimated reliably. Our algorithm deteriorates
only when the network is too small (in this case, how-
ever, an extensive search of the optimal solution can be
performed). In general, the smaller qc, the more effective
is the corresponding strategy, since the epidemic can be
prevented by vaccinating a smaller set of nodes.

The identification of superspreaders is in general an
NP-complete problem [14], and most likely this is also
true for finding superblockers. Therefore, heuristic ap-
proaches have to be used. Typically one defines for each
node a score based on local [15, 16] or global proper-
ties [8, 13, 17]. Here we use two different scoring schemes
for q > qc and q < qc, which both combine local and semi-
local information. We refer to our approach as “explosive
immunization” (EI), since it is based on the concept of
explosive percolation (EP) proposed by Achlioptas et al.
[18]. Although EP has been discussed in a large number
of papers because of its very unusual threshold behavior,
so far no application of EP had been proposed. To our
knowledge, EI is the first problem where it is practically
used.

In the following we test the performance of EI for both
real-world and model networks. It gave in all cases by
far the lowest values of qc, compared to all other strate-
gies we are aware of. It also gives the best values of
S(q) in most cases, although there might be values of q
where other strategies perform better. In fact, follow-
ing the mainstream in network studies, we focused on
S(q), which corresponds to outbreaks starting in G(q).
However, outbreaks can also start in any other cluster:
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an improved success measure S̄(q) can be defined which
takes this possibility into account. If this is used, our
algorithm turns out to be yet more efficient, and is op-
timal even when S(q) might suggest that it is not (see
Appendix A). In addition to being very efficient, our al-
gorithm is also extremely fast, if implemented using the
Newman-Ziff percolation algorithm [19].

Explosive immunization: The basic concept of EP
[18] is as follows. We consider site percolation transi-
tion on a network on which all links are already present,
but nodes are still to be inserted one by one (note that
Achlioptas et al. [18] studied bond percolation, but the
basic concept is the same for site percolation; the original,
bond-based, version can be used directly for immunizing
bonds instead of sites).

While nodes are chosen randomly in ordinary percola-
tion, this is done in a two-step way in EP:

(a) One first selects m “candidate” nodes (m = 2 was
used in [18]; we shall use typically m ∼ 103), and deter-
mines for each candidate a score that should indicate its
success in creating a big cluster. Various scores were used
in [18] and in papers following it. The simplest one is the
size of the cluster formed by adding the candidate, but
we had best results with the more sophisticated scoring
scheme discussed below.

(b) In a second step, one selects from the m candidates
the one with the worst score, i.e. the one which would
delay the formation of a large cluster as long as possible.
Once all low-score nodes have been chosen, one has to use
high-score candidates, and the cluster size may increase
explosively.

When interpreted as an immunization strategy, this
means that one first identifies the nodes that are poor
blockers for infection – either because they have small
degree or because they do not join already large clusters
– and can remain unvaccinated. As long as these are few,
and the rest are immunized, no big epidemic can occur.
Only when nodes are identified as poor blockers but are
not, one starts to form larger clusters of susceptible nodes
that can be invaded by an epidemic. Thus we first assume
that all nodes are vaccinated (i.e. we start from q = 1)
and then “undo” the immunization of nodes identified by
the EP algorithm.

A similar strategy was proposed in [13], but here we
introduce several important modifications. In particu-
lar, we show that using different scores depending on the
value of q leads to better results than following more
traditional strategies based on a single score for all q.
Also, all nodes were used as candidates in [13] and a slow
algrithm for finding the worst was used, both of which
make the algorithm unsuitable for large networks.

The first score, typically used for values of q where no
giant cluster exists, is defined as

σ
(1)
i =

∑
C⊂Ni

(
√
|C| − 1) + k

(eff)
i , (1)

a

FIG. 1. Instance of possible configurations encountered dur-
ing the “de-immunization” process. White and black circles
correspond to susceptible and vaccinated nodes, respectively.
Node a is a potential candidate for being de-immunized. As-
suming that b is a hub and c is a leaf, then Ma = 1 and

La = 1. From Eq. (2) it follows that k
(eff)
a = 3.

whereNi is the set of all clusters linked to i , |C| is the size

of cluster C, and k
(eff)
i is an effective degree of i defined

below. The square root in the first term on the r.h.s. is
used in order not to give too large weight to large clusters,
and subtracting 1 from it avoids counting leaves.

In the effective degree we want to discount both leaves
(since they don’t contribute much to spreading) and hubs
(because they will presumably be vaccinated anyhow).

A hub is defined as a node with k
(eff)
i ≥ K with some

arbitrarily chosen cutoff K. We will see later that best
results typically are obtained with K ≈ 6. Formally,

k
(eff)
i is given by the self-consistent equation

k
(eff)
i = ki − Li −Mi({k(eff)

j }) , (2)

where ki is the bare degree of node i, Li is the number of
leaves and Mi is the number of hubs attached to i. It is
calculated at the start of the simulation iteratively with

forward substitution, starting with k
(eff)
i = ki for all i.

An example of how k
(eff)
i is determined is given in Fig. 1,

under the assumption that node b is a hub.
Notice that, according to Eq. (2), nodes surrounded

by hubs may play a minor blocking role and can be left
unvaccinated, as compared to nodes without hub neigh-
bors. This is also verified numerically for Erdös-Rényi
(ER) networks (Appendix B). This idea is similar to the
score used in [15], but it is opposite of what is assumed
e.g. in page rank [1] and in the “collective influence”
defined in [8].

As we will see, using the score σ
(1)
i yields excellent

estimates of the critical point qc, even though in finite
networks, the onset of a giant cluster is not precisely
defined, and we approximate it by a value q∗ where
S(q∗) ≈ 1/

√
N .

Below qc, the score defined in Eq. (1) leads to big
jumps that arise from the joining of large clusters. For
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very small q, finally, after the last two large clusters have
joined, many single-node clusters survive that had made
up the boundaries between them. The vaccination of
these is very inefficient. In an optimal strategy we would
like to immunize even for very small q clusters of reason-
ably large size, i.e. we would like to prevent intermediate
size clusters from joining too early.

For q < q∗ ≈ qc we thus switch to a different score σ
(2)
i

defined as

σ
(2)
i =


∞ if G(q) 6⊂ Ni,
|Ni| else, if arg mini |Ni| is unique,

|Ni|+ ε|C2| else.

(3)
Here |Ni| is the number of clusters in the neighborhood
of i, C2 is the second-largest cluster in Ni, and ε is a small
positive number. Thus we select only candidates which
have the giant cluster in their neighborhood; among these
we pick the candidate with the smallest number of neigh-
boring clusters, and if this is not unique, we pick the
candidate for which the second-largest neighboring clus-
ter is the smallest. This preserves as much as possible
intermediate-size clusters.

Two remarks are in order regarding the efficiency of
our algorithm: (i) In [13] all nodes were considered as
possible candidates in step (a) of EI. This makes the al-
gorithm very slow and prevents its use for large networks.
In our tests already m = 10 candidates gave very good
results, and using m = 1000 candidates led to no notice-
able degradation. (ii) When joining clusters, we used the
very fast Newman-Ziff percolation algorithm [19] which
has time complexity O(N) for networks with bounded
degrees. It also gives, at each moment of the evolution,
the size of the largest cluster, whose determination would
otherwise need most of the CPU time. As a result, we
could analyze networks with 108 nodes within hours on
normal work stations.

Numerical results: As a first test we studied ER
networks with average degree 〈k〉 = 3.5 (to compare with
results from [8]). Overall, the best results are obtained
by using the scores given in Eqs. (1) and (3) (Fig. 2,
solid line in main plot). The dashed line is obtained by

using σ
(1)
i for all q (the big jumps, which were also seen

in [13], correspond to joinings of big clusters). It is in
general worse than the continuous curve, except close to
the jumps (see, however, the Appendix). Finally we show
in Fig. 2 also the results obtained with the recently pro-
posed collective influence algorithm [8], which was hailed
in as “perfect” [20]. They are significantly worse. Our
estimate qc ≤ 0.1838(1) is also smaller than the best es-
timate 0.192(9) obtained in [8] using extremal optimiza-
tion [21], and used there as “gold standard” for small
networks (it is too slow to be used for large networks).

As regards ER networks with other values of 〈k〉, we
first looked at 〈k〉 = 4, since this had been used in [13].
Our results are similar to those of [13], but significantly

FIG. 2. Relative size S(q) of the largest clusters against q,
for ER networks with N = 106 and 〈k〉 = 3.5. The dashed

curve with jumps is obtained, if EI is used with score σ(1) for
all q, 2000 candidates, and K = 6. The continuous curve is
obtained with σ(2) for q < q∗, where S(q∗) = 1/500. The
dotted line shows the result from [8]. The inset shows a log-
log plot of qc against 〈k〉 − 1. The straight line indicates the
power law qc ∼ (〈k〉− 1)2.6, while the dotted curve shows the
result for random immunization.

better. Next we estimated qc for a wide range of 〈k〉. By
using networks with N up to 224 we were able to obtain
precise results even for 〈k〉 very close to the threshold
〈k〉 = 1 for the existence of a giant cluster. The results,
shown in the inset of Fig. 2, suggest that qc satisfies for
small 〈k〉 a power law

qc ∼ (〈k〉 − 1)2.6, (4)

where the error of the exponent is ≈ ±0.2. This should
be compared to random immunization [22], qrand

c =
(〈k〉 − 1)/〈k〉 (dotted curve in the inset of Fig. 2). The
difference in the exponents reflects the fact that a nearly
critical cluster can be destroyed by removing a few “hot”
nodes, whence targeted attacks become more efficient as
〈k〉 approaches the threshold.

Surprisingly, for all 〈k〉 except very close to 1, best
results are obtained with K = 6. This suggests that

most nodes with k
(eff)
i > 6 are vaccinated at qc, inde-

pendently of the average degree. This was also verified
directly: Although there is no strict relationship between
effective degree and blocking power (some hubs were not
vaccinated at qc, while some nodes that were vaccinated
are not strong hubs), there is a very strong correlation,
stronger that between actual degree and blocking power
(see Appendix B). On the other hand, very few weak
nodes have to be vaccinated (about 1 per mille of the

nodes with k
(eff)
i = 3), in contrast to claims in [8] that

weak nodes are often important blockers.
Scale-free networks. EI also gives excellent results for

scale-free (SF) networks with node degree distribution
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FIG. 3. Relative size S(q) of the largest clusters in SF net-
works of size N = 106 obtained with (a) the Albert-Barábasi
model (γ = 3) and (b) the configuration model with γ = 2.5.
Panels (c) and (d) show results for the cattle and airport
transportation networks, respectively. Different line types

correspond to different algorithms: EI using scores σ
(1)
i and

σ
(2)
i (continuous line) or only score σ

(1)
i (dashed line) and the

algorithm in [8] (dotted line).

pk ∼ k−γ , built with both the Barabási-Albert method
(fixed γ = 3) and the configuration model (γ can be
tuned) [1, 23]. Our results are significantly better than
those obtained with the method from [8] for both set-
tings (Fig. 3(a) and (b)). Using a single score across
the entire q-range gives again the best estimate for qc,
while the two-score strategy proves generally superior for
q < qc. The jumps obtained in the single-score strategy
are less strong for the configuration model (and thus the
two-score strategy seems there less preferable), but the
superiority of the two-score strategy becomes again clear
when using the improved S̄(q) discussed in Appendix A.

Observe that the shape of S(q) near q = 0 is con-
cave/convex for large/small γ (compare panels (a) and
(b) in Fig. 3). The convex shape for small γ is due to the
presence of many hubs which lead to a drastic decrease
of S(q) when immunized at small q.

Real world networks: We have also studied the perfor-
mance of EI on a number of real-world networks, starting
from an example in which immunization plays an impor-
tant role for food security [24, 25]: a network of Scottish
cattle movements. The network consists of N = 7228
premises (nodes) connected by E = 24784 transporta-
tion events (edges) occurring between 2005 and 2007.
The node distribution obeys a power-law with exponent
γ = 2.37 ± 0.06 (Maximum likelihood fit). The scenario
is similar to that of SF networks with small γ (compare
panels (c) and (b) in Fig. 3). Again, S(q) decreases quite
quickly because of the presence of many well connected
nodes (e.g. markets and slaughterhouses), whose immu-
nization leads to a drastic decrease of the largest cluster.

Once again we see that our strategy is superior to the
previous approaches.

We have also studied several networks that were used
as benchmark in previous works. This includes the high-
energy physicist collaboration network [26] and the in-
ternet at autonomous system level [27]. In both cases
our results are similar to, but slightly better than, in [13]
(which were the best previous estimates). The results for
these and soil networks [28] are shown in Appendix C.

A particularly problematic case is the airline net-
work [29], also studied in [2]. This is a rather small
network (N = 3151 and E = 27158) with a very broad
degree distribution (power-law with γ = 1.70 ± 0.04),
for which qc is not well defined. The results are shown

in Fig. 3(b), where we see that using σ
(1)
i alone provides

the optimal response almost everywhere. In this case, the

outcome of the score σ
(2)
i strongly depends on where the

critical point is selected. It is anyway clear that a suitable
combination of them provides the optimal results.

Conclusions: In this paper, we extend the explosive
percolation concept to propose a two-score strategy for
attacking networks that proves superior to all previously
proposed protocols. The comparison between the two
scores suggests that an everywhere optimal strategy us-
ing a single score is unlikely to exist. This is to be traced
back to the NP completeness of the problem. Since im-
munization of a network by immunizing (vaccinating)
nodes can be regarded as a strategy for destroying the
network on which an infection can propagate, this also
gives a nearly optimal strategy for immunization. Our
explosive immunization method seems superior, both as
regards speed and minimal cost (as measured by the num-
ber of immunized nodes) to all previous strategies.

We have focused on immunization of nodes but the idea
behind EI can also be applied to immunization of links.
This would provide nearly optimal quarantine strategies
which might significantly improve the typical brute-force
implementation which cut all the links between two parts
of a network. Targetted removal of links with high be-
tweeness centrality is the basis for one of the most ef-
ficient algorithm for finding network communities [30].
We propose that explosive immunization of links should
also provide a very efficient algorithms for community
detection.

The authors acknowledge financial support from the
Leverhulme Trust (VP2-2014-043) and EU for the EJD
COSMOS (642563).

Appendix A: Improved success measure for network
immunization

The standard measure for the success of an immuniza-
tion strategy is the relative size of the largest connected
cluster, G(q), after a fraction q of nodes have been vacci-
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nated,

S(q) = |G(q)|/N , (A1)

where |G(q)| is the size of the largest cluster. The mo-
tivation for this is that a strongly infective disease that
hits a random node will in average infect a region of size
NS(q)2 in the largest cluster, where the first factor of
S(q) is for the probability that the largest cluster is hit
at all, and the other factors give the number of infected
sites, if it does so. This quantity neglects the effect of
smaller clusters, following a widespread habit in network
science. Often this is justified because their contribution
is small and/or hard to estimate. But in the present case,
the contribution of clusters other than the largest one can
be substantial, and it can be taken into account easily.
In order to incorporate the effect of epidemics starting in
all clusters in our analysis, let us assume the clusters to
be ordered by size, |G(q)| ≡ |C1(q)| ≥ |C2(q)| ≥ . . .. The
probability that a random outbreak starts in a cluster
Ci is Si(q) = N−1|Ci| and its maximum size is NSi(q).
Accordingly, the average number of infected sites in an
random outbreak is

〈ninfected〉 = NS(q)2 +N
∑
i≥2

Si(q)
2 = NS̄(q)2, (A2)

where, perturbatively,

S̄(q) = S(q)

1 +
1

2

∑
i≥2

(
Si(q)

S(q)

)2

+ . . .

 (A3)

For EI with both scores, there will (at least for large
networks with a well defined qc) never be more than one
large cluster, since there is no large cluster for q > q∗,
and for q < q∗ the growth of a second large cluster is
suppressed. In this case S̄(q) is practically the same as
S(q), as we indeed checked for ER networks. This is
not true, however, for q < q∗ if score σ(1) is used also
there. In that case there are in general more than one
large cluster, and S̄(q) is considerably larger than S(q),
see Fig. 4.

Thus even when it seems better to use score σ(1) for
all q according to the success measure S(q), using a more
refined success measure might show that the strategy of
using both scores σ(1) and σ(2) is superior.

Appendix B: Degree distributions of vaccinated
nodes at q = qc

Naively, one expects that it is the strongest hubs that
should be vaccinated first, but the fact that network im-
munization is non-trivial shows that this is not exactly
true. If the motivation that led us to define the effective
degree k(eff) is correct, we should expect the vaccinated
nodes to be more strongly concentrated in the high-k(eff)

0.0

0.2

0.4

0.6

0.8

1.0

 0  0.05  0.1  0.15  0.2

S
(q

) 
,  

   
S- (q

)

q

S(q) optimal
S
-
(q) single score

S(q) single score

FIG. 4. Success measures S(q) (lower (black) steplike curve)
and S̄(q) (upper (red) steplike curve) for ER networks with

〈k〉 = 3.5, if score σ(1) is used for all q. The smooth curve

corresponds to the case where σ(2) is used for q < qc. In that
case, the curves for S(q) and S̄(q) are indistinguishable except
in a small region q > qc.

region, than they are concentrated in the high-k region.
Here we show data that indeed confirm this, although the
difference is rather small. More precisely, we show in the
left panel of Fig. 5 two histograms: The k(eff)-distribution
of all nodes in an ER network with 〈k〉 = 3.5 and the
ditribution of those nodes that are vaccinated at q = qc.
In the right panel the corresponding two k-distributions
are shown.

We see that in both cases nearly all nodes with degree
> 7 are vaccinated, while nearly all nodes with degree
< 4 are left unvaccinated. This agrees with our findings
that K = 6 is optimal in this case. But a closer look
shows that the k(eff)-distribution of vaccinated nodes has
indeed a slightly sharper cut off than the k-distribution.
For instance, while ≈ 25 % of nodes with k = 6 are not
vaccinated, this is true for only ≈ 10 % of nodes with
k(eff) = 6.

Appendix C: Real-world networks

We present the detailed results for three other real-
world networks. In each of them we compare the two
different scores of Explosive Immunization (EI) with the
Collective Influence (CI) method proposed by Morone
et. al. [8]. We also show an example of how the hub
cut-off parameter K in the computation of the effective

degree k
(eff)
i modifies the results. In all three plots we use

only the success measure S(q) (for more easy comparison
with previous literature), but we should keep in mind
that methods producing large steps would become worse
when using S̄(q).
Soil network: We study a network of the structure



6

1

10

102

103

104

105

 0  2  4  6  8  10  12  14  16

(a)

P
(k

(e
ff)

)

k(eff)

vaccinated nodes
all nodes

1

10

102

103

104

105

 0  2  4  6  8  10  12  14  16

(b)

P
(k

)

k

vaccinated nodes
all nodes

FIG. 5. (color online) (a) Log-linear plot of P (k(eff)) for ER networks with 〈k〉 = 1.75. The left histogram is for all nodes,
the right one is for those nodes that are not declared as “harmless” at q = qc and which therefore must be vaccinated in order
to immunize the network. Panel (b) shows the analogous distributions for the actual degrees. Notice that for the vaccinated

nodes, the distribution of k(eff) has a slightly sharper cut-off than that of k, indicating that k(eff) is a better indicator for nodes
that must be vaccinated than k. The same was found also for all other values of 〈k〉.

of soil pores presented in [28]. This network has a large
clustering coefficient and a limited degree distribution
with 〈k〉 = 2.8. In figure 6(a) we plot the results of EI
and CI using K = 8 and S(q∗) = 0.06. In this case, EI
produces better results than CI everywhere. In particu-

lar, using the score σ
(1)
i for all q is optimal except when q

is very small (see, however, the above caveat about using
S̄(q) instead of S(q)). In the inset panel we show differ-

ent values of K effect the outcome of σ
(1)
i in this network.

Internet: In figure 6b we show the results for a
network representing the Internet at the level of au-
tonomous system [27]. We set the parameters K = 6
and S(q∗) = 0.02. In this case, different values of K
do not change significantly the outcome. In general we
observe a behavior similar to the cattle network in which
an early vaccination of nodes produces a strong decrease
of S(q). Again the EI method gives better results than
CI.

High-Energy Physicists: Finally, in figure 6c we
use the high-energy physicist collaboration network [26]
also used in [13]. We plot the results using K = 6 and
S(q∗) = 0.01. The proposed EI algorithm achieves a
better value of qc than the one obtained by Schneider et.
al.. Both are better than the one obtained with CI. When
the giant component is grown for small q (significantly
< qc), the CI method is similar but slightly better than
EI. This is the only case that we have found where EI is
not optimal everywhere.
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