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S U M M A R Y
Sensitivity analysis with synthetic models is widely used in seismic tomography as a means
for assessing the spatial resolution of solutions produced by, in most cases, linear or iterative
nonlinear inversion schemes. The most common type of synthetic reconstruction test is the
so-called checkerboard resolution test in which the synthetic model comprises an alternating
pattern of higher and lower wave speed (or some other seismic property such as attenuation) in
2-D or 3-D. Although originally introduced for application to large inverse problems for which
formal resolution and covariance could not be computed, these tests have achieved popularity,
even when resolution and covariance can be computed, by virtue of being simple to implement
and providing rapid and intuitive insight into the reliability of the recovered model. However,
checkerboard tests have a number of potential drawbacks, including (1) only providing indirect
evidence of quantitative measures of reliability such as resolution and uncertainty, (2) giving
a potentially misleading impression of the range of scale-lengths that can be resolved, and
(3) not giving a true picture of the structural distortion or smearing that can be caused by the
data coverage. The widespread use of synthetic reconstruction tests in seismic tomography
is likely to continue for some time yet, so it is important to implement best practice where
possible. The goal of this paper is to develop the underlying theory and carry out a series of
numerical experiments in order to establish best practice and identify some common pitfalls.
Based on our findings, we recommend (1) the use of a discrete spike test involving a sparse
distribution of spikes, rather than the use of the conventional tightly spaced checkerboard;
(2) using data coverage (e.g. ray-path geometry) inherited from the model constrained by the
observations (i.e. the same forward operator or matrix), rather than the data coverage obtained
by solving the forward problem through the synthetic model; (3) carrying out multiple tests
using structures of different scale length; (4) taking special care with regard to what can
be inferred when using synthetic structures that closely mimic what has been recovered in
the observation-based model; (5) investigating the range of structural wavelengths that can
be recovered using realistic levels of imposed data noise; and (6) where feasible, assessing
the influence of model parametrization error, which arises from making a choice as to how
structure is to be represented.
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1 I N T RO D U C T I O N

The effective assessment of model reliability is still a major chal-
lenge in seismic tomography despite over four decades of devel-
opment. The ill-posed nature of the tomographic inverse prob-
lem means that multiple data-satisfying solutions exist, and these
solutions tend to be unstable with respect to small changes in
data noise and initial conditions unless regularization is applied
(Rawlinson et al. 2014). The combination of implicit (e.g. via choice
of a model parametrization) and explicit (e.g. damping and smooth-

ing) regularization, a poor knowledge of data noise, uncertainty in
prior information, and simplifying assumptions made in the for-
ward and inverse step (e.g. using the ray approximation, ignoring
anisotropy, linearization) actually make it extremely difficult for any
method to provide a reliable assessment of model robustness.

The pioneers of geophysical inverse problems (Backus & Gilbert
1967, 1968, 1970; Franklin 1970; Wiggins 1972) and seismic to-
mography (Aki & Lee 1976; Aki et al. 1977) clearly recognized
the importance of assessing solution robustness and the need to try
and quantify uncertainty. For example, in both the local earthquake
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1222 N. Rawlinson and W. Spakman

tomography study of Aki & Lee (1976) and the teleseismic tomog-
raphy study of Aki et al. (1977), formal estimates of posterior co-
variance and resolution are made for all model unknowns. Despite
the massive increases in computing power and ongoing theoreti-
cal developments that have taken place since these seminal works,
progress in the assessment of model robustness has been limited.
As well as estimates of posterior covariance and uncertainty from
linear theory, other methods that have been tried include synthetic
reconstruction tests, jackknife and bootstrap methods and sampling
strategies (for a review see Rawlinson et al. 2014).

For small to medium-sized linear or linearizable inverse prob-
lems, the calculation of posterior covariance and resolution is rel-
atively straightforward, and has been frequently used as a measure
of solution reliability in seismic tomography (e.g. Aki et al. 1977;
White 1989; Zelt & Smith 1992; Steck et al. 1998). For larger prob-
lems, approximation methods have been applied (e.g. Yao et al.
1999; Zhang & Thurber 2007), although care must be taken when
iterative solution methods like LSQR, which only explore a re-
stricted subspace of the full model space when the number of itera-
tion steps is limited, are used (Nolet et al. 1999). However, while the
attainment of quantitative estimates of model uncertainty and spa-
tial resolution is attractive, the general limitations associated with
the tomographic inverse problem, as described earlier, means that
at the very least the absolute value of these quantities are poorly
constrained. Moreover, their validity decreases as the nonlinearity
of the inverse problem increases.

An alternative to directly computing resolution or posterior co-
variance is to instead target a proxy such as resolution length. For
example, Fichtner & Trampert (2011) develop a method for full
waveform inversion problems, based on low-rank approximations
of the Hessian operator that can determine the 3-D distribution
of direction-dependent resolution lengths with potentially greater
computational efficiency than a synthetic test. This approach can be
viewed as a generalization of the ray density tensor (Kissling 1988),
which quantifies space-dependent azimuthal coverage. More re-
cently, Fichtner & van Leeuwen (2015) develop and apply a random
probing technique for resolution analysis that avoids the algorith-
mic complexity and computational requirements of the Fichtner &
Trampert (2011) method. In addition, it can be applied to any tomo-
graphic technique, including full waveform inversion and linearized
ray tomography. A thorough comparison between this technique and
more traditional methods of resolution analysis is yet to be carried
out.

Sensitivity analyses, or synthetic reconstruction tests, are the
most common method for assessing solution robustness in seismic
tomography, and were originally introduced to investigate spatial
resolution in inverse problems for which formal resolution can-
not be computed due to the large model size (Spakman & Nolet
1988). They involve the formulation of a heterogeneous synthetic
model through which the forward problem is solved using the iden-
tical data coverage as the observational data set. The inversion
method is then applied to the synthetic data set in an effort to re-
cover the test model. Differences between the true and recovered
model provide a basis for assessing the reliability of the solution.
Input structures range from single discrete spikes (Walck & Clay-
ton 1987; Rasmussen & Humphreys 1988), to widely spaced spikes
(Grand 1987; Spakman & Nolet 1988), to tightly spaced checker-
boards (Inoue et al. 1990; Fukao et al. 1992; Glahn & Granet 1993;
Zhao et al. 1996; Zelt & Barton 1998; Gorbatov et al. 2000; Fish-
wick et al. 2005; Chen & Jordan 2007; Yang et al. 2009; Rawlinson
et al. 2011) to structures designed to investigate particular features
such as subduction zones (Spakman et al. 1989; Eberhart-Phillips &

Reyners 1997; Bijwaard et al. 1998; Graeber & Asch 1999; Wolfe
et al. 2002). Of these, the tightly spaced checkerboard pattern of
alternating positive and negative anomalies (relative to some ref-
erence structure) is by far the most common, but also the most
criticized. For example, Lévêque et al. (1993) clearly show that it is
possible to devise data geometries for which small-scale structures
(as is commonly used in a checkerboard test) are well retrieved while
larger scale structures are poorly retrieved. More generally, their re-
sults show - unsurprisingly - that the recovery has a dependence on
the choice of the synthetic model.

Standard statistical methods of error assessment such as jack-
knife and bootstrap tests have seen limited use in seismic tomog-
raphy (Lees & Crosson 1989, 1990; Su & Dziewonski 1997; Zelt
1999; Gung & Romanowicz 2004). Both methods rely on running
repeat inversions with various subsets of the data set (via resam-
pling in the case of bootstrap, and omission in the case of jackknife)
and interrogating the ensemble of solutions that are produced for
summary information. One of the main limitations of both meth-
ods is that they require an overdetermined inverse problem in or-
der to work effectively (Nolet et al. 1999), which rarely occurs in
practice.

The idea of sampling regions of model space in which the data
are satisfied in order to produce an ensemble of solutions is gradu-
ally becoming more common, thanks in part to ongoing increases in
computing power. Within a linear or weakly nonlinear framework, a
number of different techniques have been tried, including multiple
starting models (Vasco et al. 1996), the so-called ‘null space shut-
tle’ (Deal & Nolet 1996; de Wit et al. 2012), regularized extremal
bounds analysis (Meju 2009), Lie group methods (Vasco 2007)
and the dynamic objective function scheme (Rawlinson & Kennett
2008). However, it is in the realm of fully nonlinear sampling where
the greatest strides are currently being made. For example, Bayesian
trans-dimensional tomography, in which the number of unknowns
is an unknown itself, and the parametrization is adaptive, is starting
to become increasingly popular. It has been shown to be computa-
tionally tractable for most 2-D and some 3-D problems (Bodin &
Sambridge 2009; Bodin et al. 2012; Young et al. 2013; Galetti et al.
2015; Piana Agostinetti et al. 2015; Hawkins & Sambridge 2015),
and generates a large ensemble of solutions which can be used to
quantitatively assess solution reliability. In general, these methods
have an intrinsic parsimony which results in a (variable) spatial res-
olution that contains only structure that is ‘required’ by the data;
the uncertainty associated with structure at this spatial resolution
can be estimated by taking the standard deviation of the solution
ensemble.

In this paper, we focus on establishing best practice for the im-
plementation of sensitivity analysis, which has become the standard
approach for assessing solution quality in seismic tomography, even
when the resolution matrix can actually be computed (in which
case, the recovery of any test structure can be rapidly obtained; see
Section 2). As well as results and findings from previous studies,
these guidelines are founded in theory and informed by a series
of numerical tests that use both synthetic data (see Section 3) and
data recorded in the field (see Supporting Information). Note that
we only consider tomographic inverse problems that are linear or
weakly nonlinear. As such, it is assumed that the starting model is
sufficiently close to the required minimum of the objective function
that the assumption of local linearization will allow the solution to
enter a region of acceptable data-fit (whether by a single step or
iteratively) within the neighbourhood of this minimum. If this is not
the case, then the problem may require a fully nonlinear solver and
consequently a different approach to assessing solution robustness.
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2 T H E O R E T I C A L C O N S I D E R AT I O N S

Our aim in this section is to provide a theoretical framework for the
proper use of spatial resolution and noise analysis with synthetic
models in tomographic inverse problems that solve a linear(ized)
system of equations. In addition, we address how implicit formula-
tions of the inverse problem that focus on minimizing a cost function
may adhere to this theory.

2.1 The forward problem

The general nonlinear forward problem of noise-free data dE (e.g.
traveltimes, waveforms, some portion of the seismogram) can be
written as dE = g(mE ) + ε t , where mE represents the distribution
of some true-Earth seismic property (e.g. P-wave velocity) and g is a
nonlinear integral operator. The error εt represents the discrepancy
between dE and its theoretical prediction g(mE ) and the magnitude
of εt is a function of the approximations made in solving the for-
ward problem. For example, the tomographic inverse problem in
its simplest form, using ray theory, is nonlinear and the finite fre-
quency traveltime dE may be inconsistent with the theoretical ray
prediction g(mE ).

If we now add observational noise εd (e.g. picking error), such
that d = dE + εd , then

d = g(mE ) + εt + εd . (1)

Next, assuming a suitable model parametrization that projects mE

on the model vector mp , this leads to

d = g(mp) + ε t + εd + ε p. (2)

where ε p is the implied parametrization error. In the explicit for-
mulation that we follow here, the next step is defining the matrix
representation of the integral equations as a locally linear represen-
tation of g(mp) about the true model mp , so that

dp = Gpmp (3)

where dp = g(mp) and Gp is the observation matrix relating the
data dp to the true Earth model m. We assume that this relationship
is exact, so that substitution into eq. (2) yields

d = Gpmp + εt + εd + ε p. (4)

Note that from the inversion viewpoint, eq. (4) is still a nonlinear
relationship between observations d and mp because Gp and mp

are both unknown and in addition Gp generally depends on mp . For
instance, in ray-based tomography, Gp is obtained from integration
along the 3-D geometry of the true ray paths that depends on the
true model mp .

For a linear(ized) inversion of eq. (4) one assumes an approxima-
tion G = Gp where G is a known matrix obtained from integration
over a background reference model. This leads to an additional
inconsistency between the data and model predictions, which we
denote with the linearization error εl . For later use we formalize
this as follows

Gpmp = (G − E)mp = Gmp + εl (5)

where E = (G − Gp) is the linearization error in the observation
matrix.

The forward equation of a linearized inversion thus becomes
d = Gmp + ε, where ε = εd + εl + εt + ε p . Although the obser-
vational errors εd can be random, the implicit data errors may have
a systematic component, which would likely manifest more promi-
nently in the tomographic solution. In tomographic formulations

of the inverse problem, data errors ε are often represented by the
data covariance matrix Cd , which in theory can accommodate all
variances and error correlations.

Due to a lack of data and the presence of data errors, the tomo-
graphic inverse problem is generally underdetermined or mixed-
determined (Tarantola 1987; Menke 1989). Consequently, a null
space exists in which modifications can be made to mp without
changing the data d. As a result, we cannot expect to retrieve mp

from the inversion of d = Gmp + ε, as it is only one of many
data satisfying solutions. To make this explicit, mp is replaced by
m, which denotes any model that can fit the data equally as well
as mp based on an adopted measure of data fit. This leads to the
well-known form of the linearized forward equation

d = Gm + ε (6)

where we make explicit that ε = εd + εt + εl + ε p comprises all
sources of observation error and errors introduced by the various
assumptions that we have outlined above.

2.2 The linearized inverse problem and the resolution
matrix

Here we take a generalized and practical approach to tomographic
inversion which is largely independent of the number of model pa-
rameters and volume of data. The two main features are (1) solution
of a linear/linearized inverse problem, and (2) assessment of solu-
tion robustness either via computation of the resolution matrix or
sensitivity analysis. In general, sensitivity analysis is the only way
to assess solution characteristics for problems involving a very large
number of inversion parameters.

Formulation of the tomographic inverse problem starts with the
design of a data misfit function, which is usually extended by the
addition of one or more regularization terms which penalizes model
attributes, such as model amplitude, flatness and/or smoothness
(Menke 1989). Notions about prior model covariance are also used
to precondition the inverse problem (e.g. Rawlinson et al. 2014).
The penalty term serves to deal with the underdetermined nature
of the inverse problem, usually by trying to exclude models which
exhibit levels of detail not required by the data. A basic example
is the cost function associated with the linearized and regularized
least squares inversion (Rawlinson et al. 2010):

S(m) = (d − Gm)TC−1
d (d − Gm) + α2mTDTDm (7)

The first term is the quadratic data misfit scaled by the prior data
covariance Cd and the second term defines the penalties on model
attributes through a pre-designed damping matrix αD. The tuning
parameter α regulates the trade-off between fitting the data and
satisfying the model penalties.

In order to solve the inverse problem, the next step is to find
the model m̂ which minimizes the adopted cost function S(m). For
linear problems, the solution can be formally written as

m̂ = G−gd (8)

where G−g is the so-called generalized inverse (Backus & Gilbert
1970). For eq. (7), the generalized inverse has the form (e.g.
Rawlinson et al. 2014)

G−g = (
GTC−1

d G + α2DTD
)−1

GTC−1
d (9)

This illustrates that generally G−g is not unique and is dependent on
Cd , representing all data errors εd , and on the adopted regularization
operator αD.

 at U
niversity of A

berdeen on A
pril 26, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


1224 N. Rawlinson and W. Spakman

If we now substitute the relationship between the observations and
the true Earth model of eq. (4) into eq. (8), we obtain an instructive
equation that shows how the true Earth model and actual data errors
map into the tomographic solution

m̂ = Rpmp + G−g(εd + εt + ε p) (10)

where

Rp = G−gGp (11)

is the true spatial resolution matrix and defines the linear depen-
dence of each model parameter m̂i on components of the true model
mp . In effect, it measures the amount of ‘blurring’ produced by the
inverse operator. If R = I, then there is no blurring and the least
squares solution has perfect resolution.

For a linear inverse problem Gp = G, and hence the resolution
matrix can formally be computed. Instead, for a linearized problem,
which is the usual case in seismic tomography, we do not know
Gp . However, by inserting eq. (5) into eq. (10), we can arrive at a
useful equation which allows for a practical implementation of eqs
(10) and (11) and explicitly shows the role of the linearization error,
which is not present in eq. (10):

m̂ = Rmp − G−gEmp + G−g(εd + ε t + ε p) (12)

or

m̂ = Rmp + G−gε (13)

where R = G−gG is the more commonly used resolution matrix
(e.g. Nolet 2008). Eq. (12) demonstrates that R can only be consid-
ered to be an approximation to the true resolution matrix Rp in case
of a linearized inverse problem, that is, Rp = R − G−gE. This is
an important observation that has an analogy when considering the
spatial resolution of the final model of a nonlinear inversion (see
below).

The error term G−gε in eq. (13) includes the linearization error
and explicitly accounts for the propagation of all data noise into the
solution. As this noise is unknown, it cannot be computed except in
controlled synthetic experiments. As an approximation, the effect
of data errors ε on the solution is estimated from the propagation of
the prescribed data covariance Cd into the posterior model covari-
ance CM . Since the covariance of any linear combination Ap of a
Gaussian distributed random variable p is Cov(Ap) = ACov(p)AT ,
then the posterior covariance of the model parameters is (using
eq. (8))

CM = G−gCd (G−g)T (14)

Thus, the model covariance for a least squares inverse problem
depends on the data errors and not the data itself (since G−g is not
a function of d), so any assumptions used in the construction of Cd

will also determine the quality of the tomographic solution.

2.3 Sensitivity analysis with synthetic velocity models

For tomographic inverse problems of the class described above
(linear/linearized least squares), it has long been recognized that
the computation of R may not be practical when large numbers of
model parameters are involved. Motivated by the form of eq. (13),
this has led to the use of sensitivity analysis with synthetic models
and synthetic data (e.g. Spakman & Nolet 1988). This is carried
out by constructing a synthetic model ms (e.g. a checkerboard or

spike model), from which synthetic data are computed by forward
solution with G, and by optionally adding synthetic noise yielding

ds = Gms + εs . (15)

Solving ds = Gm + εs in the same way as eq. (6) leads to the
solution model m̂s , and analogous to eq. (13), m̂s relates to the
synthetic model ms as

m̂s = Rms + G−gεs (16)

Because the resolution matrix R in eqs (16) and (13) are identi-
cal, sensitivity analysis with noise-free synthetic data constitutes a
correct basis for inferring properties of R from the comparison of
the synthetic model ms with the tomographic solution m̂s . Exper-
iments that are restricted to inverting synthetic noise, in effect by
taking ms = 0 and inverting a synthetic noise vector, can be useful
to assess the importance of the second term in eq. (13). Inversion of
noisy synthetic data is used to examine the combined effects of lack
of resolution and noise propagation on the tomographic solution
(see Rawlinson et al. 2014, for more details). However, it is worth
noting that the full information content of R cannot be retrieved
from a single synthetic test, even in the absence of imposed data
noise, because R is not uniquely constrained by the relationship
m̂s = Rms . If the full blurring effects are to be understood, then a
spike test for each model parameter would need to be run indepen-
dently, and the results collated. A single spike test of this sort would
retrieve the information equivalent of only one column or row of R.

2.4 Nonlinear inversion and sensitivity analysis

In nonlinear inversion, a set of observations d of the nonlinear
integral functional g(mp) is used for developing a model space
search for the model mp . As before, we write d = dp + ε such that
the exact equation is dp = g(mp). Note that ε = εd + ε t + ε p and
does not include the linearization error εl . By defining a weighted
cost function ||d − g(m)||w a sequence of models mk , k = 1, . . . , K
can be created (usually under the assumption of weak nonlinearity),
that aims at sequentially minimizing ||d − g(m)||w such that at
convergence we have found a model m̂ ≈ mK with an acceptable
data misfit ||d − g(m̂)||w ≈ ||ε||w . An example of the objective or
cost function is

S(m) = (d − g(m))T C−1
d (d − g(m)) + α2P(m) (17)

where P(m) stands for any combination of regularization and prior
model information.

If dk is the prediction of d after step k, the nonlinear equation
dk = g(mk) is formally represented by dk = Gkmk where Gk is
the observation matrix associated with mk . Similarly, we can write
d = Gm̂ + ε̂ for the final solution m̂ = mK and dp = Gpmp for
the true solution. The different data errors (ε and ε̂) reflect the risk
of irrecoverably mapping part of the original errors into the solution
while stepping through model space. A nonlinear inversion scheme
particularly aims to improve the solution of the forward problem
such that Gk → Gp and consequently mk → mp . For weakly non-
linear problems, Gk is created explicitly as a result of step-wise
linearization. Strongly nonlinear tomographic problems are often
solved via a direct model-space search and do not necessarily in-
volve an explicit formulation of Gk . This class of solution strategy
can also address pure least squares formulations of the inverse prob-
lem (α = 0 in eq. 17), but in this case ad hoc decisions are usually
required to choose what can be regarded as acceptable models, for
example, selecting the minimum norm solution.
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In a linearized inverse problem, we implicitly accept that G ≈
Gp , or G = Gp + E (see eq. 5). In nonlinear inversion we want
to improve on this approximation, but the attempted convergence
Gk → Gp generally gives rise to the problem of nonlinear error
propagation. For example, in ray-based tomography a step-wise
linearization of the inverse problem requires 3-D ray tracing at step
k through model mk , which is required for determination of the next
observation matrix Gk+1. Model errors in mk (i.e. lack of spatial
resolution and model amplitude error) cause errors in the 3-D ray
geometries that propagate into Gk+1, which is subsequently used to
invert for mk+1. Lack of spatial resolution at each step may prevent
ray geometry errors from being corrected in subsequent steps and
can even accumulate during iteration. This affects the convergence
to the final model in an intractable way and may force convergence
to a local minimum of the misfit function ||d − g(mk)||w . Hence, as
a result of data errors, of insufficient data constraints and possibly
of the model search strategy used, the model mk+1 depends on
previous models and contains model errors as a result of nonlinear
errors that propagated into Gk+1, which was used for determining
mk+1. This generally affects the convergence Gk → Gp such that G
does not necessarily converge to Gp and consequently mkdoes not
necessarily converge to mp . In analogy with the linearized inversion
(Section 2.2), we express this error as E = G − Gp for the accepted
final model m̂ = mk .

The above general description allows for the creation of a the-
oretical starting point for the application of sensitivity analysis to
the solution of nonlinear inverse problems. For the final solution m̂
we can formally write m̂ = G−gd (see eq. 8). Here, the generalized
inverse G−g stands for a repeatable inversion process to obtain the
solution m̂, or for an explicit operator obtained from the last inver-
sion step, and incorporates the propagated forward problem error
E. Thus we can write

m̂ = G−g(dp + ε) = G−g(Gpmp + ε) = G−g((G − E)mp + ε)

= Rmp − G−g(Emp − ε). (18)

This equation is analogous to eq. (13) that was obtained for a one-
step linearization inversion where we also had R = G−gG. A similar
equation holds at each step k of the nonlinear inversion scheme.
The term G−gEmp accounts for the data error that results from
convergence of the nonlinear solution scheme to m̂ instead of mp ,
which is due to the nonlinear propagation of data and model errors
and includes linearization errors. Note that in eq. (13) the original
data error occurs and that by implication the error E in G absorbs all
the nonlinear error propagation. As for linearized inversion, the true
resolution matrix is Rp = G−gGp = G−g(G − E), but in this case
R = G−gG cannot exactly describe the spatial resolution matrix
for the final result of a nonlinear inversion due to nonlinear error
propagation. In practice, however, R will be our best guess of the
resolution matrix because we can compute G but not Gp . Therefore,
synthetic data ds for sensitivity analysis of the solution m̂ can only
be generated by Gms = ds .

The use of eq. (18) for sensitivity analysis aimed at retrieving
aspects of Rp is therefore approximate, as was the case for a one-step
linearized inverse problem where the difference matrix E accounted
for only the linearization error (see Section 2.2). On a practical note:
similar to a one-step linearized inverse problem, the matrix G with
which the final solution m̂ is computed could still be improved by
using m̂ if convergence has not been achieved. For instance, in ray-
based tomography, one could perform ray tracing through m̂ and
construct an improved observation matrix G. The improved G can

then be used in eq. (18) which would further reduce the linearization
error E and may improve the approximation of R to Rp .

In summary, sensitivity analysis applied to the last stage of an
iterative nonlinear inversion scheme for solution m̂ leads to the
inference R = G−gG, which is an approximation of the true reso-
lution matrix Rp = G−g(G − E). The size of the propagated non-
linear resolution error G−g(E) will determine the accuracy of the
approximation R ≈ Rp .

In sensitivity tests we effectively assume E = 0, which implies
the same strengths and limitations of sensitivity analysis as in a
purely linear inversion, albeit with the additional uncertainty of
the second error propagation term −G−gEmp . Eq. (18) does, how-
ever, provide a general means to investigate effects of nonlinear
error propagation by explicitly computing this term in a designed
synthetic experiment that starts with creating ds and Gs for a syn-
thetic model ms such that ds = Gsms . Next, a nonlinear inversion
can be started from some model m1

s that converges to the equation
d̂s = Gm̂s . This allows for the evaluation of E = G − Gs . Similarly,
given a particular source and receiver network, one can use eq. (18)
as a basis for investigating if certain perceived Earth structure (e.g.
slab geometry; gap in slab) can be resolved by the nonlinear inver-
sion scheme in use. Note that all such experiments fundamentally
depart from testing the spatial resolution (i.e. the algebraic relation-
ship between model parameters) of the real data experiment, that
is, belonging to m̂, as both G−g and G will generally be different
in synthetic experiments that solve the forward problem for ms , for
example, by 3-D ray tracing through ms .

We note that if G−g can be reproduced independent of ms then
the designed amplitudes of ms do not influence sensitivity analysis
because we are performing a strictly linear inversion for m̂s aimed
at estimating algebraic properties of R. However, if this is not the
case and the entire nonlinear scheme needs to be repeated, then an
approximate alternative is to superimpose ms as a synthetic pattern
on the data-generated solution m̂, such that the synthetic data are
computed as G1(m̂ + ms) as the starting data set for nonlinear
inversion (Zelt 1998). This may mimic a comparable convergence
sequence Gk → G if the amplitude of ms are a sufficiently small
fraction of m̂s such that they do not lead to additional nonlinearity
and error propagation.

2.5 Theoretical implications for sensitivity analysis

For proper application and interpretation of sensitivity analysis,
the following implications that arise from the theory outlined in
Sections 2.1–2.4 are now discussed.

(i) Sensitivity analysis only applies to linear systems like eqs
(6) and (15) and implicitly assesses the linear dependence between
model parameters as defined by R and explicitly assesses noise
propagation into the solution via G−gεs . However, it does not assess
the effects of all assumptions and approximations that were made
to convert the nonlinear inverse problem d = g(mE ) + εt + εd into
the linearized inverse problem d = Gm + εd + εt + εl + ε p . This
is not a specific weakness of sensitivity analysis, because it also
applies when R is explicitly computed. However, one advantage of
sensitivity analysis is that it does allow the influence of the error
term in eq. (13) to be analysed (see Sections 3.4, 3.5, 3.7 and 3.9
for examples).

(ii) It follows from R = G−gG that if the synthetic model ms

lies in the null space of G, then Rms = 0 = m̂s and there will
be no recovery in a synthetic experiment. Conversely, any model
ms that is entirely in the row space of G (i.e. maps only in the
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1226 N. Rawlinson and W. Spakman

range of G) can be fully recovered (ms = m̂s). Sensitivity analysis
may lead to an incomplete interpretation of R when applied to
the two end-member models. Lévêque et al. (1993) demonstrated
this in an idealized experiment that showed perfect recovery for a
spatially detailed checkerboard model, while a coarse checkerboard
was almost entirely in the null space of G, despite identical path
coverage. By implication, sensitivity tests can only be used to expose
a lack of resolution. Resolution artefacts should be inferred from
sensitivity tests using a wide variety of synthetic models in an
attempt to explore all null space components (e.g. Bijwaard et al.
1998). Spatial scale dependence of sensitivity tests is illustrated
with experiments in Section 3.5.

(iii) A synthetic model that consists of only one value for model
parameter i (a spike) and zeros elsewhere leads to the determination
of the ith row and column of the resolution matrix (Spakman & Nolet
1988). Spakman & Nolet (1988) specifically devised the ‘spike
model’ comprising a regular grid of well-separated spikes with
zeros in between as a more economic way of obtaining a mapping
of many columns of R in one inversion. Still, the interpretation
pitfall exposed by Lévêque et al. (1993) may theoretically occur
such that a particular choice of synthetic model may not sufficiently
detect lack of resolution. Therefore, as noted before, sensitivity
analysis should be conducted with a variety of different synthetic
models covering all scale-lengths to optimize the detection of lack
of resolution (see Section 3.5).

(iv) Note that eq. (16) requires that sensitivity tests should use in
eq. (15) the matrix G of eq. (6) for computation of synthetic data
and, in addition, the G−g used in m̂ = G−gd for inversion. If G−g

is not explicitly available then the synthetic inversion must mimic
the real data inversion to the extent that the use of the same G−g is
implied (this would apply equally to finite frequency tomography
for example, where one should use the finite frequency kernels built
for the real data paths in any sensitivity test involving a synthetic
model). If we instead construct a matrix G in eq. (15) from 3-D ray
tracing (for example) through the synthetic model ms , then this leads
to a different G than in eq. (6), so the resolution matrix R = G−gG
in eq. (16) is not the same as in eq. (10). This is illustrated in
Section 3.3. Also, the synthetic model ms should be defined on
the same model parametrization as used for the construction of
G otherwise model projection noise ε p (see eq. 6) will enter the
analysis though the second term in eq. (10). This is illustrated in
Section 3.9.

(v) Eq. (16) implies that noise-free synthetic data should be used
if the sensitivity analysis focuses only on assessing the properties of
R. As mentioned in the previous section, inversion of only synthetic
noise assesses the importance of the second term in eq. (6), while
the inversion of noisy synthetic data explores the combination of the
two terms. Synthetic noise can be generated that has a distribution
consistent with that assumed for the real data by means of the data
covariance (e.g. Gaussian). The signal-to-noise ratio can be tuned
such that the same data misfit is obtained as in the real-data inversion
(Spakman & Nolet 1988). This, however, is still approximate, as we
do not know the real data errors. Section 3.8 explores the effect of
data noise in the recovery of structure.

(vi) The second term in eq. (16), G−gεs , opens the possibility to
investigate how a wide variety of random or systematic data noise
can propagate into the solution. For instance, tests can be devised
for the influence on a tomographic model of the projection error due
to model parametrization (as is done in Section 3.9). Propagation
of random noise can be studied to detect noise-sensitive regions of
the model. A special case is the ‘permuted data test’ (Spakman &

Nolet 1988; Spakman 1991), in which the data vector in eq. (6)
is randomly permuted prior to inversion. The application of this
technique to global traveltime tomography led to a data-derived
estimate of average model amplitude error (Bijwaard et al. 1998).

(vii) The linear nature of eq. (16) implies that the inversion re-
sponse to any synthetic model can be obtained from a superposition
of single-spike responses (ignoring the effect of εs), that is,

m̂s = Rms = R
∑

n

anmspike
n =

∑

n

anm̂spike
n (19)

where ai, i = 1, . . . , n is a scaling coefficient. In particular, checker-
board models can be seen as a superposition of synthetic models
with a regular distribution of spikes. This suggests that inferring res-
olution artefacts from checkerboard models can be more complex
than for each of the separate spike models. This will be investigated
in Sections 3.1 and 3.2.

(viii) Care should be taken when conducting sensitivity exper-
iments with the observational model, that is, the model obtained
from inverting the real data. When using it as a synthetic model,
one can expect an almost identical output. The part of the model
that is built from the row space of G (i.e. data constrained), will
be completely recovered. Merged with this is a null space compo-
nent that is shaped and constrained by the applied regularization.
This leads to linear dependencies between model parameters that
are fully described by R and which, hence, describes their mapping
in the observational model. From a theoretical point of view the
observational model is defined by m̂ = Rmp; if we take m̂ as our
synthetic model, then m̂s = RRmp . If R is an idempotent matrix
(RR = R), then m̂s = m̂ and the input and output models should
be identical. While this may not be true in general, our tests seem to
indicate that for our chosen objective function, the corresponding
resolution matrix is likely to be at least quasi-idempotent (RR ≈ R),
as demonstrated in Section 3.6.

What can be done successfully is to construct synthetic models
by removing a certain feature from the observational model, for
example, a slab in a mantle model, and test if it fully reappears in
m̂s , in which case it is a resolution artifact. In the end-member case
of setting the amplitude of only one model parameter to zero in
the observational model, that is, applying an ‘anti-spike’, a correct
estimate is obtained in the recovered model of how the ambient
model contributes to amplitude and sign imaged for this parameter.
This exposes the summed contribution of all off-diagonal elements
in the pertinent row of R in determining the value (see Supplemen-
tary Information for an example). These are very powerful ways of
testing specific attributes of the observational model.

3 N U M E R I C A L E X P E R I M E N T S

In order to conduct our numerical experiments to provide additional
validation and insight with respect to the theory of Section 2, we
use the 2-D spherical shell tomography code described in Rawlin-
son et al. (2008). It is designed to solve weakly nonlinear traveltime
tomography problems using an iterative approach that involves re-
peated application of a forward and linearized inverse solver. In
this case, the Fast Marching Method or FMM (Sethian 1996; Rawl-
inson & Sambridge 2003) is used to solve the forward problem
of computing traveltimes between sources and receivers through a
heterogeneous velocity medium, and a subspace inversion method
(Kennett et al. 1988) is used to invert source–receiver traveltimes
for velocity structure. Velocity is represented on a regular grid in lat-
itude and longitude, with cubic B-splines used to achieve a smooth
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continuous medium. This code is best suited to the inversion of sur-
face wave traveltimes for group or phase velocity maps at a specified
period, and has been most frequently used for ambient noise tomog-
raphy (e.g. Saygin & Kennett 2010; Stankiewicz et al. 2010; Young
et al. 2011). Although the code is 2-D and assumes that the high
frequency assumption is valid, the implications of our results should
largely hold for any class of linear or iterative nonlinear tomography.

The use of a subspace scheme to search model space for a data-
fitting model means that we do not directly solve eq. (8). Rather,
we attempt to iteratively minimize a cost function of the form given
by eq. (17) under the assumption that we solve a weakly nonlinear
inverse problem. In this case, the specific cost function is defined
by:

S(m) = (
d − g(m)TC−1

d (d − g(m))
) + ε(m − m0)TC−1

m (m − m0)

+ ηmTDTDm, (20)

where m0 is the reference model, Cm the a priori model covari-
ance matrix and D the second derivative smoothing operator. The
constant terms ε (≥0) and η (≥0) are the damping and smoothing
parameters respectively, which govern the trade-off between data fit,
model smoothness, and model perturbation relative to the starting
model. The model perturbation given by a single iteration of the
subspace method is defined by (see Rawlinson et al. 2006, for more
details):

δm = −A
[
AT

(
GTC−1

d G + εC−1
m + ηDTD

)
A

]−1
ATγ̂ (21)

where A = [a j ] is the M × n projection matrix (where M is the
number of unknowns and n is the subspace dimension) and γ̂ is
the gradient vector (γ̂ = ∂S/∂m). The basis vectors that define
the projection matrix are based on the gradient vector in model
space γ = Cmγ̂ and the model space Hessian H = CmĤ, where
Ĥ = ∂2 S/∂m2. In this application, we use a 20-D subspace, but
this is dynamically reduced by the application of Singular Value
Decomposition (SVD) if linear dependence between the different
a j becomes an issue. This approach is still valid for sensitivity
analysis using synthetic structures.

Below, we run a series of experiments using a purely synthetic
data set; a similar set of experiments applied to ambient noise
data recorded in Australia can be found in the Supplementary
Information. The synthetic data set used here is based on a test
model, source–receiver geometry and ray-path configuration shown
in Fig. 1. The pattern of velocity anomalies is randomly gener-
ated and exhibits a Gaussian distribution between peak values of
±20 per cent. Although this may seem large, there are many exam-
ples of ambient noise surface wave tomography that recover peak
perturbations in excess of 25 per cent relative to a background aver-
age (e.g. Saygin & Kennett 2010, and Supplementary Information).
The design of the source–receiver array is such that there is good
path coverage in the NW region of the model, but it gradually de-
grades to the SE, where it becomes more unidirectional. This forms
a good basis for assessing the characteristics of various synthetic
recovery tests.

Fig. 1(c) shows a reconstructed model based on inverting the true
noise-free traveltimes associated with the paths shown in Fig. 1(b).
20 iterations of the forward and inverse step were applied to obtained
the solution, which corresponds to an RMS reduction in traveltime
residuals from 18.4 to 0.35 s, at which point convergence is well
and truly achieved (subsequent iterations had no appreciable ef-
fect on the traveltime misfit). Minimal damping and smoothing was
applied in this case as the implicit regularization imposed by the
choice of basis function (cubic B-splines) was sufficient to stabilize

the inversion. A constant velocity model, set to the average velocity
of the synthetic model, was used as the starting or initial model.
Clearly, the reconstruction is best in the NW of Fig. 1(c), but grad-
ually degrades to the SE, where significant streaking effects can be
observed, which can be attributed to the source–receiver geometry.

Below, we use the experimental set-up of Fig. 1 to examine the
characteristics of a variety of synthetic reconstruction tests. In each
test, the reconstruction is carried out using the path coverage shown
in Fig. 1(d) (i.e. the path coverage associated with the output model),
unless stated otherwise. Section 3.3 investigates what happens if a
nonlinear method, in which rays are re-traced after every iteration,
is used instead.

3.1 Checkerboard test

Fig. 2(a) shows a checkerboard model comprising a fine-scale pat-
tern of positive and negative anomalies, with peak values equal
to those of the ‘observational’ model (Fig. 1c). The sizes of the
anomalies are approximately equal to the minimum scale-length
of the structures present in Fig. 1(a). If we use this checkerboard
model as input, and compute a synthetic source–receiver data set by
integrating along the path geometries of Fig. 1(d), then we can solve
the linear inverse problem to obtain the result shown in Fig. 2(b);
perhaps unsurprisingly, the checkerboard pattern is retrieved within
the triangular region defined by the source geometry in the NW
of the model but not elsewhere. A conventional interpretation of
this figure might be that the NW sector of the model is quite well
resolved, while the remainder of the model is poorly resolved, with
a widespread tendency to smear structure in the NW–SE direction.
Is this seemingly straightforward conclusion really borne out by the
resolving power of the ray coverage?

3.2 Spike test

Fig. 3(a) shows a spike model (or sparse checkerboard model) which
has the same scale length and amplitude of anomalies as Fig. 2(a),
but is much more widely spaced. Fig. 3(b) shows the result of ap-
plying exactly the same inversion method that was used to derive
Fig. 2(b). Like before, the anomalies are most accurately recon-
structed in the NW of the model, and generally become poorer to
the southeast. However, when comparing Figs 2(b) and 3(b), there
are a number of important differences. First, there is clear evidence
of smearing towards the edges of the model for the most accurately
recovered anomalies in the NW sector of Fig. 3(b); in Fig. 2(b),
the distortion in the shape of the anomalies is much less apparent.
Presumably, in the checkerboard model, this is due to the close
proximity of adjacent anomalies, which tends to mask smearing
effects that are not very major. Furthermore, in the southeast region
of the spike model (Fig. 3b), there is not the same dominance of
NW-SE smearing, and it is now much clearer from the spike model
how the anomalies are distorted as a result of the path coverage. In
fact, we can now see that most anomalies experience some degree
of recovery, even if their aspect ratios have changed from 1:1 in
the input model to as much as 5-6:1 in the recovered model. This
is useful information, not only on the level of distortion, but also
the direction, and is entirely absent from the checkerboard result of
Fig. 2(b).

A comparison of the recovered anomalies in Figs 2(b) and 3(b)
with the associated path coverage is shown in Figs 4(a) and (b) re-
spectively. The close proximity and regular pattern of the anomalies
in Fig. 2(a) mean that when path coverage is diagonally dominant,
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1228 N. Rawlinson and W. Spakman

Figure 1. (a) Synthetic test model and source–receiver geometry used for numerical experiments; (b) ray-path geometry through the synthetic model;
(c) reconstruction of (a) obtained after application of the iterative nonlinear inversion scheme; (d) ray-path geometry through the recovered model. Dark grey
triangles denote receivers and magenta circles denote sources.

the recovered anomalies do a reasonable job at fitting the traveltimes
by smearing out in the diagonal direction, which is the direction
in which we do not have an oscillation from positive to negative
anomalies in the input model. By contrast, the spike test is able to
better reveal the (lack of) resolving power of the ray illumination,
and the recovery is hence more useful for interpreting directionally
dependent solution smearing. For example, we see that the nega-
tive anomaly at approximately (151◦E, 21◦S), which sits between
receivers immediately to the west and to the east in Fig. 3(a), is
recovered as a horizontally smeared anomaly in Fig. 3(b). The path
coverage map in Fig. 4(b) shows that this anomaly is crossed by
a single horizontal ray, but just to the west, there is crossing path
coverage, so the anomaly is represented by its path average approx-
imation between the two stations. Another example is the negative
anomaly at approximately (119◦E, 34◦S), which achieves a degree
of recovery in Fig. 3(b), but there is no evidence of recovery in
the same region in Fig. 2(b). Although the experiment set-up here
is contrived, it is seems clear that the discrete spike test provides
more useful information on spatial resolution from the constrain-

ing power of the path coverage than the equivalent checkerboard
test.

In Section 2.3, the theory behind spike tests and their associa-
tion with the resolution matrix was discussed. In effect, the input
model of Fig. 3(a) represents ms in eq. (16), while the output model
of Fig. 3(b) represents m̂s , with the noise term set to zero, that
is, εs = 0. If the resolution matrix R was available, then any input
model could be transformed into an output model. For this example,
there are 3844 unknowns, which means that it is computationally
feasible to calculate R. In general, this may not be the case, particu-
larly for large 3-D problems. We solve R = G−gG using Cholesky
decomposition, which produces the complete 3844 × 3844 res-
olution matrix. The compute time is approximately 12 min on a
workstation equipped with an Intel Xeon 3.1 GHz E5-2687W pro-
cessor, 128 Gb of RAM and running Ubuntu 14.04. Fig. 5 compares
the spike test result of Fig. 3(b) with m̂∗

s = Rm∗
s , where m∗

s is a se-
lection of two anomalies from Fig. 3(a). These two anomalies were
chosen to be far apart so that any interference between their recon-
struction is unlikely. It is clear that Fig. 5(b) is essentially a subset
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Figure 2. (a) Input checkerboard model; (b) recovered model using the path geometry of Fig. 1(d). Black contour lines represent the ±10 per cent contour
interval of the input checkerboard.

Figure 3. (a) Input spike model; (b) recovered model using the path geometry of Fig. 1(d). Black contour lines represent the ±10 per cent contour interval of
the input spikes. Closed dashed red lines highlight the locations of features discussed in the text.

of Fig. 5(a); the very minor differences in recovery can be attributed
to the fact that there is a small amount of smearing overlap between
adjacent spikes. However, it is insignificant enough to ignore for
interpretation purposes. The compute time needed to perform the
Fig. 5(a) spike test on the same computer was approximately 8 s,
which is two orders of magnitude faster than computing R. This
example demonstrates the power of well-chosen sensitivity tests:
practical information on model resolution without the need to com-
pute R. The checkerboard result of Fig. 2(b) takes the same compute
time as the spike test, but the overprinting of smearing effects from
adjacent spikes makes it a less useful measure of model resolution.

3.3 Nonlinearity and the proper application of
sensitivity analysis

In the above tests, the ray-path geometry (Fig. 1d) is inherited from
the observational model of Fig. 1(c); this ensures that the synthetic

test provides information on spatial resolution that is consistent
with the path coverage through the solution model. This is the same
philosophy that is used to compute posterior model covariance and
resolution for weakly nonlinear inverse problems (e.g. Tarantola
1987; Rawlinson et al. 2010).

If instead the synthetic data set is computed by solving the full
forward problem (ray tracing in this case) through the input model
used for the synthetic test, and the input model is then recovered
using an iterative nonlinear method which updates the ray paths, the
result of the reconstruction can be quite different. Fig. 6 compares
the true path coverage through the checkerboard and spike models
of Figs 2 and 3 with the path coverage inherited from Fig. 1(c). The
differences are significant; in the case of the checkerboard model
(Fig. 6c) the paths are attracted to high velocity regions since only
first arrivals are used. This is also true of the spike model (Fig. 6d),
although the path coverage is more even due to the increased spar-
sity of model anomalies. The corresponding inversion results when
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Figure 4. Comparison between path coverage and recovered structure for (a) checkerboard recovery of Fig. 2(b); (b) spike recovery of Fig. 3(b).

Figure 5. Comparison between sensitivity test and resolution matrix. (a) Spike test output from Fig. 3(b); (b) resolution matrix multiplied by the true model
m∗

s , where m∗
s consists of two spikes taken from Fig. 3(a). In both (a) and (b), black contour lines represent the ±10 per cent contour interval of the input

spikes.

using these different sets of ray paths is clearly revealed in Fig. 7. In
the case of Figs 7(c) and (d), the synthetic data set is created by inte-
grating along the ray paths shown in Figs 6(c) and (d) respectively.
The output models are obtained by running the iterative nonlinear
procedure until convergence is achieved. The checkerboard recov-
ery in this case has far greater diagonal smearing compared to the
linear inversion result of Fig. 7(a), which uses the rays from Fig. 6(a).
This is partly due to the rays favouring the high velocity regions,
which have an NW–SE orientation. There is also some hint of this
in Fig. 7(d), although it is less pronounced. The clear difference
in results produced by this example means that it is important to
use rays that are inherited from the original observational model as
required by the theory (see point iv of Section 2.5), rather than rays
traced through the synthetic test model, when the nonlinearity of
the inverse problem is taken into account.

3.4 Nonlinear error propagation

In the previous section, we established the correct procedure for
sensitivity analysis in the presence of weakly nonlinear inverse
problems. However, it does not account for the effects of nonlinear
error propagation, which remains an unsolved problem in synthetic
testing. However, as was noted in Section 2.4, we can investigate
nonlinear error propagation for a purely synthetic experiment by
evaluating E = G − Gs , where Gs is computed from the true (or
input) model and G is computed from the reconstructed (or output)
model. This allows the error propagation term G−gEmp in eq. (18)
to be computed, thus providing quantitative insight into the influ-
ence of nonlinearity. Fig. 8 shows the result of this analysis in the
presence of our default test model (shown in Figs 1a and 8a), and
a model which exhibits an identical pattern of anomalies but with
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Figure 6. Path coverage through checkerboard (left column) and spike (right columns) models from Figs 2 and 3, respectively. (a), (b) show the path coverage
inherited from the recovered model shown in Fig. 1(d), while (c), (d) show the path coverage obtained by solving the forward problem through the checkerboard
and spike model respectively.

reduced amplitude (Fig. 8d). In the case of the original test model,
the magnitude of the error is smallest in the NW portion of the
model where there is both good path coverage and relatively short
paths in comparison to the dominant wavelength of the velocity
anomalies. The errors tend to peak in the central and SE region of
the model, where path density is still moderate, but paths are on av-
erage longer and angular coverage is poorer. Overall, the magnitude
of the error is smaller than the amplitudes of the recovered anoma-
lies (cf. Figs 8b and c), particularly in the well resolved region in
the NW.

If we now decrease the amplitudes of the input anomalies by
50 per cent (Fig. 8d), the effect of the nonlinear error propagation
is much reduced (Fig. 8f), which is consistent with solving a more
linear inverse problem. Our results indicate that even in the pres-
ence of sizable anomalies (up to 20 per cent) the weakly nonlinear
assumption can be valid (cf. Figs 8a and b), and in regions of good
angular path coverage, the nonlinear propagation error can be small
relative to the amplitude of the recovered anomalies.

3.5 Using various test models with difference scale lengths

One problem with using a single checkerboard or spike test with
only one scale length of structure is that it does not necessarily reveal
resolution artefacts over multiple scales. Moreover, as demonstrated
by Lévêque et al. (1993) (see Section 2.5, point ii), there are certain
specific circumstances in which the common expectation that the
region of good recovery increases in size as the scale length of struc-
ture increases is not always a given. Therefore, it may ultimately be
misleading to present the result of a single spike or checkerboard
test to assess lack of resolution. We illustrate scale dependence in
Fig. 9, which shows the results of performing the same inversions
as Figs 2 and 3, but now with much broader anomalies. In this case,
both the checkerboard and spike anomalies have much improved re-
covery (in shape and amplitude) compared to the previous test. This
is consistent with the Fig. 1 test, in which the broader scale anoma-
lies are more accurately retrieved than the smaller scale anomalies.
These results illustrate that, at least in this case, larger structures
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Figure 7. Checkerboard (left column) and spike (right column) output models based on different path coverage. (a), (b) are the result of a linear inversion using
rays from the Fig. 1(d) model. (c), (d) are the result of an iterative nonlinear inversion in which rays are updated for the model obtained after each iteration.

are more easily resolved than smaller structures with the same path
coverage.

Fig. 9 also helps to reinforce the point that spike tests are more
useful than checkerboard tests in providing insight into the ability
of a rayset to resolve structure and reveal directional dependence
in resolution artefacts. Even though, as a result of the presence of
longer wavelength anomalies, the recovery of equivalent anomalies
between Figs 9(c) and 8(d) show greater similarity than between
Figs 2(b) and 3(b), the full extent of smearing is more successfully
revealed in Fig. 9. For example, the positive anomaly at approxi-
mately (116◦E, 33◦S) shows much less distortion in the N–S di-
rection in Fig. 9(c) than in Fig. 9(d), and the positive anomaly at
approximately (143◦E,14◦S) shows much less E–W distortion in the
output checkerboard model. Both of these effects can be attributed
to the close proximity of anomalies of opposite sign.

3.6 Synthetic test based on observational model

As well as synthetic tests involving anomalies of a fixed scale-
length, it is relatively common to find studies that use a test struc-

ture that bears some resemblance to a geological feature such as
a subducting slab (e.g. Spakman et al. 1989; Eberhart-Phillips &
Reyners 1997; Bijwaard et al. 1998; Graeber & Asch 1999; Wolfe
et al. 2002). While this kind of hypothesis testing is reasonable, it
is important that the synthetic model does not too closely resemble
what has been recovered from the observational data set, as was
pointed out in Section 2.5, point vii. Fig. 10 compares the result of
the recovery test shown in Fig. 1 with a new test that uses the model
shown in Fig. 1(c) as the input test model (i.e. the output model of
Fig. 1a). It is clear that the model recovered in this case is almost
identical to the input model (see Fig. 10f), confirming what is ex-
pected from theoretical considerations (Section 2.5, point vii). This
result stands in stark contrast to Fig. 10(e), which shows the differ-
ence between the original synthetic model and its reconstruction.
Although this is a somewhat extreme example, it does demonstrate
the point that care needs to be taken in the choice of synthetic test
model used.

Tests based on the observational model should concentrate on
detecting lack of resolution e.g. by setting parts of the model to zero
perturbation and inferring from the sensitivity tests what is being
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Figure 8. Test results illustrating the influence of nonlinear error propagation in the solution. Left column uses the same input model as in Fig. 1, while the
input model for the right column has an identical pattern of anomalies but with a 50 per cent reduction in amplitude. (a), (d) Input model; (b), (e) output model
from iterative nonlinear inversion; (c), (f) estimate of nonlinear error propagation as given by the term G−gEmp in eq. (18).

mapped in these regions due to a lack of resolution. For example,
will a short slab produce a long slab (Spakman et al. 1989); will a
layer-cake slab produce a continuous slab (Bijwaard et al. 1998);
will a layer-cake plume produce a continuous plume (Bijwaard &
Spakman 1999)?

3.7 Testing the influence of explicit regularization

Explicit regularization in the form of damping and/or smoothing
will invariably influence the recovery of structure, as shown in
Fig. 11. Clearly, in performing a synthetic test, one should use the
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Figure 9. Synthetic recovery test involving larger anomalies. (a) Input checkerboard model; (b) input spike model; (c) output checkerboard model; (d) output
spike model. Compared to the equivalent tests displayed in Figs 2 and 3 respectively, the anomalies are approximately four times the size. Black contour lines
represent the ±10 per cent contour interval of the input anomalies. Closed red dashed lines denote the location of anomalies discussed in the text.

identical regularization that is chosen for the observational data.
The sensitivity of the solution to model regularization can also
be tested using sensitivity analysis with the aim of converging to
optimal settings of regularization and model parametrization. This
would involve tests similar to those used for assessing resolution and
noise propagation for the final observational model: (i) noise-free
tests covering a range of length scales combined with (ii) various
noise tests such as the permuted data test (Section 2.5, point vi). In
addition, these tests can be conducted for various levels of detail
in the model parametrization. If one converts the outcome of such
tests into a scalar measure of local resolution this can be used as
input for optimizing strategies for the design of spatially variable
model parametrization (e.g. Spakman & Bijwaard 2001) that are
adapted to the expected resolution.

3.8 The influence of data noise

Data noise is ubiquitous to all seismic data sets, but in most cases
the magnitude and distribution of this noise is poorly understood,

as noted previously. Synthetic recovery tests are either noise free
to assess optimal spatial resolution or include noise with a Gaus-
sian distribution and standard deviation equal to that of noise es-
timates obtained from the data such as picking error (Rawlinson
et al. 2014). Spakman & Nolet (1988) advocate the addition of
synthetic noise such that a data fit is obtained similar to that of
the real data inversion. Although both approaches appear to be rea-
sonable, estimating data uncertainty is notoriously subjective, and
there is often little evidence that the actual noise distribution is
Gaussian. To partially mitigate this, one can apply permuted data
tests, which randomize the data vector prior to inversion in order
to investigate the propagation of more realistic noise (Spakman &
Nolet 1988). Another potential issue is that the use of an L2 norm in
most inversion schemes is not robust in the presence of noise with a
non-Gaussian distribution (Parker 1994), which may also cloud the
results.

Sensitivity tests can be used to study the effects of various noise
levels on the solution. The Fig. 12 example is the same as the Fig. 3
example but now includes varying levels of Gaussian noise. As
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Sensitivity tests in seismic tomography 1235

Figure 10. Left column: synthetic recovery test from Fig. 1; right column: synthetic test which uses the recovered model (c) of the left column test as the input
model for a new test. (e) and (f) show the difference between the input and output models for both tests.

expected, increasing the noise level degrades the quality of the re-
construction. However, as Fig. 12(c) shows, if explicit regularization
is not applied, then the inversion will attempt to overfit the data and
spurious structure is introduced. If instead the simplest model (ob-

tained using smoothing and damping) is found that fits the data, then
the more robust elements of the model are recovered. One of the
challenges in using the standard deviation of the noise as a measure
of fit (as in the χ 2 test) is that this value is often poorly constrained.
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Figure 11. Synthetic spike test (based on the Fig. 9 example) showing the effects of varying damping and smoothing.

A good example of this is ambient noise surface wave tomography,
where little attention is often given to data noise for the simple fact
that it is hard to measure. The use of hierarchical Bayesian trans-
dimensional tomography schemes, which include the level of noise
as an unknown, help to address this issue (Bodin et al. 2012).

3.9 Preconditioning and model projection errors

Preconditioning refers to setting up an inversion that favours the
reconstruction of certain features. In this sense, the use of explicit
regularization is a form of preconditioning, because it provides con-
trol over the wavelength and amplitude of structure that is recovered,
particularly in regions poorly constrained by the data The effects
of explicit regularization on the spatial resolution can be assessed
with sensitivity analysis. However, it is implicit regularization in
the form of the choice of basis function used to represent structure
that often plays a less defined role in recovery tests. As required
by the theory, the same parametrization used to represent structure
for the real data inversion should be used in the synthetic data in-
version. Although this seems to be at variance with the inversion

of observations, where we know that our choice of parametrization
is unlikely to be able to faithfully represent the range of structures
present in the real Earth, leading to a projection error ε p (see eq. 6),
this does not stand in the way of proper sensitivity analysis for res-
olution artefacts, as this should be done with noise-free data. The
effects of implicit projection errors can be tested and is illustrated
in Fig. 13, where we see that the two examples of ‘mismatching’
parametrizations (Figs 13c and d) give a poorer result to the exact
match (Figs 13a and b). In this case, the size of the anomaly is the
same for the two tests but the shape and magnitude of the velocity
gradient is different. This is accomplished by using a finer-scale
parametrization for Fig. 13(c) compared to Fig. 13(a) (but still
cubic-splines) in order to achieve sharper velocity gradients that
cannot be represented by the coarser parametrization of Fig. 13(a).
The output of model 2 uses the same parametrization as the model 1
test, but is unable to exactly represent the model 2 input anomalies.
This leads to implicit data inconsistencies (eq. 6) that brings the
second term of eq. (16) into play.

Of course, one could argue that using a fine parametrization and
applying smoothing and damping might allow for a greater range of
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Figure 12. Synthetic spike test (based on the Fig. 9 example) showing the effects on the recovery of structure of the introduction of Gaussian noise with a
standard deviation of (a) 0 s; (b) 1 s; (c) 5 s. In (d), smoothing and damping has been applied to the example from (c) in an attempt to find the simplest model
that satisfies the data.

structures to be represented, but regularization is normally applied
evenly without accounting for variations in the information content
of the data. It is true that the sensitivity of the model unknowns
to the data fit may vary, in which case the influence of the regu-
larization will also vary spatially, but this is without regard to data
resolution (i.e. a poorly constrained parameter can still have a large
impact on data fit). Data adaptive parametrizations (e.g. Bijwaard
et al. 1998; Spakman & Bijwaard 2001; Bodin & Sambridge 2009;
Piana Agostinetti et al. 2015) attempt to minimize this effect, but
most tomography is still carried out using static regular parametriza-
tions. Other types of preconditioning include approximations in the
solution of the forward and inverse problem. For example, ray the-
ory is assumed to be valid in all numerical experiments undertaken
in this study, so finite frequency effects are ignored; this will de-
grade the quality of the reconstruction as a result of the modelling
error εt (see eq. 6), yet the degree to which this might do so is
hard to quantify without running sophisticated full wave equation
solvers.

3.10 Colour representation

The visual representation of structure in seismic tomography is
usually done via colour or greyscale variations. It is well known in
seismic tomography that the choice of colour scale can influence the
way in which the results are interpreted, and the same applies to the
synthetic test. In general, using a colour scale that exhibits a linear
variation and constant intensity in colour is preferred, although there
is no ‘correct’ choice. Fig. 14 shows the spike test reconstruction
of Fig. 9(d) using two contrasting colour scales, which may give
different impressions of the resolving power of the data.

4 D I S C U S S I O N

No matter what data or method is used, the seismic tomography
problem usually boils down to a large under or mixed determined
nonlinear inverse problem, with the challenge of quantifying the
range of data-satisfying solutions exacerbated by poorly constrained
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Figure 13. Synthetic spike test illustrating the effect of structural preconditioning. Input model 1 (a) and output model 1 (b) use identical parametrization, but
input model 2 (c) uses a different parametrization to its corresponding output model (d).

data noise (explicit data errors εd ) and a variety of assumptions,
including the extent of prior knowledge, parametrization choice
(ε p), approximations in the physics of wave propagation (implicit
data errors εt ) and the linearization of the inverse problem (εl ).
The combined effect of all of this on solution uncertainty is almost
impossible to measure.

In the last two–three decades there has essentially been no major
advancement in the way that model accuracy (e.g. spatial resolu-
tion and model covariance) is assessed, either by direct computation
or implicitly by sensitivity analysis. This is despite rapid gains in
computing power, and is out of balance with the significant theoreti-
cal and computational development of physically elaborate forward
models leading to modern tomographic techniques such as full
waveform inversion. This is part of the reason why, in most studies
that use synthetic recovery tests to assess model robustness, the re-
sults are generally interpreted qualitatively (Rawlinson et al. 2014);
this can often be as simple as the qualitative description of detected
resolution artefacts from a visual correlation between the input and
output anomalies. The other reason is that sensitivity analysis prin-

cipally leads to an implicit assessment of spatial resolution unless
only one spike is used (Spakman & Nolet 1988).

Of course, methods that quantify solution uncertainty explicitly
are more attractive and should be preferred, but are limited in appli-
cation because of computational demands. For example, posterior
covariance, resolution and correlation (Rawlinson et al. 2014) can
be readily computed for linear or weakly nonlinear problems, but can
be expensive to obtain and difficult to interpret for large problems.
For linear inverse problems we have demonstrated the theoretical
links between the resolution matrix R, which can be computed ex-
plicitly for some problems, and sensitivity analysis. This provides
a theoretical foundation for sensitivity analysis and an alternative
means to retrieving information on the resolution matrix. Sensitivity
analysis can also focus on the propagation of any kind of noise into
the solution. If the resolution matrix can be computed, sensitivity
analysis becomes even more powerful as a complementary means
to assess how lack of resolution affects the observational model.
With R available, spike tests on all scales can be rapidly computed
to expose lack of resolution more insightfully than inspection of R
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Figure 14. Synthetic spike test which uses different colour scales to produce different impressions of the resolving power of the data set. The inputs (a) and
(b) are identical, as are the outputs (c) and (d), except for the choice of colour scale.

in isolation. In addition, special tests on the observational model
can be conducted equally fast and may give meaning to subjective
resolution proxies such as resolution length.

The series of numerical experiments carried out in this study is
designed to illustrate some of the theoretical implications outlined
in Section 2.5, and allows us to highlight a number of pitfalls that
should be avoided. One of our main messages is that sensitivity
analysis should be used to detect lack of resolution (not the degree
of model recovery) and that checkerboard tests are less useful for
this purpose than sparse spike tests. The reason is simple: resolution
artefacts in checkerboard models are a superposition of the resolu-
tion artefacts exposed in the constituent spike models. The use of
spikes allows the true blurring of structure to be more accurately
assessed, and can be more closely associated with the rows of the
resolution matrix (Spakman & Nolet 1988).

Another important confirmation of our numerical experiments
pertains to the proper use of synthetic tests when the inverse prob-
lem is treated as nonlinear. Figs 6 and 7 clearly illustrate that path
coverage through a checkerboard or spike model can be very differ-
ent from that through a model obtained by inversion of the actual

observations. The wrong implementation of sensitivity tests is to use
the paths and traveltimes associated with the synthetic test model
and perform a nonlinear inversion that includes updating data pre-
dictions and ray paths through the model. In this case, the recovered
structure can be quite different compared to a linear inversion using
rays inherited from the observational model. This is highlighted by
two tests, illustrated in Fig. 7 and Supporting Information Fig. S4.
For weaker velocity heterogeneity, such as the few percent velocity
perturbations typically encountered in teleseismic tomography (e.g.
Rawlinson & Fishwick 2012), the differences in outcome will be
much smaller. Given that our observational model is the best esti-
mate we have available for the true model, it makes sense, and is in
agreement with the theory, to use rays through this model as a ba-
sis for assessing model robustness, rather than paths through some
arbitrary model which likely bears no resemblance to the Earth that
the data samples. Of course, nonlinear error propagation cannot be
ignored if velocity heterogeneities are large, but this is hard to assess
in the case of real data. However, the underlying theory does allow
a potentially useful avenue to investigate the effects of nonlinearity,
as was demonstrated in Fig. 8.
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While it may be tempting to set up a synthetic recovery test that
only uses the smallest anomalies that the data are capable of re-
solving, this is inadvisable for several reasons. First, as has been
demonstrated by Lévêque et al. (1993), this does not necessarily
mean that when recovery of anomalies of this size shows little evi-
dence for lack of resolution, the same will apply to larger anomalies.
Second, the multi-scale nature of Earth structure means that regions
of good recovery will at least vary according to the wavelength of
anomalies (see Fig. 9 and Supporting Information Fig. S5). Thus,
performing multiple tests using structures of different size is impor-
tant to detect lack of resolution across a range of plausible scales.
The need for this approach has long been recognized, with the whole
Earth studies of Inoue et al. (1990) and Fukao et al. (1992) imple-
menting some of the first synthetic tests of this kind, albeit with a
checkerboard structure, or by Bijwaard et al. (1998) using a whole
range of spike sensitivity tests and test models derived from the
observational model. Zelt (1998) advocates an approach in which a
range of checkerboard tests are carried out, with anomaly position,
size and orientation being the three key variables. The semblance
between the true and recovered model is measured in each case,
and the smallest well-resolved cell at each model node is used as a
spatially dependent resolution estimate.

The inclusion of structural features derived from the inversion
of the observational data set as input structure for a synthetic test
needs to be done with care, because we have demonstrated that
taking the observation model as the synthetic test model leads to
almost complete recovery (Fig. 10), which indicates that such an
approach is insensitive to resolution artefacts. For example, if the
inversion of local earthquake data produces an elongated structure
that resembles a subduction zone, using this feature of the model
as input into a synthetic test will not necessarily produce useful
constraints on how well it is resolved if significant ray smearing
is responsible for its original appearance. Downdip smearing can,
however, be detected correctly by deriving from the observational
model a special ‘layer-cake’ model in which complete layers in the
observational model have been set to zero (Bijwaard et al. 1998).
An alternative suggested by Bezada et al. (2014) is the so-called
‘squeezing test’, in which the inverse problem is preconditioned to
find the best-fitting model that excludes a certain feature of interest.
The residuals that result from the subtraction of the data predictions
through this model from the observational data are then inverted to
see if the data requires this feature to be present.

Synthetic tests in which features of the model recovered from the
observational data set are used as input, are distinct from the class of
so-called hypothesis tests in which one seeks to understand whether
a particular source–receiver distribution can recover a speculative
structure such as a gap in a subduction zone. In this case, incorporat-
ing nonlinearity in the forward problem is worthwhile. For example,
the recovery test in Fig. 1 could be regarded as a hypothesis test, but
it does not examine the resolution of the resulting model, which is
the focus of this paper. One could easily conceive a hypothesis test
in which the speculative structure is an intrusive dyke with laterally
elevated velocities. Placing two stations at either end of the dyke
and applying ambient noise surface wave tomography (for example)
may well result in excellent recovery of the dyke, but ultimately it
is likely to be a misleading test if the true structure does not exactly
conform with this hypothesis.

The effect of explicit regularization on the recovery of structure
can be significant, as illustrated in Fig. 11. The regularization used in
a synthetic test for assessing lack of resolution in the observational
model should be inherited from its observational counterpart (as it
is part of the generalized inverse; see Section 2), so testing different

damping and smoothing (for example) parameters in a synthetic
recovery test is only relevant if one wants to tune the regularization
for use in the inversion of the real data. Since the choice of damp-
ing and smoothing is usually fairly ad hoc (the popular L-curve
approach, in which one examines the rate of change of data fit with
respect to the regularization term, is a case in point; see Rawlin-
son et al. 2014), it is important to understand its influence. This is
particularly the case when one considers the noise level in the data
(Fig. 12 and Supporting Information Fig. S6), which is often poorly
constrained. Increasing the level of noise increases the presence of
spurious small-scale structure, but this effect can be greatly reduced
by applying regularization to distill out longer wavelength features.
The effect of different levels of noise on the recovery of structure
across a range of scale-lengths is important, as it provides insights
on how noise propagates into the observational model by detecting
noise-sensitive model regions for a given degree of regularization.

The preconditioning of synthetic resolution tests by using the
same parametrization for the recovered model as the input model
is common and is required by the theory. However, we showed that
tests can be designed to assess the influence of implicit data errors
due to model approximation in the solution. This kind of implicit
noise is less of a problem for data adaptive parametrizations (e.g.
Spakman & Bijwaard 2001; Bodin et al. 2012), but the vast major-
ity of tomography is still undertaken using regular basis functions
to represent structure. The tests illustrated in Fig. 13 and Support-
ing Information Fig. S7 clearly demonstrate that even seemingly
minor differences in structure (sharp velocity gradients at the edge
of anomalies instead of smooth ones) can result in a significant
degrading of the result if the chosen parametrization is unable to
accurately represent such a feature, implicitly leading to data noise
that activates the second term of eq. (16). While in practice there
is no one or even small ensemble of tests that could be applied to
properly explore this issue with a particular choice of parametriza-
tion and particular data set, it nonetheless remains an important
consideration.

As shown in Fig. 14, the choice of colour scale may play a role
in how one assesses the resolving power of a data set. Again, this
is quite well known, and also applies to the way tomographic mod-
els are represented in general. Since colour scales are unavoidably
subjective, one cannot be prescriptive in their use. However, it is ad-
visable to avoid strongly varying the colour gradient (rate of change
from one colour to another) or intensity (brightness) with respect to
the measured quantity, as this makes interpretation more difficult.

5 C O N C LU S I O N S

Theory is presented and a series of numerical experiments have been
performed in order to help establish best practice for the proper im-
plementation of synthetic reconstruction tests. The objective of this
study is to demonstrate the theoretical links with spatial resolution
and, in recognition of their broad popularity in seismic tomography,
to try and highlight potential pitfalls and provide recommendations
as to what kinds of synthetic tests may be the most useful. Our
findings include the following:

(i) As for formal resolution analysis, sensitivity tests only strictly
apply to linear tomographic problems. However, they can provide
useful insight in the presence of weakly nonlinear inverse problems.

(ii) Sensitivity analysis can be theoretically coupled to the formal
resolution matrix. For example, a discrete spike recovery test is akin
to retrieving a column or row of the resolution matrix.
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(iii) Theoretical prediction errors (e.g. the use of approximate
forward theory like ray tracing) are ignored in sensitivity analysis,
yet it is conceivable that they may influence the results significantly.

(iv) Sensitivity tests are only useful for the detection of lack of
resolution and not the detection of model recovery. Good recovery
of one particular test model is relatively meaningless.

(v) Discrete spike tests are more useful for assessing the resolving
power of the data set to recover structure compared to traditional
checkerboards, which feature a tight oscillatory pattern of positive
and negative anomalies.

(vi) For nonlinear problems, the path coverage through the final
observational model (i.e. the model produced by inversion of the
recorded data) should be used in the synthetic test, not the path cov-
erage obtained by solving the forward problem through the synthetic
model.

(vii) Synthetic experiments should test lack of resolution across
at least the same range of scale lengths that are found or interpreted
in the observational model. For synthetic models containing only
one wavelength of structure, multiple tests involving different-sized
anomalies should be used.

(viii) Input structures that closely resemble the output structure
from the observational model should not be used in synthetic tests,
as they cannot detect lack of resolution.

(ix) The effects of noise and its interplay with the imposed regu-
larization can be explored with sensitivity tests by investigating the
range of structural wavelengths that can be recovered using different
levels of imposed noise.

(x) Experiments that test the influence of the imposed parame-
terization on the accuracy of the reconstruction (structural precon-
ditioning) may be important, although they can be time consuming
and ultimately difficult to draw firm conclusions from.

(xi) It is important to use sensible colour scales that avoid large
fluctuations in intensity and gradient.
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Lévêque, J.J., Rivera, L. & Wittlinger, G., 1993. On the use of the checker-
board test to assess the resolution of tomographic inversions, Geophys.
J. Int., 115, 313–318.

 at U
niversity of A

berdeen on A
pril 26, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


1242 N. Rawlinson and W. Spakman

Meju, M.A., 2009. Regularized extremal bounds analysis (REBA): an ap-
proach to quantifying uncertainty in nonlinear geophysical inverse prob-
lems, Geophys. Res. Lett., 36, L03304, doi:10.1029/2008GL036407.

Menke, W., 1989. Geophysical Data Analysis: Discrete Inverse Theory,
Academic Press.

Nolet, G., 2008. A Breviary of Seismic Tomography: Imaging the Interior of
the Earth and Sun, Cambridge Univ. Press.

Nolet, G., Montelli, R. & Virieux, J., 1999. Explicit, approximate expressions
for the resolution and a posteriori covariance of massive tomographic
systems, Geophys. J. Int., 138, 36–44.

Parker, R.L., 1994. Geophysical Inverse Theory, Princeton Univ. Press.
Piana Agostinetti, N., Giacomuzzi, G. & Malinverno, A., 2015. Local three-

dimensional earthquake tomography by trans-dimensional monte carlo
sampling, Geophys. J. Int., 201, 1598–1617.

Rasmussen, J. & Humphreys, E., 1988. Tomographic image of the Juan de
Fuca plate beneath Washington and western Oregen using teleseismic
P-wave travel times, Geophys. Res. Lett., 15, 1417–1420.

Rawlinson, N. & Fishwick, S., 2012. Seismic structure of the southeast
Australian lithosphere from surface and body wave tomography, Tectono-
physics, 572, 111–122.

Rawlinson, N. & Kennett, B.L.N., 2008. Teleseismic tomography of the
upper mantle beneath the southern Lachan Orogen, Australia, Phys. Earth
planet. Inter., 167, 84–97.

Rawlinson, N. & Sambridge, M., 2003. Seismic traveltime tomography of
the crust and lithosphere, Adv. Geophys., 46, 81–198.

Rawlinson, N., Reading, A.M. & Kennett, B.L.N., 2006. Lithospheric struc-
ture of Tasmania from a novel form of teleseismic tomography, J. geophys.
Res., 111, B02301, doi:10.1029/2005JB003803.

Rawlinson, N., Sambridge, M. & Saygin, E., 2008. A dynamic objective
function technique for generating multiple solution models in seismic
tomography, Geophys. J. Int., 174, 295–308.

Rawlinson, N., Pozgay, S. & Fishwick, S., 2010. Seismic tomography: a
window into deep Earth, Phys. Earth planet. Inter., 178, 101–135.

Rawlinson, N., Kennett, B., Vanacore, E., Glen, R. & Fishwick, S., 2011.
The structure of the upper mantle beneath the Delamerian and Lachlan
orogens from simultaneous inversion of multiple teleseismic datasets,
Gondwana Res., 19, 788–799.

Rawlinson, N., Fichtner, A., Sambridge, M. & Young, M.K., 2014. Seis-
mic tomography and the assessment of uncertainty, Adv. Geophysics, 55,
1–76.

Saygin, E. & Kennett, B.L.N., 2010. Ambient seismic noise tomography of
Australian continent, Tectonophysics, 481, 116–125.

Sethian, J.A., 1996. A fast marching level set method for monotonically
advancing fronts, Proc. Natl. Acad. Sci.USA, 93, 1591–1595.

Spakman, W., 1991. Delay-time tomography of the upper mantle below
Europe, the Mediterranean and Asia Minor, Geophys. J. Int., 107, 309–
332.

Spakman, W. & Bijwaard, H., 2001. Optimization of cell parameterizations
for tomographic inverse problems, Pure appl. Geophys., 158, 1401–1423.

Spakman, W. & Nolet, G., 1988. Imaging algorithms, accuracy and resolu-
tion in delay time tomography, in Mathematical Geophysics: A Survey of
Recent Developments in Seismology and Geodynamics, pp. 155–187, eds
Vlaar, N.J., Nolet, G., Wortel, M.J.R. & Cloetingh, S.A.P., Springer.

Spakman, W., Stein, S., van der Hilst, R. & Wortel, R., 1989. Resolution
experiments for nw pacific subduction zone tomography, Geophys. Res.
Lett., 16, 1097–1100.

Stankiewicz, J., Ryberg, T. & Haberland, C., 2010. Lake Toba volcano
magma chamber imaged by ambient seismic noise tomography, Geophys.
Res. Lett., 37, L17306, doi:10.1029/2010GL044211.

Steck, L.K., Thurber, C.H., Fehler, M., Lutter, W.J., Roberts, P.M., Baldridge,
W.S., Stafford, D.G. & Sessions, R., 1998. Crust and upper mantle P wave
velocity structure beneath Valles caldera, New Mexico: results from the
Jemez teleseismic tomography experiment, J. geophys. Res., 103, 24 301–
24 320.

Su, W.-J. & Dziewonski, A.M., 1997. Simultaneous inversion for 3-D vari-
ations in shear and bulk velocity in the mantle, Phys. Earth planet. Inter.,
100, 135–156.

Tarantola, A., 1987. Inverse Problem Theory, Elsevier.

Vasco, D.W., 2007. Invariance, groups, and non-uniqueness: the discrete
case, Geophys. J. Int., 168, 473–490.

Vasco, D.W., Peterson, J.E. & Majer, E.L., 1996. Nonuniqueness in travel-
time tomography: ensemble inference and cluster analysis, Geophysics,
61, 1209–1227.

Walck, M.C. & Clayton, R.W., 1987. P wave velocity variations in the Coso
region, California, derived from local earthquake travel times, J. geophys.
Res., 92, 393–405.

White, D.J., 1989. Two-dimensional seismic refraction tomography, Geo-
phys. J., 97, 223–245.

Wiggins, R.A., 1972. The general linear inverse problem: implication of
surface waves and free oscillations for earth structure, J. geophys. Res.,
10, 251–285.

Wolfe, C.J., Solomon, S.C., Silver, P.G., VanDecar, J.C. & Russo, R.M.,
2002. Inversion of body-wave delay times for mantle structure beneath the
Hawaiian islands: results from the PELENET experiment, Earth planet.
Sci. Lett., 198, 129–145.

Yang, T., Grand, S.P., Wilson, D., Guzman-Speziale, M., Gomez-Gonzalez,
J., Dominiguez-Teyes, T. & Ni, J., 2009. Seismic structure beneath the
Rivera subduction zone from finite-frequency seismic tomography, J.
geophys. Res., 114, B01302, doi:10.1029/2008JB005830.

Yao, Z.S., Roberts, R.G. & Tryggvason, A., 1999. Calculating resolution
and covariance matrices for seismic tomography with the LSQR method,
Geophys. J. Int., 138, 886–894.

Young, M.K., Rawlinson, N., Arroucau, P., Reading, A.M. & Tkalčić, H.,
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S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this paper:

Figure S1. Australian ambient noise Rayleigh wave tomography
model, showing variations in 6.7 s period group velocities (a) and
the associated path coverage (b). Small black triangles denote station
locations.
Figure S2. Comparison of a checkerboard test (left column) with a
spike test (right column) for the Australian ambient noise data set.
Figure S3. Comparison of spike test from Fig. S2 (left column) with
an anti-spike test (right column) for the Australian ambient noise
data set.
Figure S4. Checkerboard (left column) and spike (right column)
test results from using different path geometries. (a), (b) result from
linear inversions using the path geometry of Fig. S1b; (c), (d) result
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from iterative non-linear inversion with ray path updates. Closed
red dashed lines denote features discussed in the text.
Figure S5. Checkerboard and spike tests similar to Fig. S2 but with
longer wavelength anomalies. In this case, only the output models
are illustrated.
Figure S6. Synthetic spike tests illustrating the role of data noise in
the accuracy of reconstruction. In each case, Gaussian noise with a
standard deviation of (a) 0 s, (b) 2 s, (c) 5 s and (d) 5 s is used. In the
case of (d) regularisation is applied to locate a minimum structure
model. Initial RMS and Final RMS refer to the root mean square of
the data fit for the initial and recovered model respectively.

Figure S7. Synthetic spike test which illustrates the effect of a
preconditioned parameterization. Spike test 1 (left column) uses
identical parametrization for the input and output models, while
spike test 2 (right column) does not.
(http://gji.oxfordjournals.org/lookup/suppl/doi:10.1093/gji/
ggw084/-/DC1).

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.
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