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A geometrical approach to control and
controllability of nonlinear dynamical networks

Le-Zhi Wang1, Ri-Qi Su, Zi-Gang Huangm, Xiao Wang3, Wen-Xu Wangm, Celso Grebogi5 & Ying-Cheng Lail67

In spite of the recent interest and advances in linear controllability of complex networks,
controlling nonlinear network dynamics remains an outstanding problem. Here we develop an
experimentally feasible control framework for nonlinear dynamical networks that exhibit
multistability. The control objective is to apply parameter perturbation to drive the system
from one attractor to another, assuming that the former is undesired and the latter is desired.
To make our framework practically meaningful, we consider restricted parameter perturbation
by imposing two constraints: it must be experimentally realizable and applied only
temporarily. We introduce the concept of attractor network, which allows us to formulate a
quantifiable controllability framework for nonlinear dynamical networks: a network is more
controllable if the attractor network is more strongly connected. We test our control
framework using examples from various models of experimental gene regulatory networks
and demonstrate the beneficial role of noise in facilitating control.
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onlinear dynamical processes are ubiquitous in natural

and engineering systems. Significant difficulties arise

when such processes are coupled with the complex
network topology, especially in terms of control. In spite of
progress in understanding, analysing and predicting the beha-
viours of large complex networks, to formulate an effective
framework to control nonlinear dynamical networks has
remained to be an outstanding problem in interdisciplinary
research.

In recent years, the traditional control and graph theories have
been exploited to determine the linear controllability of complex
networks! ™. The efforts have led to a quantitative understanding
of the interplay between controllability and network structure. In
particular, in the structural controllability framework!, the
concept of maximum matching was proposed to determine and
quantify whether a directed complex network can be driven from
an arbitrary initial state to any desired state in finite time. It was
found that the degree distribution of the network is critical to its
controllability!. Subsequently, an alternative framework, the exact
controllability framework?, was developed to extend the linear
controllability analysis to networks with arbitrary structures and
link weight distributions. In this framework, one uses the
principle of maximum geometrical multiplicity of the network
spectrum to determine the minimum set of driver nodes required
to fully control the network. The mathematical underpinning of
the structural and exact controllability frameworks is the classic
Kalman’s rank condition!’, whose applicability is limited to linear
dynamical networks. Nonlinear control theory based on the Lie
brackets!! and a recent work to extend the linear controllability
and observability theory to nonlinear networks with symmetry’
notwithstanding, to establish a general mathematical controllability
framework for complex and nonlinear dynamical networks appear
not realistic at the present.

Owing to the high dimensionality of nonlinear dynamical
networks and the rich variety of behaviours that they entail, it
may be prohibitively difficult to develop a control framework that
is universally applicable to different kinds of network dynamics.
In particular, the classic definition of linear controllability, that is,
a network system is controllable if it can be driven from an
arbitrary initial state to an arbitrary final state in finite time, is
generally not applicable to nonlinear dynamical networks.
Instead, controlling collective dynamical behaviours may be
feasible!>13. Our idea is that, for nonlinear dynamical networks,
control strategies may need to be specific and system dependent.
The purpose of this paper is to articulate control strategies and
develop a controllability framework for nonlinear networks that
exhibit multistability. A defining characteristic of such systems is
that there are multiple coexisting attractors in the phase
space!"16, The goal is to drive the system from one attractor
to another using physically meaningful, temporary and finite
parameter perturbation, assuming that the system is likely to
evolve into an undesired state (attractor) or the system is already
in such a state and one wishes to implement control to bring the
system out of the undesired state and steer it into a desired one.

In biology, nonlinear dynamical networks with multiple
attractors have been employed to understand fundamental
phenomena such as cancer emergence!’, cell fate
differentiation'®2! and cell cycle control?>?3. For example,
Boolean network models were used to study gene evolution??,
attractor number variation with asynchronous stochastic
updating®® and gene expression in the state space!®. Another
approach is to abstract key regulation genetic networks?®” (or
motifs) from all associated interactions, and to employ synthetic
biology to modify, control and finally understand the biological
mechanisms within these complicated systems'®22. An earlier
application of this approach led to a good understanding of the
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ubiquitous phenomenon of bistability in biological systems?®,

where there are typically limit cycle attractors and, during cell
cycle control, noise can trigger a differentiation process by drivinSg
the system from a limit circle to another steady-state attractor'®.
Generally, there are two candidate mechanisms for transition or
switching between different attractors?®: through signals
transmitted within cells and noise, which were demonstrated
recently using synthetic genetic circuits?®. More recently, a
detailed numerical study revealed how signal-induced
bifurcations in a tri-stable ?enetic circuit can lead to transitions
among different cell types®'.

In this paper, we develop a control and controllability
framework for nonlinear dynamical networks based on the
concept of attractor networks>’. An attractor network is defined
in the phase space of the underlying nonlinear system, in which
each node represents an attractor and a directed edge from one
node to another indicates that the system can be driven from the
former to the latter using experimentally feasible, temporary and
finite parameter changes. A well-connected attractor network
implies a strong feasibility that the system can be controlled to
reach a desired attractor. The connectivity of the attractor
network can then be used to characterize the controllability of the
original nonlinear dynamical network. More specifically, for a
given pair of attractors, the relative weight of the shortest path is
the number of accessible control parameters whose adjustments
can lead to the attractor transition as specified by the path. We
use gene regulatory networks (GRNs) to demonstrate the
practicality of our control framework, which includes low-
dimensional, experimentally realizable synthetic gene circuits
and a realistic T-cell cancer network of 60 nodes. A finding is that
noise can facilitate control by reducing the required amplitude of
the control signal. We emphasize that the development of our
nonlinear control framework is based entirely on physical
considerations, rendering feasible experimental validation.

Results
A complex, nonlinear dynamical network of N variables can be
described by a set of N-coupled differential equations:

X = F(x, ), (1)
where xe RN denotes the N-dimensional state variable, F(x, ) is
the nonlinear vector field and ueRM represents the set of
coupling parameters. In a GRN, the nodal dynamics is typically
one-dimensional. For simplicity, we assume that this is the case to
be treated so that the size of the network represented by
equation (1) is N. From consideration of realistic GRNs, we
assume that the coupling parameters can be adjusted externally,
which are effectively the set of control parameters. Specifically, for
a GRN, we assume that the various coupling strengths among the
nodes (genes) can be experimentally and systematically varied
through application of specific targeted drugs. On a larger scale,
the fate of a cell can be controlled by adding drugs to the cell-
growth environment, which adjust the interaction parameters in
the underlying network?, ~Although dynamical variables
themselves can also be perturbed for the purpose of control, for
GRNs this is unrealistic. For this reason, the scenario of
perturbing dynamical variables will not be considered in this
paper.

We focus on nonlinear dynamical networks with multiple
coexisting attractors. For a given set of parameters (i, the multiple
attractors (for example, stable steady states) and the correspond-
ing basins are fixed. In the absence of stochasticity, for a given
initial condition, the system will approach one of the attractors.
Each attractor has specific biological significance, which can be
regarded as either desired or undesired, depending on the
particular function of interest. Suppose, without any control, the
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system is in an undesired attractor or is in its basin of attraction.
The question is how to steer the system from the undesired state
to a desired state by means of temporary and small parameter
variations that are experimentally feasible.

Control principle based on bifurcation. To motivate the
development of a feasible control principle, we consider the
simple case where the system is near a bifurcation point and
control is to be applied to drive the system from one attractor to
another through temporal perturbation to a single parameter.
That is, the parameter variation is turned on and takes effect for a
finite (typically short) duration of time. After control perturba-
tion is withdrawn, the system is restored to its parameter setting
before control but its state has been changed: the system will have
moved to the basin of the desired attractor and will approach the
desired attractor spontaneously. Let 1, be the initial parameter
value and the system is in an undesired attractor denoted as x},
and let x; be the desired attractor to which the system is driven.
Imposing control means that we change the parameter from y, to
u1. The dynamical mechanism to drive the system out of the
initial attractor is bifurcations, for example, a saddle-node
bifurcation at which the original attractor disappears and its basin
is absorbed into that of an intermediate attractor??, denoted as x;.
Turning on control to change u from o to p; thus makes the
system approach x;. This process continues until the system falls
into the original basin of x}, at which point the control parameter
is reset to its original value pg so that the system will approach the
desired attractor x;. Success of control relies on the existence of a
‘path’ from the initial attractor to the final one through a number
of intermediate attractors. If a single parameter is unable to
establish such a path, variations in multiple parameters can be
considered, provided that such parameter adjustments are
experimentally realizable. For a biological network, this can be
achieved through application of a combined set of drugs®!3.
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However, even when potential complications induced by inter-
drug interactions are neglected, the search space for suitable
parameter perturbation can be prohibitively large if we allow all
available parameters to be adjusted simultaneously. We
demonstrate below that this challenge can be met by
constructing an attractor network for the underlying system.

We note that not only is it now feasible to perturb gene
expressions directly but also the technology for fine-tuning
regulation strengths has become commonly available. For
example, in our previous synthetic biology studies?®33, we used
chemical inducers such as aTc, isopropyl-B-p-thiogalactoside and
Arabinose to fine tune the strength of inhibition or activation.
These chemical inducers do not change the protein abundance
but rather chemically modify the protein structures upon binding
so as to change their functions including the binding affinity.
Other techniques such as RNA interference can also be used to
fine-tune the gene regulation strength. In general, there are many
different ways to tune gene regulation without chaining its
transcription and translation.

Attractor network for the T-cell signalling network. For a
complex, nonlinear dynamical network, an attractor network can
be constructed by defining each of all possible attractors of the
system as a node. There exists a directed link from one node to
another if an experimentally accessible parameter of the system
can be adjusted to drive or control the system from the former to
the latter. There can be multiple edges from one node to another,
if there are multiple parameters, each enabling control. Starting
from an initial attractor, one can identify, using all accessible
parameters with variations in a physically reasonable range, a set
of attractors that the system can be driven into. Repeating this
procedure for all attractors in the system, we build up an attractor
network that provides a blueprint for driving the whole net-
worked system from any attractor to any other attractor in the
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Figure 1 | T-cell survival signalling network and its attractor network. (a) Structure of T-cell survival network: each node is labelled with its generic name,
and the arrowhead and diamond-head edges represent activation and inhibition regulations, respectively. The inhibitory edges from ‘Apoptosis’ to other
nodes are not shown (for clarity). (b) Attractor network of the T-cell network, which contains three nodes: two cancerous states denoted as C; and €, and a
normal state denoted as N. The two directed edges in the attractor network are multiple, each containing altogether 48 individual edges corresponding to
controlling the 48 edges in the original network, which are indicated by the dark dashed lines, whereas the remaining edges in the original network are
signified by the light solid lines. Our detailed computations reveal that parameter perturbation on any one of the 48 edges can drive the system from a
cancerous state to the normal state. That is, regardless of whether the initial state is C; or €5, with a proper modification to one of the 48 parameters, the

system can be driven to the normal state N.
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system, assuming at the time that the latter attractor would lead
to desired function of the system as a whole. As we demonstrate
below, all these can be done using relatively small parameter
perturbation in the sense that the modifications are small as
compared with the ranges over which the corresponding para-
meters can vary.

To demonstrate the construction of attractor networks, we take
as an example a realistic biological network, T cells in large
granular lymphocyte leukaemia associated with blood cancer.
Specifically, apoptosis signalling of the T cells can be described by
a network model: T-cell survival signalling network®*%, which
has 60 nodes and 195 regulatory edges, as shown in Fig. 1a. Nodes
in the network represent proteins and transcripts, and the edges
correspond to either activation or inhibitory regulations.
Experimentally, it was found that there are three attractors for
this biophysically detailed network®*3>. Among the three
attractors, two correspond to two distinct cancerous states
(denoted as C; and C,) and one is associated with the normal
state (denoted as N). The two cancerous states are biologically
equivalent, differing only on node P2 (either activated or
inactivated). As the T cells in large granular lymphocyte
leukemia disease originate from the failure of the programmed
T cells, the normal state corresponds to the situation where the
node Apoptosis is activated while all other nodes are inactivated.
By translating the Boolean rules into a continuous form using the
method described in refs 36,37 and setting the strength of each
edge to unity, one can obtain a set of nonlinear differential
equations for the entire network system. Direct simulation of the
model indicates that there are three stable fixed point attractors,
in agreement with the experimental observation®**, The
attractor network is thus quite simple: it has three nodes only,

as shown in Fig. 1b. Testing all the 195 experimentally adjustable
parameters, we find 48 edges from each cancerous attractor to the
normal one (see Supplementary Table 1 for details). Our detailed
computations reveal that parameter perturbation on any one of
the 48 edges can drive the system from a cancerous state to the
normal state. That is, regardless of whether the initial state is C,
or C,, with a proper modification to one of the 48 parameters, the
system can be driven to the normal state N. We note that
parameter perturbation does exist to drive the system from the
normal state to a cancerous state (see Supplementary Note 1 for
details).

Control implementation based on attractor network. Given a
nonlinear dynamical network in the real (physical) space, the
underlying phase space dimension may be quite high, rendering
analysis of the dynamical behaviours difficult. The attractor
network is a coarse grained representation of the phase space,
retaining information that is most relevant to the control task of
driving the network system to a desired final state. Once an
attractor network has been constructed, actual control can be
carried out through temporary changes in a set of experimentally
adjustable 8parameters. This should be contrasted to one existing
approach®® that requires accurate adjustments in the state
variables, which may not always be realistic.

We detail how actual control can be implemented based on the
attractor network for the T-cell system. To be concrete, we
assume that the control signal has the shape of a rectangular pulse
in the plot of a parameter versus time, as shown in Fig. 2a, where
the control parameter is u and the rectangular pulse has duration
7 and amplitude Apu=|u, — yo|, with uo denoting the nominal
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Figure 2 | Relationship between edge control strength and minimal control time. For the T-cell network, (a) an inverted rectangular control signal of
duration t and amplitude Ap,=|u, — igl, where uo is the original parameter value and y, is the control parameter value. A saddle-node bifurcation occurs
for ©= e, so Aec=pc — Uy is the excessive amount of the parameter change over the critical value . (b,€) Minimal control time t,,, versus u,, where
parameter control is applied to the activation edge from node ‘STP’ to node ‘PDGFR’ and to the inhibitory edge from ‘DISC’ to ‘"MCLT, respectively. These
four nodes are indicated with the solid black circles in Fig. 1a. The corresponding plots on a logarithmic scale in the insets of (b,c) suggest a power-law
scaling behaviour between t,, and A, (equation (2)). The fitted power-law scaling exponents are f~ — 0.44 and — 0.55, respectively, for (b,c).
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parameter value and p, being the value during the time interval
when control is on. For the T-cell network, we set uo=1.0. As u
is reduced, the system approaches a bifurcation point. (In other
examples, a bifurcation can be reached by increasing a control
parameter, as in the low-dimensional GRNs detailed in the
Methods.) Extensive numerical simulations show that, to control
the T-cell network from a cancerous state (C; or C,) to the
normal state N, there are wide ranges of choices for A and 7. In
fact, once u, is decreased through the bifurcation point u. at
which the initial attractor loses its stability, the goal of control can
be realized. The critical value u. for each parameter can be
identified from the bifurcation analysis. In addition, for p, <,
there exists a required minimum control time 7,,, over which the
system will move into the original basin of the target attractor
before control is activated. Insofar as 7> 1,,, one does not need
longer duration of control as the system will evolve into the target
attractor following its natural dynamical evolution with the
nominal parameter . The value of 7., increases as p,, is closer to
Uo where if i, = pi, Ty is infinite due to the critical slowing down
at the bifurcation point p,. Figure 2b,c show, respectively, for the
T-cell network, the relationship between t, and g, when
controlling the strength of the activation edge from the node
‘S1P’ to the node ‘PDGFR’, and that of the inhibitory edge from
the node ‘DISC’ to the node ‘MCLY’ (cf., Fig. la, the nodes
denoted as black circles and connected by bold coupling edges).
The critical value u. (indicated by the dotted line) can be
estimated accordingly. The insets in Fig. 2b and ¢ show the
corresponding plots of the relationships on a double logarithmic
scale, with the horizontal axis to be A.= u.— u,, the exceeded
value of p,, over the critical point u.. We observe the following
power-law scaling behaviour:

B __ B
T = oty — |’ = oA, (2)

where f is the scaling exponent. The upper right region in the
plane of the control parameters over the curve of t,,,(A.), that is,
the region with larger A, value or longer duration 7, corresponds
to the case where control is successful in the sense that the system
can definitely be driven to the desired final state.

The power-law scaling relation for 7, demonstrated in
Fig. 2b,c for the T-cell network is quite general, as it also holds
for two-node and three-node GRNSs (see the Methods). For the
T-cell system, the critical values of parameters for all the possible
controllable edges from C; or C, to N, and the corresponding
values of o and f in equation (2) are provided in Supplementary
Table 1 and Supplementary Note 1. The control magnitude and
time for some parameters are identical, for the reason that the
logic relationship from the corresponding edges to the same node
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can be described as ‘AND’ (c.f. Fig. 1) so that in the continuous-
time differential equation model, all these in-edges are equivalent.
(The control results for the two-node and three-node GRNs
between any pair of nearest-neighbour attractors are listed in
Supplementary Tables 2 and 3, respectively.)

Owing to the flexibility in choosing the control signal, our
control scheme based on the attractor network is amenable to
experimental implementation. We can also assign weights to the
shortest paths in the attractor network. For example, if we assume
all the links are equally implementable (Supplementary Table 1),
the path from the C state to the N state involving any one of
IL2RB, STAT3, NF-kB, PI3K or apoptosis to MCL1 has a
relatively larger weight, representing the relatively more efficient
control protocol as the required parameter change A. can be
minimized.

Beneficial role of noise in control. More than three decades of
intense research in nonlinear dynamical systems has led to great
knowledge about the role of noise, in terms of Ehenomena such as
stochastic resonance®®0, coherence resonance**2, noise-induced
chaos!® and noise-induced state transitions*>. Common to all these
phenomena is that a proper amount of noise can in fact be
beneficial, for example, for optimizing the signal-to-noise ratio, for
enhancing the signal regularity or temporal coherence, or for
facilitating the transitions among the attractors. As our control
mechanism is to make the system leave an undesired attractor and
approach a desired one, noise in combination with parameter
adjustments can facilitate the process of escaping from an attractor.
To demonstrate this, we assume that the T-cell network is subject
to Gaussian noise, which can be modelled by adding independent
normal distribution terms N(0, 62) to the system equations, where
o is the noise amplitude. We find that, with noise, the required
magnitude of parameter change can be reduced. In fact, even when
the controlled parameter i, has not yet reached the bifurcation
point i, noise can lead to a finite probability for the system to
escape the basin of the undesired attractor. We note that, in a
recent work on stochastic control*, a method was presented to
switch the dynamical states. In a real experimental setting, there
can be different sources of noise such as temperature and metabolic
burden. In our parametric control method, the control signals are
flexible with adjustable duration and amplitude, and noise can
enhance the flexibility.

Suppose the control parameter is set to the value u,, which is
insufficient to induce escape from the undesired attractor in the
absence of noise. When noise is present, the system dynamics is
stochastic. To characterize the control performance, we carry out
independent simulations starting from one cancerous state, for

Figure 3 | The benefit of noise in controlling the T-cell network. (a) Success rate to control the T-cell network from the cancerous state C; to the normal
state N using a combination of parameter perturbation and external noise (of amplitude) g, where A4=p, — i is the parameter deficiency. Warm colours
indicate higher probability values of successful control. The perturbation duration is t=200. The results are averaged over 1,000 realizations. (b) A three-

dimensional plot: success rate versus A4 and o.
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example, C;, but with insufficient control strength as character-
ized by the deficiency parameter Ag=u, — pt, and calculate the
probability P of control success through the number of trials that
the system can be successfully driven to the normal state N.
Figure 3a shows, on a double logarithmic scale, the values of P in
the parameter plane of ¢ and Ay, where the control parameter is
the strength of the activation edge from node ‘S1P’ to node
‘PDGFR’ in the T-cell network. A three-dimensional plot of P
versus ¢ and A4 is shown in Fig. 3b. We see that, for fixed o, P
decreases with A4 but, for any fixed value of Ay, the probability P
increases with o, indicating the beneficial role of noise in
facilitating control. In the parameter plane, there exists a well-
defined boundary, below which the control probability assumes
large values but above which the probability is near zero. Testing
alternative control parameters yields essentially the same results,
because of the simplicity of the attractor network for the T-cell
system and the multiple directed edges from each cancerous state
to the normal state.

Discussions

In nonlinear dynamics, controlling chaos has been studied for
more than two decades**4®, Success, however, has been limited
to low-dimensional dynamical systems with a very few positive
Lyapunov exponents. Complex, nonlinear dynamical networks
are generally high dimensional. Although mathematical
controllability frameworks for such high-dimensional systems!?
have been developed and extensively studied recently, the
limitation is that the nodal dynamical processes must be
assumed to be linear.

Controllability and actual control are two key issues associated
with controlling nonlinear dynamics on complex networks. To
assess the controllability, drastically different approaches than the
linear controllability frameworks are needed. Althou%h there were
previous works on methods such as pinning control'>*” through
alteration of the state variables, in realistic situations such
strategies may be difficult to implement. Owing to the extremely
diverse nonlinear dynamical behaviours that a network can
generate, at the present there is no universal framework for actual
control of complex networks with nonlinear dynamics through
realistic perturbation. The mathematical control theory for linear
dynamical systems aims to control the detailed states of all of the
variables, which is in fact an overkill for most systems. For
nonlinear dynamical networks, a physically meaningful approach
may not require detailed control of all state variables. With this
relaxation of the control requirement, it may be possible to
develop a framework of controllability and devise actual control
strategies for nonlinear dynamical networks based on physical/
experimental considerations. In particular, a common feature of
nonlinear dynamical systems is the emergence of distinct,
coexisting attractors!'®4%. Often the performance and functions
of the system are determined by the particular attractor that the
system has settled into, to which the detailed states of the
dynamical variables are not relevant. The key is thus to develop
control principles whereby we nudge a complex, nonlinear system
from attractor to attractor through small perturbation to a set of
physically or experimentally feasible parameters. The main
message of this paper is that a controllability framework can be
developed for nonlinear dynamical networks based on controlling
attractors.

Assuming that the networked system will evolve into an
undesired attractor, the control goal is to apply perturbation to
steer the system into a desired attractor. This can be
accomplished by identifying a final attractor leading to the
desired performance and choosing a set of experimentally adjus-
table parameters. If the perturbation can drive the system from
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the undesired state to the desired attractor, there exists a control
path between the former and the latter, regardless of whether
there are intermediate attractors on the path. Suppose we have
found all the attractors of the system (see Supplementary Note 2
for a systematic method). In terms of some specific performance
criteria, we can classify the attractors as undesired, desired or
intermediate. If there is a control path from any undesired
attractor to the desired attractor, the networked system is deemed
controllable. An attractor network can then be constructed, with
nodes and edges being the attractors and control paths,
respectively. The topology and properties of the attractor
network, such as the network diameter and the total amount of
the parameter perturbation, effectively quantify the controllability
of the original network. We demonstrate our idea of control and
construction of attractor networks using realistic networks from
systems and synthetic biology. We also find that noise can
facilitate control of nonlinear dynamical networks, and we
provide a physical understanding of this phenomenon (Methods).

Our framework can be adopted to controlling nonlinear
dynamical networks other than the GRNs. For example, for the
Northern European power grid network recently studied?’, a
rewiring method was proposed and demonstrated to be able to
enhance the system stability through the addition of extra
transmission lines. For a power grid network, the synchronous
states are desired, whereas other states, for example, limit cycles,
are detrimental. Treating the link density (or number) as a
tunable parameter, the minimum transfer capacity required for
extra lines to realize the control can be estimated by our method.
Another example is Boolean networks with discrete dynamics, for
which a perturbation method was proposed based on
modification of the update rules to rescue the system from the
undesired states>’. In terms of our method, an attractor network
can be constructed based on perturbation to multiple parameters
to drive the system out of the undesired, damaged states towards
a normal (desired) state. For biological systems, an epigenetic
state network (ESN) approach was proposed®! to analyse the
transitions among different phenotypic processes. In an ESN,
nodes represent attractors and edges represent pathways between
a pair of attractors. By construction, different parameter values
would result in a different ESN. (See Supplementary Note 3 and
Supplementary Fig. 2 for an example of using the principle of
attractor network to control a stochastic, biochemical reaction
network.) In our attractor network, nodes are attractors but edges
are directed and represent controllable paths (through parameter
perturbation) to drive the system from one attractor to another.

At the present, it is difficult to formulate a rigorous
mathematical controllability framework for nonlinear dynamical
networks. A challenge is that different parameter perturbation
will typically lead to a different attractor network. Moreover, as
the attractor network is directed and typically does not have an
all-to-all coupling configuration, multiple parameter perturbation
may be needed to realize control (for example, as demonstrated
using a three-node GRN system - see the Methods), rendering the
amount of computation prohibitive for relatively large dynamical
networks. Successfully addressing these issues will ultimately
enable us to achieve the grand goal of controlling nonlinear
dynamical networks.

Methods

Construction of attractor networks. For a system with known attractor basins
and given initial and final states, the attractor network can be constructed through
the following steps.

(1) Find all the parameters that can be adjusted externally and determine the
possible range of variation of each tunable parameter based on experimental
considerations and computational efficiency. For example, the T-cell network
has 195 tunable parameters. Using the differential equation model one can test
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each parameter separately to determine its range of variation that can drive the
system from one attractor to another. (Testing different parameter combina-
tions is computationally prohibitive.)

For a tunable parameter, choose a small set of values in its variable range,
which include its original or nominal value.

Simulate the system dynamics for each parameter value, starting from the
initial attractor and determine the final attractor. Record the parameter values
that can drive the system into the basin of the desired attractor. For example,
for the T-cell network, parameter variations lead to saddle-node bifurcations,
rendering applicable a straightforward bisecting algorithm to reduce the
computational complexity in searching for the set of parameter values that
result in a desired attractor.

An attractor network can be constructed after all tunable parameters have been
tested, from which distinct control paths can be identified for any given pair of
initial and final attractors. (For the systems treated in this paper, the
computational time required to construct the attractor network is listed in
Supplementary Table 4.)

2

-

@3

=

(4

z

For systems whose attractors are unknown a priori, it is necessary to execute an
attractor finding algorithm before an attractor network can be reconstructed. An
example of such an algorithm is presented in Supplementary Note 2. The issues of
multiple parameter-based control and computational cost are discussed in
Supplementary Notes 4 and 5, respectively.

Bifurcation diagram. Bifurcation diagram represents a visualization method to
characterize a system’s steady-state behaviour with respect to parameter variation.
In this paper, we used the MATCONT package in MATLAB to draw the bifur-
cation diagrams2. The bifurcation curves in MATCONT are computed based on
the numerical continuation algorithm with a predictor-corrector procedure to
enhance the stability and reduce the computational time. For the two-node GRN
example below, we calculate the bifurcation diagrams with respect to all four
tunable parameters, based on which the attractor network can be constructed.

A two-node GRN. In spite of the simplicity of its attractor network, the original
T-cell network itself is still quite complicated from the point of view of nonlinear
dynamical analysis. To have a better understanding of our control mechanism, we
study GRNG of relatively low dimensions and carry out a detailed analysis of the
associated attractor networks.

We use a two-node GRN to understand the dynamical underpinning of the
attractor network. As shown in Fig. 4a, the network contains two auto-activation
nodes (genes) and together they form a mutual inhibitory circuit. Such a topolog}y
was shown to be responsible for the regulation of blood stem cell differentiation””.
In addition, it is conceivable that such topologies can be constructed with tunable
inputs using synthetic biology approaches®.

In a typical experimental setting, four coupling parameters can be adjusted
externally through the application of repressive or inductive drugs. To demonstrate
attractor network and control implementation, we consider the parameter regime
in which the system has four stable steady states (attractors) that correspond to
four different cell states during cell development and differentiation. In particular,
the dynamical network can be mathematically described as,

n n
fadl

. s
Xy =ap - " 1'7n*k'x1-,
s+ xf s"+ x5
M o (3)
.5C2=a2- n : n 2 n_k“x27
s"+ x5 s+ x

where the dynamical variables (x;, x,) characterize the protein abundances of the
gene products, k denotes the degradation rate of each gene, and the tunable

parameters a,, a5, b, and b, represent the strengths of auto or mutual regulations.
In a GRN, the dynamical behaviours of inhibition and activation are captured by
the Hill function: flx) =x"/(x"+ s") for activation and f(x) =s"/(x" + ") for

inhibition, where the parameter s characterizes half activation (or inhibition)

concentration (for x =, the output is 0.5), and n quantifies the correlation between
the input and output concentrations, with a larger value of n corresponding to a
stronger inhibition or activation effect. For any specific GRN, the values of both s
and 7 can be determined experimentally. For simplicity, we assume the system to

a b F—-__ =
dp i)~ =1
by 14 ‘ D4

0.5 4
by
(o]
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0. R
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t 1
fo 4 b X,
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Figure 4 | Control of a GRN of two nodes. (a) Simplified model of the two-node GRN, where the arrowhead and bar-head edges represent activation and
inhibition regulations, respectively, and the sawtooth lines denote the strength of the tunable edge. (b) Bifurcation diagram with respect to the control
parameter a;, where the red and grey solid lines denote the stable and unstable steady states, respectively. In the two parallel cross-sections (with dashed

line boundaries) for a;=a? and am=a/, the yellow and brown dots represent the corresponding stable attractors, respectively. (€) Control signals required to
drive the system from attractor A to attractor B. In d-f, grey dashed lines represent the basin boundaries; black solid circles and green crosses denote

attractors and unstable steady states, respectively. (d) For the initial parameter setting, ;j=a?, the system is at a low concentration state A, and the target

state is B. (e) By changing a; from af to af, attractor A is destabilized and its original basin is absorbed into that of the intermediate attractor B/, so the
system approaches B'. (f) When control perturbation upon g, is released, the landscape recovers to that in d. Once the system has entered the basin of the

target state B during the process in e it will evolve spontaneously towards B. Parameters in simulation are a?=1.0, af=1.4, to=0, t;=23 and t, = 40.
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Figure 5 | Attractor network construction for a GRN of two nodes. (a-c) Bifurcation diagrams with respect to the coupling parameters a;, a, and by,

respectively, where each bifurcation point can be exploited to design contro

l. (d) The corresponding attractor network, in which a directed edge

corresponds to an elementary control that is designed to steer the system from the original attractor to the directed one. The solid and dashed edges,

respectively, denote the positive and negative changes in the corresponding c

ontrol parameters. (e) Sequential control signals required to drive the system

from attractor A to attractor C through the path A—B— C. In simulation, the original parameter values are a?=1.0 and b9=0.2. We set a7=1.4, followed by

setting b5=4.2, and the respective durations of the parameter perturbation

be symmetric in that inhibition and activation share the same Hill function (that is,
with the same parameters s and #). To have four attractors, we set the auto
activation strengths, a; and a,, to 1.0, and mutual inhibition strengths, b, and b,, to
0.2. The value of the degradation rate k is set to 1.1, taking into account the effects
of protein degradation and cell volume expansion.

Figure 4b—f shows a particular process of controlling the system from an initial
state, denoted as A, in which both x; and x, have low abundance, to a final state B
where x; and x, have high and low abundance, respectively. From the bifurcation
diagram (Fig. 4b) with respect to the control parameter a;, we see that, as a; is
increased from 1.0 to 1.4, in the lower branch the initial attractor A is destabilized
through a saddle-node bifurcation. The control signal is shown in Fig. 4c, where the
original and perturbed parameter values are denoted as a) and a, respectively. The
bifurcation-based control process is shown in Fig. 4d-f, where Fig 4d exhibits the
phase space of the system before control (a; = 1.0). When control is activated so
that a is set to a; = 1.4, the original basin of attractor A merges into the basin of an
intermediate attractor B’, and the system originally in A starts to migrate towards
the intermediate attractor B', as indicated by the arrowed trajectory in Fig. 4e.
Control perturbation upon a; can be withdrawn once the system enters the region
belonging to the original basin of the target attractor B, after which the system
spontaneously evolves into B for a4, =1.0, as shown in Fig. 4f.

To obtain a global picture of all possible control outcomes, we construct the
attractor network for the two-node GRN system, assuming that three parameters:
ay, a, and by, are available for control. The corresponding bifurcation diagrams are
shown in Fig. 5a—c, from which all saddle-node bifurcations can be identified for
control design. When all the attractors are connected with directed and weighted
edges through the control processes, that is, when none of the attractor is isolated,
we obtain an attractor network, as shown in Fig. 5d. Specifically, the edge weight
can be assigned by taking into account the key characteristics of control such as the
critical parameter strength zi. and the power-law scaling behaviour of the required
minimum control time 7,, (see Supplementary Table 2 for details). From the
attractor network, we can find all possible control paths for any given pair of
original and desired states.

From Fig. 5d, we see that the two-node GRN system is fully controllable as any of
the coexisting attractors is reachable through proper sequential controls to the available
parameters. The concept of attractor network is appealing because it provides a clear
control scenario to drive the system from any initial attractor to any desired attractor. In
fact, the attractor network provides a blueprint that can be used to design a proper
combination of parameter changes to induce the so-called synergistic or antagonistic
effects™. For example, A is not directly connected with C, neither is B directly
connected to D. However, the system can be steered from A to B through perturbation
on a;, and then from B to C through a change in b,, as shown in Fig. 5e. Another
example to demonstrate the need of multiple parameter perturbation is to control the
system from B to D. A viable control path is B—C— D, which can be realized through
perturbation on parameters (b,, a;). We also see that the two B— A — D paths can be

8

are 1,=23 and 17,=32.

realized through parameter changes in (a;, a,) and (ay, b,), respectively. A phase
diagram illustrating how different choices of the parameters affect the final attractor is
provided in Supplementary Note 6 and Supplementary Fig. 1.

When multiple control paths exist from an initial attractor to a final one, a
practical issue is to identify the optimal path that is cost effective and robust. The
concept of weighted-shortest path can be used to address this issue. Particularly,
the weights of edges can be determined from experimental considerations such as
the cost, limitation in drug dose, the control duration time and so on.

Beneficial role of noise in nonlinear control. The role of noise in facilitating
control of a nonlinear dynamical network can be understood using the concept
of potential landscape®>~>7 or Waddington landscape®® in systems biology, which
essentially determines the biological paths for cell development and differentiation®*0,
The potential landscape was used to manipulate time scales to control stochastic and
induced switching in biophysical networks*0, Intuitively, the power of the landscape
concept can be understood by resorting to the elementary physical picture of a ball
moving in a valley under gravity. The valley corresponds to one stable attractor. To the
right of the valley there is a hill, or a potential barrier in the language of classical
mechanics. The downhill side to the right of the barrier corresponds to a different
attractor. Suppose the confinement of ball’s motion within the valley is undesired and
one wishes to push the ball over the barrier to the right attractor (desired). If the barrier
is high, there will be little probability for the ball to move across the top of the barrier
towards the desired attractor. In this case, a small amount of noise is unable to enhance
the crossover probability. However, if the barrier height is small, a small amount of
noise can push the ball over to desired attractor on the right side of the barrier. Thus,
the beneficial role of noise is more pronounced for small height of the potential barrier,
a behaviour that we observe when controlling the T-cell network (Fig. 3). In
mechanics, the system can be formulated using a potential function so that,
mathematically, the motion of the ball can be described by the Langevin equation,
which has been a paradigmatic model to understand nonlinear phenomena such as
stochastic resonance®>°92, In the past few years, a quantitative approach has been
developed to map out the potential landscape for gene circuits or GRNs*>364, Tn
nonlinear dynamical systems, a similar concept exists—quasipotential®~7, which
plays an important role in understanding phenomena such as noise-induced chaos.

For an attractor network, in the presence of noise, each node corresponds to a
potential valley of certain depth that characterizes the stability of the attractor. For
a fixed depth, noise of larger amplitude ¢ leads a higher escaping probability or
shorter escaping time. When the amplitude of the control signal is not sufficient to
drive the system across the local potential barrier, noise can facilitate control by
pushing the system out of the undesired valley (attractor).

The potential landscape for a GRN under Gaussian noise can be constructed
from the dynamical equations of the system using the concept of ‘pseudo’ energy”’.
For the two-node GRN system (equation (3)) subject to stochastic disturbance
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Figure 6 | lllustration of pseudo potential landscape. 'Pseudo’ potential E of the two-node GRN system (a) for a;=1.0 (Aq~0.3549), ¢ = 0.05 and (b)
for a;=1.3 (A4~ 0.0549), 6 = 0.05. Regions of warm and cold colours indicate the states with large and small pseudo energies, respectively. (¢) For fixed

o =0.02, two-dimensional representation of E for a number of values of ay. (d) For fixed a; =1.3, two-dimensional representation of E for a number of

values of a.

N(0, 6?), we can compute the potential landscape for any combination of some
system parameter (say a;) and the noise amplitude ¢. Figure 6a,b shows two
examples of the landscape (in three-dimensional representation) for a; =1.0 and
a; = 1.3, where the noise amplitude is ¢ =0.05. We see that, for example, for

a, = 1.0, there are four valleys (attractors). Figure 6¢ shows, for ¢ =0.02, a two-
dimensional representation of the pseudo-energy for a number of values of a;. We
observe that, for a same noise amplitude, as a; is increased, the transition rate from
A to B becomes higher (the colour becomes warmer).

What if the system is at an attractor that is deep in its basin and not close to the
boundary? As our approach is based on parameter adjustment, such a case can still
be effectively controlled in the sense that the system can be brought out of the
attractor. For example, consider the attractor C for a; = 1.5 in the two-node GRN
system, which is deep inside its own basin, as shown in Fig. 6c. When parameter
perturbation is applied to the system, its energy landscape and basin structure are
changed (from top to bottom). Under control, the attractor ‘moves’ towards the
basin boundary and is destroyed when it reaches the boundary, thereby bringing
the system out of this attractor. Another example is attractor A in Fig. 6c, where it
can be seen that, when the control parameter a, increases its value from 0.9 to 1.5,
its basin changes and the attractor moves towards the boundary as well. Similar
plots but for fixed a; = 1.3 and different values of ¢ are shown in Fig. 6d. For
a; = 1.3, the pseudo energy for A (the original valley at the lower-left corner)
becomes higher, and the path for the transition from A to B becomes more
pronounced. Further increasing a, towards the critical value (about 1.35) raises the
energy of A to the level of the potential barrier, effectively eliminating the
corresponding valley and the attractor itself. Note that, for a fixed value of a;,
increasing noise amplitude can lead to a mixture of cold colours, meaning that the
valley range becomes wider and the ridge between two adjacent valleys becomes
shallower, resulting in a higher transition probability for each attractor.

A three-node GRN. We also study a three-node GRN system, as shown in Fig. 7a.
Similar to the two-node GRN system, there exist both auto and mutual regulations
among the nodes. All the interactions are assumed to be characterized by the same

parameters, s and #, in the Hill function. The nonlinear dynamical equations of the
system are?6:98;

. X7 s" s"
X1=a1‘”ln+bl'n Lt ke,
s 4 x s+ x5 s" 4 x5
s" x5 s"
; 2
X =dy - 2 +c- — k- x, 4
s"+xt s+ xy s+ x5 )
M N n
X3 =a;- : n T3 : . tes 5 o — k-,
s" 4 xp s+ x5 s" 4 x5

where the state variables (x;, x, and x3) represent the abundances of the three gene
products, the auto-activation parameters a;, by, ¢; and the mutual-inhibition
parameters a,, as, by, bs, ¢, ¢, are all experimentally accessible. To be concrete,
initially all the auto activation and mutual inhibition parameters are set to be 1.0
and 0.1, respectively, and k (the degradation rate) can be conveniently set to unity.
The parameters in the Hill function are n =4 and s = 0.5. There are altogether eight
attractors in this system, as shown in Fig. 7b, which are distributed symmetrically
in the three-dimensional state space. For example, attractor H has relatively high
values for all three dynamical variables, and attractor B exhibits the opposite case
with low abundances. For attractors A, C and F, one of the three state variables is
high and the other two are low. For attractors D, E and G, one of the three state
variables is low but the other two are high.

From numerical simulations, we find that the features of control are essentially
the same as those for the two-node GRN system, in terms of characteristics such as
the existence of critical control strength and the power-law scaling behaviour of the
minimum control time (see Supplementary Table 3 and Supplementary Notes 7 and
8 for details). We construct the attractor network in Fig. 7c through combinations of
all eight attractors (as nodes) and directed elementary controls (as weighted directed
edges). Information in Supplementary Table 3 can also be used to estimate the
respective weights of the edges. From the attractor network, for any given pair of
initial and final states, we can identify all the viable control paths. Furthermore, the
weighted-shortest path can be calculated once the edge weights are determined.
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Figure 7 | A GRN of three nodes and its attractor network. (a) Schematic illustration of a three-node GRN system. The arrowhead and bar-head edges
represent activation and inhibitory regulations, respectively. The sawtooth lines specify that the corresponding edge strength is experimentally adjustable.
(b) Coexisting attractors (A to H) in the phase space. (¢) The underlying attractor network, where each node represents an attractor and each weighted
directed link indicates that its strength can be experimentally tuned to steer the system from the starting attractor to the pointed attractor. Each grey

directed link with a single arrow indicates that only one parameter is needed to achieve control, and each purple link with a double-arrow and the label 3

represent the case where three parameters are required to achieve control.

We note that, typically, the attractor network based on elementary control is not
an all-to-all directed network so that certain control paths are absent, for example,
from attractor H to B. Therefore, we need to extend the control method to a
combination of multiple parameters. From Fig. 7c, we note that attractor H has
incoming links only, whereas B has outgoing links only. The structure of the
attractor network thus indicates that full control can be achieved (that is, to drive
the system from any initial attractor to any final attractor) if we can build a directed
path from H to B. Since attractors B and H have low and high abundance,
respectively, in the phase space, we modify the three auto-activation parameters
simultaneously to steel the system from H to B. We find that the relationship
between control strength and minimal control time also follows the power law
scaling with the scaling parameters y.~0.7973, «~1.26 and f~ — 0.77. In fact,
when all the auto-activation strengths are smaller than y,, the system has one
attractor only: B, meaning that perturbation based on parameter combinations can
be used to realize the control from other attractors as well, that is, from one of the
attractors A, C, D, E, F and G to attractor B.

Pseudo potential landscape. For a dissipative, nonlinear dynamical system
subject to noise, we can construct a pseudo potential landscape based on the state
probability distribution. Assume that, asymptotically, the system approaches a
stationary distribution. For a canonical dynamical system, the potential can be
defined as E(x) = —logP(x), where P(x) is the probability density function. For a
conservative dynamical system, the direction of system evolution is nothing but the
direction of the gradient of the potential function. However, this does not hold for
dissipative dynamical systems. The potential function thus does not have the same
physical meaning as that for a conservative system, henceforth, the term pseudo
potential. This approach can be adopted to GRNSs.

To obtain the stationary distribution, we use the modified weighted-ensemble
algorithm®’, which offers faster convergence than, for example, the traditional
random walk method. To be illustrative, we take the two-node GRN system
(equation (3)) as an example to demonstrate how the pseudo potential landscape
can be numerically constructed. The state space of the two-dimensional dynamical
system is partitioned into an M x M lattice with reflective boundaries conditions.
Initially, the probability P,,,(f) of all gird points are set to be uniform. The
simulation time is divided into T steps, where each step has the duration At. At the
beginning of each step ¢, there are N walkers randomly distributed at the grid point
(m, n), which carry equal weight P, ,,(t)/N and perform random walk under the
system dynamics and noise. The locations of these walkers in the grid are recorded
at the end of each time step, and the probability at the next time step, P,,, ,(t+ 1), is
the summation of the probabilities carried by all the walkers at time ¢. At time
(t+1), N new walkers carrying the updated probability at each grid point perform
random walk again on the grid. This procedure repeats until the probability
distribution becomes stationary, say P, ,, which gives the pseudo potential
landscape as E(m, n)= — log P, ,. Numerically, the time evolution of all walkers
can be simulated using the second-order Heun method for integrating stochastic
differential equations. For Fig. 6, the state space is divided into a 500 x 500 grid. At
each grid foint, there are N =20 walkers, each evolving T=2,000 time steps with
At=10""%

Instead of calculating the stationary probability distribution density, an
alternative approach to constructing the potential landscape is the Freidlin and
Wentzel’s large deviation theory®. According to this theory, first, one maps the
stochastic dissipative system of interest to a Hamiltonian system’’. One then
estimates the transition rate from an attractor to a saddle point as r~exp( — So/0),
where ¢ is the noise amplitude and Sy(-) characterizes the action functional
associated with the optimal energy path, which can be numerically solved through
an unconstrained nonlinear optimization method®>>>. As this theory relies on
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solving a nonlinear optimization problem, in order to visualize the energy
landscape, it is necessary to use a large number of state values x and solve the
optimization problem for each, which is computationally exhaustive. We find that,
to capture the essential features of the energy landscape, it suffices to use the
stationary distribution method.

In the weak noise limit ¢ — 0, according to the theory, to the leading order,
the transition rate r from one fixed point to a nearby saddle point x,, can be
approximated as r~ exp[( — So/(Xsp)]. The minimum control time satisfies
T~ 171, so we have t,, ~ exp [Sg (xsp)}. From equation (2), we obtain

Ae ~ eXP(SO(Xsp)/ﬂ)¢

indicating that the exceeded value A, of the control parameter u is exponentially
related to the optimal energy S, associated with the path between the initial state
and the nearby saddle point in the potential landscape.
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