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Abstract
Dementia is a contemporary global health issue with far 
reaching consequences, not only for affected individuals 
and their families, but for national and global socio-
economic conditions. The hallmark feature of dementia 
is that of irreversible cognitive decline, usually affecting 
memory, and impaired activities of daily living. Advances 
in healthcare worldwide have facilitated longer life spans, 
increasing the risks of developing cognitive decline and 
dementia in late life. Dementia remains a clinical diagnosis. 
The role of structural and molecular neuroimaging in patients 
with dementia is primarily supportive role rather than 
diagnostic, American and European guidelines recommending 
imaging to exclude treatable causes of dementia, such as 
tumor, hydrocephalus or intracranial haemorrhage, but also 
to distinguish between different dementia subtypes, the 
commonest of which is Alzheimer’s disease. However, this 
depends on the availability of these imaging techniques 
at individual centres. Advanced magnetic resonance 
imaging (MRI) techniques, such as functional connectivity 
MRI, diffusion tensor imaging and magnetic resonance 
spectroscopy, and molecular imaging techniques, such as 
18F fluoro-deoxy glucose positron emission tomography 
(PET), amyloid PET, tau PET, are currently within the realm 
of dementia research but are available for clinical use. 
Increasingly the research focus is on earlier identification 
of at risk preclinical individuals, for example due to family 
history. Intervention at the preclinical stages before 
irreversible brain damage occurs is currently the best hope 
of reducing the impact of dementia. 
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Core tip: Dementia is a clinical diagnosis that cannot 
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be made on imaging. Structural and molecular imaging 
techniques are useful to identify the likely underlying 
neuropathology. Neuroimaging techniques, such as 
computed tomography (CT) and blood flow single photon 
emission computed tomography (SPECT) are routinely 
used in clinical practice in all newly diagnosed dementia 
patients. Structural imaging with CT or magnetic resonance 
imaging is useful in suspected frontotemporal dementia. 
Amyloid positron emission tomography imaging has recently 
been introduced into clinical practice and is likely to be 
most useful in early onset Alzheimer’s disease. Dopamine 
transporter imaging with iodine-123-b-carbo-methoxy-3-b-
(4-iodophenyltropane) fluropropyl SPECT has been firmly 
established in clinical practice to support a diagnosis of 
Lewy body disease. This article is a review of the imaging 
techniques not only currently in clinical use but also the 
emerging imaging techniques in research. 
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INTRODUCTION
Dementia is a syndrome of progressive memory and 
cognitive decline affecting an individual in his activities 
of daily life, secondary to irreversible neuronal damage. 
With 2%-10% of those affected younger than 65 
years, this condition is primarily a disease of the aging 
population[1]. Dementia is not an inevitable consequence 
of aging and the predicted rise in dementia as a result 
of an aging population is not as great as predicted, 
perhaps because the current definition of old-age de-
pendency is too simplistic[2]. However, the published 
prevalence of dementia doubles with every 5 years 
increment in age, according to the World Alzheimer 
Report 2014 by Alzheimer Disease International[1]. World-
wide prevalence is estimated at 47.5 million with just 
over half living in middle and low income countries, 
expected to double by 2030 and treble by 2050 (World 
Health Organization fact sheet No.362, March 2015). 
The annual global cost of medical care, social support 
and informal care was estimated to be US$ 604 billion 
in 2010, which is only set to increase with the world 
population of over age 65 years outnumbering the 
under age 5 years by two-three fold by 2050[3]. 

On the other hand, delaying the onset of dementia 
by 5 years would reduce the population prevalence 
by 50%, greatly reducing its impact in the general 
population[1]. Currently there is no cure for dementia. 
Medical and non-medical interventions have had limited 
success in altering the course of the disease especially 
as neuropathology is usually extensive by the time the 
patient has presented with symptoms (Alzheimer’s 
Disease International 2014 report). 

The diagnosis of dementia remains a clinical diagnosis 
and post-mortem examination of the brain tissue is 
the only definitive method to establish and confirm the 
diagnosis. In vivo, various invasive and non-invasive 
methods are available to support the diagnosis of diffe-
rent sub-types, due to different brain pathology. 

Dementia has various causes (Table 1). By far the most 
important type is Alzheimer’s disease (AD) accounting 
for 60%-70% of all dementias. Primary dementing 
conditions have in common abnormal protein or peptide 
accumulation in the brain: τ and b amyloid in AD; α 
synuclein in Lewy body dementia (LBD) and τ, Transactive 
DNA-binding protein (TDP) or Fused in Sarcoma (FUS) 
in fronto-temporal dementia (FTD). But these conditions 
can and do often co-exist with other pathologies of aging, 
most commonly cerebral small vessel disease (CSVD)[4].  
Dementia secondary to cerebrovascular disease is the 
second most common form of dementia. 

North American, European and United Kingdom 
National Institute of Health and Care Excellence (NICE) 
guidelines recommend neuroimaging in all patients at the 
time of initial diagnosis of dementia[5-8]. Structural and 
molecular imaging are both useful to support the diagnosis 
of a dementia-related neuropathology in vivo. Molecular 
imaging, for example, positron emission tomography (PET) 
using tracers for amyloid or tau and invasive methods 
like cerebrospinal fluid (CSF) analysis of amyloid b and 
τ are also available to support the diagnosis of AD in 
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Table 1  Causes of dementia and dementia syndromes
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Types of dementia 

Primary dementias 
  Alzheimer’s disease 
     Late-onset Alzheimer’s disease - most common form 60%-70% of all 
dementias 
     Early-onset Alzheimer’s disease - under 65 yr of age, chromosome 14 
implicated, Down’s syndrome 
     Familial AD - inheritable form present in at least 2 generations 
within families 
  Dementia with Lewy bodies 
  Frontotemporal dementia 
  Mixed dementia - more than one form of pathology for, e.g., Lewy 
bodies with Alzheimer’s disease 
Less common forms 
  Parkinson’s disease 
  Progressive supranuclear palsy 
  Huntington’s disease 
Secondary dementias 
  Vascular/multi infarct dementia 
     Vascular with Alzheimer’s disease 
  Creutzfeldt-Jakob disease 
  Intracranial mass lesions 
  Normal pressure hydrocephalus 
  Subdural haematomas 
  Trauma 
  Infections - primarily human immunodeficiency virus
  Alcohol 
Other documented causes 
  Vitamin deficiencies - vitamins E, B and folic acid are implicated 
  Medications 
  Other causes like depression 



vivo. However, many of these tools apart from structural 
neuroimaging remain elusive to regular clinical practice 
and are confined to specialised centres and to research.  
Therapeutic interventions in dementia, in particular in 
AD, have had mixed success, none achieving significant 
alteration in disease progression. This is largely due to 
the fact that the process of neuronal damage is quite 
advanced at the time of clinical presentation. It is widely 
recognised that early intervention before irreversible 
neuronal damage occurs is our best hope of delaying the 
onset and perhaps preventing dementia[9]. Inevitably 
then it becomes imperative that we learn to identify those 
individuals who are on the trajectory to develop AD, 15-20 
years before clinical dementia. Confusing the picture is 
the fact that many of these neuronal changes including 
amyloid deposition occur within the spectrum of normal 
aging without ever causing dementia. So do we expose 
these individuals to an intervention that they may never 
need?  Would it be cost effective to do so[10]? 

Research has inevitably widened its scope with 
emphasis now on the pre-clinical stage of the disease 
so that we could precisely identify those vulnerable 
individuals with the greatest level of confidence. Indi-
viduals affected could potentially be identified for future 
trials. This has heralded a new era of collaborative global 
endeavour. Multicentre, collaborative large datasets 
like the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) provide free access to multi-modality data to 
researchers worldwide, considerably reducing the cost of 
such research[11]. Molecular imaging and advanced MRI 
techniques are at the cutting edge of dementia research, 
primarily in the pre-clinical stage, helping us understand 
the early life of this devastating condition. 

Here, we aim to discuss and provide an overview of 
imaging in common diseases that cause dementia, both 
in the clinical setting and within the realm of research. 
Imaging in dementia has moved away from just ruling 
out treatable causes of dementia like space occupying 
lesions or hydrocephalus, to characterising the different 
types of dementia-related neuropathology with increasing 
specificity.

AD
A primary neurodegenerative condition, AD is the most 
common form of late onset dementia (> 65)[12]. Neuro-
pathologically it is characterised by extracellular amyloid 
plaques and intracellular tau aggregates[13]. Amyloid 
plaques are aggregates of insoluble fibrillary b-amyloid (Ab) 
peptide mostly 40-42 amino acids in length, Ab42 being the 
most prevalent[14]. The accumulation of Ab in turn is thought 
to trigger a cascade of neurodegenerative events including 
intracellular aggregation of hyperphosphorylated tau[15] 
and neuroinflammation[16,17]. Accumulation of Ab correlates 
with cognitive decline in some studies, as demonstrated on 
amyloid PET imaging[18,19]. Lately this is being challenged as 
there appears to be a certain disconnect between the time 
of amyloid deposition, which plateaus in late mid-life and 
progressive cognitive decline. The intracellular tau related 

neurofibrillary tangles, on the other hand, do correlate with 
disease severity and cognition at different stages of AD[20,21].

The evolution of AD is a continuum progressing from 
the asymptomatic pre-clinical stage, decades before the 
clinical onset of the disease, to the pro-dromal stage 
where there is onset of cognitive impairment but below 
the levels of formal dementia diagnosis and eventually 
to dementia. In the rare autosomal dominant early 
onset AD, abnormal accumulation of amyloid has been 
attributed to mutations in the genes regulating amyloid 
precursor protein (APP) and the presenilins (PSEN 1 and 
2)[22]. In sporadic AD, apolipoprotein E gene (APOE4) 
has been implicated in earlier onset, greater cognitive 
impairment and more rapid progression[23], but this is not 
exclusive to AD and is found in other neurodegenerative 
conditions, such as Parkinson’s disease (PD)[24]. 

The diagnostic criteria for AD have been recently 
updated for use in clinical practice as well as research[25]. 
Endeavours to recognise the disease in the earlier 
stages have also prompted standardisation of criteria 
for defining preclinical[26] and pro-dromal [amnestic mild 
cognitive impairment (MCI)] stages[27] for both clinical 
and research purposes.

Structural imaging
The evolution of neuropathological changes begins at 
the entorhinal cortex in the medial temporal lobe which 
plays an important role in laying down new memory by 
virtue of its connections to hippocampus. Subsequent 
hippocampal involvement results in episodic memory 
loss and, as the disease progresses to involve neocortex, 
impacts on cognition, language, attention and executive 
function, affecting the activities of daily life[28]. The typical 
imaging appearance is that of global brain atrophy with 
early disproportionate atrophy of medial temporal lobes 
(MTA), including the hippocampi[29] (Figure 1). MTA 
can differentiate AD from ageing with a sensitivity and 
specificity of 80%-85% and is a risk factor for cognitive 
decline and dementia in normal aging[30] and predicts AD in 
those with amnestic MCI with a sensitivity and specificity 
of 73% and 81%[31,32]. Progressive atrophy of posterior 
temporal and parietal lobes differentiates AD from FTD. 

More advanced MRI imaging techniques such as diffusion 
weighted and diffusion tensor imaging (DWI and DTI), 
magnetic resonance spectroscopy (MRS) and perfusion 
imaging are also used in the research context. DWI and DTI 
techniques measure the integrity of tissue using two different 
measures, fractional anisotrophy (FA) and mean diffusivity 
(MD) or apparent diffusion coefficient (ADC). Increased 
MD/ADC and decreased FA are considered to be markers 
of neuronal fibre loss and reduced gray matter and white 
matter integrity (Figure 2)[33]. MRS is a technique to measure 
the biological metabolites in the target tissue, specifically the 
metabolites N-acetylaspartate (NAA), a marker of neuronal 
integrity, which decreases and myo-inositol, a marker of glial 
proliferation and neuronal damage, which increases. These 
changes are seen typically in the posterior cingulate gyrus, 
mesial temporal lobe, parieto-occipital lobes and the fronto-
parietal lobes[34]. Cerebral perfusion is imaged using blood 
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Molecular imaging
Molecular imaging aims to measure the pathophysiological 
change within the brain using either tracer that demon-
strate normal physiology (non-specific tracers) or that 
bind to pathological targets (specific tracers). The two 
main modalities include single photon emission computed 
tomography (SPECT) and positron emission tomography 
(PET).

SPECT is used to measure regional cerebral blood 
flow (rCBF) by intravenously injecting technetium-labelled 
hexamethylpropylene amine oxime (99Tc-HMPAO). In AD 
characteristic deficits in posterior temporoparietal, posterior 
cingulate and inferior frontal regions, reflect underlying 
neuronal dysfunction and neurodegeneration (Figure 
4). Often images demonstrate features secondary to a 
combination of both Alzheimer’s and vascular pathology 

flow SPECT, dynamic susceptibility contrast enhanced MRI or 
arterial spin labelling (ASL) techniques[35,36]. Functional MRI 
(fMRI) measures brain activity using blood oxygenation level 
dependent (BOLD) technique demonstrating areas of brain 
activity by demonstrating the greatest influx of oxygen into 
the region to compensate increased utilisation. This can be 
performed in the resting state or during a task[37]. 

A recent review of fMRI studies in dementia demon-
strated decreased functional connectivity between precuneus, 
medial prefrontal cortex, posterior cingulate cortex, anterior 
cingulate cortex and hippocampus in the resting state, 
centres which are part of the default mode network (Figure 3) 
and more than can be accounted for by atrophy. The severity 
and distribution of decreased functional connectivity at rest 
is postulated to potentially distinguish MCI patients from AD 
and AD from other neurodegenerative dementias[38]. 
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A B C

Figure 1  Hippocampal atrophy in an Alzheimer’s disease patient. A: Computed tomography axial; B: Coronal images; C: Medial temporal lobe atrophy on 
magnetic resonance imaging (not the same patient).

BA

C D

Figure 2  Diffusion tensor imaging. A-C: Diffusion 
tensor imaging (DTI) data set superimposed on structural 
image of the brain in 3 orthogonal planes demonstrating 
colour coded white matter tracts. Blue colour correlate 
to the tracts in the cranio-caudal direction, red in the 
transverse direction and green in the antero-posterior 
direction. (Images kindly prepared by Dr. Gordon D 
Waiter); D: DTI data of white matter tracts (green) 
superimposed on T1 image demonstrating statistically 
significant difference in fractional anisotropy in the fornix 
(orange areas) compared to the rest of the brain in a 
subgroup of patients. (Images kindly prepared by Dr. 
Gordon D Waiter).
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(Figure 5).
Like HMPAO SPECT, 18 Fluorodeoxyglucose PET 

(FDG PET) demonstrates decrease in regional uptake 
reflecting decreased metabolism in a distribution similar 
to rCBF. In amnestic MCI, there is bilateral glucose 
hypometabolism in the limbic system, posterior cingulate 
cortex, parahippocampal gyri and temporal lobes (inferior 
temporal gyrus)[39,40], compared to AD patients who 

had additional profound hypometabolism in precuneus, 
inferior parietal lobule and middle temporal gyrus along 
with posterior cingulate cortex[39,41].

Amyloid PET imaging has started new chapters in both 
clinical and research practice. Amyloid specific ligands such 
as 11C-Pittsburg compound B (11CPIB), 18F Florbetapir, 18F 
Flutemetamol, demonstrate amyloid deposition in vivo and 
show good correlation with autopsy measurements[42]. 
They show increased uptake in typical locations such as 
precuneus, posterior cingulate cortex, temporal, parietal 
and occipital lobes[19,43,44]. A recent review of amyloid 
imaging studies revealed that even though there was high 
sensitivity to amyloid across the board with increased 
uptake in healthy controls, AD, MCI and other dementias 
like FTD, the sensitivity and specificity to identify AD cases 
was high and there was a high conversion rate of amyloid 
positive MCI to AD compared to amyloid negative MCI[3]. 
Amyloid imaging is now included in the criteria for the 
diagnosis of AD[25,45]. Both FDA and EMA have approved 
18F florbetapir, 18F florbetaben and 18F flutemetamol[46] for 
clinical use. However, the role of amyloid PET is likely to 
be greater in early onset AD, than in late onset AD, where 
neuropathology is more heterogeneous[47]. However, 
structural MRI and FDG PET are more accurate than 
amyloid imaging in predicting cognitive status[48].

Ligands targeting the paired helical filament form 
(PHF) of tau, specific to AD have been developed and 
are currently close to market[49-51]. 
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Figure 3  Default mode network, areas active during resting wakeful state. 
Resting state functional magnetic resonance imaging images using blood 
oxygenation level dependent technique. Typical areas involved include the 
medial prefrontal cortices, posterior cingulate, ventral precuneus and parts of 
parietal lobes (Images kindly prepared by Dr. Michael Stringer).

Figure 4  Underlying neuronal dysfunction and neurodegeneration. A: 
Hexamethylpropylene amine oxime (HMPAO) single photon emission computed 
tomography (SPECT) in normal control subject demonstrating normal almost 
symmetrical perfusion pattern; B: HMPAO SPECT in Alzheimer’s disease parametric 
images demonstrate bilateral reduction in perfusion in the temporal lobes especially 
in the medial temporal regions up to 2 (green) and 3 (blue) standard deviation 
(Images kindly prepared by Ms Lesley Lovell, Senior technician).

A

B

Figure 5  Hexamethylpropylene amine oxime single photon emission computed 
tomography in a patient with mixed vascular disease and Alzheimer’s disease. A: 
Shows reduced perfusion in both the frontal and parietal lobes, especially on the left; 
B: Parametric images providing an overall view. There was hippocampal atrophy on 
computed tomography (Images kindly prepared by Dr. Fergus McKiddie).

A

B
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Neuroinflammation is also thought to play a role in 
the neuropathogenesis of AD[52]. PET imaging of neuro-
inflammatory processes such as microglial activation, 
reactive astrocytosis and increased phospholipase acti-
vity is possible using specific agents[53-56]. Tau imaging 
and neuro inflammation imaging are out of the realm 
of clinical practice at present. PET tracers specific for 
acetylcholinesterase as a proxy measure of acetylcholine 
synaptic density have been used in a few studies[57-59]. 

In summary, a multiphase model of neuroimaging 
corresponding to the stage of evolving neuropathology[60], 
is most likely with amyloid PET imaging positive during 
bamyloid accumulation, followed by tau accumulation with 
reduced rCBF on SPECT and decreased metabolism on 
FDG PET due to neuronal dysfunction and atrophy on CT 

and structural MRI following neuronal death. 

VASCULAR COGNITIVE IMPAIRMENT 
AND DEMENTIA
Vascular cognitive impairment (VCI) is the second 
most common form of late onset dementia and the 
most common form of secondary dementia. VCI is a 
heterogenous disease and is due to a number of vascular 
causes[61] both small and large vessel related. Larger 
vessel involvement result in cortical infarcts and primary 
haemorrhages, while small vessel disease manifests as 
lacunar infarcts, lacunes, white matter hyperintensities 
(WMH), enlarged perivascular spaces and cerebral 
microhaemorrhages[62-67] (Figure 6). 
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Figure 6  Computed tomography and magnetic resonance imaging images demonstrating structural changes secondary to cerebral small vessel disease. A: 
Axial image of CT brain demonstrating periventricular white matter low attenuation changes; B and C: The same seen as periventricular white matter high signal areas 
on FLAIR and T2 MRI; D: Prominent perivascular spaces typically seen in the basal ganglia; E: Centrum semiovale; F: Focal lacune, a cerebrospinal fluid filled space, 
sequelae of an old lacunar infarct in the right thalamus seen here (arrow) on an axial T1 image; G: Lacune (arrow) in the left frontal lobe on a FLAIR image, usually 
with a rim of high signal differentiating from a PVS; H: Cerebral microhaemorrhages, seen here as focal rounded black/low signal foci in the white matter of both frontal 
lobes on T2* gradient echo MRI. MRI: Magnetic resonance imaging; CT: Computed tomography.

A B C

D E F

G H

Narayanan L et al . Neuroimaging in dementia



The term subcortical ischaemic vascular disease 
(SIVD) is also used, often synonymous with WMH, the 
biomarker most significantly correlated with vascular risk 
factors such as hypertension and impaired glycaemic 
control[68]. WMH are age related and moderate amounts 
of WMH is seen up to 30% of normal older population 
with no significant cognitive dysfunction[69]. WHM in 
the VCI population on the other hand are significantly 
associated with not only vascular risk factors, but with 
cognitive impairment especially executive dysfunction, 
rapid global functional decline and decline of psychomotor 
speed and executive control[70,71]. Areas vulnerable to 
hypoxia, especially in the deep white matter watershed 
areas when affected are thought to trigger a series of 
events leading to tissue injury with neuroinflammation, 
blood-brain barrier (BBB) disruption and axonal damage 
resulting in white matter loss[72]. 

Structural imaging
WMH are best seen on structural MRI as bright signal 
areas on T2 and FLAIR images (Figure 6) in subcortical 
and periventricular distribution. They are quantified 
using visual rating scales or automated segmentation 
methods[73-75]. They are predominantly supratentorial in 
distribution, although are also common in the pons, and 
have a predilection for the frontal lobes.

Advanced MRI techniques like DTI, MRS and dynamic 
contrast enhanced (DCE) MRI demonstrate reduced 
white matter integrity, evidence of neuronal damage with 
decrease in NAA and enhancement secondary to BBB 
breakdown. Techniques to image neuroinflammation 
demonstrate microglia and macrophages around blood 
vessels[72]. Abnormal permeability also results in an 
increase in CSF albumin ratio in patients with vascular 
dementia[76]. This process repeated over time eventually 
results in quite significant white matter damage and 
cognitive impairment.  

Diagnosis of VCI is dependent on a combination of the 
presence of vascular risk factors including hypertension, 
impaired glycaemic control, renal impairment, WMH on 
imaging, absence of an AD pattern of atrophy and exe-
cutive dysfunction on psychometric testing. Memory is 
less involved[77,78]. Montreal Cognitive Assessment tests 
executive function and is a more useful tool than MMSE in 
this group of patients. An attempt is being made to define 
a set of features that are characteristic of the progressive 

form of VCI, termed the Binswanger Disease scale 
score[72]. 

Molecular imaging 
HMPAO SPECT demonstrates decreased perfusion typically 
distributed in a vascular territory, often bilateral and 
usually involving the frontal lobes (Figure 7), seen either in 
combination with AD and in pure vascular dementia.  

FDG PET and rCBF SPECT demonstrate areas of 
decreased metabolism and perfusion respectively which 
may be bilateral, and/or arterial territory in distribution. 
Rarer causes of vascular dementia include hypercoaguable 
states (antiphospholipid antibodies), hereditary forms 
such as congenital autosomal dominant arteriopathy 
with subcortical infarcts and leucoencephalopathy 
(CADASIL), with a temporal lobe distribution of WMH, and 
leucodystrophies.  

In routine clinical practice though, multidetector CT 
of the brain is the most common, and in most centres 
the only, imaging performed when a vascular cause is 
suspected for cognitive impairment. 

LEWY BODY DEMENTIA
This is the second most common primary neurodegenerative 
dementia and accounts for 15% of all dementia in the 
population and is clinically characterised by cognitive 
impairment with executive dysfunction, visuospatial impair-
ment, visual, motor parkinsonian features, disordered (rapid 
eye movement) REM sleep and fluctuation in cognition and 
arousal[79]. Neuropsychometric tests demonstrate deficits in 
attention, executive function and visuospatial ability[79]. 

Pathologically lewy body dementia (LBD) overlaps 
with PD and is characterised by dopaminergic cell loss and 
accumulation of α-synuclein particles in presynaptic terminals 
that aggregate to form intracellular Lewy bodies. Similar to b 
amyloid pathology, α synuclein can be present as oligomers, 
fibrils and aggregates, the small oligomers likely being the 
most neurotoxic. These mainly occur in the cerebral cortex 
and limbic system, while in PD they exist in the substantia 
nigra, pars compacta and nigrostriatal projections. Recent 
work has increased understanding of genetic associations 
of LBD and PD[80]. Parkinson’s disease dementia (PDD) 
is pathologically and clinically indistinguishable to LBD, 
apart from the fact that in PDD, motor symptoms predate 
cognitive decline by up to 12 mo[79,81]. While the diagnosis 
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Figure 7  Hexamethylpropylene amine oxime single 
photon emission computed tomography in a pure cerebral 
vascular disease patient without Alzheimer’s disease. Note 
normal hippocampal volumes in the pure cerebral vascular 
disease patient on computed tomography (Images kindly 
prepared by Ms Lesley Lovell and Dr Fergus Mckiddie, clinical 
scientist).
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of LBD will often be obvious clinically, it may be unclear in a 
substantial minority of patients, where neuroimaging play a 
role.

Structural imaging
Structural MRI using Voxel Based Morphometry has 
demonstrated variable regional brain atrophy in LBD with 
some studies reporting cortical atrophy in the insula, 
frontal, inferior parietal, temporal and occipital cortices[82,83] 
while a larger study has differentiated LBD from AD with 
more atrophy of hypothalamus, basal forebrain, midbrain, 
caudate and the putamen with relative preservation of 
the medial temporal lobe and the hippocampi[84]. The rate 
of progressive atrophy is increased when compared to 
normal controls, exaggerated if AD co-exists, but much 
lower compared to AD. Visual hallucinations and visuo-
perceptual deficits, a characteristic feature of LBD do 
not seem to correlate with occipital lobe involvement[85]. 
However, correlation with other regions involved in visual 
processing (visual association areas) and executive 
functions (inferior frontal lobe) have been reported. If 
present, hippocampal atrophy is seen in the anterior 
subfield (CA1)[86], while in AD, CA2 and CA3 are more 
affected on high resolution MRI. 

DTI, ASL and MRS techniques have been used to 
compare LBD with AD. In general these demonstrate 
abnormalities in the visual association cortex and posterior 
putamen in LBD compared with medial temporal lobe and 
precuneus in AD. The best discrimination will be a result of 
cumulative data from more than one sequence or imaging 
modality[86].

Molecular imaging
Increased b amyloid is commonly seen in LBD but not 
in PD dementia[87]. Amyloid PET imaging demonstrates 
similar uptake in AD and LBD (apart from occipital lobes 
which are spared in AD), making it difficult to differentiate 
between these two conditions. Similarly they are indis-
tinguishable on rCBF SPECT and FDG PET, however 
involvement of the visual cortex would favour LBD[88-90]. 

A dopaminergic presynaptic ligand, iodine-123-b-
carbo-methoxy-3-b-(4-iodophenyltropane) fluoropropyl 

(FP-CIT) or ioflupane, is used in SPECT studies. Neuronal 
loss in the dopaminergic zones are demonstrated by 
decreased uptake in the posterior putamen and then 
caudate nuclei when compared to normal controls (Figure 
8) and AD patients. Visual image analysis is adequate 
to make the distinction between normal vs 3 grades of 
reduced uptake in the striatum, justifying routine use 
in clinical practice[91] as recommended by both NICE in 
United Kingdom and European Federation of Neurological 
Sciences in Europe. Quantitative analysis of FP-CIT images 
using shape analysis is as accurate as expert observer 
assessment and more reproducible[92]. Low dopamine 
transporter uptake in basal ganglia demonstrated by 
SPECT or PET imaging is the only imaging feature in the 
diagnostic criteria for LBD[79]. However, FP-CIT SPECT is 
not indicated to distinguish between different parkinsonian 
syndromes[93]. FP-CIT SPECT scan has a sensitivity of 78% 
and a specificity of 90% with an overall accuracy of 80% 
to distinguish between normal (or AD) and a parkinsonian 
syndrome (LBD)[94].

Cholinergic neuronal loss and reduced presynaptic 
choline acetyltransferace activity is seen in both LBD and 
AD. There is however differential uptake with reductions 
in medical occipital cortex in LBD and temporal lobe in 
AD[95]. Cardiac sympathetic denervation in LBD and PD 
predates neuronal loss can be measured using 123I 
MIGB, an analogue of noradrenaline in myocardial scin-
tigraphy. Yoshita et al[96] demonstrated that the cut-
off value of heart-to-mediastinum ratio of 1.68 yielded 
a sensitivity of 100% and a specificity of 100% for 
differentiating LBD from AD. 

FRONTOTEMPORAL DEMENTIA 
Frontotemporal dementia is a heterogenous group of 
diseases that account for approximately 5% of late onset 
dementia but is the second commonest cause of early 
onset dementia after AD[97]. Clinical presentation is often 
in the 5th and 6th decade, at least 10 years younger than 
AD and patients have a family history in about 50% of 
the cases[98].

The two main clinical syndromes of frontotemporal 
dementia (FTD) are behavioural variant FTD (bvFTD) 
characterised by deterioration in social function and 
personality and primary progressive aphasia (PPA) where 
there is an insidious decline in language skills. There 
are various subtypes of PPA such as semantic dementia 
(svPPA), progressive non-fluent aphasia (nfvPPA), 
logopenic aphasia (LPA - an AD variant) and progressive 
apraxia of speech, based on speech pattern involved[99]. 
Pathologically, based on the protein involved, they are 
divided into the following three categories: (1) FTLD-tau: 
Including tauopathies such as progressive supranuclear 
palsy (PSP), corticobasal degeneration (CBD), multisystem 
tauopathy with dementia and Pick’s disease; (2) FTLD-
TDP43: Transactive DNA-binding protein (TDP) 43 related 
abnormalities, a subgroup may also have motor neuron 
disease (MND)[100]; and (3) FTLD-FUS: Fused in sarcoma 
(FUS) protein[101].
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Figure 8  Iodine-123-b-carbo-methoxy-3-b-(4-iodophenyltropane) fluropropyl. 
A: Normal example symmetrical uptake in the caudate heads and putamen 
bilaterally; B: Absent uptake in the putamen in a patient with Lewy body dementia.

A B

Narayanan L et al . Neuroimaging in dementia



As above FTD may be associated with overlap synd-
romes of MND or PSP, if so indicating likely molecular 
pathologies of TDP43 or tau respectively.

Structural imaging
Varying patterns of regional brain atrophy is the hallmark 
of these conditions depending on the clinical phenotype 
and the reporting radiologist may be the first to suggest 
FTD as the diagnosis in these patients.

bvFTD: Bilateral mesial frontal, orbitofrontal, anterior 
insular cortices and anterior cingulate cortex atrophy 
with more involvement on the right[102,103]. The frontal-
insula-anterior cingulate are suggested to be part of a 
structurally and functionally connected neural network 
(a salience network) which demonstrates decreased 
functional connectivity during resting state fMRI[102,103] 

(Figure 9).

svPPA: Bilateral, typically highly asymmetrical, usually 
left sided, atrophy of the anterior temporal lobes. As 
disease progresses the atrophy extends inferiorly to 
involve the posterior temporal lobes and superiorly to 
involve the inferior frontal lobes. 

nfvPPA: Anterior perisylvian especially the dominant 
hemisphere, in particular the left frontal operculum - 
Broca’s areas 44, 45 and 47. 

Quantification of regional atrophy rates on MRI 
could potentially be a useful biomarker of progression in 
FTD[49]. DTI has shown decreased white matter integrity 
in the respective regions affected depending on the 
clinical phenotype[104]. On fMRI FTD can be differentiated 
from AD by reduced connectivity in the salience network 
and increased connectivity in the DMN, opposite to that 
of AD[105,106].

Molecular imaging 
FDG PET demonstrates frontal and anterior temporal 
lobe hypometabolism, which is useful in differentiating 
FTD from AD especially in the heterogenous group of 
progressive aphasias and in CBD[107]. However, PET 
imaging is not usually required as the diagnosis of FTD as 
frontal atrophy is usually obvious on structural imaging.

IMAGING IN OTHER DEMENTIAS
There are numerous less common causes of dementia. 
All these types of dementias can occur in people younger 
than 65 years but more often have a genetic cause 
and those affected generally tend to have accelerated 
progression. Dementias in people younger than 35 years 
are rare and more unusual causes such as infection or 
autoimmune encephalopathies need to be considered[108]. 
Imaging in this group and two other unusual causes of 
dementia will be discussed here. 

AUTOIMMUNE DEMENTIAS
Previously termed as “limbic encephalitis”, these are 
a heterogeneous group of disorders that include vari-
ous encephalopathies with specific clinical, electro-
encephalographic or CSF features[109]. They may present 
with cognitive impairment, seizures and are responsive 
to steroids. Imaging features are variable, MRI may show 
high signal intensity on T2 weighted and FLAIR images in 
the areas involved, typically in the limbic system. About 
50% of autoimmune dementia patients, who have neuron-
specific CSF autoantibodies, will have a paraneoplastic 
syndrome and whole body FDG-PET CT is appropriate to 
identify an underlying tumor[110].

PRION PROTEIN DISEASES
Accumulation of abnormal prion proteins can occur 
sporadically [sporadic Creutzfeld Jakob disease (CJD)], 
due to exposure to food (variant CJD) or infected tissues 
(iatrogenic CJD) due to genetic variation in the prion 
protein gene (PrnP), fatal familial insomnia. sCJD and 
vCJD typically present as rapidly progressive dementia 
with an earlier age at onset in vCJD. Other features at 
presentation could be hemiparesis, myoclonus in sCJD 
and painful sensory symptoms in vCJD supplemented by 
typical abnormal complexes on EEG. On MRI typical T2 
and FLAIR hyperintensity is seen in the pulvinar of the 
thalami in vCJD, which is virtualy pathognomonic, and in 
the caudate heads and cortices (“cortical ribboning”) in 
sCJD which can be asymmetrical[111]. These abnormalities 
are best seen on DWI where they demonstrate diffusion 
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Figure 9  Computed tomography showing atrophy. A:  
Asymmetric right frontal lobe atrophy in fronto-temporal dementia; 
B: Hexamethylpropylene amine oxime single photon emission 
computed tomography in the same patient (Images kindly prepared 
by Ms Lewley Lovell, and Dr. Fergus Mckiddie).
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Figure 10  Regions of atrophy in fronto-temporal 
dementia (shaded orange) and Alzheimer’s 
disease (shaded light blue).

Table 2  Summary

Dementia Pathological feature Structural imaging CT/MRI Molecular imaging 
(non-specific)

Molecular imaging 
(specific)

Research

Alzheimer’s 
disease

Primary neurodegenerative, 
extracellular amyloid 
plaques (Ab42), intracellular 
tau aggregates[13], 
Autosomal dominant 
early onset inherited form 
- presenelins are also 
implicated[22]

Hippocampal-medial temporal 
lobe (CA2 and CA3 hippocampal 
subregions are more affected), 
posterior cingulate gyrus and 
postero-medial parietal lobe 
atrophy on MRI and CT

SPECT1- ↓perfusion
FDG PET2- ↓glucose 
uptake in medial 
temporal lobe and 
hippocampi[39-41]

11C PIB, Florbetapir3 
uptake in amyloid 
plaques[42]

Tau specific ligands 
-PET, MRI-BOLD, fMRI-
↓connectivity in DMN, 
MR perfusion[38], MR 
spectroscopy, DTI -↓
medial temporal lobe and 
precuneus[34], VBM

LBD Intracellular Lewy bodies-
aggregates of α-synuclein 
particles in pre-synaptic 
terminals
Overlaps with Parkinson’s 
disease

Atrophy in inferior frontal lobe, 
visual cortex, insula, hypothalamus, 
midbrain, caudate, putamen 
and anterior hippocampi (CA1 
subregion)[86]

SPECT -↓in putamen 
and caudate, visual 
cortex[88,89]

FDG PET -↓in visual 
cortices[88-90]

FP-CIT-↓uptake in 
putamen and caudate[79]

Cholinergic PET/
SPECT- ↓in medial 
occipital lobe[95]

123I MIBG-↓cardiac 
uptake[96]

Diffusion weighted 
MR-DTI, ↓ in visual 
association cortex and 
posterior putamen 
MRS, fMRI
ASL-MR

FTD Various proteins including 
tauopathies, TDP43, FUS- 
clinically can overlap with 
PSP, MSA, MND[100,101]

Variable-predominantly anterior 
frontal, temporal and insular 
atrophy[102,103]

FDG PET and 
SPECT-↓anterior, 
frontal and temporal 
uptake[107]

- fMRI, DTI-↓ in WM of 
affected regions[104]

fMRI-↓"salient" network’ 
but ↑DMN connectivity 
on resting fMRI- unlike 
AD[105,106]

Vascular 
dementia

Small and large vessel 
disease - vascular risk 
factors like HT, smoking 
and DM implicated[61]

CADASIL- hereditary form

CT-cortical infarct, 
macrohaemorrhage, frontal 
subcortical and periventricular 
WMH, lacunes[62-67]

MRI-CT features as above and PVS, 
CMB 

FDG PET and rCBF 
SPECT-↓ frontal 
and periventricular 
regions

- -

CJD 
sCJD
vCJD

Prion protein - sources 
include food, tissues, 
genetic variation

MRI-↑signal on T2W and DWI in 
the caudate and cortex ("cortical 
ribboning") 
MRI-↑ on T2W and DWI in the 
pulvinar of thalami

Autoimmune 
encephalitis 
related 
dementia

Previously limbic 
encephalitis -neuron specific 
CSF autoantibodies 
Paraneoplastic syndrome

MRI-↑ signal on T2W and FLAIR in 
the mesial temporal lobe

FDG PET -↑ uptake 
in the medial 
temporal lobe
Whole body 
PET to identify 
underlying primary 
malignancy[110]

1SPECT-radiotracer is 99mTc hexamethylpropylene amine oxime; 2FDG PET-radiotracer is 18F-FDG; 3Recently approved by FDA for clinical use in specific cases, 
primarily to exclude Alzheimer’s disease.↑: Increased; ↓: Decreased; Ab42: Beta amyloid protein with 42 amino acids; CA1, CA2, CA3: Subfields of hippocampus; ASL- 
MR: Arterial spin labelling MR; BOLD: Blood oxygenation level dependent; CADASIL: Congenital autosomal dominant arteriopathy with subcortical infarcts and 
leukoencephalopathy; CMB: Cerebral microbleeds; CSF: Cerebrospinal fluid; DM: Diabetes mellitus; DTI: Diffusion tensor imaging; FDG: Fludeoxyglucose; FLAIR: 
Fluid-attenuated inversion–recovery; fMRI: Functional MRI; DMN: Default mode network; FP-CIT: Dopaminergic presynaptic ligand iodine-123-b-carbo-methoxy-3 
b-(4-iodophenyltropane) fluoropropyl; FUS: Fused in sarcoma protein; HT: Hypertension; LBD: Lewy body dementia; MSA: Multisystem atrophy; MND: Motor 
neuron disease; MRS: MR spectroscopy; PET: Positron emission tomography; PIB: Pittsburgh compound B; PSP: Progressive supranuclear palsy; PVS: Perivascular 
spaces; rCBF SPECT: Regional cerebral blood flow SPECT; sCJD: Sporadic form of Creutzfeldt–Jacob disease; vCJD: Variant form of Creutzfeldt–Jacob disease; SPECT: 
Single photon emission computed tomography; T2W: T2 weighted; TDP43: Transactive DNA-binding protein; VBM: Voxel-based morphometry; WMH: White matter 
hyperintensities.
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restriction. 

HUMAN IMMUNODEFICIENCY VIRUS 
ASSOCIATED NEUROCOGNITIVE 
DISORDER
HIV associated dementia is the most severe HIV 
associated neurocognitive disorder and presents as 
impairment in executive function, motor activities and 
memory. On structural MRI global cortical atrophy is 
seen with predilection for the anterior cingulate, lateral 
temporal, primary motor and sensory cortices. White 
matter hyperintensities too are seen, some presenting as 
progressive multifocal leukoencephalopathy characterised 
by focal white matter lesions typically in subcortical 
regions[112,113]. DTI studies demonstrate reduced white 
matter integrity in the cortical white matter, corona 
radiata and the corpus callosum are associated with 
cognitive impairment[114-116]. Other imaging modalities 
include MRS, fMRI, FDG PET and dopamine transporter 
imaging and demonstrate evidence of neuronal loss, 
impaired functional connectivity, hypometabolism and 
decreased uptake in the putamina and ventral striatum 
respectively. 

Some studies suggest these imaging abnormalities 
are reversible following retroviral therapies, however 
additional research is needed[104]. 

CONCLUSION
Imaging in neurodegenerative disorders that cause 
dementia has evolved from the days of ruling out other 
pathologies to diagnosis of specific likely underlying 
neuropathologies. MRI studies, without doubt, are 
far superior to MDCT in providing information on the 
structural and functional changes corresponding to the 
pathological evolution of the disease. Newer techniques 
in MRI and PET are readily embraced by researchers 
in the quest for earlier detection of the disease before 
irreversible neuronal damage occurs, now believed to 
be the best current approach the global community can 
adopt to tackle these devastating conditions. Current 
and future interventions need to target individuals who 
are most at risk before the manifestation of dementia. 
Large multicentre datasets like ADNI, which are freely 
available, are invaluable for providing new research 
opportunities are important for future progress.

Future PET tracers for specific proteinopathies (tau, 
TDP-43, α synuclein) would provide more information and 
offer more challenges. Development of specific imaging 
correlates of different proteinopathies is a research goal 
that will offer an opportunity to observe the disease 
processes in their earliest of stages and do not wait for 
clinical manifestation. The clinical challenge will be to 
identify those at risk at the earliest opportunity.

Large longitudinal cohort studies are a necessity to 
explore the influence of cognitive reserve and early life 
factors, which are increasingly gaining importance and 

attention.
Table 2 summarises the pathophysiology and the 

imaging features of all the dementias discussed (Figure 
10). Demonstrates the regional atrophy in FTD and AD. 
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