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Abstract: In addition to the bio-guided investigation of the antifungal activity of Plinia 

cauliflora leaves against different Candida species, the major aim of the present study was 

the search for targets on the fungal cell. The most active antifungal fraction was purified by 

chromatography and characterized by NMR and mass spectrometry. The antifungal activity 

was evaluated against five Candida strains according to referenced guidelines. Cytotoxicity 

against fibroblast cells was determined. The likely targets of Candida albicans cells were 

assessed through interactions with ergosterol and cell wall composition, porosity and 

architecture. The chemical major component within the most active antifungal fraction of 

P. cauliflora leaves identified was the hydrolysable tannin casuarinin. The cytotoxic 

concentration was higher than the antifungal one. The first indication of plant target on 
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cellular integrity was suggested by the antifungal activity ameliorated when using an 

osmotic support. The most important target for the tannin fraction studied was suggested 

by ultrastructural analysis of yeast cell walls revealing a denser mannan outer layer and 

wall porosity reduced. It is possible to imply that P. cauliflora targeted the C. albicans cell 

wall inducing some changes in the architecture, notably the outer glycoprotein layer, 

affecting the cell wall porosity without alteration of the polysaccharide or protein level. 

Keywords: Plinia cauliflora (Myrtaceae); ellagitannin; Candida; antifungal activity;  

cell wall 

 

1. Introduction 

Plinia cauliflora is a tree from the Myrtaceae family [1] widespread in Brazil, Argentina and 

Paraguay. P. cauliflora produces an edible tasty fruit. The bark is astringent and used to treat diarrhoea 

and skin irritations [2]. A survey in the Brazilian Northeast area showed the popular use of its leaves 

and stems for the treatment of diarrhea and dysentery, while the syrup is useful to treat coughs and 

bronchitis [3]. Despite its importance and wide availability in Brazil, phytochemical studies on this 

plant are still scarce and have so far focused on the fruit [4]. Histochemical study of P. cauliflora 

leaves showed the presence of phenols and tannins in the midvein and smaller veins. Phenols were also 

verified in the palisade parenchyma and lipids in the secretory cavities. A preliminary phytochemical 

study of the ethanolic extract of the leaves confirmed the presence of hydrolysable tannins and 

flavonoids. Biological assays detected antioxidant (94.8% of radical scavenging capacity of  

2,2-diphenyl-1-picryl-hydrazyl—DPPH) and antimicrobial activities, especially antifungal activity of 

the 70% ethanolic extract of the leaves against Candida albicans, Candida parapsilosis and Candida 

tropicalis (MIC of 625 µg/mL) [5]. It is well-known that Candida species under predisposing 

conditions can cause a range of infections from oral thrush and vaginitis, affecting the superficial 

mucosa, to candidaemia and systemic candidiasis in patients with compromised immunity [6]. The 

number of cases of invasive fungal infections is increasing and Candida species are the most common 

causative agents. Over 17 species of Candida have been reported to be etiologic agents of invasive 

candidiasis in humans but C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei 

account for more than 90% of invasive infections [7]. In this sense, there is a great need for new 

antifungals with novel targets as alternative treatments to reduce the high attributable mortality rate 

associated with candidiasis and candidaemia and to reduce toxicity and emergence of  

resistance [8–10]. A number of plants have antifungal properties [8,10,11]. Some interesting examples 

include the leaves of Phyllanthus piscatorum and the bark of Stryphnodendron adstringens. The leaves 

are used by Yanomamï women with vaginitis and a bioactive-guided fractionation of the 

dichloromethane extract of P. piscatorum leaves led to the isolation of a lignin with a minimum 

inhibitory concentration (MIC) against C. albicans of 4 µg/mL [12]. The second example comes from 

a Brazilian tree (S. adstringens) that has bark with a high level of tannins. A polar extract was 

fractionated resulting in a condensed tannin enriched subfraction, which had a minimum inhibitory 

concentration against C. albicans of 7.8 µg/mL. The authors also demonstrated inhibition of germ tube 
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formation, an increase in the number of buds and changes in the cell wall ultrastructure of C. albicans 

treated with that subfraction [13]. 

Therefore, the objective of this study was to analyze the potential of the compounds from  

P. cauliflora leaf extract by performing a bioassay-guided chemical study and to investigate the 

antifungal effect on C. albicans cell, as well as cytotoxic properties against a mammal cell. 

2. Results and Discussion 

The bio-guided chemical investigation of the hydroalcoholic extract from P. cauliflora leaves was 

initially carried out by fractionation of the crude extract by liquid-liquid extraction into different 

polarity fractions. The n-butanol fraction (BF) was more biologically active (see below) against 

Candida strains and fractionated further, yielding the active subfraction F2. Purification of F2 was 

achieved by a combination of High Speed Counter-Current Chromatography (HSCCC) and semi-

preparative reverse phase High Performance Liquid Chromatography (HPLC) and led to the 

purification of a major hydrolysable tannin named casuarinin (Figure 1). The structure of the isolated 

compound was unequivocally assigned based on the ultraviolet (UV) spectral, 1D/2D nuclear magnetic 

resonance (NMR) and mass (MS) data, in comparison with the literature reference [14]. Casuarinin is 

the main ellagitannin isolated from Casuarina stricta [14] and was also isolated from the leaves of 

Melaleuca squarosa, a member of Myrtaceae family [15]. 

Figure 1. (a) Semi-preparative HPLC-UV chromatogram of F2 from P. cauliflora leaves. 

Chromatographic conditions: HPLC with UV detector set at 254 nm, the column was  

RP-18, elution phase acidified with trifluoroacetic acid 0.05% in linear gradient elution of 

CH3OH/H2O (20:80 in 15 min, 20:80→50:50 in 35 min, 50:50→95:5 in 40 min); flow-rate 

of 2.5 mL/min. (b) Structure of casuarinin. This hydrolysable tannin is a C-glycosidic 

ellagitannin with an open-chain glucose core called casuarinin. 

a 

b
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2.1. Susceptibility Testing  

The in vitro susceptibility tests of the crude extract, fractions and subfractions from the leaves of  

P. cauliflora against five Candida strains are shown in Table 1. C. krusei was more susceptible to the 

plant samples than the other species. BF was the most active fraction, with an inhibitory effect on 

fungal growth with MICs in the range of 19 to 156 µg/mL, depending upon the species. This result 

guided us to purify and further characterize that fraction. Among the subfractions obtained by HSCCC, 

just one of them called F2, showed good activity against C. albicans, according to previous  

reports [16,17]. The major compound isolated from F2 by HPLC, casuarinin, had some antifungal 

activity and C. krusei was the most susceptible strain. Although casuarinin has some antifungal 

activity, it did not have as good activity as F2, suggesting that the minor compounds present in F2, as 

shown in Figure 1, also contributed to the total antifungal activity of F2. All the plant samples showed 

low fungicidal activity.  

Cytotoxicity was assessed indirectly using a mammalian cell line by measuring the fluorescent 

emission of the molecule of resazurin reduced to resorufin in response to metabolic activity. CC50 

indicates the concentration of the plant samples that inhibited 50% of cell viability [18]. Plinia crude 

extract (PcE), BF, AF and subfraction F2 had low cytotoxic properties with a CC50 concentration 

higher than the antifungal MIC (Table 1). Casuarinin was not cytotoxic to mammalian cells at the 

highest concentration tested (116 µg/mL), but much higher concentrations of casuarinin were required 

to inhibit the fungal cells with the exception of C. krusei and C. tropicalis, which is a favorable point 

to study this compound for further application with animals or humans. 

Table 1. Antifungal activity and cytotoxicity of P. cauliflora leaf samples, in µg/mL. 

 C.a. (ATCC) C.a. (SC5314) C.k. C.p. C.t.  

Samples MIC MFC MIC MFC MIC MFC MIC MFC MIC MFC CC50 

Extract 156 625 156 156 19 39 78 156 312 1250 417 
EAF 625 1250 NT NT 19 78 312 625 312 625 221 
BF 78 1250 156 156 19 39 19 19 156 1250 767 
AF 312 >1250 NT NT 39 78 39 78 312 1250 1500 
F2 78 312 156 312 625 >1250 156 1250 312 >1250 >400 

casuarinin 580 580 580 >580 26 580 580 580 145 580 >116 
FCZ 4 8 2 32 32 32 4 4 32 32 NA 

Amph B 0.25 0.25 1 8 0.50 0.50 0.50 0.50 0.50 2 NA 

MIC and MFC results are expressed as the mode in µg/mL, after 24 h and 48 h of incubation, respectively. 

C.a. = C. albicans; C.k. = C. krusei; C.p. = C. parapsilosis; C.t. = C. tropicalis. EAF = ethyl acetate fraction; 

BF = n-butanolic fraction; AF = aqueous fraction; F2 = fraction 2 from BF; NT = not tested; NA = not 

applicable. FCZ = fluconazole (64 to 0.06 µg/mL). Amph B = amphotericin B (16 to 0.03 µg/mL). MIC test 

range concentrations: 1,250 to 2 µg/mL of extract and fractions and 580 to 1 µg/mL of casuarinin. CC50 test 

range concentrations: 2,000 to 4 µg/mL of extract or fractions and 116 to 0.2 µg/mL of casuarinin.  

CC50 = 50% cytotoxic concentration. Results are expressed according to the regression calculation in µg/mL.  
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2.2. Ergosterol Levels 

In order to examine whether the P. cauliflora active fraction targets the membrane and specifically 

affects ergosterol levels, the ergosterol content of isolates treated with BF was measured. The sterol 

quantification methodology is based on the unique spectral absorption pattern produced by ergosterol 

at 281.5 nm and the spectral absorption pattern produced by 24(28) dihydroergosterol at 281.5 and  

230 nm wavelengths. Consequently, the amount of ergosterol can be determined by calculating the 

total ergosterol and 24(28) dihydroergosterol content [19]. Fluconazole, which inhibits ergosterol 

synthesis [20] was used as a control and as expected the ergosterol content of fluconazole-treated cells 

was significantly decreased (Table 2). No evidence was found to implicate P. cauliflora acting on 

fungal ergosterol biosynthesis. 

Table 2. Ergosterol quantification, in percentage (%). 

SAMPLES C. albicans C. krusei C. parapsilosis C. tropicalis 
Control 1.38 ± 0.32 1.13 ± 0.70 0.34 ± 0.30 1,94 ± 0.10 

BF 2.03 ± 0.77(+48) 1.44 ± 0.58(+28) 0.77 ± 0.70(+29) 1,30 ± 0.86(−33) 
FCZ 0.40 ± 0.23(−71) * 0.68 ± 0.08(−40) 0.05 ± 0.05(−84) * 0(−100) * 

Ergosterol content expressed as a percentage (%) of the wet weight of the cell ± standard deviation. In 

parentheses there is the increased (+) or decreased (−) percentage value relative to the ergosterol content in 

control. BF = n-butanolic fraction. FCZ = fluconazole. * Statistically significant. 

2.3. Reduction of P. Cauliflora Leaf Samples Antifungal Properties 

2.3.1. Addition of Exogenous Ergosterol 

When a compound binds ergosterol, addition of exogenous ergosterol can reduce the antifungal 

efficacy of the compound. As a consequence, it is necessary to use a higher concentration of the 

compound to inhibit yeast growth relative to the MIC without exogenous ergosterol addition [8]. The 

effect of addition of ergosterol at 200 µg/mL to the drug susceptibility assays was determined. 

Deoxycholate amphotericin B can be used as positive control in this experiment since it is known to 

bind ergosterol in the fungal membrane and its antifungal activity is considerably compromised by the 

addition of 200 µg/mL exogenous ergosterol[20,21]. This finding was re-confirmed and similar results 

were observed with the crude extract and fractions of the plant in the present study. In our 

experiments, addition of exogenous ergosterol increased amphotericin B MIC 8 fold against  

C. albicans and C. tropicalis and 32 fold against C. krusei and C. parapsilosis (Table 3). The MIC of 

the extract, BF and F2 against C. albicans and C. parapsilosis increased 16 fold in the presence of 

ergosterol (Table 3), indicating their binding to ergosterol.  

2.3.2. Sorbitol Protection Assay 

Cell wall weakness can be alleviated by the addition of osmotic support, such as sorbitol [8]. In the 

presence of 0.8 M sorbitol, the MIC values of PcE, BF and F2 against C. albicans and C. parapsilosis 

were 16 fold and 4 fold higher, suggesting the plant samples may act on the cell wall. However, the 

susceptibility of C. krusei and C. tropicalis was not altered in presence of sorbitol. The MIC of 
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fluconazole and amphotericin B were just 2-fold higher with sorbitol addition in accord with their 

target being the membrane rather than the wall (Table 3). 

Table 3. Antifungal activity of the plant preparations in the presence of ergosterol or 

sorbitol, in µg/mL. 

 Ergosterol  Sorbitol 

Samples C.a. C.k. C.p. C.t.  C.a. C.k. C.p. C.t. 
Extract 5000 39 312 625  2500 39 2500 156 

EAF 5000 39 1250 625  5000 39 2500 312 
BF 5000 39 1250 312  5000 39 1250 312 
AF 5000 78 2500 625  5000 78 2500 1250 
F2 1250 78 1250 312  1250 78 625 312 

FCZ NA NA NA NA  8 64 4 64 
Amph B 2 16 16 4  0.25 1 1 1 

MIC results are expressed as the mode in µg/mL, for 24–48 h. C.a. = C. albicans; C.k. = C. krusei; C.p. =  

C. parapsilosis; C.t. = C. tropicalis. FCZ = fluconazole (64 to 0.06 µg/mL). Amph B = amphotericin B  

(16 to 0.03 µg/mL).Test concentrations: 5,000 to 8 µg/mL of extract. EAF = ethyl acetate fraction;  

BF = n-butanolic fraction; AF = aqueous fraction; F2 = fraction 2 from BF; NA = not applicable.  

2.4. Ultrastructural Analysis 

We also investigated whether the plant-derived compounds altered the cell wall architecture. C. 

albicans SC5314 cells were treated with subfraction F2 (156 µg/mL) and processed for transmission 

electron microscopy (TEM), preserving the ultrastructure of the cell wall. Untreated cells of C. 

albicans SC5314 had a typical fibrillar outer mannan layer [Figure 2(a)], but cells treated with the F2 

had a denser and shorter outer layer [Figure 2(b)] indicating that the plant compounds altered cell  

wall structure.  

Figure 2. Ultrastructural analysis of the C. albicans yeast cell surface. (a) Transmission 

electron microscopy of cells without treatment (b) And cells treated with 156 µg/mL of 

subfraction F2 for 16 h. Magnification of 130,000×. 

a b 
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2.5. Assessing C. albicans cell wall treated with F2 

To assess whether F2 did indeed target the cell wall a more detailed analysis was performed by 

biochemically determining cell wall composition and porosity and examining the distribution of chitin 

in the wall by staining with the fluorescent dye Calcofluor White (CFW). Chitin localization was not 

affected by treatment with the casuarinin fraction F2 (not shown). No significant changes were 

observed in the cell wall composition of untreated cells and cells treated with 156 µg/mL of F2 for  

16 h as determined by HPAE-PAD (Table 4). As the outer fibrillar layer is rich in glycoproteins the 

total protein content of isolated cell walls was also measured. F2-treated yeast cell walls had a  

non-significant decrease in the levels of protein compared to the untreated control (Table 4). In 

contrast F2-treated hyphal cell walls had a significant increase (10%) in protein levels compared to the  

untreated samples. 

Table 4. Cell wall assay results comparing non-treated and casuarinin fraction treated  

C. albicans SC5314. 

 

Control cells Treated cells 

Yeast Hyphae Yeast Hyphae 

Chitin (%) 5.1 ± 1.8 21.8 ± 1.3 4.2 ± 1.4 22.1 ± 4.0 
Glucan (%) 66.3 ± 4.9 68.8 ± 0.6 73.4 ± 4.0 67.3 ± 2.0 
Mannan (%) 28.6 ± 5.6 9.4 ± 1.6 22.4 ± 5.3 10.6 ± 2.1 

Covalently attached cell wall protein (µg/mL) 109.4 ± 5.5 90.2 ± 5.0 114.5 ± 4.2 101.3 ± 2.0 * 
Non-covalently attached cell wall protein (µg/mL) 226.5 ± 1.5 156.6 ± 0.5 227.6 ± 3.4 173.3 ± 0.1 

Results of saccharide content are given as percentage (%) of total dried cell wall, while protein content is 

given as µg/mL and are the average ± standard deviation of triplicate samples.* Statistically significant. 

The cell wall acts as a physical barrier and filter to the external environment. Changes in the cell 

wall architecture and cross-linking of cell wall polysaccharides to each other is likely to affect the 

porosity of the wall. The porosity of the cell walls of C. albicans treated with subfraction F2 was 

compared to untreated cells. Cells were treated with the polycations DEAE-dextran (500 kDa) and 

poly-L-lysine (50 kDa) which interact with the cell membrane releasing 260 nm UV absorbing 

compounds [22]. The wild type cell wall is a barrier against the free diffusion of molecules through its 

depth. Its porosity is a measure of its relative permeability of molecules and is normally reflective of 

the molecular size and charge of the permeant. Control, untreated C. albicans SC5314, had a relative 

porosity of 34.8 ± 0.2%. In comparison cells treated with the casuarinin-containing subfraction F2 had 

significantly reduced porosity (−9.2 ± 5.4%). The F2-treated cell wall were still as porous to  

poly-L-lysine but were less porous to DEAE-dextran than control cells without treatment.  

3. Experimental 

3.1. General Procedures 

Chromatographic equipments used were a High Speed Counter-Current Chromatography (HSCCC; 

P.C. Inc. Potomac, MD, USA) with a Waters 4000 constant-flow pump, a P.C. Inc. Injection Module 

and a Redifrac fraction collector (Pharmacia, Uppsala, Sweden) and a Varian ProStar HPLC system 
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equipped with a RP-18 column (Phenomenex Luna). Thin layer chromatography (TLC) analyses were 

performed on silica gel plates (Al sheets, F254, 200 μm thickness, Sorbent Technologies, Norcross, GA, 

USA) and visualized after spraying with anisaldehyde/H2SO4 solution under UV/Vis light. NMR 

analyses and 2D experiments were carried out on a Varian INOVA 500 spectrometer, operating at 500 

MHz for 1H and 150 MHz for 13C and chemical shifts were given in δ (ppm) using trimethylsilane 

(TMS) as internal standard. Complementary structural information was achieved by mass spectrometry 

(MS) analysis using a Thermo Finnigan TSQ Quantum Ultra AM system equipped with a hot 

electrospray ionization (ESI) source (electrospray voltage 3.0 kV, sheath gas: nitrogen; vaporizer 

temperature: 50 °C; capillary temperature: 250 °C), operating in positive and negative ionization 

modes. Reagents were mainly acquired from Sigma-Aldrich (St. Louis, MO, USA). Culture medium 

reagents were from Acumedia (Lansing, MI, USA), Sigma-Aldrich and Invitrogen (Carlsbad, CA, 

USA). Microbiological analysis used a VERSAmax tunable microplate reader (Molecular Devices, 

Sunnyvale, CA, USA), a microplate spectrofluorometer (Tecan, Männedorf, Switzerland) and a 

spectrophotometer (Shimadzu 1603, Kyoto, Japan). Microscopy visualization utilized a Philips CM10 

transmission microscope (FEI UK Ltd, Cambridge, UK) with a Gatan Bioscan 792 (Gatan, UK, 

Abingdon, UK) for recording the images. Cell wall composition was analyzed by High-Performance Anion 

Exchange Chromatography from Dionex (Sunnyvale, CA, USA) with pulsed amperometric detection. 

3.2. Plant Material 

Leaves of P. cauliflora were collected in São Carlos, São Paulo, Brazil in December 2006 and 

identified by Marcos Sobral from the Department of Natural Sciences of the “Universidade Federal de 

São João Del-Rei”. A voucher herbarium specimen was deposited under number ESA 96038 at the 

“Herbário da Escola Superior de Agricultura Luiz de Queiroz” (ESALQ), Piracicaba, São Paulo, Brazil. 

3.3. Extraction and Isolation 

The leaves were dried at 40 °C and powdered using a knife mill. The crude extract was obtained by 

percolation of 80 g of the powder with 70% aqueous ethanol (1L, 3 days, ambient temperature). The 

organic solvent was evaporated at 40 °C under reduced pressure and the aqueous residue lyophilized, 

yielding a green crude extract (30%). A portion (15 g) of the extract was suspended in water (500 mL) 

and partitioned successively (v/v, 3 × 500 mL each) with ethyl acetate, followed by n-butanol, yielding 

the ethyl acetate fraction (EAF, 21.8%), n-butanol fraction (BF, 41.7%) and aqueous fraction (AF, 

36.5%). The BF was fractionated by preparative High Speed Counter-Current Chromatography 

equipped with a multilayer helical column containing two coils (φ = 1.68 mm, internal extreme  

β = 0.50, external extreme β = 0.85, revolution ratio n = 10 cm). An amount of 1.25 g of BF was 

dissolved in 15 mL of the mobile phase composed by a solution of ethyl acetate-n-butanol-water 

(3.8:1.2:5, v/v), centrifuged and the supernatant injected at a flow-rate of 1.5 mL/min. Rotation was set 

up at 850 rpm and a total of 130 fractions (4 mL each) were collected and analysed by TLC 

(CHCl3/MeOH/PrOH/H2O (5:6:1:4, v/v/v/v - organic phase, anisaldehyde/H2SO4 reagent for 

detection) and grouped according to their TLC profile. The active-tannin enriched subfraction F2  

(100 mg) was sequentially purified by reverse-phase using a HPLC system equipped with a RP-18 

column (250 × 4.6 mm i.d., 5 µm), mobile phase acidified with trifluoracetic acid (TFA) 0.05% in 
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linear gradient elution of CH3OH/H2O as follow: 20:80 in 15 min, 20:80→50:50 in 35 min, 

50:50→95:5 in 40 min; eluted at a flow-rate of 2.5 mL/min. The effluent was monitored using a 

ProStar 330 photodiode-array ultraviolet detection system at 254 nm and led to the isolation of the 

compound casuarinin (1, 13 mg) [14]. Colorless amorphous powder. UV λmax nm: (MeOH): 213, 232, 

257sh. 1H-NMR (DMSO-d6): δ 6.94 (2H, d, J = 2 Hz, galloyl ArH), 6.57, 6.29, 6.25 (1H each, s, 

HHDP), 5.39 (1H, dd, J = 5.0, 2.0 Hz, H-1), 5.26 (1H, dd, J = 8.0, 2.0 Hz, H-4), 5.21 (1H, dd, J = 2.0, 

8.0, H-3), 5.17 (1H, m, H-5), 4.56 (1H, m, H-2) 4.53 (1H, m, H-6), 4.00 (1H, d, J = 13 Hz, H-6).  

ESI-MS (positive mode) m/z 937 [M+H]+. ESI-MS (negative mode) m/z 935 [M-H]-. C41H28O26. 

Those experiments were performed at the Institute of Chemistry and the School of Pharmaceutical 

Sciences, UNESP, BRA 

3.4. Fungal Strains, Cell Line and Culture Conditions 

The fungal strains used were Candida albicans ATCC 64548, Candida krusei ATCC 6258, 

Candida parapsilosis ATCC 22019 and Candida tropicalis ATCC 750 and one clinical isolate 

Candida albicans SC5314. Each strain was maintained on YPD agar (1% (w/v) yeast extract, 2% 

(w/v) mycological peptone, 2% (w/v) glucose, 1.6% (w/v) agar) and cultured in YPD broth at 30 °C 

with shaking at 200 rpm for 16 h to prepare inocula for experiments. When required, the strains were 

cultured in Sabouraud broth (1% (w/v) mycological peptone, 2% (w/v) glucose). Minimal inhibitory 

concentration (MIC) was performed with RPMI 1640 medium. Hyphal growth of strain SC5314 was 

induced using two different growth media: water with 20% fetal calf serum (FCS) and Lee’s  

medium [23,24] and incubation at 37 °C. The rabbit corneal cell line (ATCC SIRC CCL-60) was 

maintained in Eagle’s MEM containing 10% (v/v) fetal bovine serum, 2 mM L-glutamine and 0.2% 

sodium bicarbonate. The cultures were incubated at 37 °C with 5% CO2 until reaching confluence. 

Microbiological and cytotoxic assays were realized at School of Pharmaceutical Sciences in UNESP, 

BRA and experiments with Candida albicans SC5314 were performed at the Institute of Medical 

Sciences, University of Aberdeen, UK, including TEM analysis, MIC, hyphal growth and cell  

wall assays. 

3.5. Antifungal Susceptibility Testing 

Minimal inhibitory concentration (MIC) was determined using the broth microdilution technique 

according to the Clinical and Laboratory Standards Institute recommendations [25]. Solutions of  

P. cauliflora extract and fractions were prepared in DMSO and serially diluted (<1% DMSO) to obtain 

concentrations of 1,250 to 2 µg/mL of extract and fractions and 580 to 1 µg/mL of the pure compound. 

The inocula were adjusted to a density of 2.5 × 103 cfu/mL in each well and the microplates were 

incubated in RPMI 1640 medium at 35 °C for 24 h. The endpoint of antifungal activity was interpreted 

as the lowest concentration resulting in an observable inhibition of growth compared to the no drug 

control cultures. In addition, for C. albicans SC5314 the endpoint reading was measured at an optical 

density (OD) of 405 nm in a microplate reader [26]. Fluconazole and deoxycholate amphotericin B 

were utilized as control drugs. The MIC of PcE, BF, F2 and amphotericin B were also determined in 

the presence of 0.2 µg/mL ergosterol or 0.8 M sorbitol [8]. This MIC was determined after 24–48 h of 

incubation at 35 °C. Minimal fungicidal concentration (MFC) was defined as the concentration at 
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which the number of colony forming units was zero after 2 µL of microplate cultures were incubated at 

37 °C for 48 h on YPD agar [26]. Data are presented as the mode values of triplicates. 

3.6. Cytotoxicity Testing 

The mammalian cytotoxicity of P. cauliflora samples was evaluated as follows: aliquots (300 µL) 

of a 1×105 cells/mL SIRC cell suspension was added to the wells of 96-well microplate and incubated 

in Eagle’s MEM containing 10% (v/v) fetal bovine serum, 2 mM L-glutamine and 0.2% sodium 

bicarbonate at 37 °C, 5% CO2 for 72 h. The medium was removed and replaced with fresh medium 

containing extract or fractions (2,000 to 4 µg/mL) and casuarinin (116 to 0.2 µg/mL) and the plate 

incubated at 37 °C, 5% CO2 for 24 h. A 0.1 mg/mL resazurin solution was added and after 3 h of 

incubation the fluorescence of the reduced product resorufin was read using a microplate 

spectrofluorometer with excitation and emission wavelengths of 530 nm and 590 nm,  

respectively [18,27]. Then 50% cytotoxic concentration (CC50) was calculated [28]. The test was done 

in triplicate. 

3.7. Sterol Quantification Method 

Total cellular ergosterol of the standard strains treated with BF was quantified [19]. One colony was 

incubated overnight in Sabouraud broth and used to inoculate (2.5 × 103 cfu/mL) Sabouraud 

containing BF at MIC value. After incubation at 35 °C, 18 h, 135 rpm, cells were collected, washed 

and saponified. Sterols were extracted with hexane. An aliquot of sterol extract was diluted 5-fold in 

100% ethanol and scanned in a spectrophotometer between 200 and 300 nm. The ergosterol content 

was calculated as percentage according to the equations in Arthington-Skaggs et al. [19]. The test was 

done in triplicate and compared with the results obtained for fluconazole. 

3.8. Ultrastructural Analysis by Transmission Electron Microscopy (TEM) 

Cells were inoculated (OD600 < 0.2) into YPD broth plus 156 µg/mL subfraction F2 and incubated 

for 16 h at 30 °C, 200 rpm. The cells were filtered and humidified samples of untreated and treated 

cells were frozen by high pressure (Leica EM PACT high-pressure freezer, Vienna, Austria). Freeze 

substitution, sectioning and visualization were done as described previously [29]. 

3.9. Cell Wall Polymer Quantification 

The cell walls were prepared from untreated (control) and treated (156 µg/mL of F2) yeast and 

hyphal C. albicans SC5314 cells grown as follows. For yeast growth, 1 mL from overnight YPD 

culture (OD at 600 nm < 0.2) was inoculated in 100 mL YPD and incubated for 16 h at 30 °C,  

200 rpm. To induce hyphae formation cells were washed in H2O and inoculated at <2 × 107 cells/mL 

into 200 mL of 20% FCS in sterile distilled water and incubated for 16 h at 37 °C, 200 rpm. Cells were 

harvested by centrifugation and cell walls were isolated as described [30]. 

Chitin, β-glucan and mannan levels were determined by quantification of glucosamine, glucose and 

mannose after acid hydrolysis using High-Performance Anion Exchange Chromatography with pulsed 

amperometric detection (HPAE-PAD). Monosaccharides were separated on a CarboPac PA-10 column 
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and eluted isocratically with 12 mM NaOH [24]. The total μg per 1 mg of each cell wall component 

was obtained by calibration using standard curves of glucosamine, glucose and mannose, and 

expressed as a percentage of total dry cell wall. All data are presented as the mean values of triplicate 

experiments. The amount of protein in cell wall fractions was determined by Bradford method [30]. 

All data are presented as the mean values of triplicate samples. 

3.10. Relative Cell Wall Porosity 

Cells from an overnight YPD culture of C. albicans SC5314 were inoculated at OD600 < 0.2 into 

50 mL YPD broth and incubated for 3 h at 30 °C, 200 rpm. The F2 subfraction was added (final 

concentration 156 µg/mL) and cells were incubated for 2 h. The cells were harvested and washed with 

water. Cells at a density of 1 × 108 cells/mL were dispensed in duplicate in 1 mL aliquots, centrifuged 

and 10 mM of Tris-HCl buffer pH 7.5 was added to each of the cell pellets, which were divided in two 

sets of reactions: one received 1 mL of 5 µg/mL DEAE-dextran and the other 1 mL of 15 µg/mL  

poly-L-lysine. The samples were incubated for 30 min at 30 °C, 200 rpm, centrifuged at 16,000 × g for 

3 min, the supernatant collected and again centrifuged. The supernatant absorbance was measured at 

260 nm. Relative porosity was calculated as [(A260DEAE-dextran—A260buffer)/(A260poly-L-lysine—

A260buffer) × 100]. Each test was performed in triplicate [22]. 

3.11. Statistical Analysis 

Where necessary, statistical analysis was performed using ANOVA. A Dunnett’s T-test was used to 

compare treated with non-treated cells in the assays of hyphal growth, sterol and cell wall polymers 

quantification and cell wall porosity. A 5% significance level was adopted. 

4. Conclusions  

It can be proposed that the specific cell wall changes induced by treatment with subfraction F2 may 

be due to the formation of a tannin-cell wall protein complex on the outermost layer of C. albicans 

since tannins are known to complex with macromolecules such as proteins and polysaccharides [31]. 

To corroborate these potential effects of F2 we observed: (i) a denser outer mannoprotein layer 

visualized by TEM indicating precipitate formation; (ii) no changes in mannan content and iii) reduced 

cell wall porosity. Hence, the present study proposes that the tannin-rich fraction F2 of P. cauliflora 

has the ability to interfere with the outer glycoprotein-rich layer of C. albicans.  
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