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Abstract

In this study a new two degrees-of-freedom wake oscillator model is proposed to describe vortex-induced

vibrations of elastically supported cylinders capable of moving in cross-flow and in-line directions. Total

hydrodynamic force acting on the cylinder is obtained here as a sum of lift and drag forces, which are defined

as being proportional to the square of the magnitude of the relative flow velocity around the cylinder. The

two van der Pol type oscillators are then used to model fluctuating drag and lift coefficients. As the relative

velocity around the cylinder depends both on the fluid flow velocity and the velocity of the cylinder, the

equations of motions of the cylinder in cross-flow and in-line directions become coupled through the fluid

forces. It is shown that such approximation of the fluid forces allows to obtain the well known low dimensional

models in the limit case, and the model proposed by Facchinetti et al. [1] to describe the cross-flow vibrations

is used as an example. Experimental data and Computational Fluid Dynamics (CFD) results are used to

calibrate the proposed model and to verify the obtained predictions of complex fluid-structure interactions

for different mass ratios. A number of phenomena such as the ”super-upper” branch, exclusive for a two

degrees-of-freedom motion at low mass ratios, are observed. Influence of the empirical parameters of the

wake oscillators equations and fluid forces coefficients on the response is also discussed.

1. INTRODUCTION

Slender marine structures such as risers, mooring cables, umbilicals and tethers play crucial roles in

global offshore exploration, installation and production activities. As offshore oil and gas fields are moving

into deeper waters, the nonlinearities in the system and the fluid-structure interaction phenomena such as

vortex induced vibrations (VIVs) become more and more important. Many of VIV aspects are far from

being understood and advanced modelling is required to investigate the impact of the phenomenon which

significantly affects the service life of marine structures.

This work is motivated by the need of industry in effective toolkit that would allow predicting loads and

fatigue damage on riser systems, especially most common Top Tensioned Risers (TTRs) and Steel Catenary

Risers (SCRs), which represent a crucial part of offshore facilities. Accurate prediction of VIVs can help to

produce more robust structural design and lead to substantial savings in the offshore applications.

The problem of vortex-induced vibrations is addressed by different approaches, which can be roughly

categorized into one of the three major groups: experiments, computational fluid dynamics and analytical
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Figure 1: Wake oscillator model for the cylinder moving in transversal direction only (adopted from [1]).

models. Analytical VIV models are represented by numerous approaches to modelling both the structure

and fluid, with some of them incorporating a van der Pol type equation as the governing equation for the

fluid force acting on the structure. In present work, we focus on this type of analytical models, known as

wake oscillator models.

The nature of the vortex shedding process behind cylindrical structure suggests that the forces acting on

the structure from the fluid can be modelled by a nonlinear, self-excited oscillator called the wake oscillator.

This idea was first proposed by Bishop and Hassan [2] and then investigated by Skop and Griffin [3], and

Blevins and Iwan [4]. In wake oscillator models the system is usually described by two coupled ordinary

differential equations. One of the equations is the equation of transversal motion of the rigid cylinder. The

second equation is a semi-empirical description of fluid: the nonlinear self-excited fluid oscillator. A number

of wake oscillator models were developed and applied to slender flexible structures undergoing VIV.

The Balasubramanian and Skop model [5] proposed in 1997 included a van der Pol equation driven by

the local transverse motion of the cylinder as a governing equation for one component of the fluctuating lift

force and a so-called stall term which is linearly proportional to the local transverse velocity of the cylinder

and responsible for energy dissipation associated with motion of the cylinder in the fluid. Because of the stall

term they were able to capture an asymptotic, self-limiting structural response at zero structural damping.

The original form of van der Pol equation has also been reinterpreted by Krenk and Nielsen [6], Mureithi et

al. [7], Plaschko [8], and Skop and Luo [9] among others.

A critical analysis on this class of low dimensional models in terms of the fundamental behaviour has

been done by Facchinetti et al. [1] by considering transverse VIV of a single degree-of-freedom structure in

stationary uniform flow (see Fig. 1). Three different types of coupling between structural and wake equations

have been examined: via displacement, velocity, and acceleration. It was shown that the acceleration coupling

provides the best match to the experimental data.

The semi-empirical approach to vortex-induced vibrations has been further studied in the work by Keber

and Wiercigroch [10]. The effect of a weak structural nonlinearity on the dynamical behaviour of a vertical

offshore riser undergoing VIVs was investigated, and the authors demonstrated that the structural nonlinear-
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ity has a stiffening effect on the oscillation of the riser, which becomes more pronounced when the internal

flow is incorporated into the model. It was shown that additional nonlinearities in the structure affects

the system significantly, and thus, for the further insight, it is important to investigate new approaches to

modelling the fluid.

The new type of wake oscillator based on the Facchinetti model [1] with frequency dependent coupling

was proposed by Ognik and Metrikine [11], where an attempt has been made to introduce a wake oscillator

model that conforms to both the free and forced vibration experiments. Frequency dependent coupling in

this case allows reproduction of the measured frequency dependence of the fluid force on the cylinder. For

the time domain representation of such coupling a convolutional integral is used.

All models described so far focussed on the transversal vibrations of the structure. However the exper-

imental investigations show that the in-line vibrations also play significant role (especially at the low mass

ratios), and some attempts to develop 2DOF wake oscillator model were made, where two wake equations

are used for in-line and cross-flow directions, see, for example, [12, 13, 14]. Ge et al. [12] proposed a two

degrees-of-freedom wake oscillator model based on the approach by Wang et al. [15], which comes from

considerations that the lift and drag forces do not coincide with X and Y axes (shown in Fig. 1), but act

under a particular angle that indicates the direction of the cylinders instantaneous velocity. Thus, a simple

force decomposition can be performed and the forces acting in X and Y directions estimated. Srinil and

Zanganeh [13] adapted the same principle in evaluating the fluid forces but also introduced additional ge-

ometrical nonlinearities to the cylinder elastic support. These nonlinearities are included in the model by

using so-called coupled Duffing oscillators, previously investigated by Raj and Rajasekar in 1997 [16]. Nu-

merical results were tuned against existing experimental data on two degrees-of-freedom cylinders obtained

by several independent researchers. In particular, results used for comparison were obtained by Jauvtis

and Williamson in 2004 [17], who investigated the behaviour of low mass ratio cylinders and discovered the

so-called ”super-upper” branch of the response; by Stappenbelt et al. in 2007 [18], who examined behaviour

of low mass ratio cylinders at very low damping ratio ζ = 0.006; and by Blevins and Coughran in 2009

[19], who carried on investigations on the effect of damping, varying ζ from 0.002 to 0.4 at a fixed mass

ratio. The numerical results obtained by Srinil and Zanganeh demonstrated reasonable correspondence with

experiments by relying on additional structural nonlinearites instead of nonlinearities provided by the fluid.

Another two degree-of-feedom wake oscillator model called VIVTAS was proposed by Furnes et al. [14] for

a free span pipeline undergoing VIV. In their approach they used a complex, rather than a vector, repre-

sentation of the total hydrodynamic force, with one equation of motion for the structure and two nonlinear

wake oscillators for real and imaginary parts of the fluid force. Preliminary model validation was performed

using Marintek experimental data. In the work by Xu Bai and Wei Qin in 2014 [20], another wake oscillator

model was proposed for two degrees-of-freedom VIV of elastically supported cylinder where a displacement

variable related to the vortex strength was introduced. Two-dimensional potential flow approach was used

in the study, with fluctuating fluid forces acting on the cylinder simplified and quantified.

Despite of recent development of these semi-empirical models focused on 2DOF motion, more work is

still required to be done in the area. Many of the empirical parameters used in the existing models are

evaluated using experimental studies on the stationary cylinders, where the fluid force acting on the cylinder
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is estimated using the velocity of the fluid flow. When the cylinder is elastically supported and is allowed

to move in the fluid flow, the force acting on the cylinder will depend on the relative velocity of the flow

around the cylinder as suggested by [21] and later by [11]. However, no existing 2DOF wake oscillator model

incorporates this dependence and therefore in this paper we propose a new wake oscillator model which will

fill this gap.

The rest of the paper is organised as follows. In the next section the new wake oscillator model is

introduced and equations of motion are developed. The fluid forces are calculated using the relative velocity

of the flow around the cylinder and oscillating lift and drag coefficients described by two van der Pol

equations. Here it is shown how the damping associated with the cylinder motion in the fluid is derived from

the suggested form of the fluid forces and how the proposed model could be reduced to the known model

by Facchinetti [1] in the limit case where only transversal vibrations of the cylinder are considered. In the

following section, the model is calibrated using first the published experimental data [18, 19, 22] and then with

our Computational Fluid Dynamics (CFD) results. The CFD model used for calculations is introduced and

the results for transversal vibrations and combined transversal and in-line vibrations are used for comparison

with the proposed wake oscillator model predictions. Special attention is paid to the empirical coefficients

of the wake oscillators equations and their influence on the system response is investigated. Finally, some

concluding remarks are given.

2. Two degrees-of-freedom wake oscillator model

In this work we consider an elastically supported cylinder experiencing VIV, that is free to vibrate in

cross-flow and in-line directions. As mentioned in [23], for a cylinder capable of oscillating in both directions,

the equations of motion on an XY plane in terms of the displacements in in-line and cross-flow directions,

x and y, are

m?ẍ+ rsẋ+ hx = FX , (1)

m?ÿ + rsẏ + hy = FY , (2)

where the total hydrodynamic force components in X and Y directions are FX and FY . Here m? is mass

per unit length including an added mass m? = ms + 1
4πCMρfD

2, rs is structural damping, and h is stiffness

of the support.

This total hydrodynamic force, ~F = FX~i+FY~j, is the result of the actions of the sectional vortex-induced

drag ~FD and lift ~FL forces which are shown in Fig. 2. As can be seen from this figure, the drag force ~FD is

acting along the velocity, ~UR = ~U − ~V which is the fluid velocity relative to the cylinder [21] (~V is velocity

of the cylinder and ~U = U~i is the velocity of the flow). The lift force ~FL is then acting in the perpendicular

directions and the magnitudes of lift and drag forces depends on the magnitude of relative velocity ~UR as

[24]

~FD =
1

2
ρfCDD|~UR|2

~UR

|~UR|
, (3)

~FL =
1

2
ρfCLD|~UR|2 R ·

~UR

|~UR|
. (4)
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Figure 2: Forces on a vibrating cylinder with instantaneous velocity ~V in the flow of velocity ~U . Drag force ~FD acts in line

with relative stream velocity ~UR.

Here to determine the direction of the lift force, the rotation tensor R = R
(
π
2 ,
~k
)

is used, which rotates the

relative velocity vector in counterclockwise direction for 90◦ around axis ~k. Using Rodrigues formulation,

the rotation tensor can be written as

R
(π

2
,~k
)

= cos
(π

2

)(
I− ~k ⊗ ~k

)
+ sin

(π
2

)
~k × I + ~k ⊗ ~k =

= ~j ⊗~i−~i⊗~j + ~k ⊗ ~k, (5)

where I =~i⊗~i+~j ⊗~j + ~k ⊗ ~k is the unit tensor. Substituting ~UR = (U − ẋ)~i− ẏ~j into Eqn.(4), we obtain

~FL =
1

2
ρfCLD|~UR|2

ẏ ~i+ (U − ẋ)~j

|~UR|
. (6)

Here the other parameters are ρf , the fluid density, CL, lift coefficient, and CD, total drag, which can be

represented as a sum of constant mean sectional drag CD0
and fluctuating drag, CflD

CD = CD0 + CflD . (7)

To determine the values of total hydrodynamic force components FX and FY , the sum of lift and total

drag forces ~F = ~FL + ~FD should be projected on the appropriate axis (see Fig. 2) and therefore we have

FX = (~FL + ~FD) ·~i, (8)

FY = (~FL + ~FD) ·~j, (9)
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where ~FL and ~FD are given by Eqs.(3) and (6), and thus the projections of total hydrodynamic force ~F are

FX =
(1

2
ρfCLD|~UR|

(
ẏ~i+ (U − ẋ)~j

)
+

1

2
ρfCDD|~UR|

(
(U − ẋ)~i− ẏ~j

))
·~i

=
1

2
ρfCLD|~UR|ẏ +

1

2
ρfCDD|~UR|(U − ẋ), (10)

FY =
(1

2
ρfCLD|~UR|

(
ẏ~i+ (U − ẋ)~j

)
+

1

2
ρfCDD|~UR|

(
(U − ẋ)~iẏ~j

))
·~j

=
1

2
ρfCLD|~UR|(U − ẋ)− 1

2
ρfCDD|~UR|ẏ. (11)

In general, Eqs.(10)–(11) provide the values of the fluid forces acting on the cylinder in X and Y directions

and these forces should be substituted in the Eqs.(1)–(2) and solved together with wake equations Eqs.(14)–

(15). By combining Eqs.(1)–(2) with Eqs.(10)–(11) we arrive with the system of equations describing motion

of the cylinder

m?ẍ+ rsẋ+ hx =
1

2
ρfCLD|~UR|ẏ +

1

2
ρfCDD|~UR|(U − ẋ), (12)

m?ÿ + rsẏ + hy =
1

2
ρfCLD|~UR|(U − ẋ)− 1

2
ρfCDD|~UR|ẏ, (13)

with |~UR| =
√

(U − ẋ)2 + ẏ2.

Following the approach employing nonlinear oscillator equations of the van der Pol type [2] [3] [24], the

fluctuating lift CL and drag CflD coefficients could be modeled by two wake oscillators using q and w variables

(q = 2CL/CL0 and w = 2CflD /C
fl
D0

)

ẅ + 2εxΩF (w2 − 1)ẇ + 4Ω2
Fw = Sx, (14)

q̈ + εyΩF (q2 − 1)q̇ + Ω2
F q = Sy, (15)

where εx and εy are van der Pol parameters, ΩF = 2πSt(U/D) is the frequency of vortex shedding and St is

the Strouhal number, and Sx and Sy are components of total structural force ~FS = Sx~i+Sy~j coupling wake

equations with equations of cylinder motions, and CL0 and CflD0
are lift and fluctuating drag coefficients on

a stationary cylinder. For in-line vibrations, the frequency doubling is introduced to reflect an experimen-

tally observed phenomenon often mentioned in the literature, e.g. [25]. In next sections of this work this

phenomenon will be discussed further using the CFD approach. Here the acceleration coupling is adopted

as proposed by Facchinetti et al. [1], and therefore the Sx and Sy components are

Sx = (Ax/D)ẍ, (16)

Sy = (Ay/D)ÿ. (17)

As mentioned earlier, it was demonstrated by Facchinetti et al. [1] that this type of coupling, in comparison

to displacement coupling and velocity coupling, provides best results when compared to experimental data.

Specifically, acceleration coupling captures lock-in domains at low mass ratios with better accuracy than the

other two types of coupling.

The developed equations of motion describe the vibrations of the cylinder in the fluid flow. However, a

careful calibration of the model is required and specifically empirical wake oscillators equations parameters

Ax, Ay, εx and εy need to be found. In case of a single degree-of-freedom system, numerical results by
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Figure 3: (a) Wake lift and (b) drag time histories, and (c) 2D cylinder trajectory for m∗ = 1.275 at Ured = 6.68. CD0 =

1.2, Cfl
D0

= 0.2, CL0
= 0.3, Ax = Ay = 12, εx = εy = 0.3.
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1.2, Cfl
D0

= 0.2, CL0
= 0.3, Ax = Ay = 12, εx = εy = 0.3.

Facchinetti [1] where fitted against experimental data, with Ay and εy estimated as 12 and 0.3 respectively.

However, further investigation and calibration for 2DOF models are essential and will be discussed in the

Section 3. It should be noted that in general these coefficients may be a function of various parameters of

the system such as mass ratio, damping ratio, reduced velocity, added mass coefficient, Reynolds number,

etc.

Before the model calibration is discussed, the model equations will be transformed in the non-dimensional

form, and then the approximations of the fluid forces for small cylinder velocity and limit case of the

transversal vibrations only will be discussed in the following subsections.

2.1. Full two degrees-of-freedom wake oscillator model in a non-dimensional form

The proposed full two degrees-of-freedom wake oscillator model in non-dimensional form is described by

the following four second order coupled nonlinear differential equations

x̃′′ + 2ζx̃′ + x̃ = 8π2St2
√(Ured

2π
− x̃′

)2
+ ỹ′2

(1

2
MLqỹ

′

+ (MD +
1

2
Mfl
D w)

(Ured
2π
− x̃′

))
, (18)

ỹ′′ + 2ζỹ′ + ỹ = 8π2St2
√(Ured

2π
− x̃′

)2
+ ỹ′2

(1

2
MLq

(Ured
2π
− x̃′

)
− (MD +

1

2
Mfl
D w)ỹ′

)
, (19)
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w′′ + 2εxΩ(w2 − 1)w′ + 4Ω2w = Axx̃
′′, (20)

q′′ + εyΩ(q2 − 1)q′ + Ω2q = Ay ỹ
′′, (21)

where prime denotes differentiation with respect to non-dimensional time τ and the following variables and

system parameters are introduced

τ = ωnt, x̃ = x/D, ỹ = y/D,

ωn =
√
h/m?, ζ = rs/(2ωnm

?), Ω = ΩF /ωn, Ured = 2πU/(ωnD),

µ = (ms +
1

4
πCMρfD

2)/ρfD
2, ML = CL0/16π2St2µ, MD = CD0/16π2St2µ, Mfl

D = CflD0
/16π2St2µ,

where µ is mass ratio in Facchinetti notation [1]. The first two equations describe the dynamics of the

structure whilst the remaining two mimic the forces acting from the fluid. The relation between mass ratios

in Williamson [26] and Facchinetti [1] notations, m∗ and µ correspondingly, is described by

m∗ = 4µ/π − CM . (22)

Figs. 3 and 4 present two examples of system response calculated using this model for Ured = 6.68 and

Ured = 8.01, respectively. Parts (a) and (b) show the lift and drag coefficient time histories and parts (c)

demonstrate 2D cylinder trajectories computed for m∗ = 1.275. In this case the wake oscillators coefficients

are chosen to be the same as in [1] for 1D case, i.e. Ax = Ay = 12 and εx = εy = 0.3.

2.2. Approximate two degrees-of-freedom wake oscillator model

In order to compare the proposed model with the models available in the literature we will use some

commonly accepted assumptions. Assuming that the horizontal and vertical velocities of the cylinder, ẋ and

ẏ, are smaller than the magnitude of the flow velocity U = |~U | [15], and introducing notation UR = |~UR|,
we can approximate the value of the relative velocity using the following expansion

UR =
√

(U − ẋ)2 + ẏ2 = U

√(
1− ẋ

U

)2

+

(
ẏ

U

)2

≈ U
(

1− ẋ

U
+

1

2

ẏ2

U2

)
. (23)

Substituting UR into the equations for FX and FY we obtain

FX =
1

2
ρfCLDU

(
ẏ − ẋẏ

U

)
+

1

2
ρfCDDU

(
U − 2ẋ+

ẏ2

2U
+
ẋ2

U

)
, (24)

FY =
1

2
ρfCLDU

(
U − 2ẋ+

ẏ2

2U
+
ẋ2

U

)
− 1

2
ρfCDDU

(
ẏ − ẋẏ

U

)
. (25)

Now we can substitute ẋ = ε ˙̄x, ẏ = ε ˙̄y, CL = εC̄L, CflD = εC̄flD , where ˙̄x, ˙̄y, C̄L, C̄flD are no longer small,

and rewrite expressions for forcing terms as follows

FX =
1

2
ρfD

(
CD0

U2 + ε
(
C̄flDU

2 − 2CD0
U ˙̄x
)

+ ε2
(
C̄LU ˙̄y +

1

2
CD0

˙̄y2 + CD0
˙̄x2 − 2C̄flDU ˙̄x

)
+ ε3

(1

2
C̄flD ˙̄y2 + C̄flD ˙̄x2 − C̄L ˙̄x ˙̄y

))
, (26)

FY =
1

2
ρfD

(
ε
(
C̄LU

2 − CD0
U ˙̄y
)

+ ε2
(
CD0

˙̄x ˙̄y − C̄flDU ˙̄y − 2C̄LU ˙̄x
)

+ ε3
(1

2
C̄L ˙̄y2 + C̄L ˙̄x2 + C̄flD ˙̄x ˙̄y

))
. (27)
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Analysing the obtained equations, we can see that that the largest force acting on the cylinder is the constant

horizontal force 1
2ρfDCD0

U2 associated with the constant mean sectional component of the drag. It is also

clear from these equations that there are forces of the same magnitude of order of ε acting in both horizontal

and vertical direction.

It can be noted that equations of motion contain a number of nonlinear terms, and terms ρfDUCD0 ẋ and

1
2ρfDUCD0 ẏ representing damping from the fluid in in-line and cross-flow equations of motion correspond-

ingly. For in-line equation of motion this damping coefficient is of a double magnitude in comparison to the

one in cross-flow equation, which is an interesting feature of the proposed model, not previously captured

by existing two degrees-of-freedom models [15, 13].

As can be seen from Eqs. (10)–(11) and also Eqs. (26)–(27), components of the total hydrodynamic

force on the cylinder, containing contributions from both the lift and drag, form the right hand side of the

cylinder equations representing the motion in XY plane. By omitting all terms with the order of ε3 in Eqs.

(26)–(27), motion equations for this model can be written as

m?ẍ + rsẋ+ hx =
1

2
ρfDU

2CD0
+

1

4
ρfDU

2CflD0
w − ρfDUCD0

ẋ

+
1

4
ρfDUCL0

qẏ +
1

4
ρfDCD0

ẏ2 +
1

2
ρfDCD0

ẋ2 − 1

2
ρfDUC

fl
D0
wẋ, (28)

m?ÿ + rsẏ + hy =
1

4
ρfDU

2CL0
q − 1

2
ρfDUCD0

ẏ +
1

2
ρfDCD0

ẋẏ

− 1

4
ρfDUC

fl
D0
wẏ − 1

2
ρfDUCL0

qẋ, (29)

with wake equations as follows

ẅ + 2ΩF εx(w2 − 1)ẇ + 4Ω2
Fw = (Ax/D)ẍ, (30)

q̈ + εyΩF (q2 − 1)q̇ + Ω2
F q = (Ay/D)ÿ. (31)

If the motion of the cylinder in vertical (in-line) direction is omitted (ẋ = 0) and the fluctuating drag is

ignored, keeping only terms of order of ε we can obtain one degree-of-freedom wake oscillator equation which

is widely used (see for example [1]) with FY including the wake force term and the stall term (damping

associated with the fluid motion)

FY =
1

2
ρfCLDU

2 − 1

2
ρfCD0DUẏ, (32)

where CL = CL0q/2 and CL0 is usually taken as 0.3. Then one degree-of-freedom wake oscillator model will

look as follows

(ms +
1

4
πCMρfD

2)ÿ + rsẏ + hy =
1

4
ρfDU

2CL0
q − 1

2
ρfDUCD0

ẏ, (33)

q̈ + εyΩF (q2 − 1)q̇ + Ω2
F q = (Ay/D)ÿ. (34)

The analysis presented in this sub-section demonstrates that by using widely accepted assumption of the

small velocity of the cylinder, the proposed model could be reduced to the existing models in the limit case

of transversal vibrations only, naturally obtaining both well-known fluid force damping term (e.g. stall term)

and the appropriate lift force term.

In the next section, the calibration of the model will be considered and the responses obtained using the

new model will be compared with published experimental data and also with results of the CFD analysis.
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Figure 6: Resonance curves (dependence of response amplitude on the reduced velocity). New 2DOF wake oscillator model

compared to experimental data by Stappenbelt et al. [18]. m∗ = 2.36, ζ = 0.006. Wake parameters are Ay = 5, Ax = 12,

εy = 0.0008, εx = 0.3. Reference fluid force parameters are CD0 = 1.75, CL0 = 0.3, Cfl
D0

= 0.2. (a) Cross-flow response; (b)

In-line response.

3. MODEL CALIBRATION USING CFD AND EXPERIMENTAL RESULTS

3.1. Calibration based on experimental data

First, the published experimental results are utilised to calibrate the proposed wake oscillator model.

Three sets of experimental data were considered, and comparisons are made for different mass-damping

ratio parameters. As observed by Jauvtis and Williamson in experiments carried out in 2004 [17], an

additional branch of response appears at m∗ < 6. As low mass ratios are of a particular interest in two

degrees-of-freedom case, two sets of data are chosen to specifically capture the ”super-upper” branch, at

m∗ = 2.36 by Stappenbelt et al. [18] and m∗ = 2.6 by Jauvtis and Williamson [17, 22].

Figure 5 presents the amplitude of the transversal vibrations as function of the flow velocity (Ured =

2πU/(Dωn)). The amplitude of transversal vibration is calculated as a maximum value of cylinder dis-

placement at a given value of Ured. Here the system responses are calculated using the proposed model

for different values of the drag coefficient CD0
in part (a) and different values of wake oscillator coefficients

εy in part (b). In general, choosing the wake oscillator parameters is a challenging task and in the future
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Figure 7: Resonance curves (dependence of response amplitude on the reduced velocity). New 2DOF wake oscillator model

compared to experimental data by Jauvtis and Williamson [22]. m∗ = 2.6, ζ = 0.0036. Wake parameters are Ay = 5, Ax = 12,

εx = 0.3. Reference fluid force parameters are CL0 = 0.3, Cfl
D0

= 0.2. (a) Influence of mean sectional drag CD0 , εy = 0.008;

(b) Influence of wake parameter εy at CD0 = 2.0

this could be done using comprehensive optimisation procedure. However, some preliminary tuning of the

parameters can be done without it, and the results are shown in Fig. 5 where amplitudes evaluated using

the tuned wake oscillator model are compared to experimental data by Stappenbelt et al. [18] (m∗ = 2.36,

ζ = 0.006). In order to achieve a reasonable match, both the coupling coefficient Ay and the wake oscillator

coefficient εy were reduced to Ay = 5 and εy = 0.008. CD0
is normally taken as a constant value, estimated

the same way as other reference parameters, however this assumption neglects the fact that value of CD0

depends on the transverse amplitude of vibration. As can be seen in Fig. 5a, mean sectional drag affects

the branch of response significantly. Recommended value for this parameter is CD0
= 2.0 if it is not chosen

to be modelled as a function of transversal amplitude for the sake of simplicity. It can be noted here, that

alternation of this parameter can vastly change the shape of response branch, specifically to nullify the jump

to the lower branch of response as illustrated in Fig. 5a for the value CD0
= 2.5.

Fig. 5b demonstrates the best fit at tuned van der Pol parameter εy. A fairly good fit to experimental

data is observed at 0.007 < εy < 0.009. Overall, tuning εy has given best results in fitting the response curve

to experimental data, although generally a combined Ay/εy parameter must be considered.

The best fit at CD0 = 1.75 (Fig. 6a) was chosen to illustrate the in-line amplitude predictions, which are

presented in Fig. 6b. It can be seen that in-line amplitudes are higher than those observed experimentally.

Our analysis indicates that adjusting parameters of the wake oscillator equation in in-line direction Ax and εx

does not have the same effect on the in-line vibration amplitudes as parameters Ay and εy on the transversal

amplitudes. It is clear that more in-depth investigation is required to achieve a better match between the

model predictions and the experimental data. However, even for this non-optimised choice of parameters,

the overestimation of the in-line amplitude could be acceptable if the model is to be used for the design

calculations as satisfying the design criteria in this case will improve overall safety factor.

Fig. 7 presents comparisons with experiments by Jauvtis and Williamson [22] at a slightly higher mass

ratio m∗ = 2.6 and lower damping ratio ζ = 0.0015. It can be noted here that the same recommendations

apply for both amplified sectional drag CD0
and wake parameter εy since the presented results demonstrate

similar trends for both sets of experimental data. The main issue, common for both cases, is that the
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Figure 8: Resonance curves (dependence of response amplitude on the reduced velocity). New 2DOF wake oscillator model

compared to experimental data by Blevins and Coughran [19]. m∗ = 5.4, ζ = 0.002. Wake parameters are Ay = 24, Ax = 12,

εx = 0.3. Reference fluid force parameters are CL0 = 0.3, Cfl
D0

= 0.2. (a) Influence of mean sectional drag CD0 , εy = 0.01; (b)

Influence of wake parameter εy at CD0 = 2.0

upper branch of the calculated response always happens to be shifted to the left giving overestimation of the

amplitude values at lower reduced velocities in the lock-in region.

Finally, a comparison with experimental data by Blevins and Goughran [19] for mass ratio m∗ = 5.4 is

presented in Fig. 8. A notable difference from other presented experimental data is the absence of a lower

branch after an amplitude drop around Ured ≈ 8. The response predicted by the wake oscillator model in

this case shows a better correspondence with experiments, although higher values of amplitude starting at

Ured ≈ 3.5 were obtained indicating, similar to previously presented results, that according to the model the

entrance to the lock-in region occurs at lower values of reduced velocity than in experiments.

It has to be noted that experimental data presented here were obtained using test rigs that inevitably

differ from each other in their technical characteristics and may include structural nonlinearities which are

not incorporated in the proposed wake oscillator model. Further experimental studies would be useful for

more refined model calibration to achieve a better match and to formulate clear recommendations on the

selection of the empirical wake oscillator coefficients. However, from the conducted analysis, it could be

concluded that much lower values of the parameter εy should be selected (0.007 < εy < 0.009) than 0.3 value

identified in the case of transversal vibrations only [1], whereas for the lower mass ration coupling coefficient

Ay should be reduced, but for the higher mass ratio, it should be increased in comparison with 12 value

from [1].

3.2. Calibration using CFD modelling

As was mentioned earlier, experimental facilities are different from each other and having access to

these facilities is not always possible. In order to use the experimental data for the model calibration, it

would be useful to refine the proposed generic model in order to accommodate the specific features of the

chosen experimental rig. In such cases, it is inevitable that the additional effects would complicate the main

phenomenon and might make it challenging to separate the core vortex induced vibrations from structural

nonlinear vibrations of the rig, for example. Therefore, we will explore the CFD approach to calibrate the

proposed 2DOF wake oscillator model. The appropriate CFD model could be set up without extra structural
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Figure 9: (colour online) (a) Computational mesh showing a zoom-up of the area near a cylinder; (b) a single degree-of-freedom
system [17] and (c) a two degrees-of-freedom system [17].

complications and if it is properly verified, such a CFD model could be a very valuable tool for the wake

oscillator model calibration.

3.2.1. CFD model

In this section, we consider the behaviour of elastically supported cylinder capable of moving in in-line

and transversal directions (often referred in literature as XY motion).

CFD model [27] has been implemented in ANSYS Fluent 12.0.16 utilizing User Defined Functions (UDFs)

in order to compute the displacement of the cylinder on each time step based on the forces obtained from the

dynamic pressure. Relatively low Reynolds numbers (600 to 2000) were considered for the sake of simplicity.

However, even for these Reynolds numbers (Re > 300) the vortex street is turbulent, and a high quality grid

is required for solution to converge.

To couple the motions of the cylinder and the fluid, the forces acting on the cylinder have been calculated

by integrating the total wall pressure on the cylinder surface obtained from the CFD solver, and the drag

and lift coefficients have been obtained as non-dimensional components of these forces.

The computational domain used in this study is shown in Fig. 9a, where a cylinder of a unit diameter

was considered [27]. The domain consists of an upstream of 11.5 times the diameter to downstream of 20

times the diameter of the cylinder and 12.5 times on each cross stream direction. The data grid contains

15380 quadrilateral cells and 15659 nodes (Fig. 9a). A finer grid is created near the boundary layer around

the cylinder and it gets coarser at far flow field, particularly outside of the wake region. The inlet region is

on the left side and the outlet is on the right side of the grid and periodic boundary conditions were chosen

for the upper and lower boundaries of the computational domain. The PISO (Pressure Implicit solution

by Split Operator method) pressure-velocity coupling scheme [28] was used as a solution method to allow a

larger time step size without compromising the stability of the solution.

Dynamic mesh operated by the UDF allows motion of the cylinder in a two-dimensional plane. The

spring-based smoothing method [28] is applied to all cells of the dynamic mesh. The UDF receives full

feedback from the fluid and controls the displacement of the cylinder by incorporating the ’Compute Force

and Moment’ function into the equation of motion, providing lift and drag forces directly from the solver on

each time step. The time step size was chosen with regards to the Strouhal number appropriate for shedding

frequency (defined as the frequency of a complete vortex shedding cycle), stream velocity and diameter of

13



the cylinder. To capture the vortex shedding correctly, at least 50 time steps were performed in one shedding

cycle which was calculated as Tcycle = D/St U . At the start of the simulations, the cylinder is at rest in its

initial equilibrium position, and the initial conditions for cylinder’s transverse and in-line displacements and

velocities are y(0) = 0 and ẏ(0) = 0, and x(0) = 0 and ẋ(0) = 0.

The first set of simulations was carried out for the cylinder capable of moving in transverse direction only,

and amplitudes of the oscillations were recorded under varying the flow velocity. In this case the equation

of motion of the cylinder is coupled with the fluid simulations via lift coefficient which is calculated by CFD

on each time step of the simulation process. The equation of motion for the transversal displacement y is

msÿ + rsẏ + hy =
1

2
ρfDU

2CY (t), (35)

where ms is mass per unit length, CY (t) is the non-dimensional lift coefficient obtained from CFD solver

using the transversal (lift) fluid force as CY (t) = 2FY (t)/(ρfDU
2). A dot denotes the differentiation with

respect to dimensional time t.

The second set of simulation was run for the cylinder moving in both transversal and in-line directions.

The equation of motion for the in-line displacement x is

msẍ+ rsẋ+ hx =
1

2
ρfDU

2CX(t), (36)

where CX(t) is drag coefficient obtained from the CFD solver in a similar manner.

3.2.2. CFD Results

In this sub-section, we present the comparison of the results for vibrations of a single degree-of-freedom

system (transversal vibration of the rigid cylinder) and a two degrees-of-freedom system (transversal and

in-line vibrations of the cylinder). While the natural frequency of the structure is kept constant in order to

fix structural properties, a variation of reduced velocity, Ured = 2πU/(ωnD), is undertaken by altering the

flow velocity, U . In this case Reynolds number is not a constant value and the solution quality is heavily

dependent on and constrained by the quality of the grid. The calculations were performed for the damping

ratio ζ = rs/(ms2ωn) = 0.01 and various mass ratios m∗ = 4ms/(ρfπD
2). The results are presented for the

displacement which is normalised with respect to the diameter of the cylinder, D.

It is well known that the frequency of the cylinder’s vibrations is directly related to the vortex shedding

frequency and that when the flow velocity generates the vortex shedding at the frequency close to the

cylinder’s natural frequency ωn, the shedding frequency locks onto it, and the lock-in resonant oscillations

occur at or near the natural frequency of the structure and tend to have significantly greater amplitude. In

the current study the entry to and exit from the lock-in condition were considered in the range of reduced

velocities from approximately 3 to 10 (or Reynolds numbers from 600 to 2000).

The system behaviour at various mass ratios was investigated, and particular attention was paid to low-

mass ratio cylinders. Fig. 10a presents the amplitude of the transversal vibration as a function of reduced

velocity for two different values of cylinder’s mass ratio m∗ = 1.275 and 6.375 where cylinder is allowed to

move in both directions. As can be seen in the figure, lower mass ratio cylinder demonstrates significantly

larger peak value of dimensionless amplitude. In this case, the CFD simulations reveal that the drag force
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Figure 10: (colour online) (a) Amplitude response at two different mass ratios m∗ = 1.275 and m∗ = 6.375 calculated using
CFD, with a ”super-upper” branch appearing at a lower mass ratio m∗ = 1.275, [29]; (b) ”Super-upper” branch obtained
experimentally [26].
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Figure 11: (colour online) (a) Comparison of 1DOF and 2DOF amplitudes of non-dimensional cylinder displacement at various
mass ratios [29]; (b) Trajectories of the cylinder motion on the phase plane for m∗ = 1.275 for four different values of Ured =
5.34, 6.68, 8.01 and 10.69.

influences cross-flow amplitude, and it is observed that drag’s impact at resonance becomes more significant

as mass ratio of a cylinder decreases.

Experiments by Williamson and Jauvtis [17, 26] demonstrated a drastic increase of amplitude when mass

ratio is decreased below m∗ = 6 as shown in Fig. 10b. A new branch of response appeared in case of two

degrees-of-freedom motion of the structure, and it was defined as a ”super-upper” branch. As can be seen

from Fig. 10, our computational results agree well with the existence of this branch, although the peak

amplitude exhibits lower value than in physical experiments.

Comparison between peak amplitudes of the single degrees-of-freedom cylinder and the two degrees-of-

freedom cylinder at various mass ratios is made and represented in Fig. 11a. It can be seen that, for the ratios

below m∗ < 3, the two degrees-of-freedom cylinder demonstrates the presence of ”supper-upper” branch. In

this case in-line vibrations have significant impact on cross-flow amplitude, and this effects becomes more

pronounced as mass ratio decreases. To demonstrate this, the trajectories of the cylinder on XY plane are

shown in Fig. 11b for various values of the reduced velocity at m∗ = 1.25. Here two values Ured = 5.34 and
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Figure 12: (colour online) (a) Lift and drag history for m∗ = 1.275 at Ured = 6.68 (lock-in condition); the numbers indicate
the time moments where the pressure distribution presented in Fig. 12b are calculated; dash lines show the beginning and the
end of one cycle; (b) Vorticity contours calculated at different times during one cycle. Grey arrows indicate the direction of
vortex-induced lift and drag forces.

6.68 belong to ”super-upper” branch and the other two values Ured = 8.01 and 10.69 are chosen from outside

region. As can be seen in Fig. 11b, the trajectory of motion becomes asymmetric to the Y axis and the

original ”eight” shape is bent. The increase of amplitude at illustrated reduced velocity values is significant

and estimates about 50-60%. At the same time, at higher values of reduced velocities, outside of the lock-in

region, the influence of in-line vibrations becomes minimal as can be seen in Fig. 11b where the cross-flow

dimensionless amplitude is decreased to 0.6 in the presented case.

In case of XY motion a frequency doubling phenomenon in in-line response is well-known and observed

in experiments [25], and Fig. 12 demonstrates that is also captured properly by the CFD simulations. The

time histories of non-dimensional drag and lift forces are shown in Fig. 12a where a steady state response is

presented for m∗ = 1.275 and Ured = 6.68. The vorticity contours shown in Fig. 12b are calculated at the

times marked by numbers 1 to 4 in Fig. 12a, and here the directions of the fluctuating drag and the lift

forces are given by the grey arrows. It is observed that this frequency doubling phenomenon can be explained

exclusively through the fluid motion and it is not a property of the structure. As can be seen from Fig. 12b,

during one period of motion the in-line component of total pressure is switching its direction every quarter of

a vortex-shedding cycle as the flow around the cylinder generates vortex-induced drag force along the stream

(before passing the middle of the cylinder) and against the stream (after passing the middle of the cylinder).

The cross-flow component of total pressure always acts in one direction per half of a vortex-shedding cycle.

Components of the total hydrodynamic force acting on the cylinder, containing contributions from both

the lift and drag, cause the cylinder motion in XY plane. This XY motion is schematically illustrated

in Fig. 13. For each position of the cylinder in this figure, a corresponding snapshot of vorticity contours

obtained with the CFD simulations of the cylinder vibrating under lock-in condition is shown. It is important

to note here that ANSYS Fluent decomposes the total hydrodynamic force into two projections (~FX and

~FY ) on X and Y axes, which do not normally coincide with the directions of lift and drag forces (~FL and

~FD) of an oscillating cylinder (although they do for a fixed one). These components CX(t) and CY (t) of
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Figure 13: (colour online) Full vortex shedding cycle schematic. The snapshots of the vorticity contours of the cylinder vibrating
in the lock-in conditions are presented at four different moments of time during one cycle. In those moments of time the total
force acting from the fluid on the cylinder calculated using CFD results for m∗ = 1.275 is shown by thick blue arrow. The
components of this force ~FTotal acting along the relative fluid flow (~FD) and in perpendicular directions (~FL) are shown by red
thick arrows. Velocities of the cylinder are shown by black solid arrows and schematics to determine the relative flow velocity
~UR are also included.

dimensionless total force computed with the CFD were used to determine the direction of ~FTotal, the total

hydrodynamic force vector, and to identify for each particular drag force ~FD (see positions 1–4 in Fig. 13) the

direction of lift force ~FL. While the direction of ~FD coincides with the direction of the relative fluid flow ~UR,

~FL acts perpendicularly in one of two possible directions. It can be seen that the total hydrodynamic force

vector always falls in I and IV quadrants. In this particular illustration, CY (t) is in phase with dimensionless

cylinder displacement y/D.

3.2.3. Model calibration using CFD results

The CFD results are used in this sub-section to calibrate the proposed wake oscillator model. Specifically,

empirical wake parameters Ax, Ay, εx, εy are considered and determined using parametric analysis. Also,

fluid force (reference) parameters CL0
, CD0

, CflD0
, taken from a fixed cylinder lift and drag measurements,

are discussed here.

It is also important to note, that all presented comparisons are made using mass ratio notation as it

appears in the work by Jauvtis and Williamson [17], where m∗ = 4ms/ρfπD
2, i.e. the mass ratio does not
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Figure 14: Two degrees-of-freedom: CFD vs Wake Oscillator Model cross-flow response branches for m∗ = 1.275, ζ = 0.01.

Wake parameters are Ay = 3, Ax = 12, εx = 0.3. Reference parameters are CL0 = 0.3, Cfl
D0

= 0.2. (a) Effect of mean sectional

drag CD0 , εy = 0.0014; (b) Influence of wake parameter εy , CD0 = 1.3.

include added mass.

For comparisons with data obtained from the CFD simulations, full wake oscillator model, introduced in

section 2 and described by Eqs. (37)–(40), is used in its dimensional form

(ms +
1

4
πCMρfD

2)ẍ+ rsẋ+ hx =
√

(U − ẋ)2 + ẏ2
(1

4
ρfCL0

qDẏ +

+
1

2
ρf (CD0

+
1

2
CflD0

w)D(U − ẋ)
)

(37)

(ms +
1

4
πCMρfD

2)ÿ + rsẏ + hy =
√

(U − ẋ)2 + ẏ2
(1

4
ρfCL0

qD(U − ẋ)−

− 1

2
ρf (CD0

+
1

2
CflD0

w)Dẏ
)

(38)

with wake equations

ẅ + 2ΩF εx(w2 − 1)ẇ + 4Ω2
Fw = (Ax/D)ẍ (39)

q̈ + εyΩF (q2 − 1)q̇ + Ω2
F q = (Ay/D)ÿ (40)

In general, tuning reference fluid parameters may be hard to justify, and would require a clear explanation

since CstD0
, CflD0

and CL0
represent experimentally observed force components acting on a fixed cylinder: non-

amplified mean sectional drag, fluctuating drag coefficient and fluctuating lift coefficient respectively. All

these parameters are usually taken from literature and modifying their values could be questionable. On the

other hand, the empirical wake parameters do not have clear physical meaning and they do not necessarily

have to be fixed and/or remain the same for different values of mass or damping of the system. Therefore

they should be adjusted first when the model calibration is performed.

Comparisons of the results of the simulations obtained using the 2DOF wake oscillator model described

by Eqs. (37)–(40) with the 2DOF CFD results are presented in Figs. 14–17. Here the reference parameters

for lift and drag coefficients, CL0
and CflD0

are kept at their initial values [1], with CL0
= 0.3 and CflD0

= 0.2.

From Fig. 14a it can be seen that the variation of drag coefficient CD0
affects the amplitude of response

during lock-in and has almost no effect after desynchronization. At the same time, εy primarily affects exit

from lock-in when desynchronization takes place as can be seen in Fig. 14b. Increasing CD0 leads to lower
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Figure 15: Two degrees-of-freedom: CFD and wake oscillator model cross-flow response branches for (a) m∗ = 1.275 and (b)

m∗ = 6.375. Parameters CD0 = 1.3, Cfl
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= 0.2, CL0 = 0.3, Ay = 3, Ax = 12, εy = 0.0014, εx = 0.3 are fixed for both mass

ratios. Damping ratio ζ = 0.01.
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Figure 16: Two degrees-of-freedom: CFD and wake oscillator model cross-flow response branches at initial reference parameters

[1] Cfl
D0

= 0.2, CL0 = 0.3. (a) m∗ = 1.275, CD0 = 1.3, Ay = 3, Ax = 12, εy = 0.0014, εx = 0.3; (b) m∗ = 6.375, CD0 = 2.0, Ay =

26, Ax = 12, εy = 0.05, εx = 0.3. Damping ratio ζ = 0.01.

amplitudes in the lock-in region and higher jump, while reducing εy leads to wider lock-in region, but has

little to no influence on the height of the jump. Ax and εx were kept at Ax = 12 and εx = 0.3 as appear in

[1].

In Fig. 15a the case where parameters Ay, εy are tuned to demonstrate the best fit with the CFD results

for m∗ = 1.275 is presented. Although a fairly good correspondence with the CFD results is shown in

Fig. 15a for this mass ratio m∗ = 1.275, with the same values of reference and wake parameters used for

mass ratio m∗ = 6.375 in Fig. 15b the model fails to predict the amplitudes of the response. Better results

can be achieved when these parameters are treated as a function of mass ratio, or, more generally, as a

function of mass-damping ratio, instead of being kept constant as shown in Fig. 16. These conclusions have

also been drawn by other researches (see [13]).

In Fig. 16 two sets of tuned wake parameters at different values of amplified drag CD0
demonstrate a

good match with the CFD data for two different mass ratios. It is clear that a more detailed study should

primarily focus on the combined Ay/εy and Ax/εx parameters as a function of the mass-damping parameter

(m∗+CM )ζ. As can be seen in Fig. 16a, tuned wake parameters for m∗ = 1.275 are Ay = 3 and εy = 0.0014,
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Figure 17: Two degrees-of-freedom: CFD and wake oscillator model cross-flow response branches at initial reference parameters
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24, Ax = 12, εy = 0.2, εx = 0.3. Damping ratio ζ = 0.01.
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Figure 18: Two degrees-of-freedom: CFD and wake oscillator model in-line response branches at initial reference parameters [1]

Cfl
D0

= 0.2, CL0 = 0.3. (a) m∗ = 1.275, CD0 = 1.3, Ay = 3, Ax = 12, εy = 0.0014, εx = 0.3; (b) m∗ = 6.375, CD0 = 1.3, Ay =

24, Ax = 12, εy = 0.2, εx = 0.3. Damping ratio ζ = 0.01.

which give us Ay/εy = 2143. For a higher value of mass ratio m∗ = 6.375, as illustrated in Fig. 16b, a good

match with CFD results is achieved at Ay = 26 and εy = 0.05, with Ay/εy = 520. However, at the higher

mass ratio m∗ = 6.375 the wake oscillator model does not capture a jump from the upper to the lower branch

of response.

Different tuning is shown in Fig. 17 with the same value of amplified drag CD0
= 1.3 for both masses. As

can be seen in Fig. 17a, wake parameters are the same as they were in the previous figure for m∗ = 1.275 with

Ay = 3 and εy = 0.0014. For a higher value of mass ratio m∗ = 6.375 shown in Fig. 17b, wake parameters are

changed to Ay = 24 and εy = 0.2, with Ay/εy = 120. Although amplified drag would generally be different

for different masses as it depends on the value of amplitude, for simplicity, when it is taken as constant, it is

taken so for all values of mass ratio. In can also be noted that for this set of parameters the jump from the

upper to the lower branch is now captured for m∗ = 6.375 (Fig. 17b), although amplitude values predicted

by wake oscillator model after the jump are less than those predicted by CFD.

Finally, in-line response predictions are shown in Fig. 18. All parameters are the same as for the previous

cross-flow responses, and are also presented for m∗ = 1.275 (Fig. 18a) and m∗ = 6.375 (Fig. 18b). As was

20



mentioned before, it has been found that wake parameters Ax and εx have much smaller effect on in-line

amplitude predictions than Ay and εy have on cross-flow amplitudes. As can be seen from both figures,

predictions by wake oscillator model do not capture the in-line response amplitudes as good as they do the

cross-flow ones. The values of the in-line amplitudes, however, are significantly lower than those for cross-flow

motion, and often negligible, especially for higher mass ratios. It should be noted that overestimation of the

in-line amplitudes would be acceptable from the design point of view as the safe solution will be developed

based on the prediction of this model.

4. CONCLUDING REMARKS

In this work, vortex-induced vibrations of elastically supported cylinders capable of moving in cross-flow

and in-line directions were investigated. A new wake oscillator model for two degrees-of-freedom vortex-

induced vibrations has been proposed, where vortex-induced lift and drag forces were modelled with two

nonlinear self-excited oscillators of van der Pol type.

Total hydrodynamic force was represented as a sum of lift and drag forces acting on a vibrating cylinder

in a uniform flow. The lift and drag forces were defined as being proportional to the square of the magnitude

of the relative flow velocity around the cylinder with the drag force acting in the direction of relative velocity

and lift force acting perpendicularly. Equations of motion of the cylinder in cross-flow and in-line directions

are coupled through the fluid forces calculated from the instantaneous relative flow velocity around the

cylinder that depends both on the fluid flow velocity and the instantaneous velocity of the cylinder; the

type of coupling for a two degrees-of-freedom wake oscillator model that has not been done before. An

acceleration coupling was used based on the recommendations by Facchinetti et al. [1].

It was demonstrated that approximation of the fluid forces allows to obtain the well-known low-dimensional

models in the limit case, and the model proposed by Facchinetti et al. [1] was used an example of the model

reduction to a single degree-of-freedom system. A two-dimensional CFD model developed as a part of

this work was used together with the published experimental data to calibrate the wake oscillator model

parameters.

It was obtained that to achieve a reasonable match with the experiments much lower values of the

parameter εy should be selected (for the proposed model, as presented in this work, 0.007 < εy < 0.009) than

0.3 value identified in the case of transversal vibrations only [1], whereas for the lower mass ratios coupling

coefficient Ay should be reduced, and for the higher mass ratios, it should be increased in comparison with 12

value from [1]. It was also found that the variation of drag coefficient CD0 affects the amplitude of response

during lock-in and have almost no effect on the predicted length of the lock-in region, whereas εy primarily

affects this length. Increasing CD0
leads to lower amplitudes in the lock-in region and higher jump, while

reducing εy leads to wider lock-in region, but has little to no influence on the hight of the jump.

Our analysis has shown that the wake oscillators parameters depend on the mass ratio as the best

agreement with the experiments is observed for different values of these parameters at low and high mass

ratios. In the considered cases for the chosen system parameters, the model slightly overestimated the in-line

amplitudes of the vibrations and also amplitudes of the transversal vibrations in the beginning of the lock-in

region. It was observed that adjusting parameters of the wake oscillator equation in in-line direction Ax
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and εx does not have the same effect on the in-line vibration amplitudes as parameters Ay and εy on the

transversal amplitudes.

It should be noted here that although general recommendations on the choice of empirical wake param-

eters can be given based on this study, in the future a development of some type of optimisation procedure

for in-depth model calibration would be beneficial.

More accurate estimation of the amplified drag coefficient CD0 has to be done and is also planned for the

future work. Instead of taking it as constant, amplified drag can be represented in the form (1+2Ay/D)CstD0

[30], where Ay is the cross-flow amplitude of vibration and CstD0
is the drag coefficient for a stationary cylinder

in the subcritical range of Reynolds numbers. This will introduce an additional nonlinearity into structural

equations and contribute to refinement of the proposed model.
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