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Abstract 

Mackerel icefish (Champsocephalus gunnari) is a 

semi-pelagic finfish species inhabiting shelf areas in 

the Southern Ocean.  The population at South 

Georgia is currently exploited by pelagic trawlers 

fishing close to the seabed.  Annual catches peaked 

at 150,000 t in 1983, and have declined since the 

mid-to-late 1980s.  Bottom-trawl surveys have been 

conducted since 1987, providing a time series of 

abundance and size distribution for use in assessing 

the status of the stock and setting quotas.  Food-web 

models suggest that estimates of the biomass from 

survey data are substantially lower than the amount 

of icefish required by the local ecosystem.  The aim 

of this study was to assess the uncertainty around 

current estimates of density and variance, using 

alternative non-parametric stratified bootstrapping 

methods.  The stratified rescaling bootstrap 

estimator was identified as the most appropriate 

method of those tested: in comparison with the 

existing method, confidence intervals and the inter-

annual variability of the estimates were reduced.  

Numbers-at-age were estimated from mixture 

distribution models fitted to length-disaggregated 

density data in order to determine whether 

individual cohorts were consistently detected by the 

surveys.  Estimates of numbers-at-age could not 

consistently delineate cohorts in successive years 

indicating that survey-based estimates of density 

were biased.  These biases may have arisen because 

the trawl gear did not select individuals of all sizes 

equally, or because sampling was restricted to the 

demersal component of the stock.  Estimates of 

abundance of the pelagic component of the stock 

should be derived from acoustic data to improve the 

assessment. 
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bootstrap 

 

Introduction 

Mackerel icefish (Champsocephalus gunnari) is a 

semi-pelagic finfish species occurring across a 

number of shelf areas south of the Antarctic 

convergence (Kock 2005).  Within the Atlantic 

sector of the Southern Ocean the species is 

distributed in productive regions across the 

Scotia Arc, from South Georgia to the Antarctic 

Peninsula (North 2005).  A commercial bottom 

trawl fishery for the species developed at South 
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Georgia in the 1970s, with a peak catch of over 

150,000 t in the 1982-83 fishing season 

(CCAMLR 2012).  In the wake of the 1971 

collapse of the marbled rockcod (Notothenia 

rossii) fishery (Trathan and Reid 2009), catches 

of mackerel icefish were intermittently high as 

the stock experienced increased exploitation.  

By the middle of the 1980s commercial catches 

became increasingly variable and relatively low 

(Kock 2005).  Management efforts by the 

Commission for the Conservation of Antarctic 

Marine Living Resources (CCAMLR) to control 

the exploitation rate and allow the stock to 

recover extended to a full closure of the 

demersal fishery in the early 1990s.  The fishery 

re-opened in 1996, but catches have remained 

at low levels (< 7000 t) since then (Hill et al. 

2005; CCAMLR 2012).  Since 2010 a fishery 

which now utilises pelagic nets towed close to 

the seabed has been certified by the Marine 

Stewardship Council (MSC). 

Mackerel icefish is known to be an 

important food source within the food-web at 

South Georgia, becoming a primary prey species 

for pelagic predators such as the Antarctic fur 

seal (Arctocephalus gazella) in years of low krill 

availability (Agnew et al. 1998).  Recent 

ecosystem modelling suggests that the biomass 

of mackerel icefish at South Georgia estimated 

from bottom trawl survey data does not 

account for the amount of icefish estimated to 

be required by the local pelagic food-web (Hill 

et al. 2012).  In fact, the model suggests that 

there is up to an order of magnitude more fish 

biomass required than the amount estimated 

from surveys.  This discrepancy might suggest 

an incomplete scientific understanding of 

mackerel icefish population dynamics from the 

surveys, or of the species’ ecosystem 

interactions, or some combination of both.  In 

addition, it becomes increasingly difficult to 

disentangle the effects of the various 

components of mortality when considered in 

the context of the recovery of previously 

exploited upper trophic level predator species 

(e.g. Antarctic fur seals; Hill et al. 2005; Reid et 

al. 2005; Wiedenmann et al. 2011).  Given that 

part of the remit of CCAMLR is to ensure 

rational use of living resources and the 

maintenance of ecosystem structure, 

uncertainty in estimates of the size and 

dynamics of resources should be minimised 

(Agnew 1997). 

Bottom trawl surveys have been carried 

out intermittently in CCAMLR sub-area 48.3 (Fig. 

1, inset) since the late 1980s.  The survey has 

been recognised as problematic for the 

estimation of icefish abundance in several 

respects (Everson et al. 1996).  In general, the 

data from these surveys are characteristic of a 

patchily distributed stock: with right-skewed 

statistical distributions, large variance 

estimates, and often considerable proportions 

of null observations.  These statistical properties 

can result in mean density estimates of low 

precision, regardless of whether sampling effort 

is considered to be adequate (McConnaughey 

and Conquest 1993).  Occasional, relatively high 
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(seemingly anomalous) survey catches, 

sometimes considered as outliers, were in fact 

treated as being representative unless they 

were known to be a result of some error in 

sampling or data recording (Hansen et al. 1983).  

Outliers in fish survey data are often better 

described as extreme values (McConnaughey 

and Conquest 1993).  However, these extreme 

values can render the use of normal probability 

approximations invalid (Särndal et al. 1978).  

They may also lead to excessively large 

imprecise survey indices, making it difficult to 

detect relative changes in stock size.  Choice of 

abundance estimation method is, therefore, 

crucial to effective management (Smith 1993; 

Olsen and Schafer 2001).  Consequently, 

CCAMLR’s Working Group on Fish Stock 

Assessment (WG-FSA) has had concerns about 

the suitability of the current methods used for 

assessing the status of this stock (Agnew et al. 

1998; Hillary et al. 2010). 

Annual quotas for the fishery are 

derived from intentionally conservative biomass 

estimates (based on the lower limit of 90% 

bootstrapped confidence intervals) as part of a 

sustainable harvest management plan.  It is 

assumed that mean stock biomass is equal to 

mean biomass estimated from the survey; i.e. 

catchability coefficient q=1 (Agnew et al. 1998; 

Hillary et al. 2010).  The bootstrapping routine 

used (Hillary et al. 2010) was adapted from a 

method used to pool weighted density-at-length 

data to compensate for low sample sizes within 

strata (de la Mare and Williams 1996).  Although 

this method is thought to provide adequate 

estimates of the mean (Hillary et al. 2010), the 

associated variance and confidence estimates 

have not been evaluated.  Given that the quotas 

are based on confidence intervals which are 

potentially invalid, alternative methods for 

estimating uncertainty around mean density 

should be explored.  Furthermore, given the 

assumption that q=1, it is difficult to explain the 

discrepancy between these survey-based 

biomass estimates and the amount of icefish 

estimated to be required by the local foodweb.  

It suggests that either the assessment 

assumption regarding gear selectivity for the 

species is incorrect (the survey trawl 

inadequately samples the entire vertical 

distribution of the stock), or that the food web 

models are incorrectly parameterised. 

Given that quotas for mackerel icefish 

are based on confidence intervals constructed 

using the CCAMLR reweighting method, this 

approach is evaluated here.  The objective of 

this study was to determine the validity of 

current estimates of mean density of mackerel 

icefish and the associated uncertainty 

measures, and to explore alternative methods 

which might provide valid estimates.  The ability 

of the survey to detect temporal changes in 

abundance of individual cohorts was also 

investigated using the length frequency data.  

This latter analysis was undertaken in an effort 

to explore the validity of the assumption of q=1, 

and identify evidence of any potential mismatch 

between species distribution and survey 
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method which might lead to an incomplete 

representation of population dynamics in the 

stock assessment. 

 

Materials and Methods 

Data sources 

Groundfish survey data were obtained from the 

Government of South Georgia and South 

Sandwich Islands (GSGSSI).  The GSGSSI 

database holds records for 20 bottom trawl 

surveys carried out between 1987 to 2015 

(along with a partial survey from 2012 and a 

radial transect survey from 2003; Table 1).  

However this analysis will focus only on data 

collected between 1991 and 2015 when 

sampling gear and survey methods were 

standardised.  The current survey (Mitchell et al. 

2010) follows a stratified random design, across 

five area strata (Fig. 1), within each of which are 

two depth strata of 50-200 m and > 200 m 

(generally < 300 m).  The number of trawl hauls 

was variable during the earlier part of the time 

series, but since 2008 a minimum of 70 hauls 

have been undertaken with sample allocations 

set for each stratum based on the variability of 

icefish density observed in previous surveys. 

In calculating the area of the seafloor 

trawled, wingspread was used as opposed to 

doorspread with the assumption that no 

herding occurred due to a lack of sand cloud 

formation (Dickson 1993; L. Featherstone 2012, 

pers. comm., 6 Dec.).  All surveys used an FP-

120 trawl net, a modified bottom trawl gear 

without lower wings to minimise damage 

sustained on rough ground (Parkes 1991).  

Where measured wingspread values were not 

available (as was the case in surveys from 2008 

 

Fig. 1  Map detailing the stratum design of the South Georgia groundfish survey.  The light grey polygons represent the 

survey area divisions: Shag Rocks, Northwest (NW), Northeast (NE), Southeast (SE), and Southwest (SW).  The solid line 

is the 300 m bathymetric contour; the dotted line is 200 m bathymetric contour. 
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to 2015) a non-linear model was fitted to the 

available wingspread measurements (Baudron 

and Fernandes 2014) to estimate wingspread as 

a function of depth: 

𝑊𝑖𝑛𝑔𝑠𝑝𝑟𝑒𝑎𝑑 (𝑚) =
𝛼 ∗ 𝑑𝑝 (𝑚)

𝛽 + 𝑑𝑝 (𝑚)
 

(1) 

where dp is the mean depth, and α and 

β are coefficients estimated by non-linear least 

squares.  Haul-level swept-area densities (kg km-

2) were calculated given the weight of mackerel 

icefish caught, distance travelled over ground by 

the trawl gear, and the wingspread (Saville, 

1977).   

Density estimation 

Stratified mean density (d̅st) and associated 

variance (s2
st) were calculated as follows; 

�̅�𝑠𝑡 = ∑ 𝑊𝑗�̅�𝑗

𝑘

𝑗=1

 
(2) 

𝑠2
𝑠𝑡 = ∑

𝑁𝑗

𝑁2 (𝑁𝑗 − 𝑛𝑗)
𝑠2

𝑗

𝑛𝑗

𝑘

𝑗=1

 
(3) 

where d̅j is the estimated mean abundance in 

stratum j, Wj is the proportion of the total 

survey area in stratum j, Nj is the total number 

Table 1  Summary of mackerel icefish survey data collected during groundfish surveys carried out at 

CCAMLR sub-area 48.3 

Year Number of hauls 
Arithmetic mean swept-
area density (kg km

-2
) 

Variance (kg km
-2

) Proportion of null hauls 

1991 78 755.1 2.22 x 10
6
 0.09 

1992 82 1024 2.91 x 10
6
 0.06 

1994 81 479.4 7.09 x 10
5
 0.05 

1997 58 2013 4.47 x 10
7
 0.05 

2000 41 1255 2.79 x 10
7
 0.05 

2002 63 976.9 1.10 x 10
7
 0.03 

2004 65 1478 2.61 x 10
7
 0.25 

2005 51 124.5 6.84 x 10
4
 0.39 

2006 66 2965 9.90 x 10
7
 0.17 

2007 46 1840 4.59 x 10
7
 0.13 

2008 70 2201 7.07 x 10
7
 0.11 

2009 72 1504 1.49 x 10
7
 0.07 

2010 74 2195 6.68 x 10
7
 0.05 

2011 84 1832 2.45 x 10
7
 0.05 

2013 70 10050 2.49 x 10
9
 0.01 

2015 77 985.8 5.48 x 10
6
 0.08 
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of possible hauls in stratum j, N is the total 

number of possible hauls in the survey area, nj is 

the number of hauls sampled in stratum j, s2
j is 

the estimated variance for stratum j, and k is 

the total number of strata.  Although parametric 

confidence intervals could be constructed for 

these estimates, this would be with the 

assumption that survey estimates follow a 

normal distribution.  Small sample sizes in many 

strata and skewed sample distributions may 

render those parametric confidence intervals 

uninformative.  In addition, sample variances 

are not constant across strata, further 

complicating the application of the Central Limit 

Theorem (Cochran 1977).  So although the 

mean d̅st variance s2
st are valid quantities, the 

estimation of confidence intervals, which are 

needed for management, is not so 

straightforward. 

 

Mean icefish density was then 

calculated in accordance with the methods 

approved by CCAMLR’s WG-FSA (Hillary et al., 

2010).  Firstly, haul-level density data was re-

weighted to account for the different sampling 

intensities in each stratum (de la Mare 1994; de 

la Mare and Williams 1996). 

𝐷𝑖 = 𝑑𝑖,𝑗 ×
𝐴𝑗

∑ 𝐴𝑗
𝑘
𝑗=1

×
∑ 𝑛𝑗

𝑘
𝑗=1

𝑛𝑗
 

(4) 

where Di is the weighted density value 

for haul i, di,j is the observed density for haul i in 

stratum j, and Aj is the stratum area.  

Bootstrapped estimates of the mean were then 

calculated across the entire re-weighted set of 

density values Di.  The current CCAMLR 

assessment incorporates the non-stratified 

arithmetic mean in a non-parametric bootstrap 

routine (D̅Cboot) using random re-sampling with 

replacement (Efron and Tibshirani 1993). 

�̅�𝐶𝑏𝑜𝑜𝑡 =
1

𝐵
∑

1

𝑛𝑏
∑ 𝐷𝑖

𝑛𝑏

𝑖=1

𝐵

𝑏=1

 
(5) 

where B is the total number of 

bootstrap replicates, and nb is the number of 

hauls in bootstrap sample b.  The variance 

(s2
Cboot) may similarly be derived given the 

arithmetic mean D̅Cboot: 

𝑠2
𝐶𝑏𝑜𝑜𝑡 =

1

𝐵
∑

1

𝑛𝑏

∑ (
1

𝑛𝑏

∑ 𝐷𝑖

𝑛𝑏

𝑖=1

− 𝐷𝑖)

2𝑛𝑏

𝑖=1

𝐵

𝑏=1

 

(6) 

For the assessment, confidence limits 

around the mean estimates D̅Cboot are simply 

then taken from the appropriate percentiles of 

the bootstrap distribution of mean estimates, 

and the same method was applied here to 

construct 95% confidence intervals. 

Finally stratified naïve (d̅Nboot) and 

rescaling (d̅Rboot) bootstrap estimators of the 

mean (d̅st) were also applied to the observed 

icefish density data di,j (see Smith 1997 for 

details).  The naïve bootstrap involves 

resampling observations di,j with replacement 

within each stratum n*
j times, calculating a 

mean d̅*
j at each resampling.  The stratified 

mean may then be calculated as: 

�̅�𝑠𝑡,𝑏 = ∑ 𝑊𝑗�̅�𝑗
∗ (7) 
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This process is repeated B times and the 

bootstrap estimates of the mean (Eq 8) and 

variance (Eq 9) are given by: 

�̅�𝑁𝑏𝑜𝑜𝑡 = ∑
�̅�𝑠𝑡,𝑏

𝐵
⁄

𝐵

𝑏=1

 
(8) 

𝑠2
𝑁𝑏𝑜𝑜𝑡 =

1

𝐵 − 1
∑(�̅�𝑠𝑡,𝑏 − 𝑑̅

𝑁𝑏𝑜𝑜𝑡)
2

𝐵

𝑏=1

 
(9) 

The rescaling bootstrap estimator was 

formulated to provide unbiased estimates of 

variance as well as mean.  A random sample of 

size mj (<n*
j) with replacement is taken from the 

samples in stratum j (𝑑•
𝑗𝑥, x = 1, …, mj).  The 

following calculations are then performed: 

�̃�𝑗𝑥 = �̅�𝑗 + (
𝑚𝑗(1 − 𝑓𝑗)

(𝑛∗
𝑗 − 1)

)

1
2⁄

(𝑑•
𝑗𝑥 − �̅�𝑗) 

(10) 

�̃�𝑗 = 𝑚𝑗
−1 ∑ �̃�𝑗𝑥

𝑚𝑗

𝑥=1

 

(11) 

�̃�𝑠𝑡,𝑏 = ∑ 𝑊𝑗�̃�𝑗

𝑘

𝑗=1

 
(12) 

The process in Eq 10, 11 & 12 is 

repeated B times, and the estimates of mean 

and variance are calculated as in Eq 8 & 9, 

substituting �̃�𝑗 for �̅�𝑠𝑡,𝑏.  Percentile confidence 

limits were then constructed for the estimates 

of the mean (Efron and Tibshirani 1993).  These 

intervals do not require any distributional 

assumptions, assuming instead that the 

observed samples are representative of the 

distribution of the underlying population.  

Estimates for each bootstrapping routine were 

then compared to the standard arithmetic 

estimators (Eq 2 & 3) to test their relative 

performance.  Behaviour of variance estimates 

in terms of percentage deviation from the 

stratified arithmetic variance as a function of 

the number of bootstrap replicates was also 

examined, as agreement between bootstrap 

variance estimates (s2
Nboot and s2

Rboot) and s2
st 

would affirm the validity of bootstrap percentile 

confidence limits (i.e. for the bootstrap 

confidence limits to be considered valid and 

useful, there should be good agreement 

between the bootstrap estimates of mean and 

variance and the unbiased arithmetic 

estimators). 

Consistency of stock demographics in survey 

data 

Mean length frequency distributions were 

calculated for each survey year, given length 

data collected from sub-samples of the catch at 

a number of trawl stations, and the 

corresponding total icefish catch weights.  

Numbers-at-length were raised to haul level 

according to the ratio of sub-sample weight to 

haul weight, corrected for differences in 

sampling intensity in different strata (see Eq 4).  

Whole-survey estimates of proportions at each 

1 cm length class were then calculated.  Mean 

numbers-at-length were calculated by applying 

these proportions in turn to the estimates of 

mean swept-area density, given a survey-

specific length-weight relationship, 𝑊 = 𝑎𝐿𝑏, 

where W is the weight (g), L is the length (cm), 

and a and b are fitted constants (Online 

Resource 1, Fig. S1).  Finite mixture distribution 

models were fitted to each estimate of mean 
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numbers-at-length using an expectation 

maximisation algorithm, specifying starting 

values of the expected mean lengths-at-age as 

derived from the Von Bertalanffy growth 

parameters used in the assessment ( Online 

Resource 1, Fig. S2; Macdonald and Pitcher 

1979; Benaglia et al. 2009; Hillary et al. 2010).  It 

was assumed that each distribution in the 

mixture corresponded to a given age class 

within the population, and thus numbers-at-age 

could be estimated according to the probability 

of an individual of a particular size belonging to 

a given cohort.  Log-transformed numbers-at-

age data for each cohort were plotted to assess 

the assumption of q=1, and the consistency of 

the survey in tracking cohorts through time 

(Cotter et al. 2007).   

 

Results 

The largest values of di,j tended to occur to the 

northwest of the main South Georgia shelf, and 

off Shag Rocks (Fig. 2).  Areas of rougher ground 

directly to the south of the island have been 

sparsely sampled to minimise time lost to gear 

replacement and repair: when these areas have 

been sampled they have yielded low densities.  

Relatively low densities were also encountered 

to the southwest and east of the island. These 

trends in spatial distribution of icefish density 

are likely to be driven by food (specifically krill) 

availability (Frolkina 2002).  Approximately 15% 

of null observations across all surveys were 

encountered at depths between 100 and 200 m, 

where 49.8% of total hauls were conducted 

within this depth range.  The remaining null 

hauls were observed at depths greater than 200 

m.  The majority of this remainder, 50% of all 

null hauls, were recorded below the 300 m 

depth contour where just over 10% of all hauls 

were conducted.  This suggests a tendency for 

the species to aggregate in shallower waters 

within the bounds of the shelf edge.  The overall 

proportion of null observations also varied 

temporally, from as low as 0.01 up to 0.39 in 

2005.   
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Fig. 2  Maps showing spatial distribution of haul level swept-area densities (kg m-2) derived from the UK South Georgia Groundfish survey data.  Each 

haul is represented by a circle, the radius of which is relative to the swept-area density.  Null observations are represented by an ‘x’. 
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The different time series of density 

estimates followed similar trends (Fig. 3; Online 

Resource 1, Fig. S3).  Estimates based on the 

CCAMLR method, D̅Cboot, were marginally higher 

than all other estimates, and substantially 

higher in 2013 when an extremely large catch 

inflated the estimate of the mean.  Variance 

estimates s2
Rboot best approximated s2

st, and so 

the associated d̅Rboot estimates were deemed 

the most appropriate series to take forward to 

the mixture distribution analysis (Fig. 4).  s2
Cboot 

were positively biased (relative to s2
st) by several 

orders of magnitude, raising further doubts 

regarding the validity of the CCAMLR method.  

The negative bias associated with s2
Nboot as 

observed by Smith (1997) was also present 

here, and so this method was not considered 

further.  Bootstrap confidence limits around 

mean estimates followed approximately the 

same trends, although the percentile method 

used for D̅Cboot provided generally wider 

confidence limits (Fig. 3).  Where relatively low 

catch sizes were recorded across an entire 

 

Fig. 3  Mean density estimates (kg km
-2

) of C. gunnari from the UK South Georgia groundfish survey from 1991 to 

present.  Panel (a) shows estimates using the current method with percentile confidence intervals, and panel (b) shows 

the alternative method which best approximated the standard stratified estimators, the rescaling bootstrap, with 

percentile confidence intervals.  The dotted black lines show the 5
th

 percentile used as an estimate of mean biomass in 

the assessment. 
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survey (leading to low mean density estimates; 

e.g. 1994 and 2005) there was less inter-haul 

variability and thus narrower confidence limits 

than other years.  The proportion of null 

observations was also greatest in 2005, which is 

similarly reflected in relatively low mean density 

estimates for that year across all estimators (Fig. 

3; Online Resource 1, Fig. S3).   

The exception to the broad similarities 

in trends in density estimates occurred where a 

relatively extremely high density haul was 

recorded, specifically in the 2013 survey.  In this 

survey the d̅Rboot estimate was lower than that of 

D̅Cboot by > 5700 kg km-2 (Fig. 3).  Confidence 

limits around D̅Cboot for 2013 were wider than 

those around the corresponding values of d̅Rboot.  

The 2013 mean density estimate was 

substantially lower when using d̅Rboot, despite 

the presence of these relatively large hauls.  In 

this case the stratified rescaling bootstrap 

estimator weights the influence of the two 

largest hauls (>39,000 and >10,000 kg km2) on 

d̅Rboot according to the sampling fraction of the 

northwest stratum and its area as a proportion 

of the entire survey, resulting in estimates 

which are lower than D̅Cboot.  The time series of 

d̅Rboot estimates was identified as providing the 

best basis for an index of relative abundance of 

mackerel icefish out of those tested, as this 

method best approximated the results from 

standard stratified mean and variance 

estimators, with substantially less uncertainty 

than is associated with the current method (Fig. 

3 & 4; Online Resource 1, Fig. S3).  Confidence 

intervals around D̅Cboot were wider than those 

around d̅Rboot in 14 out of 16 survey estimates.  

The exceptions to this were the 1992 and 2005 

surveys in which estimates were relatively low 

and confidence bounds relatively narrow for 

both estimators.   

Assuming a population is in equilibrium, 

annual survival rates should be approximately 

constant, with numbers-at-age decreasing 

geometrically according to various components 

of mortality (Chapman and Robson 1960).  Log-

transformed numbers-at-age for each cohort or 

 

Fig. 4  Performance of variance 

estimates from 2015 survey data for 

the naïve and rescaled bootstrap as 

a function of the number of 

bootstrap replicates.  Mean percent 

deviation for variance estimates 

using the CCAMLR bootstrap method 

was 93045. 
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year class (year-class curves, Fig. 5) indicate a 

poor detection of any clear trends in numbers-

at-age through time.  These trends would follow 

a descending straight line relationship across 

age classes if all fish were fully selected by the 

fishing gear, sampling were unbiased, and the 

total mortality rate within the population was 

independent of age and survey year.  Typically, 

in survey data, there is some selection on 

younger ages, or poor juvenile availability to the 

survey, producing a characteristic year-class 

curve “hook”.  In some cases, as with the 2003 

and 2005 cohorts, there is a reasonable 

approximation of the latter: there are low 

numbers at first, increasing to a peak at age 

three, and decreasing thereafter.  This is not in 

agreement with the assumption held by the 

assessment of full selectivity across age classes.  

This assumption would lead one to expect the 

highest observed numbers in the youngest age 

class, decreasing geometrically with increasing 

age due to mortality (Hillary et al. 2010).  

However, the estimated numbers-at-age across 

all surveys do not follow this expected form, 

introducing doubt as to the validity of that 

assumption.  As the relationship between 

abundance and age does not appear to be 

consistent (or indeed obvious) from cohort-to-

cohort, some degree of unexplained error in 

terms of mean numbers-at-age across all age 

classes in all surveys seems to have been 

introduced.  The 2002 cohort was not detected 

in the 2006 survey although it was present again 

in the 2007 and 2008 data.  This also suggests 

that error may be introduced through the 

sampling method where some portion of the 

stock is not being represented in the data.  Age 

zero individuals appear to have only been 

detected in the 2007 survey; this is perhaps a 

 

Fig. 5  Log-transformed mean 

numbers-at-age estimated 

from mixture distribution 

analysis of numbers-at-length 

per m
-2

 data for cohorts (year 

of birth indicated in each 

panel) of icefish which could 

be tracked annually across a 

reasonable range of years.  

Cohort year is indicated in 

the top right of each panel. 
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function of that survey being conducted later 

than usual (September) in that year. 

 

Discussion 

The stratified re-scaling bootstrap estimators 

(d̅Rboot and s2
Rboot) were found to be the 

equivalent to d̅st and s2
st, and thus their 

associated bootstrap confidence intervals offer 

an appropriate measure of uncertainty for 

abundance estimates of mackerel icefish at 

South Georgia.  The proportion of null 

observations varies quite substantially from 

year-to-year, but regardless of the degree of 

zero inflation, the bootstrap simply assumes 

that null hauls are a natural part of the 

underlying population distribution (Efron and 

Tibshirani 1993; Smith 1997).  In a simplified 

sense, these null trawls represent the amount of 

area surveyed which is unoccupied habitat, and 

directly affects the calculation mean estimates.  

This concept has its biological limitations as it 

implies that the species of interest has limited 

mobility.  Perhaps, given the tendency of null 

observations to be recorded near the shelf 

edge, and the presence of larger hauls in deeper 

waters in years of higher mean density (e.g. 

1997 and 2013), they may represent some form 

of density dependent range contraction 

whereby deeper waters become occupied with 

increased abundance.  It should also be kept in 

mind that mackerel icefish are known to 

undergo vertical and horizontal migrations, 

suggesting that there could be a number of 

reasons for an apparent absence from a given 

area (Kock and Everson 1997; Frolkina 2002).  A 

typical stratified random sampling approach 

involves combining mean estimates and 

uncertainty measures from all strata.  

Confidence limits constructed around the 

standard estimates do, however, require large 

sample sizes for the application of the Central 

Limit Theorem (Smith 1997), which is not met 

by the South Georgia icefish data.  Small sample 

sizes observed in some strata are compensated 

for to some degree by the use of CCAMLR’s 

weighted pooled bootstrapping method, 

although exceptionally large hauls (such as that 

encountered in 2013) still affect precision 

substantially.  Crucially, the CCAMLR method is 

applied without regard for the survey design, 

and strata with small sample sizes are likely to 

be underrepresented in final estimates.  The 

rescaling method deals with these problems 

through re-sampling within each stratum, and 

the application of stratum weightings.  The fact 

that the survey may suffer from some degree of 

over-stratification also remains. 

The mixture distribution estimates of 

mean numbers-at-age indicate that at least 

some of the cohorts are poorly detected across 

all surveys (Fig. 5).  Although some degree of 

variability in the ability of the sampling method 

to detect cohorts through time is expected, data 

which is too noisy to interpret and an apparent 

lack of detection of some cohorts is cause for 

concern given the assumptions of the 

assessment.  Estimates of abundance are biased 

to some degree because of this sampling error.   
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Although basing quotas on conservative 

abundance estimates is precautionary by 

definition, it would be preferable to have an 

internally consistent survey, yielding a more 

realistic representation of population dynamics.  

As the commercial fishery utilises pelagic gears 

which are typically towed close to the seabed, it 

is potentially selecting a specific demographic 

component(s) of the stock.  Any identifiable 

pattern in vertical distribution would, therefore, 

be invaluable in determining what portion of 

the population is vulnerable to the fishing gear 

and ultimately fishing pressure.  Attempts have 

been made to address this problem by 

restricting survey sampling to daylight hours in 

order to reduce bias thought to be brought 

about by diurnal migrations undertaken by the 

species (Everson et al. 1999).  However, cursory 

examination of acoustic data collected in more 

recent years indicates that this is not an 

adequate solution to the problem.  For instance, 

in 2006, substantial pelagic aggregations were 

detected acoustically, from which a sample of 

50 kg of mackerel icefish was obtained, while 

fishing between 60 and 140 m depth (between 

20-100 m off the seabed), at approximately 

15:00 hrs (Fig. 6).  These acoustic data merit 

further investigation to determine whether the 

amount of fish unavailable to the demersal 

trawl has a significant effect on abundance 

estimates.  This proportion could be used to 

introduce a correction factor for trawl survey 

estimates.  The assumption of no herding is a 

potential source of further uncertainty.  

 

Fig. 6  Scrutinized echogram from the 2006 survey showing echotraces of mackerel icefish recorded using a Simrad 

EK500 echosounder at 70 kHz.  A homogenous catch of 50 kg of mackerel icefish (ranging in size from >20-35 cm) was 

obtained by trawling on these marks at depths of approximately 60-140 m. 
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Mackerel icefish behaviour around fishing gear 

is poorly understood, and although there may 

be no sand cloud formation, other stimuli such 

as trawl doors in contact with the seabed and 

short, bouncing trawl bridles may elicit a 

behavioural response and generate bias (Glass 

and Wardle 1989, L. Featherstone 2014, pers. 

comm., 21 Mar.). 

The quality of survey information 

becomes increasingly important when 

uncertainties exist around the trophic structure 

of the ecosystem within which the fishery 

operates.  In this context, the South Georgia 

icefish stock has largely unquantified and poorly 

understood pressures exerted on it - directly 

and indirectly - as a result of the dynamics of 

various components of the local food web (Hill 

et al. 2012).  Krill is an abundant and important 

(keystone) prey species in the Southern Ocean 

and the South Georgia shelf retains relatively 

high densities of krill after they have been 

advected across the Scotia Sea and Weddell Sea 

(Tarling and Cuzin-Roudy 2007; Murphy et al. 

2013).  In addition to the apparent inter-annual 

changes in the availability of krill, longer-term 

monitoring of the species suggests a declining 

trend in krill abundance across the Southern 

Ocean (Atkinson et al. 2004; Trathan et al. 

2012).  Fur seals and macaroni penguins 

(Eudyptes chrysolophus) are both highly efficient 

predators of krill, which also demonstrate 

adaptive foraging strategies based on 

fluctuations in local availability (Waluda et al. 

2009).  Competition for food between these 

predators is likely to have increased in recent 

decades due to the continued recovery of fur 

seal populations following their near extirpation 

from the region over a century ago (Reid et al. 

2005; Hill et al. 2006).  When krill is scarce, 

mackerel icefish assumes a role of primary 

importance in the diet of these and other 

pelagic predators (Agnew et al. 1998).  Due to 

these flexible foraging behaviours, and the 

estimated biomass of prey required to sustain 

ever-increasing predator populations, the 

associated natural mortalities incurred by icefish 

stocks could be considerable (Hill et al. 2012).  

This interchange of trophic importance between 

krill and icefish is further complicated by the 

fact that icefish is itself a significant predator of 

krill (Main et al. 2008).  Other predators which 

are believed to be increasing in numbers 

following the cessation of intensive exploitation 

include krill-feeding whales (Wiedenmann et al. 

2011).  Such large, mobile cetaceans will exert 

substantial pressure on zooplankton resources, 

which may cause less specialised predators to 

target icefish as an alternative to krill in 

response to increasing competition (Hill et al. 

2005). 

Conventionally, catch limits are based 

on the best estimates of stock size.  A 

precautionary approach would then be applied 

by setting limits based on the uncertainty in 

abundance estimates, and when those limits are 

reached an agreed set of actions is undertaken 

in order to avoid irreversible damage to the 

stock (Caddy 2002).  It would be advisable to 
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adopt that type of standard approach as 

opposed to incorporating the uncertainty into 

the estimates themselves as is the practice here, 

in anticipation of meeting future MSC 

certification requirements.  Despite the 

intentionally conservative nature of setting 

quotas based on lower quantile biomass 

estimates of icefish, and any inherent 

underestimation bias which may exist due to 

sampling method, it remains preferable to 

maximise accuracy through the use of valid 

estimates.  The more accurate estimates of 

icefish abundance become, the more reliable 

information will be regarding relative changes in 

the size of the population.  Whether the long-

term decline in catches of mackerel icefish is 

representative of an anthropogenic stock 

collapse or a suppression of population growth 

due to predator-prey interactions has been 

debated for some time (Everson et al. 1999).  

The status of mackerel icefish at South Georgia 

is often expressed in terms of potential for the 

stock to “recover” to the levels which yielded 

historically high catches (Hill et al. 2005; Reid et 

al. 2005; Trathan et al. 2012).  Due to changes in 

fishing practices, reporting and regulations 

which have occurred in the last 50 years it is 

difficult to determine how much of the 

apparent downward trajectory of the stock can 

be explained by changes in fishing intensity.  

Data relevant to this key issue simply does not 

exist for the early years of the fishery, making 

attempts to interpret catch figures as changes in 

abundance futile.  In terms of the data available, 

1987 may be a key year in understanding longer 

term trends in the size of the population.  In 

that year, commercial catches in excess of 

80,000 t were recorded whereas the survey 

biomass estimate for the same season was 

approximately 40,000 t (Everson et al. 1999; 

CCAMLR 2012).  Although this disparity between 

survey estimates and observed catch rates is 

exaggerated due to the precautionary nature of 

management, a more comprehensive 

assessment is required to better understand 

trends in abundance.  Perhaps instead of 

considering survey results in terms of recovery 

to some former ideal, focus could be shifted to 

uncertainties around the current status of the 

population and the dynamic role of mackerel 

icefish in the local food-web.  With the 

numerous interacting variables which affect the 

population in mind, adopting a more 

appropriate survey design and analysis would be 

a step towards precautionary yet optimised 

assessment to suit all stakeholders. 

Assessment of the stock could benefit 

from the development of a survey which would 

account for any variability in availability of 

icefish to bottom trawl sampling.  Given the 

difficulty in a priori prediction of locations of 

high density aggregations, trawling in strictly 

predetermined locations does not necessarily 

always make sense.  An adaptive design could 

be considered whereby effort may be focussed 

on a particular area(s) where extreme densities 

are encountered.  Depending then on the level 

of confidence in how representative the 
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sampling programme is, an adaptive model 

could be implemented to account for 

presence/absence, low density and high density 

areas (Stefánsson 1996; Thorson and Stewart 

2011).  An element of acoustic data analysis, 

particularly in high density areas, could be 

included to determine vertical distribution of 

the stock (e.g. Northwest Atlantic cod; Mcquinn 

et al. 2005), and echosounder data is already 

routinely collected on survey (Fig. 6).  Ideally, 

given that mackerel icefish do not possess a 

swim bladder, collection of data across as many 

frequencies as possible would improve target 

discrimination which would provide qualitative 

data on the size and extent of dense 

aggregations of icefish (Everson et al. 1996).  

There is also potential to utilise acoustic data 

collected concurrently with trawl events to 

investigate the extent of herding for the 

improvement of abundance estimates (von 

Szalay et al. 2007). If knowledge of the target 

strength of the species were improved, acoustic 

methods could be extended to the estimation of 

abundance of the pelagic component of the 

stock (Simmonds and MacLennan 2005). 

 

Conclusions 

The stratified rescaling bootstrap-mean 

estimator was found to be the most appropriate 

method of those tested for constructing 

confidence intervals for estimates of density of 

mackerel icefish.  The method yielded 

comparable estimates of mean and variance to 

those obtained with the standard stratified 

estimators, while giving useful and valid 

uncertainty measures in the form of percentile 

confidence intervals. 

The demographic information coming 

from the survey is difficult to interpret due to 

some combination of measurement error 

arising from variable availability of mackerel 

icefish to demersal trawl sampling and unequal 

selectivity of the sampling gear across age 

classes.  The resultant series of estimates of 

numbers-at-age is noisy, and difficult to 

interpret.  The survey would benefit from the 

incorporation of acoustic data in the estimation 

of abundance, as well as an in-depth 

investigation of gear selectivity. 
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