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This work uses an information-based methodology to infer the connectivity of complex systems
from observed time-series data. We first derive analytically an expression for the Mutual Information
Rate (MIR), namely, the amount of information exchanged per unit of time, that can be used to
estimate the MIR between two finite-length low-resolution noisy time-series, and then apply it
after a proper normalization for the identification of the connectivity structure of small networks of
interacting dynamical systems. In particular, we show that our methodology successfully infers the
connectivity for heterogeneous networks, different time-series lengths or coupling strengths, and even
in the presence of additive noise. Finally, we show that our methodology based on MIR successfully
infers the connectivity of networks composed of nodes with different time-scale dynamics, where
inference based on Mutual Information fails.

The Mutual Information Rate (MIR) measures
the time rate of information exchanged between
two non-random and correlated variables. Since
variables in complex systems are not purely ran-
dom, MIR is an appropriate quantity to access
the amount of information exchanged in complex
systems. However, its calculation requires in-
finitely long measurements with arbitrary resolu-
tion. Having in mind that it is impossible to per-
form infinitely long measurements with perfect
accuracy, this work shows how to estimate MIR
taking into consideration this fundamental limi-
tation and how to use it for the characterization
and understanding of dynamical and complex sys-
tems. Moreover, we introduce a novel normalized
form of MIR that successfully infers the struc-
ture of small networks of interacting dynamical
systems. The proposed inference methodology is
robust in the presence of additive noise, different
time-series lengths, and heterogeneous node dy-
namics and coupling strengths. Moreover, it also
outperforms inference methods based on Mutual
Information when analysing networks formed by
nodes possessing different time-scales.

I. INTRODUCTION

We understand a complex system as a system with
a large number of interacting components whose aggre-
gated behaviour is non-linear and undetermined from the
behaviour of the individual components [1]. If we now
consider these components as nodes of a network, and the
underlying physical interaction between any two nodes as

∗Electronic address: murilo.baptista@abdn.ac.uk

links, one way to understand these complex systems is by
studying its topological structure, namely, the network
connectivity. In natural complex systems, the connec-
tivity of the components is often unknown or is difficult
to detect by physical methods due to large system-sizes.
Hence, it is of interest to infer the network structure that
represents the physical interaction between time-series
collected from the dynamics of the nodes.

Although network inference in non-linear systems has
been extensively studied in recent years using Cross-
Correlation or Mutual Information [2–4], recurrences [5–
7], functional dynamics [8–11], and Granger Causality
[12–14], to name a few, it still presents open challenges.
The fundamental reason is that non-linearities, even in
the absence of noise, produce behaviour that hinders the
correct identification of existing or non-existing underly-
ing direct physical dependence between any pair of nodes.

In this paper, we introduce an information-based
methodology to infer the structure of complex systems
from time-series data. Our methodology is based on
a normalized form of an estimated Mutual Information
Rate (MIR), the rate by which information is exchanged
per unit of time between any two components. MIR is
an appropriate measure to quantify the exchange of infor-
mation in systems with correlation [15–17]. In particular,
authors in Ref. [15] show how to calculate MIR in the case
a Markov partition is attainable, which is generally ex-
tremely difficult to find or unknown. Here, we first show
how MIR can be approximately calculated for time-series
data of finite length and low-resolution. Then, we pro-
pose a normalization of the estimated MIR that allows
for a successful inference about the dependence struc-
ture of small networks of interacting dynamical systems,
when Markov partitions are unknown. Our findings show
that the estimated normalized MIR allows for a success-
ful inference of the structure of small networks even in
the presence of additive noise, parameter heterogeneities
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and different coupling strenghts. Moreover, our normal-
ized estimated MIR outperforms the use of Mutual In-
formation (MI) based inference when different time-scale
dynamics are present in the networks.

The paper is organized as follows. In Sec. II, we in-
troduce two information-based measures, the MI and the
MIR. We discuss the theoretical aspects of their defini-
tions and show how they are related to each other. In
Sec. III, we introduce the models used to create the com-
plex system dynamics studied in this work. In Sec. IV, we
explain our methodology to calculate an approximation
value of MIR and introduce the normalized MIR. Sec-
tion V shows how we apply our methodology to different
coupled maps and to a neural network in which the dy-
namics of the nodes is described by the Hindmarsh-Rose
neuron model [18, 19]. Finally, in Sec. VI we discuss our
work and discuss our findings.

II. BACKGROUND

Information can be produced in a system and it can be
transferred between its different components [15–17, 20–
23]. If transferred, at least two components that are
physically interacting by direct or indirect links should
be involved. In general, these components can be time-
series, modes, or related functions of them, defined on
subspaces or projections of the state space of the system.
In this work, we study the amount of information trans-
ferred per unit of time, i.e., the Mutual Information Rate
(MIR), between any two components of a system, to de-
termine if a link between them exists. The existence of
a link between two units means there is a bidirectional
connection between them due to their interaction.

A. Mutual Information

The Mutual Information (MI) [24] between two ran-
dom variables, X and Y , of a system is the amount of
uncertainty one has about X (Y ) after observing Y (X).
Specifically, MI is given by [24–26]

IXY (N) = HX +HY −HXY , (1)

where HX = −
∑N

i=1 PX(i) log (PX(i)) and HY =

−
∑N

j=1 PY (j) log (PY (j)) are the marginal entropies of

X and Y (Shannon entropies) respectively, and HXY =

−
∑N2

i,j=1 PXY (i, j) log (PXY (i, j)) is the joint entropy be-

tween X and Y . PX(i) is the probability of a random
event i to happen in X, PY (j) is the probability of a
random event j to happen in Y , and PX,Y (i, j) is the
joint probability of events i and j to occur simultane-
ously in variables X and Y . N is the number of random
events in both variables, X and Y .

In particular, Eq. (1) can be written equivalently as

IXY (N) =

N∑
i

N∑
j

PXY (i, j) log

(
PXY (i, j)

PX(i)PY (j)

)
. (2)

This equation can be interpreted as the strength of the
dependence between two random variables X and Y [25].
When IXY = 0, the dependence strength between X and
Y is null, consequently, X and Y are independent.

The computation of IXY (N) from time-series is a sub-
tle task. Firstly, it requires the calculation of probabil-
ities computed on an appropriate probabilistic space on
which a partition can be defined. Secondly, IXY (N) is
a measure suitable for the comparison between pairs of
components of the same system but not between different
systems. The reason is that different systems can have
different correlation decay times, [27–29] hence, different
characteristic time-scales.

There are three main approaches to compute MI, and
the variation resides in the different ways to compute the
probabilities involved in Eq. (2). The first one is the bin
or histogram method, which finds a suitable partition
of the 2D space on equal or adaptive-size cells [30, 31].
The second one employs density kernels, where a ker-
nel estimation of the probability density function is used
[32, 33]. The last one computes MI by estimating prob-
abilities from the distances between closest neighbours
[34]. In this work, we adopt the first method and com-
pute probabilities in a partition of equally-sized cells in
the probabilistic space generated by two variables X and
Y . It is well known that this approach, proposed in [4]
and studied in [35], overestimates the value of IXY (N)
for random systems or non-Markovian partitions [35, 37].
In particular, the authors explain two basic reasons for
the overestimation of MI. The finite resolution of a non-
Markovian partition and the finite length of the recorded
time-series. According to [35, 37], these errors are sys-
tematic and are always present in the computation of
MI for an arbitrary non-Markovian partitions. Here, we
avoid these systematic error by creating a novel normal-
ization when dealing with the MIR.

For the numerical computation of IXY (N) [Eq. (2)],
we use the approach reported in Refs. [4, 15]. We define
a probabilistic space Ω, where Ω is formed by the time-
series data observed from a pair of nodes, X and Y , of
a complex system. Then, we partition Ω into a grid of
N × N fixed-sized cells. The length-side of each cell, ε,
is then set to ε = 1/N . Consequently, the probability of
having an event i for variable X, PX(i), is the fraction of
points found in row i of the partition Ω. Similarly, PY (j)
is the fraction of points that are found in column j of
Ω, and PXY (i, j) is the joint probability computed from
the fraction of points that are found in cell (i, j) of the
same partition, where i, j = 1, . . . , N . We emphasize
here that IXY (N) depends on the partition considered
for its calculation as PX , PY , and PXY attain different
values for different cell-sizes ε.
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B. Mutual Information Rate

Due to the issues arising from the definition of MI in
terms of its partition dependence, the authors in Ref. [15]
have demonstrated how to calculate the MIR for two
time-series of finite length irrespective of the partitions,
instead of using the MI. This quantity is invariant with
respect to the resolution of the partition [15]. In partic-
ular, and for infinitely long time-series, MIR is theoret-
ically defined as the mutual information exchanged per
unit of time between X and Y [24, 26, 36]. Specifically,

MIRXY = lim
N→∞

lim
L→∞

L−1∑
i=1

IXY (i+ 1, N)− IXY (i,N)

L

= lim
N→∞

lim
L→∞

IXY (L,N)− IXY (1, N)

L

= lim
N→∞

lim
L→∞

IXY (L,N)

L
,(3)

where IXY (L,N) represents the MI of Eq. (1) between
random variables X and Y , considering trajectories of
length L that follow an itinerary over boxes in a grid with
an infinite number of cells N . Since IXY is a symmetric
function with respect to X and Y , MIRXY = MIRY X .

We also note that the term IXY (1,N)
L tends to zero in the

limit of infinitely long trajectories, L→∞.
The authors in Ref. [15] show that if a partition with

N cells is a Markov partition of order T , then MIR can
be estimated from finite-length and low-resolution time-
series (since the limits in Eq. (3) are not necessary) by
using

MIRXY =
IXY (N)

T (N)
, (4)

where both T (N) and N are finite quantities. Notice
that an order T partition can only generate statistically
significantly probabilities if there is in each cell a suffi-
ciently large amount of points (see Eq. (17)). Besides,
points in a cell must spread over the probabiliistic space
Ω after T iterations. So, the length of the time-series
must be reasonably larger than T .

In Sec. IV, we make a novel demonstration of Eq.
(4), from which it becomes clear why MIR can be esti-
mated from finite-length and low-resolution time-series.
In this equation, IXY (N) is the MI between X and Y ,
considering probabilities that are calculated in a Markov
partition, and T (N) represents the shortest time for the
correlation between X and Y to be lost for that partic-
ular Markov partition. T (N) also represents the time
after which the evolution of a chaotic system is unpre-
dictable. Moreover, this time is of the order of the short-
est Poincaré return-time [29] and is related to the order O
Markov partition, where O indicates that the future state
of a random variable X is independent on its (O − 1)s
previous states and is independent on the states of X for
an order O−T .

III. MODELS FOR OUR COMPLEX SYSTEMS

We adopt various topologies for the networks and vari-
ous dynamics for the components of the complex systems
considered. Hence, the network inference, which repre-
sents the detection of the topological structure of the
component’s interactions, is done from the time-series
that are recorded for each component. In particular, we
divide the analysis on discrete and on continues time-
series components.

A. Networks with discrete-time units

The dynamics of the class of discrete complex systems
that are of interest here are described by the following
equation [42]

xin+1 = f(xin, r)(1− α) +
α

ki

M∑
j=1

Aijf(xjn, r), (5)

where xin is the n-th iterate of map i, where i = 1, . . . ,M
and M is the number of maps (nodes) of the system, α ∈
[0, 1] is the coupling strength, Aij is the binary adjacency
matrix (with entries 1 or 0, depending on whether there is
a connection between nodes i and j or not, respectively)
that defines the structural connectivity in the network, r

is the dynamical parameter of each map, ki =
∑M

j=1 Aij

is the node-degree, and f(xn, r) is the considered map.
Particularly, we use

f(xn, r) = rxn(1− xn), and (6)

f(xn, r) = xn + r − K

2π
sin(2πxn) mod 1. (7)

For the logistic map [38] of Eq. (6), we use r = 4 (if
it is not explicitly mentioned), that corresponds to fully
developed chaos, whereas for the circle map [41] of Eq. (7)
we use r = 0.35 and K ≈ 6.9115, following Ref. [2], for
the same reason.

Figure 1(a) shows the network topology described by
the adjacency matrix Aij used to create a network where
the dynamics of each node is described either by logis-
tic or circle maps. We will use these networks to study
the robustness of our methodology for different coupling
strengths, observational noise, and data-length. We also
use small-size networks with discrete dynamics, with dif-
ferent decay of correlation times for the nodes to test
our methodology (see Fig. 1(b)). In those networks, the
dynamics of the nodes is given by logistic maps. In par-
ticular, we construct a network formed by two clusters of
3 nodes each. The clusters are connected by a small-
coupling strength link. Specifically, the dynamics of
Fig. 1(b) for the cluster formed by the nodes 1, 2, 3 is con-
structed by using r = 4, and the dynamics of the cluster
formed by the nodes 4, 5, 6 is given by a third-order com-
position of the logistic map, i.e., f(xi) ≡ f◦f◦f(xi), with
r = 3.9. Consequently, both clusters are constructed by
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time-series with different correlation decay times, creat-
ing a good example to understand how a clustered net-
work with different time-scales can affect the inference
capabilities of MI- or MIR-based methodologies.

FIG. 1: Network topologies used to construct the complex
systems. Panel (a) shows a network with 16 nodes and with
similar characteristics with a scale-free network, where the
dynamics of each node is either a logistic or a circle map.
Panel (b) shows a network composed of 2 clusters of 3 nodes
each, which is composed of nodes with different time-scales
and a logistic map dynamics. Panel (c) shows a network of
12 nodes, where the dynamics of each node is described by
Hindmarsh-Rose dynamics [Eq. (8)].

B. Networks with continuous-time units

We consider continuous dynamics for the nodes of a
network described by the Hindmarsh-Rose (HR) neuron
model [18]. The particular network we choose is shown
in Fig. 1(c). The HR model is given by

ṗ = q − ap3 + bp2 − n+ Iext,

q̇ = c− dp2 − q,
ṅ = h[s(p− p0)− n], (8)

where p is the membrane potential, q is associated with
the fast currents (Na+ or K+), and n with the slow cur-
rent, for example Ca2+. The rest of the parameters are
defined as a = 1, b = 3, c = 1, d = 5, s = 4, p0 = −1.6
and Iext = 3.25, for which the system exhibits a multi-
scale chaotic behaviour with spike bursting. Parameter
h = 0.005 modulates the slow dynamics of the system.
The neural networks of M neurons connected by electri-
cal (linear coupling) synapses is described in [19, 23], and
corresponds to having

ṗi = qi − ap3i + bp2i − ni + Iext − gl
M∑
j=1

CijH(pj),

q̇i = c− dp2i − qi,
ṅi = h[s(pi − p0)− ni], i = 1, . . . ,M, (9)

where M is the number of neurons and H(pi) = pi.
In Eq. (9), gl is the strength of the electrical synapses.
We use as initial conditions for each neuron i: pi =
−1.30784489 + ηri , qi = −7.32183132 + ηri , ni =
3.35299859 +ηri , and φi = 0, where ηri is a uniformly dis-
tributed random number in [0, 0.5] for all i = 1, . . . , Nn,
following [19, 23]. Cij is a Laplacian matrix and accounts
for the way neurons are electrically (diffusively) coupled.
Particularly, Cij = Kij −Aij where A is the binary ad-
jacency matrix of the electrical connections and K is the
nodes degree diagonal matrix based on A. If A(i, j) = 1
then neuron j perturbs neuron i with an intensity given
by gl.

IV. METHODS

A. Calculation of the correlation decay time using
the diameter of an itinerary network

To infer the topology of a network using MIR [Eq. (4)],
we need to compute the correlation decay time T (N).
T (N) is difficult to calculate in practical situations since
it depends on quantities such as Lyapunov exponents
and expansion rates, which demand a high computational
cost [15]. Here, we estimate it by the number of itera-
tions that takes to points in cells of Ω to expand and
completely cover Ω. This is a necessary condition to de-
termine the shortest time for the correlation to decay to
zero. In particular, we are introducing a novel way to
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calculate T (N) from the diameter of a network G, which
is based on the dynamics of points mapped from one cell
of Ω to another, namely, a network with the connectivity
given by the transitions of points from cell to cell of Ω or
an itinerary network.

We construct G as follows. We assume that each
equally-sized cell in Ω, occupied by at least one point,
represents a node in G. Then, following the dynamics
of points moving from one cell to another, we create the
connections between nodes, i.e., the links in G. Specifi-
cally, a link between nodes i and j exists if points in Ω
travel from cell i to cell j. If the link exists the weight is
equal to 1, if it is absent, then it is equal to 0, therefore, G
is defined as a binary matrix with elements Gij ∈ {0, 1}.
In this framework, a uniformly random time-series with
no correlation results in a complete network, namely, an
all-to-all network.

We define T (N) as the diameter of G. The reason is
that T (N) is the minimum time that takes for points
inside any cell of Ω to spread to the whole extent of Ω.
By definition, the diameter of a network is the maximum
length for all shortest-paths, i.e, the minimum distance
required to cross the entire network. Hence, our approach
transforms the calculation of T (N) into the calculation
of the diameter of G. In particular, for the estimation of
the network diameter we use Johnson’s algorithm [48].

B. Calculation of MIR

To estimate MIR from finite-length low-resolution
time-series data, we truncate the summation in Eq. (3)
up to a finite size N , depending on the resolution of data,
and consider small trajectory pieces of the time-series
with a length L, which depends on the total length of
the time-series and on Eq. (17), such that,

MIRXY
∼=

1

L

L∑
i=1

[IXY (i+ 1, N)− IXY (i,N)]. (10)

In Eq. (10), left-hand and right-hand sides would be
equal if the partition, where probabilities are being cal-
culated, is Markov. The length L represents also the
largest order T that a partition that generates statis-
tically significant probabilities can be constructed from
these many trajectory pieces. Assuming that the order of
the partition constructed is T = L (which also represents
the time for the correlation in the partition to decay to
zero, if the partition would be Markov), then Eq. (10)
becomes

MIRXY
∼=

1

T

T∑
i=1

[IXY (i+ 1, N)− IXY (i,N)]. (11)

Now, taking two partitions, Λ1 and Λ2, with different
correlation decay times, T1 and T2 respectively, and dif-
ferent number of cells, N1×N1 and N2×N2 respectively,

with N2 > N1, we have T2 = T1 +1. Moreover, Λ1 gener-
ates Λ2 in the sense that F−1(Λ1) = Λ2, where F is the
evolution operator and F−1(Λ1) means the pre-iteration
of partition Λ1. Then,

IXY (T2,Λ1) = IXY (T1,Λ2). (12)

Hence, we can write Eq. (11) as,

MIRXY
∼=

1

T1

T1∑
i=1

[IXY (i+ 1,Λ1)− IXY (i,Λ1)]

∼=
1

T1

T1∑
i=1

[IXY (i,Λ2)− IXY (i,Λ1)]. (13)

When the partition is a Markov generating partition,
its properties [15] fulfil

IXY (i,Λk) = IXY (1,Λk+i−1). (14)

Then, if our partition is close to a Markov partition,
Eq. (11) results in

MIRXY '
1

T1
[IXY (1,ΛT1+1)− IXY (1,Λ1)] (15)

≡ 1

T1
IXY (1,ΛT1

), (16)

which is our demonstration for the validity of Eq. (4).
Therefore, in order to use Eq. (15), we must have

partitions for which Eq. (14) is approximately valid.
This condition can be reached for partitions constructed
with a sufficiently large number of equally-sized cells of
length ε = 1/N , exactly the type of partition considered
here. Notice, however, that partitions will typically not
be Markov nor generating, causing systematic errors in
the estimation of MIR. To correct these errors, we pro-
pose the normalizations in Eqs. (18) and (19).

It is important to notice that MIRXY is always a
partition-independent quantity, if and only if, the par-
titions are Markov. In order to calculate IXY (1,ΛT1

), we
use Eq. (1), which requires the calculation of probabilities
in Ω. Fulfilling the inequality

〈N0(N)〉 ≥ Noc, (17)

where 〈N0(Nmin)〉 is the mean number of points inside all
occupied cells of the partition of Ω, Eq. (17) guarantees
that the probabilities are unbiased.

C. Network Inference using MIR

For our analysis, using a non-Markovian partition al-
lows us to simplify the calculations of MIRXY , however,
taking this kind of partitions into consideration would
make the MIR values to oscillate around an expected
value. Moreover, MIR for different non-Markovian par-
titions, not only has a non-trivial dependence with the
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number of cells in the partition, but also presents a sys-
tematic error [35]. Therefore, since MIRXY for a non-
Markovian partition of N × N equally-sized cells [esti-
mated by Eq. (4)], is expected to be partition-dependent,
we propose here a way to obtain a measure, computed
from MIRXY (N), that is partition independent and that
is suitable for network inference.

To infer the structure of a network, we calculate the
MIR for the M(M − 1)/2 different pairs of nodes in the
network, which is all we need due to the symmetric prop-
erty of MIR. We also discard the MIR values for the same
variable, i.e., MIRXX , because we are interested in the
exchange of information between different variables. We
compute the MIRXY exchanged between any two nodes
in a network by taking the expected value over differ-
ent partition sizes Ni, i.e., MIRXY = Ei(MIRXY (Ni)),
where E(X) is the expected value of X. In order to
remove the systematic error [35] in this calculation, we
perform instead a weighted average, where the finer par-
titions (larger N) contribute more to the MIRXY value
than the coarser ones (smaller N). The reason is that a
smaller N is likely to create a partition that is further
away from a Markovian one than a partition of larger N .
Consequently, we resolve the systematic error by weigh-
ing differently the different partitions.

Therefore, we propose a novel normalization for the
MIR as follows. First, we use an equally-sized grid of
size N , we subtract from MIRXY (N), calculated for all
pairs of nodes, its minimum value and denote the new
quantity as min(MIRXY (N)). Theoretically, a pair that
is disconnected should have a MIR value close to zero,
however, in practice, the situation is different because
of the systematic errors coming from the use of a non-
Markovian partition, as well as, from the information
flow passing through all the nodes in the network. For
example, the effects of a perturbation in one single node
will arrive to any other node in a finite amount of time.
This subtraction is proposed to reduce these two un-
desired overestimations of MIR. After this step, we re-
main with MIR as a function of N . Normalizing then by
max(MIRXY (N)) − min(MIRXY (N)), where again the
maximum and minimum are taken over all different pairs,
we construct a relative magnitude M̂IRXY (N), namely,

M̂IRXY (N) =
MIRXY (N)−min{MIRXY (N)}

max{MIRXY (N)} −min{MIRXY (N)}
,

(18)
where MIRXY (N) is the MIR between nodes X and Y
and min{MIRXY (N)} is the minimum with respect to
the M(M−1)/2 pairs and max{MIRXY (N)} is the max-
imum with respect to all M(M − 1)/2 pairs. This mag-
nitude is still a function of N , however, we can now per-
form an average over different values of N without the
systematic error.

Next, we apply Eq. (18) for different grids sizes Ni, i =
1, . . . ,m to obtain MIRXY (Ni), where Nm is the max-
imum number of cells per axis, resulting in a grid of
Nm ×Nm cells, and fulfilling at the same time Eq. (17).
Then, similarly to the idea used for Eq. (18), we make a

second normalization over M̂IRXY (Ni) to obtain

MIRXY =

∑
i M̂IRXY (Ni)

max{
∑

i M̂IRXY (Ni)}
, (19)

where the maximum is being taken now over the Nm

grids.
Finally, applying Eq. (19) to each pair XY , we ob-

tain its average value, MIRXY . The higher the value of
MIRXY , the higher the amount of information exchanged
between X and Y per unit of time. This allows us to
identify pairs of nodes that exchange larger rates of in-
formation than others.

In order to perform the network inference from the
MIR, we fix a threshold in [0, 1] and create a binary ad-
jacency matrix Ac, where the entry Ac

X,Y is 1 if MIRXY

is higher than the threshold, and 0 otherwise. Ac is then
compared with the adjacency matrix A used to construct
the dynamics of the nodes in Sec. III. Recording the
threshold used to create Ac, and varying it in [0, 1], we
obtain different inferred networks. Our results show that
there is an interval of thresholds within [0, 1] that fulfil
Ac = A, i.e., a band that represents a 100% successful
network inference.

In general, the effectiveness of our network inference
methodology is measured by the absolute difference be-
tween the real topology and the one inferred for different
threshold values. We find that whenever there is a band
of threshold values, there is successful inference without
errors. In practical situations, where the underlying net-
work is unknown and the absolute difference is impossible
to compute, the ordered values of the MIR or other sim-
ilarity measures [2, 3] show a plateau which corresponds
to the band of thresholds aforementioned. In particular,
if the plateau is small, the authors in Ref. [49] propose
a method to increase the size of the plateau by “silenc-
ing” the indirect connections, hence, allowing for a more
robust reconstruction of the underlying network.

V. RESULTS FOR NETWORK INFERENCE

We now present our results for network inference using
the three models introduced in Sec. III.

A. Discrete-time systems

1. Different Coupling Strengths

Here we study the performance of Eq. (19) for network
inference in the case where the dynamics of each node is
described by a circle or a logistic map. The network
structure that comprises our small-network of interact-
ing discrete-time systems is given in Fig. 1(a). Here,
we analyze the effectiveness of the inference as the cou-
pling strength, α, between connected nodes, is varied.

http://dx.doi.org/10.1063/1.4945420


7

In Ref. [2], the authors have shown that, for the logis-
tic [Eq. (6)] and circle maps [Eq. (7)], assuming the same
topology, the dynamics is quasi-periodic for α > 0.15 and
chaotic for 0 ≤ α ≤ 0.15. We, therefore, choose the cou-
pling strength α in Eq. (5) to be equal to 0.03 and 0.12,
both values corresponding to chaotic dynamics.

Figure 2 shows the network inference results using
MIRXY . The wideness of the red band represents all
possible values a threshold can take to perform a 100%
success network inference, i.e. the correct identification
of all physical and non-physical links. The wider the
band, the bigger the probability to perform a complete
reconstruction, therefore the reconstruction is more ro-
bust. When we deal with experimental data, and the
correct topology is unknown, the optimal threshold can
be determined by the range of consecutive thresholds for
which the inferred topology is invariant, see Ref. [2].

An error in the percentage of reconstruction comes
from links that were not inferred (false negatives) or in-
ferred erroneously (false positives). In our current study
we avoid the distinction between them and we catego-
rize both as reconstruction errors. Then, the reconstruc-
tion percentage can decrease by inferring non-existent
links (non physical links) or by missing them. Each time
this happens, we decrease the percentage by an amount
e% = 100 1

Nl
, where Nl is the number of real links in the

original network.

2. Different time-series lengths and noise strengths

We start by analysing the effectiveness of MIRXY

for different time-series lengths, using the dynamics of
the logistic map for each node and a coupling strength
α ∈ [0, 0.17]. In Fig. 3(a), we observe that for α closer
to 0.15, a relatively short length (of about 3000 points)
is enough to infer correctly the original network, which is
generated by the adjacency matrix A of Sec. III. How-
ever, when α is close to 0.03, a larger time-series (of about
30000 points) is needed to achieve 100% successful re-
construction. Values of α = 0 and α ∈ [0.15, 0.17] are
considered to test the effectiveness of the values MIRXY

in the case of nodes being totally independent and in the
case of nodes having periodic dynamics. In these regions,
MIRXY is expected to be zero, a situation evidenced in
both panels of the figure. Our results so far suggest that
the successful reconstruction for short-length time-series
depends on the intensity of the coupling strength. How-
ever, it is surprising to see that exact inference can always
be achieved for this dynamical regime if a sufficiently
large time-series is available.

Next, we apply our methodology for network inference
considering noisy time-series data. In particular, we in-
troduce additive normally-distributed noise to the logis-
tic map, i.e.,

fns(xn, r) = f(xn, r) + γ · σ, (20)

where fns(xn, r) is the noisy dynamics, σ is a random

number drawn from the normal distribution with 0 mean
and standard deviation of 1, i.e. ℵ(0, 1), and γ ∈ [0, 1] is
the noise strength. Since ℵ(γ, 1) = γ ∗ ℵ(0, 1), the noise
strength is the standard deviation in the normal distribu-
tion. Fig. 3(b) shows the parameter space for different
coupling strengths versus γ. We observe perfect infer-
ence for noise strengths γ < 0.3, i.e. for ℵ(0, 1). More-
over, the best reconstruction using MIRXY is for coupling
strengths in [0.6, 0.11], a dynamical regime where chaotic
behaviour is prevalent.

B. Neural Networks

We also apply our methodology for the study of net-
work inference in the case of continuous dynamics given
by the HR system. We use two electrical couplings,
gl = 0.05 and 0.1, both considered for time-series of
length 2 × 105. Figure 4 shows the band for 100% suc-
cessful network inference, where panel (a) corresponds
to gl = 0.05 and panel (b) to gl = 0.1. This figure shows
that MIRXY is able to infer the correct network struc-
ture, in this case, for small networks of continuous-time
interacting components.

C. Comparison between Mutual Information and
Mutual Information Rate

Finally, we compare MI and MIRXY to assess the ef-
fectiveness of our proposed methodology for network in-
ference. We apply the same normalization process used
for MIR, Eq. (19), to MI to have an appropriate compar-
ison. In particular, we infer the network structure of the
system described in Sec. III with the network shown in
Fig. 1(b). As we have explained in Sec. III, this system
has two clusters of nodes with different dynamics. The
dynamics in the left cluster is given by the 3rd-order com-
position of the logistic map, whereas the dynamics of the
right cluster is given by ordinary logistic map dynamics.
The different dynamics of the two groups produces dif-
ferent correlation decay times, T (N), for nodes X and Y ,
in particular when the pair of nodes comes from different
clusters. The different correlation decay times produce a
non-trivial dynamical behaviour that challenges the MI
performance for network inference.

Figure 5 shows the results obtained for the normalized
MI, IXY , and our normalized MIR, MIRXY , for each of
the possible pairs of nodes. The purple bars correspond
to the pairs of nodes 1, 2 and 3 of the first cluster, the or-
ange bars correspond to the pairs of nodes 4, 5 and 6 of
the second cluster (3rd order composed dynamics) and
the black bar corresponds to the link between clusters
(notice that due to the small coupling strength between
the two clusters this link is not detected using any of the
two methods). Nevertheless, MIR identifies correctly all
intra links of the network where MI fails to do so. We
conclude that the normalized MIR is preferable over the
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FIG. 2: Network inference for different coupling strengths and coupled maps. Panels (a) and (b) represent the MIRXY values
between different pair of nodes in a network composed of coupled logistic maps with a coupling strengths ε = 0.03 and 0.12,
respectively. Panels (c) and (d) are similar to panels (a) and (b), but for circle maps. The red band indicates the range of
thresholds from which the original network is correctly inferred, namely, achieving 100% successful inference.

FIG. 3: Network inference based on logistic maps, for differ-
ent coupling and noise strengths. Panel (a) shows the pa-
rameter space of the percentage of reconstruction (0% - blue,
100% - dark red) for different coupling strengths versus data
lengths. Panel (b) is similar to panel (a) for different cou-
pling strengths versus the standard deviation of the normal
distribution of the noise added.

normalized MI when it comes to the detection of links in
a complex system with different correlation decay times.
The reason is that the normalized MIR takes into con-
sideration the correlation decay time associated to each
pair of nodes, contrary to the MI.

FIG. 4: Network inference for a network of nodes with a HR
neural dynamics for different electrical couplings. Panels (a)
and (b) show the bar plots of the percentage of inference for
gl = 0.05 and gl = 0.1, respectively. The red bands show the
range of thresholds for which the original network is inferred
with a 100% success.

VI. CONCLUSIONS

In this paper we have introduced a new information
based approach to infer the network structure of com-
plex systems. MIR is an information measure that com-
putes the information transferred per unit of time be-
tween pairs of components in a complex system. MIRXY ,
our novel normalization for the MIR that is introduced
in Eq. (18), is a measure based on MIR and developed
for network inference. We find that MIRXY is a robust
measure to perform network inference in the presence
of additive noise, short time-series, and also for systems
with different coupling strengths. Since MIR and MIRXY

depend on the correlation decay time T , they are suit-
able for inferring the correct topology of networks with
different time-scales.

In particular, we have explored the effectiveness of
MIR versus MI in terms of how successful they are in
inferring exactly the network of our small complex sys-
tems. In general, we find that MIR outperforms MI when
different time-scales are present in the system. Our re-
sults also show that both measures are sufficiently robust
and reliable to infer the networks analyzed whenever a
single time-scale is present. In other words, small vari-
ations in the dynamical parameters, time-series length,
noise intensity, or topology structure, maintain a suc-

http://dx.doi.org/10.1063/1.4945420


9

FIG. 5: Network inference for the composed dynamical sys-
tem introduced in Sec. III A. Panel (a) plots IXY of Eq. (1)
for all links. This is a case where a complete network infer-
ence can not be achieved (indicated by the absence of any
red band). Panel (b) is the same as before but for MIRXY .
The color code corresponds to the same color code identify-
ing different nodes in Fig. 1(b). The darkest color is the link
connecting the two clusters.

cessful inference for both methods. It remains to be seen
the types of errors that are found in these measures when
perfect inference is missing or impossible to be done.
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