## (1) EUROPEAN RESPIRATORY journal

## Beta-blockers in COPD: time for reappraisal

| Journal: | European Respiratory Journal |
| ---: | :--- |
| Manuscript ID | ERJ-01847-2015.R2 |
| Manuscript Type: | Review |
| Date Submitted by the Author: | n/a |
| Complete List of Authors: | Lipworth, Brian; University of Dundee, Asthma \& Allergy Research Group <br> Wedzicha, Jadwiga; Imperial College London, Airways Disease Section, <br> National Heart and Lung Institute <br> Devereux, Graham; University of Aberdeen, Applied Health Sciences <br> Vestbo, Jørgen; University of Manchester, Centre for Respiratory Medicine <br> and Allergy <br> Dransfield, Mark; University of Alabama at Birmingham, Pulmonary, Allergy <br> and Critical Care |
| Key Words: | COPD, beta-blocker, coronary artery disease, heart failure, Exacerbations |
|  |  |

## Beta-blockers in COPD: time for reappraisal

Authors: Dr Brian Lipworth ${ }^{1}$, Prof Jadwiga Wedzicha ${ }^{2}$, Prof Graham Devereux ${ }^{3}$, Professor Jørgen Vestbo ${ }^{4}$, Dr Mark T. Dransfield ${ }^{5}$

Affiliations: ${ }^{1}$ Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, Scotland, UK, ${ }^{2}$ Airways Disease Section, National Heart \& Lung Institute, Imperial College London, London, UK,
${ }^{3}$ Applied Health Sciences, University of Aberdeen, Aberdeen, UK, ${ }^{4}$ Centre for Respiratory Medicine and Allergy, University Hospital South Manchester NHS Foundation Trust, University of Manchester, UK, ${ }^{5}$ Lung Health Center, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Alabama, USA; Birmingham VA Medical Center, Alabama, USA

Correspondence: Dr Brian Lipworth, Scottish Centre for Respiratory Research, Ninewells Hospital \& Medical School, University of Dundee, Dundee, DD1 9SY b.j.lipworth@dundee.ac.uk

Manuscript word count: $3138 \underline{3141}$

Author contributions: All authors contributed to the literature search, writing and presentation of the manuscript, and approval of the final version.


#### Abstract

"Take Home" message: Beta-blockers (BB) are used for heart failure and after myocardial infarction but remain underused in COPD despite recommendations in guidelines.

Prospective trials are needed to assess whether BB reduce exacerbations and deaths in COPD


#### Abstract

The combined effects on the heart of smoking and hypoxaemia may contribute to an increased cardiovascular burden in COPD. The use of beta-blockers in COPD has been proposed because of their known cardio-protective effects as well as reducing heart rate and improving systolic function. Despite the proven cardiac benefits of beta-blockers post myocardial infarction and in heart failure they remain underused due to concerns regarding potential bronchoconstriction even with cardio-selective drugs. Initiating treatment with beta-blockers requires dose titration and monitoring over a period of weeks, and beta-blockers may be less well tolerated in older patients with COPD who have other comorbidities. Medium term prospective placebo controlled safety studies in COPD are warranted to reassure prescribers regarding the pulmonary and cardiac tolerability of beta-blockers as well as evaluating their potential interaction with concomitant inhaled long acting bronchodilator therapy. Several retrospective observational studies have shown impressive reductions in mortality and exacerbations conferred by beta-blockers in COPD. However, this requires confirmation from long term prospective placebo controlled randomized controlled trials. The real challenge is to establish whether beta-blockers confer


benefits on mortality and exacerbations in all patients with COPD including those with silent cardiovascular disease where the situation is less clear.

Key words: COPD, beta-blocker, coronary artery disease, heart failure, exacerbations

## Abstract word count: 198

## Introduction

Chronic obstructive pulmonary disease (COPD) is one of the world's leading causes of morbidity and is now the third leading cause of mortality amounting to 3 million deaths in 2010.[1, 2] Exacerbations in particular account for up to three quarters of the total costs due to COPD,[3] with attributable costs exceeding 30 billion USD.[4] A recent COPD taskforce statement [5] identified an unmet need in terms of finding drugs to treat common co-morbidities specifically mentioning the putative effects of beta-blockers on the cardiovascular burden and its associated impact on mortality. Cardiovascular comorbidity is common in patients with COPD due to smoking in addition to other shared risks including genetic susceptibility, systemic inflammation and ageing.[6] The prevalence of COPD in patients with heart failure ranges from 1152\% in North American patients and 9-41\% in European patients.[7] The purpose of this article is to critically reappraise the current knowledge regarding beta-blockers in COPD looking at the current evidence for their therapeutic index and how this relates to management guidelines.

We have not attempted a systematic review or meta-analysis as described elsewhere,[8-10] but rather highlighted the key areas of clinical relevance for physicians who treat patients with COPD. In this article we have 1) considered the putative link between COPD and the heart in terms of potential targets for betablockers, 2) reviewed retrospective data linking use of beta-blockers to reduced exacerbations and mortality, 3) examined the unmet need for use of beta-blockers in patients with COPD and both known, and potentially unknown cardiovascular disease, 4) evaluated which beta-blocker to use based on their pharmacology and
impact on pulmonary function, and 5) attempted to draw conclusions about the current clinical use of beta-blockers in COPD.

## COPD and the heart (Figure 1 and Box 1)

The main accepted clinical indications for the use of beta-blockers in COPD are for patients post myocardial infarction and for patients with heart failure. However, the presence of untreated or unrecognized (i.e. silent) cardiovascular disease may contribute to mortality in COPD and may also be an underlying causative factor in exacerbations which can be difficult to separate from respiratory etiologies.[6] [7] It is also possible, if not likely, that the burden of cardiovascular disease may be underrated by pulmonologists when treating COPD patients because symptoms are presumed to be primarily driven by airflow obstruction, especially during exacerbations.

The prevalence of left ventricular systolic dysfunction ranges between 10-46\% in patients with COPD and though the occurrence of heart failure with preserved left ventricular ejection fraction is less clear, estimates in patients with severe COPD are as high as $90 \%$.[7] The benefits of beta-blockers in patients with heart failure due to left ventricular systolic dysfunction are well established from pivotal trials as well as meta-analysis.[21-24] The challenge in COPD may be more with respect to diagnosis of heart failure with echocardiography where image acquisition is difficult due to lung hyperinflation.[25]

Beta-blockers only have proven benefits in patients post myocardial infarction but not in stable coronary arterial disease.[11, 12] Nevertheless, the presence of coronary calcium on chest CT scans is associated with mortality in COPD,[13] and known coronary arterial disease is also associated with longer exacerbations, more
dyspnoea, lower health status and exercise capacity in stable patients with COPD.[14] There is also an acute increase in arterial stiffness particularly during infective exacerbations of COPD, along with increases in cardiac enzymes especially in patients with coronary arterial disease;[15] one study found that one in twelve patients admitted to hospital with an exacerbation of COPD met the criteria for a myocardial infarction.[16] The presence of coronary heart disease in COPD along with the adverse effects of hypoxaemia [17] may be compounded by the positive chronotropic effects of concomitant inhaled beta-agonist therapy,[18, 19] further compromising cardiac reserve. It has been shown that even a low dose of a beta-1 selective antagonist such as atenolol might protect against chronotropic, inotropic and electrocardiographic effects of inhaled beta-agonists which are mediated by cardiac beta 2 receptor stimulation.[20]

Another potential target is diastolic dysfunction though a meta-analysis suggests that the beneficial effects of beta-blockers in such patients are less clear cut.[26] Several factors may contribute to the occurrence of impaired diastolic function in COPD. Firstly, patients with COPD also appear to have a higher left ventricular mass (hypertrophy) even in the absence of left ventricular dilatation. Secondly, lung hyperinflation in COPD may cause cardiac compression reducing both left ventricular and atrial filling even in the absence of raised pulmonary arterial pressure.[28-30] These factors, may also be compounded by the negative effects of hypoxaemia on diastolic filling.[31] [17]

In addition to these COPD related risks, patients with the disease commonly have other co-morbidities such as coronary artery disease, hypertension and diabetes, which can all adversely affect diastolic function. This was addressed in a recent prospective longitudinal study of healthy young adults followed over 25 years, where
a fall in the ratio of forced expiratory volume in one second to forced vital capacity ( $\mathrm{FEV}_{1} /$ FVC) was associated with reduced left atrial size and cardiac output.[32] Left ventricular end diastolic and end systolic wall stress measured by magnetic resonance imaging (MRI) is associated with increasing severity of airflow obstruction in patients with COPD and coexistent heart failure.[33] Impaired left ventricular filling is clinically important because it can eventually produce left atrial enlargement which is a key risk factor for atrial fibrillation and associated mortality during exacerbations of COPD.[34] Furthermore, the presence of impaired diastolic filling in patients with COPD is also related to impaired walking distance.[35] Thus, the absence of benefits of beta-blockers in diastolic dysfunction may not apply in COPD and deserved re-evaluation in this patient group.

## Effects of beta-blockers on mortality and exacerbations

Due to the high cardiovascular comorbidity in COPD from smoking along with increased sympathetic drive due to hypoxaemia,[36] beta-blockers have been proposed as a cogent therapeutic intervention for their known cardio-protective effects in addition to reducing heart rate and improving systolic and diastolic dysfunction. One of the fundamental issues with regards to more widespread use of beta-blockers in COPD is the concern regarding beta ${ }_{2}$ receptor antagonism and associated airway smooth muscle constriction which may even occur with cardioselective agents which exhibit preferential beta ${ }_{1}$ blockade, especially in more susceptible severe patients with impaired respiratory reserve. The risk-benefit equation in COPD becomes more favorable for patients who already have overt cardiac disease such as heart failure or post myocardial infarction, where betablockers have proven protective effects.[11, 21] There are, however, no data as to
the putative beneficial effects of beta-blockers in those the majority of COPD patients who may have concomitant silent coronary arterialheart disease or heart failure-. Retrospective observational data have shown beneficial effects of beta-blockers in a cohort of 5977 patients with COPD who were followed over a mean of 4.35 years [37] where their use was associated with an overall $22 \%$ ( $95 \%$ confidence interval 833) reduction in mortality. In a study b of 825 patients admitted to hospital for an exacerbation of COPD, beta-blocker use among 142 patients was associated with a 61\% (1-86) reduction in mortality.[38] Rutten et al showed 32\% (17-44) and 29\% (1740) reductions in mortality and exacerbations, respectively, conferred by taking betablockers among 2230 patients with COPD followed up for a mean of 7.2 years.[39] In a cohort study from Sweden of 4858 patients with COPD, those who were discharged on a beta-blocker (84\%) post myocardial infarction had 13\% (2-22) lower mortality.[40] In a retrospective report of 256 patients with COPD with either coronary heart disease or heart failure, $58 \%$ were taking beta-blockers where there was a $73 \%(50-85)$ reduction in the likelihood of being admitted to a hospital emergency room.[41] In contrast, in an observational study using time dependent analysis of 2249 severe oxygen dependent COPD patients there was a $19 \%$ increase in mortality associated with taking beta-blockers.[42] However, in a prospectively followed cohort of 3464 patients Bhatt et al found a $27 \%$ (10-40) reduction in total exacerbations, while in GOLD 3/4 patients on home oxygen there was a 67\% reduction (42-81).[43]

In a 2012 meta-analysis of 9 retrospective cohort studies, the pooled estimate for mortality reduction with beta-blockers was reported to be 31\% (22-38).[8] In a subsequent 2014 meta-analysis of 15 retrospective studies of 21,596 patients with COPD, the pooled estimate for reduction in overall mortality conferred by beta-
blockers was $28 \%$ (17-37) and for exacerbations was $38 \%$ (18-58).[9] The reduction in mortality was $36 \%$ (24-46) among the subgroup of patients (5 studies: 39\% weighting) with known coronary heart disease and $26 \%$ (7-42) in the subgroup with known heart failure (3 studies: 18\% weighting).

The beneficial effects of beta-blockers on exacerbations may involve other potential non-cardiac mechanisms whereby beta-blockers could reduce COPD exacerbations. In heart failure, use of cardioselective beta-blockers reduces systemic inflammatory cytokine release such as IL-6 and alters leukocyte distribution which may also impact inflammation during respiratory infections.[44] Beta-blockers have also been reported to inhibit neutrophil chemotaxis and oxygen free radical production,[45] while in human endothelial cells they have been reported to reduce the release of endothelin-1, a bronchoconstrictor peptide implicated in the pathogenesis of COPD exacerbations.[46, 47]

It is not possible to eliminate the possibility of residual confounding in the observational studies suggesting beta-blockers may reduce exacerbations and mortality in COPD and thus definitive randomized trials are needed. There is now a planned placebo controlled trial powered for a reduction in exacerbations using metoprolol over 1 year via the US COPD Clinical Research Network and funded by the Department of Defense (Clinicaltrials.gov Identifier:NCT02587351).

This study will only exclude those patients with an absolute indication for betablockers including an MI or revascularization procedure within three years or with an ejection fraction $<40 \%$. However, it remains possible that this and similar studies may run the risk of only including patients where beta-blockers are less efficacious.

## The unmet cardiac need in COPD

Beta-blockers have an established position in the management of coronary artery disease while heart failure guidelines reinforce their use in patients with concomitant COPD.[51] Similarly, COPD management strategies also state that the benefits of selective beta-1 blocker treatment in heart failure clearly outweigh any potential risk associated with treatment even in patients with severe COPD.[52] Despite this guidance there is a reluctance to prescribe even cardio-selective beta-blockers in COPD, even in the presence of known cardiac disease because of persistent concerns regarding potential bronchoconstriction, especially in more severe patients. In a cohort from Scotland we found that only $14 \%$ of patients with COPD were taking beta-blockers for cardiovascular comorbidity.[37] Further evidence of a reluctance to prescribe beta-blockers in COPD was documented by Quint et al where $55 \%$ of patients who had a myocardial infarction were not prescribed a beta-blocker, with only $22 \%$ being prescribed on admission.[53] In the UK 64\% of patients without COPD and acute coronary syndrome were prescribed beta-blockers as compared to $16 \%$ of similar patients with COPD who were prescribed beta-blockers.[54] Furthermore COPD was documented as a reason for withholding beta-blockers in $33 \%$ of patients who did not receive a beta-blocker, while non-cardiologists were $40 \%$ less likely to prescribe beta-blockers. In the United States, Chen et al found that elderly patients after an acute mycocardial infarction were $62 \%$ less likely to be given beta-blockers in the presence of a history of treated COPD or asthma.[55] Initiating treatment with beta-blockers is not simple as it requires dose titration over a period of weeks along with monitoring of heart rate, blood pressure and perhaps spirometry, all of which take time, incurring extra healthcare costs. Moreover beta-blockers may be less well tolerated in older patients with co-existing comorbidities such as
diabetes, peripheral vascular disease and renal impairment, who are more prone to postural hypotension.

## Choice of beta-blocker and effects on pulmonary function (Box 2)

The mechanism of beta-blocker induced bronchoconstriction is thought to be due to the effects of pre and post-junctional beta ${ }_{2}$ receptor antagonism uncovering the prevailing cholinergic tone via post-junctional smooth muscle muscarinic type 3 receptors, resulting in airway smooth muscle constriction.[57]

In a subgroup analysis of 2712 patients from the Tayside cohort who had serial spirometry measures over 4 years, there was no deleterious effect of long term betablocker use ( $88 \%$ were cardioselective) on either $\mathrm{FEV}_{1}$ or FVC , even among the more severe patients taking triple inhaled therapy, who had the greatest reductions in exacerbations and mortality.[37] In a meta-analysis of randomized controlled trials with cardio-selective beta-blockers there was no significant change in $\mathrm{FEV}_{1}$ compared to placebo, when given either as single $-2.1 \%$ (-6.1-2.0) or chronic dosing $-2.6 \% ~(-5.9-0.8)$, and also no significantly effect on the $\mathrm{FEV}_{1}$ response to beta ${ }_{2}-$ agonists[10]. In a randomized controlled trial of 27 patients with heart failure who also had coexistent moderate to severe COPD, after 4 months of treatment there was a 190 ml significant fall $\mathrm{FEV}_{1}$ between bisoprolol and placebo, while salbutamol reversibility, symptoms and quality of life were unchanged.[60] In a comparison of bisoprolol and placebo in patients with moderate to severe COPD, there was a significantly worsening of dynamic hyperinflation during cycle endurance while exercise duration was unaltered.[61] In a study comparing 24 COPD patients on beta-blockers matched to patients not taking beta-blockers there was no difference
in exercise capacity or gas exchange despite lower heart rate and blood pressure, in turn suggesting great oxygen delivery per heart beat.[62]

The beta-blockers currently licensed for heart failure are the beta ${ }_{1}$ selective bisoprolol, nebivolol, metoprolol and the non-selective carvedilol. As has already been shown in heart failure [63] and asthma [49] it is important to slowly titrate up the dose of beta-blocker to improve cardiovascular and pulmonary tolerability. Bisoprolol has a licensed indication for use in heart failure and coronary artery disease and has a beta ${ }_{1 / 2}$ receptor selectivity ratio of $14: 1$, which is higher than either atenolol (5:1) or metoprolol (2:1).[64] In a cross-over study of 51 patients with COPD and heart failure, directly comparing 6 weeks of bisoprolol, metoprolol and carvedilol,[65] FEV ${ }_{1}$ was lowest with carvedilol and highest with bisoprolol with metoprolol in between. In a randomized controlled trial comparing bisoprolol (mean dose 6.4 mg ) and carvedilol (mean dose 47 mg ) in patients with heart failure and COPD, $\mathrm{FEV}_{1}$ significantly improved by 137 ml with bisoprolol but not with carvedilol ( 30 ml improvement).[66] In 15 mild to moderate COPD patients there was a significant worsening in airway hyper-reactivity to methacholine challenge with metoprolol and propranolol but not celiprolol compared to placebo, while the acute bronchodilator response to fenoterol was only blunted by propranolol.[67]

Nebivolol has been shown to exhibit greater in vitro beta ${ }_{1 / 2}$ receptor selectivity than bisoprolol in human myocardium.[68] In healthy volunteers attenuation of beta ${ }_{2}$ receptor mediated terbutaline induced hypokalaemia was significantly greater with bisoprolol 10 mg or atenolol $50 \mathrm{mg} / 100 \mathrm{mg}$ verses nebivolol 5 mg , which in turn was not different from placebo.[69] Nebivolol produced significant blunting of terbutaline induced glucose and insulin responses compared to placebo in keeping with beta ${ }_{2}$ receptor antagonism at the 5 mg dose. However the relative beta ${ }_{1 / 2}$ selectivity cannot
be inferred since this would require comparison of beta-blocker doses which exhibit the same degree of beta ${ }_{1}$ antagonism as assessed by exercise heart rate reduction,[70] which was not measured.

In a post hoc analysis of 2670 patients from the organized program to initiate lifesaving treatment in hospitalized patients with heart failure (OPTIMIZE-HF), there were no differences between selective and non-selective beta-blockers in terms of lower mortality or re-hospitalization in patients with and without COPD.[72] Carvedilol blocks both cardiac beta $_{1}$ and beta ${ }_{2}$ receptors as well as exhibiting peripheral vasodilatation due to alpha receptor blockade, which in addition to its antioxidant activity [73] may explain its superiority verses metoprolol in heart failure in one particular study, which may not have compared comparable doses.[63] Until there is more convincing evidence to support the superiority of carvedilol in heart failure, it would be prudent to choose a selective agent such as bisoprolol, nebivolol or metoprolol due to their superior safety profile in COPD.

Long acting muscarinic antagonists such as tiotropium have been shown to obviate bronchoconstriction even when using non-selective beta-blockade with propranolol in asthmatic patients.[58] It is the more severe COPD patients who would in theory be most at risk of beta-blocker induced bronchoconstriction. These patients would usually already be taking concomitant LAMA and hence be protected from bronchospasm. The relatively small degree of dose related beta ${ }_{2}$ receptor antagonism conferred for example by bisoprolol [59] would not be expected to result in worsening of pulmonary function. It is also important to consider the potential impact of beta 2 receptor genotype on the risk-benefit equation with beta-blockers in COPD. It has been shown that asthmatic patients who possess one or two copies of the arginine-16 beta ${ }_{2}$ receptor polymorphism are more prone to propranolol induced
bronchoconstriction in terms of $\mathrm{FEV}_{1}$ and airway resistance.[75] While the arginine16 polymorphism conferred a worse outcome on survival in patients receiving metoprolol after an acute coronary syndrome,[76] it was not associated with survival in HF patients treated with metoprolol or carvedilol.[77]

## Conclusions and the ways forward (Box 3)

There are compelling reasons to use cardio-selective beta-blockers in patients with COPD who have coexistent heart failure or are post myocardial infarction. Current evidence would suggest that there remains a reticence to prescribe beta-blockers in such patients because of a fear of adverse events, particularly worsened lung function. Further prospective medium term safety studies are therefore required to carefully follow effects of cardio-selective drugs on pulmonary function in patients with more severe COPD by employing slow initial dose titration as well as evaluating their interaction with long acting bronchodilators (ClinicalTrials.gov Identifier:NCT01656005).

There is currently not sufficient evidence to advocate treatment with beta-blockers for the prevention of exacerbations or exacerbation-related mortality. Long term placebo controlled multicenter trials in COPD are indicated to confirm the benefits of beta-blockers already seen on mortality and exacerbations in observational studies. The key question to answer is whether the potential benefits of beta-blockers are confined to those patients with known cardiovascular disease or are present in the wider population who may have silent cardiovascular disease. Likewise, betablockers are not currently indicated in COPD patients with diastolic dysfunction alone where controlled trials are also warranted.

Beta-blockers are likely to be part of a more complex therapeutic jigsaw in addressing the composite risk from different cardiovascular abnormalities in COPD, and as has already been shown with heart failure there may be additive effects from drugs acting on other neuro-hormonal pathways. This includes drugs which block the renin-angiotensin system that may be particularly effective at regressing left ventricular hypertrophy.[78] Dual angiotensin/neprolysin inhibition [79] may also confer benefits by augmenting BNP levels and ameliorate the adverse effects of hypoxic pulmonary vasoconstriction.[80, 81] Anti-platelet drugs might also be beneficial for treating silent coronary artery disease in more severe COPD patients who are oxygen dependent.[42] Pulmonologists have tended to focus on drugs which act on the lung rather than the heart, because of the evidence supporting the former. Perhaps now is time to look at the lungs' next door neighbour in the chest and begin to address the unmet need of cardiac disease in COPD.

## References

1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett D, Bhalla K, Bikbov B, Bin Abdulhak A, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, Burney P, Carapetis J, Chen H, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahodwala N, De Leo D, Degenhardt L, Delossantos A, Denenberg J, Des Jarlais DC, Dharmaratne SD, Dorsey ER, Driscoll T, Duber H, Ebel B, Erwin PJ, Espindola P, Ezzati M, Feigin V, Flaxman AD, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabriel SE, Gakidou E, Gaspari F, Gillum RF, Gonzalez-Medina D, Halasa YA, Haring D, Harrison JE, Havmoeller R, Hay RJ, Hoen B, Hotez PJ, Hoy D, Jacobsen KH, James SL, Jasrasaria R, Jayaraman S, Johns N, Karthikeyan G, Kassebaum N, Keren A, Khoo JP, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lipnick M, Lipshultz SE, Ohno SL, Mabweijano J, MacIntyre MF, Mallinger L, March L, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGrath J, Mensah GA, Merriman TR, Michaud C, Miller M, Miller TR, Mock C, Mocumbi AO, Mokdad AA, Moran A, Mulholland K, Nair MN, Naldi L, Narayan KM, Nasseri K, Norman P, O'Donnell M, Omer SB, Ortblad K, Osborne R, Ozgediz D, Pahari B, Pandian JD, Rivero AP, Padilla RP, Perez-Ruiz F, Perico N, Phillips D, Pierce K, Pope CA, 3rd, Porrini E, Pourmalek F, Raju M, Ranganathan D, Rehm JT, Rein DB, Remuzzi G, Rivara FP, Roberts T, De Leon FR, Rosenfeld LC, Rushton L, Sacco

RL, Salomon JA, Sampson U, Sanman E, Schwebel DC, Segui-Gomez M, Shepard DS, Singh D, Singleton J, Sliwa K, Smith E, Steer A, Taylor JA, Thomas B, Tleyjeh IM, Towbin JA, Truelsen T, Undurraga EA, Venketasubramanian N, Vijayakumar L, Vos T, Wagner GR, Wang M, Wang W, Watt K, Weinstock MA, Weintraub R, Wilkinson JD, Woolf AD, Wulf S, Yeh PH, Yip P, Zabetian A, Zheng ZJ, Lopez AD, Murray CJ, AlMazroa MA, Memish ZA. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012: 380(9859): 2095-2128.
2. Lopez-Campos JL, Ruiz-Ramos M, Soriano JB. Mortality trends in chronic obstructive pulmonary disease in Europe, 1994-2010: a joinpoint regression analysis. Lancet Respir Med 2014: 2(1): 54-62.
3. Guarascio AJ, Ray SM, Finch CK, Self TH. The clinical and economic burden of chronic obstructive pulmonary disease in the USA. Clinicoecon Outcomes Res 2013: 5: 235-245.
4. Ford ES, Murphy LB, Khavjou O, Giles WH, Holt JB, Croft JB. Total and statespecific medical and absenteeism costs of COPD among adults aged $>/=18$ years in the United States for 2010 and projections through 2020. Chest 2015: 147(1): 31-45.
5. Celli BR, Decramer M, Wedzicha JA, Wilson KC, Agusti A, Criner GJ, MacNee W, Make BJ, Rennard SI, Stockley RA, Vogelmeier C, Anzueto A, Au DH, Barnes PJ, Burgel PR, Calverley PM, Casanova C, Clini EM, Cooper CB, Coxson HO, Dusser DJ, Fabbri LM, Fahy B, Ferguson GT, Fisher A, Fletcher MJ, Hayot M, Hurst JR, Jones PW, Mahler DA, Maltais F, Mannino DM, Martinez FJ, Miravitlles M, Meek PM, Papi A, Rabe KF, Roche N, Sciurba FC, Sethi S, Siafakas N, Sin DD, Soriano JB, Stoller JK, Tashkin DP, Troosters T, Verleden GM, Verschakelen J, Vestbo J, Walsh JW, Washko GR, Wise RA, Wouters EF, ZuWallack RL, Research

AETFfC. An official american thoracic society/european respiratory society statement: research questions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2015: 191(7): e4-e27.
6. Bhatt SP, Dransfield MT. Chronic obstructive pulmonary disease and cardiovascular disease. Transl Res 2013: 162(4): 237-251.
7. Hawkins NM, Petrie MC, Jhund PS, Chalmers GW, Dunn FG, McMurray JJ. Heart failure and chronic obstructive pulmonary disease: diagnostic pitfalls and epidemiology. Eur J Heart Fail 2009: 11(2): 130-139.
8. Etminan M, Jafari S, Carleton B, FitzGerald JM. Beta-blocker use and COPD mortality: a systematic review and meta-analysis. BMC Pulm Med 2012: 12: 48.
9. Du Q, Sun Y, Ding N, Lu L, Chen Y. Beta-blockers reduced the risk of mortality and exacerbation in patients with COPD: a meta-analysis of observational studies. PLoS One 2014: 9(11): e113048.
10. Salpeter SR, Ormiston TM, Salpeter EE, Poole PJ, Cates CJ. Cardioselective beta-blockers for chronic obstructive pulmonary disease: a meta-analysis. Respir Med 2003: 97(10): 1094-1101.
11. Freemantle N, Cleland J, Young P, Mason J, Harrison J. beta Blockade after myocardial infarction: systematic review and meta regression analysis. BMJ 1999: 318(7200): 1730-1737.
12. Bangalore S, Steg G, Deedwania P, Crowley K, Eagle KA, Goto S, Ohman EM, Cannon CP, Smith SC, Zeymer U, Hoffman EB, Messerli FH, Bhatt DL, Investigators RR. beta-Blocker use and clinical outcomes in stable outpatients with and without coronary artery disease. JAMA 2012: 308(13): 1340-1349.
13. Williams MC, Murchison JT, Edwards LD, Agusti A, Bakke P, Calverley PM, Celli B, Coxson HO, Crim C, Lomas DA, Miller BE, Rennard S, Silverman EK, Tal-

Singer R, Vestbo J, Wouters E, Yates JC, van Beek EJ, Newby DE, MacNee W, Evaluation of CLtIPSEi. Coronary artery calcification is increased in patients with COPD and associated with increased morbidity and mortality. Thorax 2014: 69(8): 718-723.
14. Patel AR, Donaldson GC, Mackay AJ, Wedzicha JA, Hurst JR. The impact of ischemic heart disease on symptoms, health status, and exacerbations in patients with COPD. Chest 2012: 141(4): 851-857.
15. Patel AR, Kowlessar BS, Donaldson GC, Mackay AJ, Singh R, George SN, Garcha DS, Wedzicha JA, Hurst JR. Cardiovascular risk, myocardial injury, and exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013: 188(9): 1091-1099.
16. McAllister DA, Maclay JD, Mills NL, Leitch A, Reid P, Carruthers R, O'Connor J, McAlpine L, Chalmers G, Newby DE, Clark E, Macfarlane PW, Macnee W. Diagnosis of myocardial infarction following hospitalisation for exacerbation of COPD. Eur Respir J 2012: 39(5): 1097-1103.
17. Cargill RI, Kiely DG, Lipworth BJ. Adverse effects of hypoxaemia on diastolic filling in humans. Clin Sci (Lond) 1995: 89(2): 165-169.
18. Kiely DG, Cargill RI, Grove A, Struthers AD, Lipworth BJ. Abnormal myocardial repolarisation in response to hypoxaemia and fenoterol. Thorax 1995: 50(10): 1062-1066.
19. Kiely DG, Cargill RI, Lipworth BJ. Cardiopulmonary interactions of salbutamol and hypoxaemia in healthy young volunteers. Br J Clin Pharmacol 1995: 40(4): 313318.
20. Newnham DM, Wheeldon NM, Lipworth BJ, McDevitt DG. Single dosing comparison of the relative cardiac beta 1/beta 2 activity of inhaled fenoterol and salbutamol in normal subjects. Thorax 1993: 48(6): 656-658.
21. Chatterjee S, Biondi-Zoccai G, Abbate A, D'Ascenzo F, Castagno D, Van Tassell B, Mukherjee D, Lichstein E. Benefits of beta blockers in patients with heart failure and reduced ejection fraction: network meta-analysis. BMJ 2013: 346: f55.
22. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 1999: 353(9146): 9-13.
23. Packer M, Fowler MB, Roecker EB, Coats AJ, Katus HA, Krum H, Mohacsi P, Rouleau JL, Tendera M, Staiger C, Holcslaw TL, Amann-Zalan I, DeMets DL, Carvedilol Prospective Randomized Cumulative Survival Study G. Effect of carvedilol on the morbidity of patients with severe chronic heart failure: results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation 2002: 106(17): 2194-2199.
24. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 1999: 353(9169): 2001-2007.
25. Hawkins NM, Petrie MC, Macdonald MR, Jhund PS, Fabbri LM, Wikstrand J, McMurray JJ. Heart failure and chronic obstructive pulmonary disease the quandary of Beta-blockers and Beta-agonists. J Am Coll Cardiol 2011: 57(21): 2127-2138.
26. Bavishi C, Chatterjee S, Ather S, Patel D, Messerli FH. Beta-blockers in heart failure with preserved ejection fraction: a meta-analysis. Heart Fail Rev 2015: 20(2): 193-201.
27. Short PM, Anderson WJ, Elder DH, Struthers AD, Lipworth BJ. Impact of Left Ventricular Hypertrophy on Survival in Chronic Obstructive Pulmonary Disease. Lung 2015.
28. Boussuges A, Pinet C, Molenat F, Burnet H, Ambrosi P, Badier M, Sainty JM, Orehek J. Left atrial and ventricular filling in chronic obstructive pulmonary disease. An echocardiographic and Doppler study. Am J Respir Crit Care Med 2000: 162(2 Pt 1): 670-675.
29. Funk GC, Lang I, Schenk P, Valipour A, Hartl S, Burghuber OC. Left ventricular diastolic dysfunction in patients with COPD in the presence and absence of elevated pulmonary arterial pressure. Chest 2008: 133(6): 1354-1359.
30. Butler J, Schrijen F, Henriquez A, Polu JM, Albert RK. Cause of the raised wedge pressure on exercise in chronic obstructive pulmonary disease. Am Rev Respir Dis 1988: 138(2): 350-354.
31. Smith BM, Prince MR, Hoffman EA, Bluemke DA, Liu CY, Rabinowitz D, Hueper K, Parikh MA, Gomes AS, Michos ED, Lima JA, Barr RG. Impaired left ventricular filling in COPD and emphysema: is it the heart or the lungs? The MultiEthnic Study of Atherosclerosis COPD Study. Chest 2013: 144(4): 1143-1151. 32. Cuttica MJ, Colangelo LA, Shah SJ, Lima J, Kishi S, Arynchyn A, Jacobs DR, Jr., Thyagarajan B, Liu K, Lloyd-Jones D, Kalhan R. Loss of Lung Health from Young Adulthood and Cardiac Phenotypes in Middle Age. Am J Respir Crit Care Med 2015: 192(1): 76-85.
33. Alter P, van de Sand K, Nell C, Figiel JH, Greulich T, Vogelmeier CF, Koczulla AR. Airflow limitation in COPD is associated with increased left ventricular wall stress in coincident heart failure. Respir Med 2015.
34. Steer J, Gibson J, Bourke SC. The DECAF Score: predicting hospital mortality in exacerbations of chronic obstructive pulmonary disease. Thorax 2012: 67(11): 970-976.
35. Watz H, Waschki B, Meyer T, Kretschmar G, Kirsten A, Claussen M, Magnussen H. Decreasing cardiac chamber sizes and associated heart dysfunction in COPD: role of hyperinflation. Chest 2010: 138(1): 32-38.
36. Heindl S, Lehnert M, Criee CP, Hasenfuss G, Andreas S. Marked sympathetic activation in patients with chronic respiratory failure. Am J Respir Crit Care Med 2001: 164(4): 597-601.
37. Short PM, Lipworth SI, Elder DH, Schembri S, Lipworth BJ. Effect of beta blockers in treatment of chronic obstructive pulmonary disease: a retrospective cohort study. BMJ 2011: 342: d2549.
38. Dransfield MT, Rowe SM, Johnson JE, Bailey WC, Gerald LB. Use of beta blockers and the risk of death in hospitalised patients with acute exacerbations of COPD. Thorax 2008: 63(4): 301-305.
39. Rutten FH, Zuithoff NP, Hak E, Grobbee DE, Hoes AW. Beta-blockers may reduce mortality and risk of exacerbations in patients with chronic obstructive pulmonary disease. Archives of internal medicine 2010: 170(10): 880-887.
40. Andell P, Erlinge D, Smith JG, Sundstrom J, Lindahl B, James S, Koul S. beta-blocker use and mortality in COPD patients after myocardial infarction: a Swedish nationwide observational study. J Am Heart Assoc 2015: 4(4).
41. Puente-Maestu L, Calle M, Ortega-Gonzalez A, Fuster A, Gonzalez C, Marquez-Martin E, Marcos-Rodriguez PJ, Calero C, Rodriguez-Hermosa JL, Malo de Molina R, Aburto M, Sobradillo P, Alcazar B, Tirado-Conde G, Group G. Multicentric
study on the beta-blocker use and relation with exacerbations in COPD. Respir Med 2014: 108(5): 737-744.
42. Ekstrom MP, Hermansson AB, Strom KE. Effects of cardiovascular drugs on mortality in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013: 187(7): 715-720.
43. Bhatt SP, Wells JM, Kinney GL, Washko GR, Jr., Budoff M, Kim YI, Bailey WC, Nath H, Hokanson JE, Silverman EK, Crapo J, Dransfield MT, Investigators CO. beta-Blockers are associated with a reduction in COPD exacerbations. Thorax 2015.
44. von Haehling S, Schefold JC, Jankowska E, Doehner W, Springer J, Strohschein K, Genth-Zotz S, Volk HD, Poole-Wilson P, Anker SD. Leukocyte redistribution: effects of beta blockers in patients with chronic heart failure. PLoS One 2009: 4(7): e6411.
45. Dunzendorfer S, Wiedermann CJ. Modulation of neutrophil migration and superoxide anion release by metoprolol. J Mol Cell Cardiol 2000: 32(6): 915-924. 46. Garlichs CD, Zhang H, Mugge A, Daniel WG. Beta-blockers reduce the release and synthesis of endothelin-1 in human endothelial cells. Eur J Clin Invest 1999: 29(1): 12-16.
47. Roland M, Bhowmik A, Sapsford RJ, Seemungal TA, Jeffries DJ, Warner TD, Wedzicha JA. Sputum and plasma endothelin-1 levels in exacerbations of chronic obstructive pulmonary disease. Thorax 2001: 56(1): 30-35.
48. Nguyen LP, Omoluabi O, Parra S, Frieske JM, Clement C, Ammar-Aouchiche Z, Ho SB, Ehre C, Kesimer M, Knoll BJ, Tuvim MJ, Dickey BF, Bond RA. Chronic exposure to beta-blockers attenuates inflammation and mucin content in a murine asthma model. Am J Respir Cell Mol Biol 2008: 38(3): 256-262.
49. Short PM, Williamson PA, Anderson WJ, Lipworth BJ. Randomized placebocontrolled trial to evaluate chronic dosing effects of propranolol in asthma. Am J Respir Crit Care Med 2013: 187(12): 1308-1314.
50. Anderson WJ, Short PM, Williamson PA, Manoharan A, Lipworth BJ. The inverse agonist propranolol confers no corticosteroid-sparing activity in mild-tomoderate persistent asthma. Clin Sci (Lond) 2014: 127(11): 635-643.
51. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, Jaarsma T, Kober L, Lip GY, Maggioni AP, Parkhomenko A, Pieske BM, Popescu BA, Ronnevik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F, Zeiher A, Task Force for the D, Treatment of A, Chronic Heart Failure of the European Society of C, Bax JJ, Baumgartner H, Ceconi C, Dean V, Deaton C, Fagard R, FunckBrentano C, Hasdai D, Hoes A, Kirchhof P, Knuuti J, Kolh P, McDonagh T, Moulin C, Popescu BA, Reiner Z, Sechtem U, Sirnes PA, Tendera M, Torbicki A, Vahanian A, Windecker S, McDonagh T, Sechtem U, Bonet LA, Avraamides P, Ben Lamin HA, Brignole M, Coca A, Cowburn P, Dargie H, Elliott P, Flachskampf FA, Guida GF, Hardman S, lung B, Merkely B, Mueller C, Nanas JN, Nielsen OW, Orn S, Parissis JT, Ponikowski P, Guidelines ESCCfP. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2012: 14(8): 803-869.
52. Vestbo J, Hurd SS, Agusti AG, Jones PW, Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ, Nishimura M, Stockley RA, Sin DD, Rodriguez-Roisin R. Global strategy for the diagnosis, management, and prevention of chronic
obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 2013: 187(4): 347-365.
53. Quint JK, Herrett E, Bhaskaran K, Timmis A, Hemingway H, Wedzicha JA, Smeeth L. Effect of beta blockers on mortality after myocardial infarction in adults with COPD: population based cohort study of UK electronic healthcare records. BMJ 2013: 347: f6650.
54. Egred M, Shaw S, Mohammad B, Waitt P, Rodrigues E. Under-use of betablockers in patients with ischaemic heart disease and concomitant chronic obstructive pulmonary disease. QJM 2005: 98(7): 493-497.
55. Chen J, Radford MJ, Wang Y, Marciniak TA, Krumholz HM. Effectiveness of beta-blocker therapy after acute myocardial infarction in elderly patients with chronic obstructive pulmonary disease or asthma. J Am Coll Cardiol 2001: 37(7): 1950-1956.
56. Tavazzi L, Swedberg K, Komajda M, Bohm M, Borer JS, Lainscak M, Robertson M, Ford I, Investigators S. Clinical profiles and outcomes in patients with chronic heart failure and chronic obstructive pulmonary disease: an efficacy and safety analysis of SHIFT study. Int J Cardiol 2013: 170(2): 182-188.
57. Lipworth BJ, Williamson PA. Think the impossible: beta-blockers for treating asthma. Clin Sci (Lond) 2010: 118(2): 115-120.
58. Short PM, Anderson WJ, Williamson PA, Lipworth BJ. Effects of intravenous and oral beta-blockade in persistent asthmatics controlled on inhaled corticosteroids. Heart 2014: 100(3): 219-223.
59. Lipworth BJ, Irvine NA, McDevitt DG. A dose-ranging study to evaluate the beta 1-adrenoceptor selectivity of bisoprolol. Eur J Clin Pharmacol 1991: 40(2): 135139.
60. Hawkins NM, MacDonald MR, Petrie MC, Chalmers GW, Carter R, Dunn FG, McMurray JJ. Bisoprolol in patients with heart failure and moderate to severe chronic obstructive pulmonary disease: a randomized controlled trial. Eur J Heart Fail 2009: 11(7): 684-690.
61. Mainguy V, Girard D, Maltais F, Saey D, Milot J, Senechal M, Poirier P, Provencher S. Effect of bisoprolol on respiratory function and exercise capacity in chronic obstructive pulmonary disease. Am J Cardiol 2012: 110(2): 258-263. 62. Thirapatarapong W, Armstrong HF, Bartels MN. Exercise capacity and ventilatory response during exercise in COPD patients with and without beta blockade. Lung 2013: 191(5): 531-536.
63. Poole-Wilson PA, Swedberg K, Cleland JG, Di Lenarda A, Hanrath P, Komajda M, Lubsen J, Lutiger B, Metra M, Remme WJ, Torp-Pedersen C, Scherhag A, Skene A, Carvedilol Or Metoprolol European Trial I. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 2003: 362(9377): 7-13.
64. Baker JG. The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors. Br J Pharmacol 2005: 144(3): 317-322.
65. Jabbour A, Macdonald PS, Keogh AM, Kotlyar E, Mellemkjaer S, Coleman CF, Elsik M, Krum H, Hayward CS. Differences between beta-blockers in patients with chronic heart failure and chronic obstructive pulmonary disease: a randomized crossover trial. J Am Coll Cardiol 2010: 55(17): 1780-1787.
66. Lainscak M, Podbregar M, Kovacic D, Rozman J, von Haehling S. Differences between bisoprolol and carvedilol in patients with chronic heart failure and chronic
obstructive pulmonary disease: a randomized trial. Respir Med 2011: 105 Suppl 1: S44-49.
67. van der Woude HJ, Zaagsma J, Postma DS, Winter TH, van Hulst M, Aalbers R. Detrimental effects of beta-blockers in COPD: a concern for nonselective betablockers. Chest 2005: 127(3): 818-824.
68. Bundkirchen A, Brixius K, Bolck B, Nguyen Q, Schwinger RH. Beta 1adrenoceptor selectivity of nebivolol and bisoprolol. A comparison of [3H]CGP 12.177 and [125I]iodocyanopindolol binding studies. Eur J Pharmacol 2003: 460(1): 19-26.
69. Nuttall SL, Routledge HC, Kendall MJ. A comparison of the beta1-selectivity of three beta1-selective beta-blockers. J Clin Pharm Ther 2003: 28(3): 179-186.
70. Wheeldon NM, McDevitt DG, Lipworth BJ. Selectivity of antagonist and partial agonist activity of celiprolol in normal subjects. Br J Clin Pharmacol 1992: 34(4): 337343.
71. Kamp O, Metra M, Bugatti S, Bettari L, Dei Cas A, Petrini N, Dei Cas L. Nebivolol: haemodynamic effects and clinical significance of combined betablockade and nitric oxide release. Drugs 2010: 70(1): 41-56.
72. Mentz RJ, Wojdyla D, Fiuzat M, Chiswell K, Fonarow GC, O'Connor CM. Association of beta-blocker use and selectivity with outcomes in patients with heart failure and chronic obstructive pulmonary disease (from OPTIMIZE-HF). Am J Cardiol 2013: 111(4): 582-587.
73. DiNicolantonio JJ, Fares H, Niazi AK, Chatterjee S, D'Ascenzo F, Cerrato E, Biondi-Zoccai G, Lavie CJ, Bell DS, O'Keefe JH. beta-Blockers in hypertension, diabetes, heart failure and acute myocardial infarction: a review of the literature. Open Heart 2015: 2(1): e000230.
74. Swedberg K, Komajda M, Bohm M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L, Investigators S. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 2010: 376(9744): 875-885.
75. Anderson WJ, Short PM, Manoharan A, Lipworth JL, Lipworth BJ. Influence of beta2-adrenoceptor 16 genotype on propranolol-induced bronchoconstriction in patients with persistent asthma. Ann Allergy Asthma Immunol 2014: 112(5): 475476.
76. Lanfear DE, Jones PG, Marsh S, Cresci S, McLeod HL, Spertus JA. Beta2adrenergic receptor genotype and survival among patients receiving beta-blocker therapy after an acute coronary syndrome. Jama 2005: 294(12): 1526-1533.
77. Sehnert AJ, Daniels SE, Elashoff M, Wingrove JA, Burrow CR, Horne B, Muhlestein JB, Donahue M, Liggett SB, Anderson JL, Kraus WE. Lack of association between adrenergic receptor genotypes and survival in heart failure patients treated with carvedilol or metoprolol. J Am Coll Cardiol 2008: 52(8): 644-651.
78. Pitt B, Reichek N, Willenbrock R, Zannad F, Phillips RA, Roniker B, Kleiman

J, Krause S, Burns D, Williams GH. Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study. Circulation 2003: 108(15): 1831-1838.
79. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR, Investigators P-H, Committees. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 2014: 371(11): 993-1004.
80. Cargill RI, Lipworth BJ. Acute effects of ANP and BNP on hypoxic pulmonary vasoconstriction in humans. Br J Clin Pharmacol 1995: 40(6): 585-590.
81. Cargill RI, Lipworth BJ. Atrial natriuretic peptide and brain natriuretic peptide in cor pulmonale. Hemodynamic and endocrine effects. Chest 1996: 110(5): 12201225.

# Beta-blockers in COPD: time for reappraisal 

Authors: Dr Brian Lipworth ${ }^{1}$, Prof Jadwiga Wedzicha ${ }^{2}$, Prof Graham Devereux ${ }^{3}$, Professor Jørgen Vestbo ${ }^{4}$, Dr Mark T. Dransfield ${ }^{5}$

Affiliations: ${ }^{1}$ Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, Scotland, UK, ${ }^{2}$ Airways Disease Section, National Heart \& Lung Institute, Imperial College London, London, UK, ${ }^{3}$ Applied Health Sciences, University of Aberdeen, Aberdeen, UK, ${ }^{4}$ Centre for Respiratory Medicine and Allergy, University Hospital South Manchester NHS Foundation Trust, University of Manchester, UK, ${ }^{5}$ Lung Health Center, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Alabama, USA; Birmingham VA Medical Center, Alabama, USA

Correspondence: Dr Brian Lipworth, Scottish Centre for Respiratory Research, Ninewells Hospital \& Medical School, University of Dundee, Dundee, DD1 9SY b.j.lipworth@dundee.ac.uk

Manuscript word count: 3141

Author contributions: All authors contributed to the literature search, writing and presentation of the manuscript, and approval of the final version.


#### Abstract

"Take Home" message: Beta-blockers (BB) are used for heart failure and after myocardial infarction but remain underused in COPD despite recommendations in guidelines.


#### Abstract

The combined effects on the heart of smoking and hypoxaemia may contribute to an increased cardiovascular burden in COPD. The use of beta-blockers in COPD has been proposed because of their known cardio-protective effects as well as reducing heart rate and improving systolic function. Despite the proven cardiac benefits of beta-blockers post myocardial infarction and in heart failure they remain underused due to concerns regarding potential bronchoconstriction even with cardio-selective drugs. Initiating treatment with beta-blockers requires dose titration and monitoring over a period of weeks, and beta-blockers may be less well tolerated in older patients with COPD who have other comorbidities. Medium term prospective placebo controlled safety studies in COPD are warranted to reassure prescribers regarding the pulmonary and cardiac tolerability of beta-blockers as well as evaluating their potential interaction with concomitant inhaled long acting bronchodilator therapy. Several retrospective observational studies have shown impressive reductions in mortality and exacerbations conferred by beta-blockers in COPD. However, this requires confirmation from long term prospective placebo controlled randomized controlled trials. The real challenge is to establish whether beta-blockers confer benefits on mortality and exacerbations in all patients with COPD including those with silent cardiovascular disease where the situation is less clear.


Key words: COPD, beta-blocker, coronary artery disease, heart failure, exacerbations


#### Abstract

word count: 198


## Introduction

Chronic obstructive pulmonary disease (COPD) is one of the world's leading causes of morbidity and is now the third leading cause of mortality amounting to 3 million deaths in 2010.[1, 2] Exacerbations in particular account for up to three quarters of the total costs due to COPD,[3] with attributable costs exceeding 30 billion USD.[4] A recent COPD taskforce statement [5] identified an unmet need in terms of finding drugs to treat common co-morbidities specifically mentioning the putative effects of beta-blockers on the cardiovascular burden and its associated impact on mortality. Cardiovascular comorbidity is common in patients with COPD due to smoking in addition to other shared risks including genetic susceptibility, systemic inflammation and ageing.[6] The prevalence of COPD in patients with heart failure ranges from 11$52 \%$ in North American patients and 9-41\% in European patients.[7] The purpose of this article is to critically reappraise the current knowledge regarding beta-blockers in COPD looking at the current evidence for their therapeutic index and how this relates to management guidelines.

We have not attempted a systematic review or meta-analysis as described elsewhere,[8-10] but rather highlighted the key areas of clinical relevance for physicians who treat patients with COPD. In this article we have 1) considered the putative link between COPD and the heart in terms of potential targets for betablockers, 2) reviewed retrospective data linking use of beta-blockers to reduced exacerbations and mortality, 3) examined the unmet need for use of beta-blockers in patients with COPD and both known, and potentially unknown cardiovascular disease, 4) evaluated which beta-blocker to use based on their pharmacology and
impact on pulmonary function, and 5) attempted to draw conclusions about the current clinical use of beta-blockers in COPD.

## COPD and the heart (Figure 1 and Box 1)

The main accepted clinical indications for the use of beta-blockers in COPD are for patients post myocardial infarction and for patients with heart failure. However, the presence of untreated or unrecognized (i.e. silent) cardiovascular disease may contribute to mortality in COPD and may also be an underlying causative factor in exacerbations which can be difficult to separate from respiratory etiologies.[6] [7] It is also possible, if not likely, that the burden of cardiovascular disease may be underrated by pulmonologists when treating COPD patients because symptoms are presumed to be primarily driven by airflow obstruction, especially during exacerbations.

The prevalence of left ventricular systolic dysfunction ranges between 10-46\% in patients with COPD and though the occurrence of heart failure with preserved left ventricular ejection fraction is less clear, estimates in patients with severe COPD are as high as $90 \%$.[7] The benefits of beta-blockers in patients with heart failure due to left ventricular systolic dysfunction are well established from pivotal trials as well as meta-analysis.[21-24] The challenge in COPD may be more with respect to diagnosis of heart failure with echocardiography where image acquisition is difficult due to lung hyperinflation.[25]

Beta-blockers only have proven benefits in patients post myocardial infarction but not in stable coronary arterial disease.[11, 12] Nevertheless, the presence of coronary calcium on chest CT scans is associated with mortality in COPD,[13] and known coronary arterial disease is also associated with longer exacerbations, more
dyspnoea, lower health status and exercise capacity in stable patients with COPD.[14] There is also an acute increase in arterial stiffness particularly during infective exacerbations of COPD, along with increases in cardiac enzymes especially in patients with coronary arterial disease;[15] one study found that one in twelve patients admitted to hospital with an exacerbation of COPD met the criteria for a myocardial infarction.[16] The presence of coronary heart disease in COPD along with the adverse effects of hypoxaemia [17] may be compounded by the positive chronotropic effects of concomitant inhaled beta-agonist therapy,[18, 19] further compromising cardiac reserve. It has been shown that even a low dose of a beta-1 selective antagonist such as atenolol might protect against chronotropic, inotropic and electrocardiographic effects of inhaled beta-agonists which are mediated by cardiac beta 2 receptor stimulation.[20]

Another potential target is diastolic dysfunction though a meta-analysis suggests that the beneficial effects of beta-blockers in such patients are less clear cut.[26] Several factors may contribute to the occurrence of impaired diastolic function in COPD. Firstly, patients with COPD also appear to have a higher left ventricular mass (hypertrophy) even in the absence of left ventricular dilatation. Secondly, lung hyperinflation in COPD may cause cardiac compression reducing both left ventricular and atrial filling even in the absence of raised pulmonary arterial pressure.[28-30] These factors, may also be compounded by the negative effects of hypoxaemia on diastolic filling.[31] [17]

In addition to these COPD related risks, patients with the disease commonly have other co-morbidities such as coronary artery disease, hypertension and diabetes, which can all adversely affect diastolic function. This was addressed in a recent prospective longitudinal study of healthy young adults followed over 25 years, where
a fall in the ratio of forced expiratory volume in one second to forced vital capacity ( $\mathrm{FEV}_{1} /$ FVC) was associated with reduced left atrial size and cardiac output.[32] Left ventricular end diastolic and end systolic wall stress measured by magnetic resonance imaging (MRI) is associated with increasing severity of airflow obstruction in patients with COPD and coexistent heart failure.[33] Impaired left ventricular filling is clinically important because it can eventually produce left atrial enlargement which is a key risk factor for atrial fibrillation and associated mortality during exacerbations of COPD.[34] Furthermore, the presence of impaired diastolic filling in patients with COPD is also related to impaired walking distance.[35] Thus, the absence of benefits of beta-blockers in diastolic dysfunction may not apply in COPD and deserved re-evaluation in this patient group.

## Effects of beta-blockers on mortality and exacerbations

Due to the high cardiovascular comorbidity in COPD from smoking along with increased sympathetic drive due to hypoxaemia,[36] beta-blockers have been proposed as a cogent therapeutic intervention for their known cardio-protective effects in addition to reducing heart rate and improving systolic and diastolic dysfunction. One of the fundamental issues with regards to more widespread use of beta-blockers in COPD is the concern regarding beta ${ }_{2}$ receptor antagonism and associated airway smooth muscle constriction which may even occur with cardioselective agents which exhibit preferential beta ${ }_{1}$ blockade, especially in more susceptible severe patients with impaired respiratory reserve. The risk-benefit equation in COPD becomes more favorable for patients who already have overt cardiac disease such as heart failure or post myocardial infarction, where betablockers have proven protective effects.[11, 21] There are, however, no data as to
the putative beneficial effects of beta-blockers in those COPD patients who may have concomitant silent coronary arterial disease or heart failure.

Retrospective observational data have shown beneficial effects of beta-blockers in a cohort of 5977 patients with COPD who were followed over a mean of 4.35 years [37] where their use was associated with an overall $22 \%$ ( $95 \%$ confidence interval 833) reduction in mortality. In a study b of 825 patients admitted to hospital for an exacerbation of COPD, beta-blocker use among 142 patients was associated with a 61\% (1-86) reduction in mortality.[38] Rutten et al showed 32\% (17-44) and 29\% (1740) reductions in mortality and exacerbations, respectively, conferred by taking betablockers among 2230 patients with COPD followed up for a mean of 7.2 years.[39] In a cohort study from Sweden of 4858 patients with COPD, those who were discharged on a beta-blocker (84\%) post myocardial infarction had 13\% (2-22) lower mortality.[40] In a retrospective report of 256 patients with COPD with either coronary heart disease or heart failure, $58 \%$ were taking beta-blockers where there was a $73 \%(50-85)$ reduction in the likelihood of being admitted to a hospital emergency room.[41] In contrast, in an observational study using time dependent analysis of 2249 severe oxygen dependent COPD patients there was a $19 \%$ increase in mortality associated with taking beta-blockers.[42] However, in a prospectively followed cohort of 3464 patients Bhatt et al found a $27 \%$ (10-40) reduction in total exacerbations, while in GOLD 3/4 patients on home oxygen there was a $67 \%$ reduction (42-81).[43] In a 2012 meta-analysis of 9 retrospective cohort studies, the pooled estimate for mortality reduction with beta-blockers was reported to be 31\% (22-38).[8] In a subsequent 2014 meta-analysis of 15 retrospective studies of 21,596 patients with COPD, the pooled estimate for reduction in overall mortality conferred by beta-
blockers was $28 \%$ (17-37) and for exacerbations was $38 \%$ (18-58).[9] The reduction in mortality was $36 \%$ (24-46) among the subgroup of patients (5 studies: 39\% weighting) with known coronary heart disease and $26 \%$ (7-42) in the subgroup with known heart failure ( 3 studies: 18\% weighting).

The beneficial effects of beta-blockers on exacerbations may involve other potential non-cardiac mechanisms whereby beta-blockers could reduce COPD exacerbations. In heart failure, use of cardioselective beta-blockers reduces systemic inflammatory cytokine release such as IL-6 and alters leukocyte distribution which may also impact inflammation during respiratory infections.[44] Beta-blockers have also been reported to inhibit neutrophil chemotaxis and oxygen free radical production,[45] while in human endothelial cells they have been reported to reduce the release of endothelin-1, a bronchoconstrictor peptide implicated in the pathogenesis of COPD exacerbations.[46, 47]

It is not possible to eliminate the possibility of residual confounding in the observational studies suggesting beta-blockers may reduce exacerbations and mortality in COPD and thus definitive randomized trials are needed. There is now a planned placebo controlled trial powered for a reduction in exacerbations using metoprolol over 1 year via the US COPD Clinical Research Network and funded by the Department of Defense (Clinicaltrials.gov Identifier:NCT02587351).

This study will only exclude those patients with an absolute indication for betablockers including an MI or revascularization procedure within three years or with an ejection fraction $<40 \%$. However, it remains possible that this and similar studies may run the risk of only including patients where beta-blockers are less efficacious.

## The unmet cardiac need in COPD

Beta-blockers have an established position in the management of coronary artery disease while heart failure guidelines reinforce their use in patients with concomitant COPD.[51] Similarly, COPD management strategies also state that the benefits of selective beta-1 blocker treatment in heart failure clearly outweigh any potential risk associated with treatment even in patients with severe COPD.[52] Despite this guidance there is a reluctance to prescribe even cardio-selective beta-blockers in COPD, even in the presence of known cardiac disease because of persistent concerns regarding potential bronchoconstriction, especially in more severe patients. In a cohort from Scotland we found that only $14 \%$ of patients with COPD were taking beta-blockers for cardiovascular comorbidity.[37] Further evidence of a reluctance to prescribe beta-blockers in COPD was documented by Quint et al where $55 \%$ of patients who had a myocardial infarction were not prescribed a beta-blocker, with only $22 \%$ being prescribed on admission.[53] In the UK 64\% of patients without COPD and acute coronary syndrome were prescribed beta-blockers as compared to $16 \%$ of similar patients with COPD who were prescribed beta-blockers.[54] Furthermore COPD was documented as a reason for withholding beta-blockers in $33 \%$ of patients who did not receive a beta-blocker, while non-cardiologists were $40 \%$ less likely to prescribe beta-blockers. In the United States, Chen et al found that elderly patients after an acute mycocardial infarction were $62 \%$ less likely to be given beta-blockers in the presence of a history of treated COPD or asthma.[55] Initiating treatment with beta-blockers is not simple as it requires dose titration over a period of weeks along with monitoring of heart rate, blood pressure and perhaps spirometry, all of which take time, incurring extra healthcare costs. Moreover beta-blockers may be less well tolerated in older patients with co-existing comorbidities such as
diabetes, peripheral vascular disease and renal impairment, who are more prone to postural hypotension.

## Choice of beta-blocker and effects on pulmonary function (Box 2)

The mechanism of beta-blocker induced bronchoconstriction is thought to be due to the effects of pre and post-junctional beta ${ }_{2}$ receptor antagonism uncovering the prevailing cholinergic tone via post-junctional smooth muscle muscarinic type 3 receptors, resulting in airway smooth muscle constriction.[57]

In a subgroup analysis of 2712 patients from the Tayside cohort who had serial spirometry measures over 4 years, there was no deleterious effect of long term betablocker use ( $88 \%$ were cardioselective) on either $\mathrm{FEV}_{1}$ or FVC , even among the more severe patients taking triple inhaled therapy, who had the greatest reductions in exacerbations and mortality.[37] In a meta-analysis of randomized controlled trials with cardio-selective beta-blockers there was no significant change in $\mathrm{FEV}_{1}$ compared to placebo, when given either as single $-2.1 \%$ (-6.1-2.0) or chronic dosing $-2.6 \% ~(-5.9-0.8)$, and also no significantly effect on the $\mathrm{FEV}_{1}$ response to beta ${ }_{2}-$ agonists[10]. In a randomized controlled trial of 27 patients with heart failure who also had coexistent moderate to severe COPD, after 4 months of treatment there was a 190 ml significant fall $\mathrm{FEV}_{1}$ between bisoprolol and placebo, while salbutamol reversibility, symptoms and quality of life were unchanged.[60] In a comparison of bisoprolol and placebo in patients with moderate to severe COPD, there was a significantly worsening of dynamic hyperinflation during cycle endurance while exercise duration was unaltered.[61] In a study comparing 24 COPD patients on beta-blockers matched to patients not taking beta-blockers there was no difference
in exercise capacity or gas exchange despite lower heart rate and blood pressure, in turn suggesting great oxygen delivery per heart beat.[62]

The beta-blockers currently licensed for heart failure are the beta ${ }_{1}$ selective bisoprolol, nebivolol, metoprolol and the non-selective carvedilol. As has already been shown in heart failure [63] and asthma [49] it is important to slowly titrate up the dose of beta-blocker to improve cardiovascular and pulmonary tolerability. Bisoprolol has a licensed indication for use in heart failure and coronary artery disease and has a beta ${ }_{1 / 2}$ receptor selectivity ratio of $14: 1$, which is higher than either atenolol $(5: 1)$ or metoprolol (2:1).[64] In a cross-over study of 51 patients with COPD and heart failure, directly comparing 6 weeks of bisoprolol, metoprolol and carvedilol,[65] FEV ${ }_{1}$ was lowest with carvedilol and highest with bisoprolol with metoprolol in between. In a randomized controlled trial comparing bisoprolol (mean dose 6.4 mg ) and carvedilol (mean dose 47 mg ) in patients with heart failure and COPD, $\mathrm{FEV}_{1}$ significantly improved by 137 ml with bisoprolol but not with carvedilol (30ml improvement).[66] In 15 mild to moderate COPD patients there was a significant worsening in airway hyper-reactivity to methacholine challenge with metoprolol and propranolol but not celiprolol compared to placebo, while the acute bronchodilator response to fenoterol was only blunted by propranolol.[67]

Nebivolol has been shown to exhibit greater in vitro beta ${ }_{1 / 2}$ receptor selectivity than bisoprolol in human myocardium.[68] In healthy volunteers attenuation of beta ${ }_{2}$ receptor mediated terbutaline induced hypokalaemia was significantly greater with bisoprolol 10 mg or atenolol $50 \mathrm{mg} / 100 \mathrm{mg}$ verses nebivolol 5 mg , which in turn was not different from placebo.[69] Nebivolol produced significant blunting of terbutaline induced glucose and insulin responses compared to placebo in keeping with beta ${ }_{2}$ receptor antagonism at the 5 mg dose. However the relative beta ${ }_{1 / 2}$ selectivity cannot
be inferred since this would require comparison of beta-blocker doses which exhibit the same degree of beta $_{1}$ antagonism as assessed by exercise heart rate reduction,[70] which was not measured.

In a post hoc analysis of 2670 patients from the organized program to initiate lifesaving treatment in hospitalized patients with heart failure (OPTIMIZE-HF), there were no differences between selective and non-selective beta-blockers in terms of lower mortality or re-hospitalization in patients with and without COPD.[72] Carvedilol blocks both cardiac beta $_{1}$ and beta ${ }_{2}$ receptors as well as exhibiting peripheral vasodilatation due to alpha receptor blockade, which in addition to its antioxidant activity [73] may explain its superiority verses metoprolol in heart failure in one particular study, which may not have compared comparable doses.[63] Until there is more convincing evidence to support the superiority of carvedilol in heart failure, it would be prudent to choose a selective agent such as bisoprolol, nebivolol or metoprolol due to their superior safety profile in COPD.

Long acting muscarinic antagonists such as tiotropium have been shown to obviate bronchoconstriction even when using non-selective beta-blockade with propranolol in asthmatic patients.[58] It is the more severe COPD patients who would in theory be most at risk of beta-blocker induced bronchoconstriction. These patients would usually already be taking concomitant LAMA and hence be protected from bronchospasm. The relatively small degree of dose related beta ${ }_{2}$ receptor antagonism conferred for example by bisoprolol [59] would not be expected to result in worsening of pulmonary function. It is also important to consider the potential impact of beta 2 receptor genotype on the risk-benefit equation with beta-blockers in COPD. It has been shown that asthmatic patients who possess one or two copies of the arginine-16 beta $_{2}$ receptor polymorphism are more prone to propranolol induced
bronchoconstriction in terms of $\mathrm{FEV}_{1}$ and airway resistance.[75] While the arginine16 polymorphism conferred a worse outcome on survival in patients receiving metoprolol after an acute coronary syndrome,[76] it was not associated with survival in HF patients treated with metoprolol or carvedilol.[77]

## Conclusions and the ways forward (Box 3)

There are compelling reasons to use cardio-selective beta-blockers in patients with COPD who have coexistent heart failure or are post myocardial infarction. Current evidence would suggest that there remains a reticence to prescribe beta-blockers in such patients because of a fear of adverse events, particularly worsened lung function. Further prospective medium term safety studies are therefore required to carefully follow effects of cardio-selective drugs on pulmonary function in patients with more severe COPD by employing slow initial dose titration as well as evaluating their interaction with long acting bronchodilators (ClinicalTrials.gov Identifier:NCT01656005).

There is currently not sufficient evidence to advocate treatment with beta-blockers for the prevention of exacerbations or exacerbation-related mortality. Long term placebo controlled multicenter trials in COPD are indicated to confirm the benefits of beta-blockers already seen on mortality and exacerbations in observational studies. The key question to answer is whether the potential benefits of beta-blockers are confined to those patients with known cardiovascular disease or are present in the wider population who may have silent cardiovascular disease. Likewise, betablockers are not currently indicated in COPD patients with diastolic dysfunction alone where controlled trials are also warranted.

Beta-blockers are likely to be part of a more complex therapeutic jigsaw in addressing the composite risk from different cardiovascular abnormalities in COPD, and as has already been shown with heart failure there may be additive effects from drugs acting on other neuro-hormonal pathways. This includes drugs which block the renin-angiotensin system that may be particularly effective at regressing left ventricular hypertrophy.[78] Dual angiotensin/neprolysin inhibition [79] may also confer benefits by augmenting BNP levels and ameliorate the adverse effects of hypoxic pulmonary vasoconstriction.[80, 81] Anti-platelet drugs might also be beneficial for treating silent coronary artery disease in more severe COPD patients who are oxygen dependent.[42] Pulmonologists have tended to focus on drugs which act on the lung rather than the heart, because of the evidence supporting the former. Perhaps now is time to look at the lungs' next door neighbour in the chest and begin to address the unmet need of cardiac disease in COPD.

## References

1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett D, Bhalla K, Bikbov B, Bin Abdulhak A, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, Burney P, Carapetis J, Chen H, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahodwala N, De Leo D, Degenhardt L, Delossantos A, Denenberg J, Des Jarlais DC, Dharmaratne SD, Dorsey ER, Driscoll T, Duber H, Ebel B, Erwin PJ, Espindola P, Ezzati M, Feigin V, Flaxman AD, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabriel SE, Gakidou E, Gaspari F, Gillum RF, Gonzalez-Medina D, Halasa YA, Haring D, Harrison JE, Havmoeller R, Hay RJ, Hoen B, Hotez PJ, Hoy D, Jacobsen KH, James SL, Jasrasaria R, Jayaraman S, Johns N, Karthikeyan G, Kassebaum N, Keren A, Khoo JP, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lipnick M, Lipshultz SE, Ohno SL, Mabweijano J, MacIntyre MF, Mallinger L, March L, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGrath J, Mensah GA, Merriman TR, Michaud C, Miller M, Miller TR, Mock C, Mocumbi AO, Mokdad AA, Moran A, Mulholland K, Nair MN, Naldi L, Narayan KM, Nasseri K, Norman P, O'Donnell M, Omer SB, Ortblad K, Osborne R, Ozgediz D, Pahari B, Pandian JD, Rivero AP, Padilla RP, Perez-Ruiz F, Perico N, Phillips D, Pierce K, Pope CA, 3rd, Porrini E, Pourmalek F, Raju M, Ranganathan D, Rehm JT, Rein DB, Remuzzi G, Rivara FP, Roberts T, De Leon FR, Rosenfeld LC, Rushton L, Sacco

RL, Salomon JA, Sampson U, Sanman E, Schwebel DC, Segui-Gomez M, Shepard DS, Singh D, Singleton J, Sliwa K, Smith E, Steer A, Taylor JA, Thomas B, Tleyjeh IM, Towbin JA, Truelsen T, Undurraga EA, Venketasubramanian N, Vijayakumar L, Vos T, Wagner GR, Wang M, Wang W, Watt K, Weinstock MA, Weintraub R, Wilkinson JD, Woolf AD, Wulf S, Yeh PH, Yip P, Zabetian A, Zheng ZJ, Lopez AD, Murray CJ, AIMazroa MA, Memish ZA. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012: 380(9859): 2095-2128.
2. Lopez-Campos JL, Ruiz-Ramos M, Soriano JB. Mortality trends in chronic obstructive pulmonary disease in Europe, 1994-2010: a joinpoint regression analysis. Lancet Respir Med 2014: 2(1): 54-62.
3. Guarascio AJ, Ray SM, Finch CK, Self TH. The clinical and economic burden of chronic obstructive pulmonary disease in the USA. Clinicoecon Outcomes Res 2013: 5: 235-245.
4. Ford ES, Murphy LB, Khavjou O, Giles WH, Holt JB, Croft JB. Total and statespecific medical and absenteeism costs of COPD among adults aged $>/=18$ years in the United States for 2010 and projections through 2020. Chest 2015: 147(1): 31-45.
5. Celli BR, Decramer M, Wedzicha JA, Wilson KC, Agusti A, Criner GJ, MacNee W, Make BJ, Rennard SI, Stockley RA, Vogelmeier C, Anzueto A, Au DH, Barnes PJ, Burgel PR, Calverley PM, Casanova C, Clini EM, Cooper CB, Coxson HO, Dusser DJ, Fabbri LM, Fahy B, Ferguson GT, Fisher A, Fletcher MJ, Hayot M, Hurst JR, Jones PW, Mahler DA, Maltais F, Mannino DM, Martinez FJ, Miravitlles M, Meek PM, Papi A, Rabe KF, Roche N, Sciurba FC, Sethi S, Siafakas N, Sin DD, Soriano JB, Stoller JK, Tashkin DP, Troosters T, Verleden GM, Verschakelen J, Vestbo J, Walsh JW, Washko GR, Wise RA, Wouters EF, ZuWallack RL, Research

AETFfC. An official american thoracic society/european respiratory society statement: research questions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2015: 191(7): e4-e27.
6. Bhatt SP, Dransfield MT. Chronic obstructive pulmonary disease and cardiovascular disease. Transl Res 2013: 162(4): 237-251.
7. Hawkins NM, Petrie MC, Jhund PS, Chalmers GW, Dunn FG, McMurray JJ. Heart failure and chronic obstructive pulmonary disease: diagnostic pitfalls and epidemiology. Eur J Heart Fail 2009: 11(2): 130-139.
8. Etminan M, Jafari S, Carleton B, FitzGerald JM. Beta-blocker use and COPD mortality: a systematic review and meta-analysis. BMC Pulm Med 2012: 12: 48. 9. Du Q, Sun Y, Ding N, Lu L, Chen Y. Beta-blockers reduced the risk of mortality and exacerbation in patients with COPD: a meta-analysis of observational studies. PLoS One 2014: 9(11): e113048.
10. Salpeter SR, Ormiston TM, Salpeter EE, Poole PJ, Cates CJ. Cardioselective beta-blockers for chronic obstructive pulmonary disease: a meta-analysis. Respir Med 2003: 97(10): 1094-1101.
11. Freemantle N, Cleland J, Young P, Mason J, Harrison J. beta Blockade after myocardial infarction: systematic review and meta regression analysis. BMJ 1999: 318(7200): 1730-1737.
12. Bangalore S, Steg G, Deedwania P, Crowley K, Eagle KA, Goto S, Ohman EM, Cannon CP, Smith SC, Zeymer U, Hoffman EB, Messerli FH, Bhatt DL, Investigators RR. beta-Blocker use and clinical outcomes in stable outpatients with and without coronary artery disease. JAMA 2012: 308(13): 1340-1349.
13. Williams MC, Murchison JT, Edwards LD, Agusti A, Bakke P, Calverley PM, Celli B, Coxson HO, Crim C, Lomas DA, Miller BE, Rennard S, Silverman EK, Tal-

Singer R, Vestbo J, Wouters E, Yates JC, van Beek EJ, Newby DE, MacNee W, Evaluation of CLtIPSEi. Coronary artery calcification is increased in patients with COPD and associated with increased morbidity and mortality. Thorax 2014: 69(8): 718-723.
14. Patel AR, Donaldson GC, Mackay AJ, Wedzicha JA, Hurst JR. The impact of ischemic heart disease on symptoms, health status, and exacerbations in patients with COPD. Chest 2012: 141(4): 851-857.
15. Patel AR, Kowlessar BS, Donaldson GC, Mackay AJ, Singh R, George SN, Garcha DS, Wedzicha JA, Hurst JR. Cardiovascular risk, myocardial injury, and exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013: 188(9): 1091-1099.
16. McAllister DA, Maclay JD, Mills NL, Leitch A, Reid P, Carruthers R, O'Connor J, McAlpine L, Chalmers G, Newby DE, Clark E, Macfarlane PW, Macnee W. Diagnosis of myocardial infarction following hospitalisation for exacerbation of COPD. Eur Respir J 2012: 39(5): 1097-1103.
17. Cargill RI, Kiely DG, Lipworth BJ. Adverse effects of hypoxaemia on diastolic filling in humans. Clin Sci (Lond) 1995: 89(2): 165-169.
18. Kiely DG, Cargill RI, Grove A, Struthers AD, Lipworth BJ. Abnormal myocardial repolarisation in response to hypoxaemia and fenoterol. Thorax 1995: 50(10): 1062-1066.
19. Kiely DG, Cargill RI, Lipworth BJ. Cardiopulmonary interactions of salbutamol and hypoxaemia in healthy young volunteers. Br J Clin Pharmacol 1995: 40(4): 313318.
20. Newnham DM, Wheeldon NM, Lipworth BJ, McDevitt DG. Single dosing comparison of the relative cardiac beta 1/beta 2 activity of inhaled fenoterol and salbutamol in normal subjects. Thorax 1993: 48(6): 656-658.
21. Chatterjee S, Biondi-Zoccai G, Abbate A, D'Ascenzo F, Castagno D, Van Tassell B, Mukherjee D, Lichstein E. Benefits of beta blockers in patients with heart failure and reduced ejection fraction: network meta-analysis. BMJ 2013: 346: f55.
22. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 1999: 353(9146): 9-13.
23. Packer M, Fowler MB, Roecker EB, Coats AJ, Katus HA, Krum H, Mohacsi P, Rouleau JL, Tendera M, Staiger C, Holcslaw TL, Amann-Zalan I, DeMets DL, Carvedilol Prospective Randomized Cumulative Survival Study G. Effect of carvedilol on the morbidity of patients with severe chronic heart failure: results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation 2002: 106(17): 2194-2199.
24. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 1999: 353(9169): 2001-2007.
25. Hawkins NM, Petrie MC, Macdonald MR, Jhund PS, Fabbri LM, Wikstrand J, McMurray JJ. Heart failure and chronic obstructive pulmonary disease the quandary of Beta-blockers and Beta-agonists. J Am Coll Cardiol 2011: 57(21): 2127-2138.
26. Bavishi C, Chatterjee S, Ather S, Patel D, Messerli FH. Beta-blockers in heart failure with preserved ejection fraction: a meta-analysis. Heart Fail Rev 2015: 20(2): 193-201.
27. Short PM, Anderson WJ, Elder DH, Struthers AD, Lipworth BJ. Impact of Left Ventricular Hypertrophy on Survival in Chronic Obstructive Pulmonary Disease. Lung 2015.
28. Boussuges A, Pinet C, Molenat F, Burnet H, Ambrosi P, Badier M, Sainty JM, Orehek J. Left atrial and ventricular filling in chronic obstructive pulmonary disease. An echocardiographic and Doppler study. Am J Respir Crit Care Med 2000: 162(2 Pt 1): 670-675.
29. Funk GC, Lang I, Schenk P, Valipour A, Hartl S, Burghuber OC. Left ventricular diastolic dysfunction in patients with COPD in the presence and absence of elevated pulmonary arterial pressure. Chest 2008: 133(6): 1354-1359.
30. Butler J, Schrijen F, Henriquez A, Polu JM, Albert RK. Cause of the raised wedge pressure on exercise in chronic obstructive pulmonary disease. Am Rev Respir Dis 1988: 138(2): 350-354.
31. Smith BM, Prince MR, Hoffman EA, Bluemke DA, Liu CY, Rabinowitz D, Hueper K, Parikh MA, Gomes AS, Michos ED, Lima JA, Barr RG. Impaired left ventricular filling in COPD and emphysema: is it the heart or the lungs? The MultiEthnic Study of Atherosclerosis COPD Study. Chest 2013: 144(4): 1143-1151. 32. Cuttica MJ, Colangelo LA, Shah SJ, Lima J, Kishi S, Arynchyn A, Jacobs DR, Jr., Thyagarajan B, Liu K, Lloyd-Jones D, Kalhan R. Loss of Lung Health from Young Adulthood and Cardiac Phenotypes in Middle Age. Am J Respir Crit Care Med 2015: 192(1): 76-85.
33. Alter P, van de Sand K, Nell C, Figiel JH, Greulich T, Vogelmeier CF, Koczulla AR. Airflow limitation in COPD is associated with increased left ventricular wall stress in coincident heart failure. Respir Med 2015.
34. Steer J, Gibson J, Bourke SC. The DECAF Score: predicting hospital mortality in exacerbations of chronic obstructive pulmonary disease. Thorax 2012: 67(11): 970-976.
35. Watz H, Waschki B, Meyer T, Kretschmar G, Kirsten A, Claussen M, Magnussen H. Decreasing cardiac chamber sizes and associated heart dysfunction in COPD: role of hyperinflation. Chest 2010: 138(1): 32-38.
36. Heindl S, Lehnert M, Criee CP, Hasenfuss G, Andreas S. Marked sympathetic activation in patients with chronic respiratory failure. Am J Respir Crit Care Med 2001: 164(4): 597-601.
37. Short PM, Lipworth SI, Elder DH, Schembri S, Lipworth BJ. Effect of beta blockers in treatment of chronic obstructive pulmonary disease: a retrospective cohort study. BMJ 2011: 342: d2549.
38. Dransfield MT, Rowe SM, Johnson JE, Bailey WC, Gerald LB. Use of beta blockers and the risk of death in hospitalised patients with acute exacerbations of COPD. Thorax 2008: 63(4): 301-305.
39. Rutten FH, Zuithoff NP, Hak E, Grobbee DE, Hoes AW. Beta-blockers may reduce mortality and risk of exacerbations in patients with chronic obstructive pulmonary disease. Archives of internal medicine 2010: 170(10): 880-887.
40. Andell P, Erlinge D, Smith JG, Sundstrom J, Lindahl B, James S, Koul S. beta-blocker use and mortality in COPD patients after myocardial infarction: a Swedish nationwide observational study. J Am Heart Assoc 2015: 4(4).
41. Puente-Maestu L, Calle M, Ortega-Gonzalez A, Fuster A, Gonzalez C, Marquez-Martin E, Marcos-Rodriguez PJ, Calero C, Rodriguez-Hermosa JL, Malo de Molina R, Aburto M, Sobradillo P, Alcazar B, Tirado-Conde G, Group G. Multicentric
study on the beta-blocker use and relation with exacerbations in COPD. Respir Med 2014: 108(5): 737-744.
42. Ekstrom MP, Hermansson AB, Strom KE. Effects of cardiovascular drugs on mortality in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013: 187(7): 715-720.
43. Bhatt SP, Wells JM, Kinney GL, Washko GR, Jr., Budoff M, Kim YI, Bailey WC, Nath H, Hokanson JE, Silverman EK, Crapo J, Dransfield MT, Investigators CO. beta-Blockers are associated with a reduction in COPD exacerbations. Thorax 2015. 44. von Haehling S, Schefold JC, Jankowska E, Doehner W, Springer J, Strohschein K, Genth-Zotz S, Volk HD, Poole-Wilson P, Anker SD. Leukocyte redistribution: effects of beta blockers in patients with chronic heart failure. PLoS One 2009: 4(7): e6411.
45. Dunzendorfer S, Wiedermann CJ. Modulation of neutrophil migration and superoxide anion release by metoprolol. J Mol Cell Cardiol 2000: 32(6): 915-924. 46. Garlichs CD, Zhang H, Mugge A, Daniel WG. Beta-blockers reduce the release and synthesis of endothelin-1 in human endothelial cells. Eur J Clin Invest 1999: 29(1): 12-16.
47. Roland M, Bhowmik A, Sapsford RJ, Seemungal TA, Jeffries DJ, Warner TD, Wedzicha JA. Sputum and plasma endothelin-1 levels in exacerbations of chronic obstructive pulmonary disease. Thorax 2001: 56(1): 30-35.
48. Nguyen LP, Omoluabi O, Parra S, Frieske JM, Clement C, Ammar-Aouchiche Z, Ho SB, Ehre C, Kesimer M, Knoll BJ, Tuvim MJ, Dickey BF, Bond RA. Chronic exposure to beta-blockers attenuates inflammation and mucin content in a murine asthma model. Am J Respir Cell Mol Biol 2008: 38(3): 256-262.
49. Short PM, Williamson PA, Anderson WJ, Lipworth BJ. Randomized placebocontrolled trial to evaluate chronic dosing effects of propranolol in asthma. Am J Respir Crit Care Med 2013: 187(12): 1308-1314.
50. Anderson WJ, Short PM, Williamson PA, Manoharan A, Lipworth BJ. The inverse agonist propranolol confers no corticosteroid-sparing activity in mild-tomoderate persistent asthma. Clin Sci (Lond) 2014: 127(11): 635-643.
51. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, Jaarsma T, Kober L, Lip GY, Maggioni AP, Parkhomenko A, Pieske BM, Popescu BA, Ronnevik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F, Zeiher A, Task Force for the D, Treatment of A, Chronic Heart Failure of the European Society of C, Bax JJ, Baumgartner H, Ceconi C, Dean V, Deaton C, Fagard R, FunckBrentano C, Hasdai D, Hoes A, Kirchhof P, Knuuti J, Kolh P, McDonagh T, Moulin C, Popescu BA, Reiner Z, Sechtem U, Sirnes PA, Tendera M, Torbicki A, Vahanian A, Windecker S, McDonagh T, Sechtem U, Bonet LA, Avraamides P, Ben Lamin HA, Brignole M, Coca A, Cowburn P, Dargie H, Elliott P, Flachskampf FA, Guida GF, Hardman S, lung B, Merkely B, Mueller C, Nanas JN, Nielsen OW, Orn S, Parissis JT, Ponikowski P, Guidelines ESCCfP. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2012: 14(8): 803-869.
52. Vestbo J, Hurd SS, Agusti AG, Jones PW, Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ, Nishimura M, Stockley RA, Sin DD, Rodriguez-Roisin R. Global strategy for the diagnosis, management, and prevention of chronic
obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 2013: 187(4): 347-365.
53. Quint JK, Herrett E, Bhaskaran K, Timmis A, Hemingway H, Wedzicha JA, Smeeth L. Effect of beta blockers on mortality after myocardial infarction in adults with COPD: population based cohort study of UK electronic healthcare records. BMJ 2013: 347: f6650.
54. Egred M, Shaw S, Mohammad B, Waitt P, Rodrigues E. Under-use of betablockers in patients with ischaemic heart disease and concomitant chronic obstructive pulmonary disease. QJM 2005: 98(7): 493-497.
55. Chen J, Radford MJ, Wang Y, Marciniak TA, Krumholz HM. Effectiveness of beta-blocker therapy after acute myocardial infarction in elderly patients with chronic obstructive pulmonary disease or asthma. J Am Coll Cardiol 2001: 37(7): 1950-1956.
56. Tavazzi L, Swedberg K, Komajda M, Bohm M, Borer JS, Lainscak M, Robertson M, Ford I, Investigators S. Clinical profiles and outcomes in patients with chronic heart failure and chronic obstructive pulmonary disease: an efficacy and safety analysis of SHIFT study. Int J Cardiol 2013: 170(2): 182-188.
57. Lipworth BJ, Williamson PA. Think the impossible: beta-blockers for treating asthma. Clin Sci (Lond) 2010: 118(2): 115-120.
58. Short PM, Anderson WJ, Williamson PA, Lipworth BJ. Effects of intravenous and oral beta-blockade in persistent asthmatics controlled on inhaled corticosteroids. Heart 2014: 100(3): 219-223.
59. Lipworth BJ, Irvine NA, McDevitt DG. A dose-ranging study to evaluate the beta 1-adrenoceptor selectivity of bisoprolol. Eur J Clin Pharmacol 1991: 40(2): 135139.
60. Hawkins NM, MacDonald MR, Petrie MC, Chalmers GW, Carter R, Dunn FG, McMurray JJ. Bisoprolol in patients with heart failure and moderate to severe chronic obstructive pulmonary disease: a randomized controlled trial. Eur J Heart Fail 2009: 11(7): 684-690.
61. Mainguy V, Girard D, Maltais F, Saey D, Milot J, Senechal M, Poirier P, Provencher S. Effect of bisoprolol on respiratory function and exercise capacity in chronic obstructive pulmonary disease. Am J Cardiol 2012: 110(2): 258-263.
62. Thirapatarapong W, Armstrong HF, Bartels MN. Exercise capacity and ventilatory response during exercise in COPD patients with and without beta blockade. Lung 2013: 191(5): 531-536.
63. Poole-Wilson PA, Swedberg K, Cleland JG, Di Lenarda A, Hanrath P, Komajda M, Lubsen J, Lutiger B, Metra M, Remme WJ, Torp-Pedersen C, Scherhag A, Skene A, Carvedilol Or Metoprolol European Trial I. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 2003: 362(9377): 7-13.
64. Baker JG. The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors. Br J Pharmacol 2005: 144(3): 317-322.
65. Jabbour A, Macdonald PS, Keogh AM, Kotlyar E, Mellemkjaer S, Coleman CF, Elsik M, Krum H, Hayward CS. Differences between beta-blockers in patients with chronic heart failure and chronic obstructive pulmonary disease: a randomized crossover trial. J Am Coll Cardiol 2010: 55(17): 1780-1787.
66. Lainscak M, Podbregar M, Kovacic D, Rozman J, von Haehling S. Differences between bisoprolol and carvedilol in patients with chronic heart failure and chronic
obstructive pulmonary disease: a randomized trial. Respir Med 2011: 105 Suppl 1:
S44-49.
67. van der Woude HJ, Zaagsma J, Postma DS, Winter TH, van Hulst M, Aalbers R. Detrimental effects of beta-blockers in COPD: a concern for nonselective betablockers. Chest 2005: 127(3): 818-824.
68. Bundkirchen A, Brixius K, Bolck B, Nguyen Q, Schwinger RH. Beta 1adrenoceptor selectivity of nebivolol and bisoprolol. A comparison of [3H]CGP 12.177 and [125I]iodocyanopindolol binding studies. Eur J Pharmacol 2003: 460(1): 19-26.
69. Nuttall SL, Routledge HC, Kendall MJ. A comparison of the beta1-selectivity of three beta1-selective beta-blockers. J Clin Pharm Ther 2003: 28(3): 179-186. 70. Wheeldon NM, McDevitt DG, Lipworth BJ. Selectivity of antagonist and partial agonist activity of celiprolol in normal subjects. Br J Clin Pharmacol 1992: 34(4): 337343.
71. Kamp O, Metra M, Bugatti S, Bettari L, Dei Cas A, Petrini N, Dei Cas L. Nebivolol: haemodynamic effects and clinical significance of combined betablockade and nitric oxide release. Drugs 2010: 70(1): 41-56.
72. Mentz RJ, Wojdyla D, Fiuzat M, Chiswell K, Fonarow GC, O'Connor CM. Association of beta-blocker use and selectivity with outcomes in patients with heart failure and chronic obstructive pulmonary disease (from OPTIMIZE-HF). Am J Cardiol 2013: 111(4): 582-587.
73. DiNicolantonio JJ, Fares H, Niazi AK, Chatterjee S, D'Ascenzo F, Cerrato E, Biondi-Zoccai G, Lavie CJ, Bell DS, O'Keefe JH. beta-Blockers in hypertension, diabetes, heart failure and acute myocardial infarction: a review of the literature. Open Heart 2015: 2(1): e000230.
74. Swedberg K, Komajda M, Bohm M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L, Investigators S. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 2010: 376(9744): 875-885.
75. Anderson WJ, Short PM, Manoharan A, Lipworth JL, Lipworth BJ. Influence of beta2-adrenoceptor 16 genotype on propranolol-induced bronchoconstriction in patients with persistent asthma. Ann Allergy Asthma Immunol 2014: 112(5): 475476.
76. Lanfear DE, Jones PG, Marsh S, Cresci S, McLeod HL, Spertus JA. Beta2adrenergic receptor genotype and survival among patients receiving beta-blocker therapy after an acute coronary syndrome. Jama 2005: 294(12): 1526-1533.
77. Sehnert AJ, Daniels SE, Elashoff M, Wingrove JA, Burrow CR, Horne B, Muhlestein JB, Donahue M, Liggett SB, Anderson JL, Kraus WE. Lack of association between adrenergic receptor genotypes and survival in heart failure patients treated with carvedilol or metoprolol. J Am Coll Cardiol 2008: 52(8): 644-651.
78. Pitt B, Reichek N, Willenbrock R, Zannad F, Phillips RA, Roniker B, Kleiman J, Krause S, Burns D, Williams GH. Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study. Circulation 2003: 108(15): 1831-1838.
79. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR, Investigators P-H, Committees. Angiotensin-neprilysin inhibition versus enalapril in heart failure. $N$ Engl J Med 2014: 371(11): 993-1004.
80. Cargill RI, Lipworth BJ. Acute effects of ANP and BNP on hypoxic pulmonary vasoconstriction in humans. Br J Clin Pharmacol 1995: 40(6): 585-590.
81. Cargill RI, Lipworth BJ. Atrial natriuretic peptide and brain natriuretic peptide in cor pulmonale. Hemodynamic and endocrine effects. Chest 1996: 110(5): 12201225.

## Potential cardiac targets for beta-blockers in COPD (Box 1)

- Improved left ventricular systolic and diastolic function
- Reduced left ventricular dilatation
- Protection against myocardial ischemia
- Reduced left ventricular mass
- Reduced heart rate
- Anti-arrhythmic effects
- Inhibition of myocyte apoptosis
- Protection against hypoxic sympathetic drive
- Protection against adverse effects of beta-agonists

Potential non-cardiac targets for beta-blockers in COPD

- Inhibition of endothelin-1 release
- Reduction in circulating pro-inflammatory cytokines
- Inhibition of neutrophil chemotaxis and respiratory burst
- Reduction in Goblet cell number and mucus release


## Prescribing of beta-blockers in COPD for cardiovascular disease (Box 2)

- Beta-1 selective antagonists including metoprolol, bisoprolol and nebivolol exhibit dose related beta-2 receptor blockade
- Carvedilol is a non-selective beta-antagonist which is more likely to cause bronchoconstriction than beta-1 selective antagonists
- Slowly titrate the dose of beta-blockers at 1-2 weekly intervals up to the usual maintenance dose
- Monitor supine and erect blood pressure, heart rate and spirometry during dose titration
- Concomitant long-acting muscarinic antagonists may obviate potential bronchoconstriction
- Symptomatic bradycardia may occur if beta-blockers are used with other rate limiting drugs such as calcium blockers (e.g. verapamil, diltiazem), ivabradine or anti-arrhythmic agents (e.g. digoxin, amiodarone, flecainide)
- Symptomatic hypotension may occur when beta-blockers are used with other vasodilator drugs (e.g. angiotensin converting enzyme inhibitors, angiotensin receptor blockers, calcium channel blockers, alpha receptor blockers)


## Key messages (Box 3)

- Cardiovascular comorbidity, including coronary artery disease and heart failure, commonly coexists in COPD due to the effects of smoking, systemic inflammation, hypoxaemia and other shared risks.
- COPD may also be associated with impaired diastolic filling due to lung hyperinflation, which may be compounded by the negative lusitropic effects of hypoxaemia and left ventricular hypertrophy.
- The main indications for beta blockers in patients with COPD are post myocardial infarction and heart failure with reduced ejection fraction. Despite clear evidence beta-blockers improve outcomes in these COPD patients they remain significantly underused due to concerns about adverse respiratory effects, even with beta-1 selective antagonists.
- Meta-analyses of retrospective studies with beta-blockers in COPD have shown pooled estimates for reductions in mortality of $28 \%$ and exacerbations of $38 \%$.
- Initiating treatment with beta-blockers requires careful dose titration and monitoring. This may be particularly relevant for patients with COPD who are often older and have other comorbidities that increase the risk of intolerance.
- Beta-1 selective antagonists such as bisoprolol, nebivolol and metoprolol are preferred to the non-selective carvedilol as they are less likely to produce bronchoconstriction in COPD.
- Long acting muscarinic antagonists, which are commonly used in COPD protect against the potential for bronchoconstriction due to dose related beta-2 receptor antagonism.
- The key unanswered question is whether beta-blockers may confer benefits on mortality and exacerbations in all patients with COPD including those with silent cardiovascular disease.

Page 63 of 6

## Cardio-pulmonary interactions in COPD



LA $\uparrow$ left atrial dilatation, LV $\downarrow$ : reduced LV filling LVH: left ventricular hypertrophy CAD: coronary artery disease, PoHT: pulmonary hypertension, RV $\downarrow$ :reduced right ventricular filling RVH: right ventricular hypertrophy

