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Context: Maternal smoking during pregnancy has adverse effects on the offspring (eg, increased
likelihood of metabolic syndrome and infertility), which may involve alterations in fetal liver
function.

Objective: Our aim was to analyze, for the first time, the human fetal liver proteome to identify
pathways affected by maternal smoking.

Design: Fetal liver proteins extracted from elective second trimester pregnancy terminations
(12–16 weeks of gestation) were divided in four balanced groups based on sex and maternal
smoking.

Setting and Participants: Livers were collected from 24 morphologically normal fetuses undergo-
ing termination for nonmedical reasons and analyzed at the Universities of Aberdeen and Glasgow.

Main Outcome Measures: Protein extracts were resolved by 2D-PAGE and analyzed with SameS-
pots software. Ingenuity pathway analysis was used to investigate likely roles of dysregulated
proteins identified by tandem liquid chromatography/mass spectroscopy.

Results: Significant expression differences between one or more groups (fetal sex and/or maternal
smoking) were found in 22 protein spots. Maternal smoking affected proteins with roles in post-
translational protein processing and secretion (ERP29, PDIA3), stress responses and detoxification
(HSP90AA1, HSBP1, ALDH7A1, CAT), and homeostasis (FTL1, ECHS1, GLUD1, AFP, SDHA). Although
proteins involved in necrosis and cancer development were affected in both sexes, pathways
affecting cellular homeostasis, inflammation, proliferation, and apoptosis were affected in males
and pathways affecting glucose metabolism were affected in females.

Conclusions: The fetal liver exhibits marked sex differences at the protein level, and these are
disturbed by maternal smoking. The foundations for smoke-induced post-natal diseases are likely
to be due to sex-specific effects on diverse pathways. (J Clin Endocrinol Metab 100: E861–E870,
2015)
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The liver is essential for detoxification and homeostasis
by metabolizing and/or assisting in the excretion of a

wide range of xenotoxicants including alcohol, drugs, and
tobacco smoke constituents. In the human the fetal liver is
active and because 70% of its blood supply is directly from
the fetomaternal interface, it is directly exposed to poten-
tially harmful agents from the maternal circulation. To-
bacco smoke contains a mixture of �5000 chemicals and
the human fetal liver responds to maternal smoking by
up-regulating phase I and phase II enzyme transcripts (1).
Strikingly, the human fetal liver also expresses transcripts
and proteins associated with altering steroid hormone
function/activity in the mother and fetus. These include
CYP19A1 (2), CYP3A7 (2, 3), and SULT enzymes (2, 4).
The fetal liver is the main hematopoietic organ during the
second trimester in humans (5) and also secrets high levels
of �-fetoprotein (AFP), sex-hormone binding globulin (6),
IGF-I, and IGF-II (7). It is clear, therefore, that the human
fetal liver functions in the development and protection of
the fetus and in the regulation of steroid hormone levels/
actions during pregnancy.

Maternal smoking is associated with diverse negative
outcomes for the health of the neonate [including reduced
birth weight, premature delivery, and stillbirth (8, 9)] and
predisposition of the offspring to long-term health risks
[including metabolic syndrome (10, 11), reduced fertility
(12, 13), and psychosomatic problems (15)]. Approxi-
mately 30% of women continue to smoke once pregnant
(16) and it remains one of the most important modifiable
risk factors during pregnancy. Maternal smoking restricts
the fetal oxygen supply and increases carbon monoxide
burden to the conceptus but also disrupts fetal develop-
ment through other mechanisms; previous studies from
this group have identified some of these mechanisms such
as endocrine signaling (1, 17) but a greater understanding
of how maternal smoking links to disease in the offspring
is required. Given the importance of the fetal liver to hu-
man fetal development and its susceptibility to maternal
smoking we have, for the first time, used a proteomics
approach to identify proteins and pathways that are dys-
regulated in the human fetal liver by maternal smoking.

Materials and Methods

Study design
Our cohort of 55 human fetal liver extracts from second tri-

mester (wk 12–17) elective pregnancy terminations was retro-
spectively divided into four groups according to sex and vali-
dated smoke exposure (reflected by threshold plasma cotinine
levels) (n � 14 control and 13 smoke-exposed males; 15 control
and 13 smoke-exposed females) as described previously (1).
From this 55-sample cohort, 24 (ie, n � 6 from each group)
balanced by age fetal liver protein extracts were chosen for pro-

teomics so that each group contained 1 � 12-week, 2 � 13-week,
1 � 14-week, 1 � 15-week, and 1 � 16–17-week fetal liver
protein extracts.

Sample collection and processing
Women undergoing elective medical terminations of nor-

mally progressing pregnancies gave full written informed con-
sent for the use of their fetal material to independent nurses at the
Aberdeen Pregnancy Counseling Service as previously described
(18, 19). Blocks of 30 mg from the central lobe of the liver were
quickly dissected, snap frozen on dry ice, and stored at �80°C
until further use. Protein extracts were prepared from frozen
liver pieces from 30 mg blocks dissected from the outer side of the
right lobe of the liver using AllpPrep kits (#80004; QIAGEN,
Manchester, UK) according to the manufacturer’s instructions.
Total RNA was extracted using TRIzol (Life Technologies, Pais-
ley, UK) according to the manufacturer’s guidelines as previously
described (1).

Proteomics
Within each group, equal amounts of protein extracts (100

�g) from each fetal liver were combined. The four protein pools
we treated with ReadyPrep 2-D Cleanup Kit (Bio-Rad Labora-
tories Ltd, Hemel Hempstead, UK) to remove salt and other
contaminants according to the manufacturer’s instructions. The
soluble protein fractions were separated using 2D gel electro-
phoresis in quadruplicate (n � 4) as described previously (20)
using a pH 3–10-immobilized pH gradient gel (GE Healthcare,
Uppsala, Sweden) for the first dimension and a 10–15% gradient
polyacrylamide gel for the second dimension. Proteins were de-
tected using Colloidal Coomassie Blue G250 and scanned using
an Ettan DIGE Imager (GE Healthcare) and stained gels were
analyzed using Progenesis SameSpots software V6.01 (Nonlin-
ear Dynamics, Newcastle, UK) (21). Individual spot volumes
were expressed as normalized volumes relative to the total de-
tected spot volume for each gel to minimize potential analytical
artifacts from protein-loading variations and migration. Progen-
esis SameSpots was used to combine the gel quadruplicates and
calculate fold changes and significance (by ANOVA of log-nor-
malized values). Molecular mass and isoelectric point (pI) of
spots was estimated from separate gels electrophoresed with pH
and MW markers. Proteins in the gel pieces were digested with
trypsin and peptides identified using liquid chromatography,
tandem mass spectrometry (LC-MS/MS) as previously described
(20) (Supplemental Materials and Methods). Statistically signif-
icant Mascot scores and good sequence coverage were consid-
ered to be positive identifications.

Real-Time PCR
Real-time PCR was carried out in fetal liver cDNAs from our

larger 55-sample cohort (14 control and 13 smoke-exposed
males; 15 control and 13 smoke-exposed males) and the same
methods as described previously with values normalized against
the housekeeping genes B2M, PMM1, and TBP (1, 2, 22). Prim-
ers for query genes were designed using Primer Blast (http://
www.ncbi.nlm.nih.gov/tools/primer-blast/) to span exon junc-
tion and to have an annealing temperature of 65°C. Test real-
time PCR runs were performed to ensure that primer pairs do
not amplify genomic DNA and amplification efficiency was
determined using serial dilution of human fetal liver cDNA as
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template. Gene primer sequences are shown in Supplemental
Table 1.

Western blots
Individual human fetal liver protein extracts from the same

preparation used for the proteomics were separated (30 �g/lane)
in 26-well 4–12% Bis-Tris gradient precast gels (Invitrogen Ltd,
Paisley, UK) under reducing conditions according to the manu-
facturer’s specifications (20). Gels were blotted on Immo-
bilon-FL membrane (Millipore Ltd, Watford, UK), blocked and
probed with antibodies as previously described (20). Antibodies
and dilutions used are detailed in Supplemental Table 2. Protein
bands were visualized using Odyssey infrared fluorescent imager
and images were analyzed using Phoretix 1D Advanced software
(Nonlinear Dynamics, Ltd) as detailed in (20). Membranes were
reused without stripping and were probed with more than one
antibody (typically two to three antibodies) when target protein
sizes were considerably different. Beta-actin (ACTB) probe
served as a loading control and following the validation of the use
of ACTB for this purpose in the fetal liver, the volume of each
protein band in each lane was normalized against respective
ACTB band volumes for the same lanes.

Statistical and ingenuity pathway analysis
Statistical analysis was performed using the JMP statistical

software (http://www.jmp.com/software/). For each set of nor-
malized values a Normality test was performed followed by ei-
ther one-way ANOVA (for normally distributed values) or Wil-
coxon-Mann-Whitney [ital]U test (for nonnormally distributed
values) to calculate statistically significant differences among
means. Proteins exhibiting treatment-specific alterations in ex-
pression were analyzed using IPA V9.0 (Ingenuity Systems,
http://www.ingenuity.com), including canonical pathway anal-
ysis and functional network analysis.

Results

Identification of fetal liver
proteins affected by maternal
smoking and/or fetal sex

Overall, 494 fetal liver protein
spots showed reproducibility across
replicates of Coomassie-stained 2D-
PAGE gels following analysis by
Samespots software (Newcastle,
UK). Twenty two of these protein
spots showed statistically significant
spot volume differences between at
least two of the four groups (male/
female, smoking/nonsmoking; P �
.05) and were suitable for LC-
MS/MS identification (Figure 1). For
three of these spots, peptide frag-
ments were unambiguously assigned
to a single protein. For 14 spots, pep-
tide fragments were identified that
belonged to more than one protein
and the primary protein in the spot
was identified based on 1) high Mas-

cot score, 2) agreement between estimated (ie, from elec-
trophoretic gel mobility) and calculated molecular weight
and isoelectric point, and 3) peptide coverage. For five
spots, peptide fragments could be assigned to two proteins
with similar likelihood (Table 1). The 25 differentially
expressed proteins are involved in processes including
post-translational protein processing and secretion
(ERP29, PDIA3), stress responses and detoxification
(HSP90AA1, HSBP1, ALDH7A1, CAT), and homeostasis
(FTL1, ECHS1, GLUD1, SERPINA1, AFP, SDHA) (Sup-
plemental Table 4). Spot 1090 (CCT6A) was more abun-
dant in control males than females and spot 1673 (ERP29)
was more abundant in smoke-exposed females than
smoke-exposed males. ERP29 was also very likely to be
the primary protein in spots 1684 and 1678, which were
affected by maternal smoking (Table 1). Detailed infor-
mation of all the proteins identified, spot characteristics
and protein functions are provided in Supplemental Ta-
bles 3 and 4). Sex-specific spot volume differences (female
controls vs male controls) were identified for six spots
(990, AFP; 1090, CCT6A; 1678, ERP29; 1221,
ALDH7A1; 1501, CRYL1; 1006, SDHA; Table 1). Ma-
ternal smoking induced sex differences in spot volumes for
14 spots and reversed sex-differences in three spot vol-
umes (Table 1). Accounting for the potential presence of
more than one protein in a spot, spot volumes were altered
in 24 identified proteins among the four groups overall.

Figure 1. Summary of altered spot analysis, group distribution, and spot position on 2D-PAGE.
The distribution of spots altered by maternal smoking (blue circle), by sex irrespective of maternal
smoking (pink circle) and of those whose sex differences were affected by maternal smoking
(yellow circle) are shown in the Venn diagram.
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Validation of proteomic hits by transcript and/or
protein measurements

Transcript and/or protein levels of the identified pro-
teins were quantified in individual samples in all groups
using real-time PCR and 1D-Western blot, respectively
(Figure 2 and 3; Supplemental Figures 1 and 2). There was
a modest degree of agreement between proteomic predic-
tions and transcript levels, both with regard to the effect of
smoking and/or sex differences. FTL1 and ALDH7A1
mirrored mean spot volume differences (spots 1786 and
1221, respectively) (Figure 2, A and B). In contrast,
whereas there were differences in PNP and HSP901AA1
transcript levels among the four groups, these did not
closely mirror protein spot volume differences (Figure 2, C

and D). Similarly, ECHS1, GLUD1, SPRYD4, USP5,
PGK1, CRYL1, and ERP29 transcript levels transcript
levels poorly correlated with spot volume differences (Sup-
plemental Figure 1). PDIA3, AFP, CALR, SERPINA1,
HSPB1, and YWHAE protein levels measured by Western
blot related poorly to spot volume differences with only
CAT protein levels consistent with proteomics data (Fig-
ure 3; Supplemental Figure 2).

To investigate the apparent discrepancy between West-
ern blot protein quantitation and proteomic 2D-PAGE
data, 2D-Western blots using the fetal liver protein pools
employed for the proteomics were probed with the same
antibodies employed for 1D-Western blots. The resulting
blots were superimposed on the Coomassie-stained gel

Table 1. Protein Candidates from LC-MS/MS Spot Analysis

Spot
No.

Gene
Symbol Protein Name

Fold Change by
Maternal Smoking

Fold Change by
Sex in Controls

Smoke Effect on Sex
Differences (Fold
Change)

743 USP5 Ubiquitin carboxyl-terminal
hydrolase 5

�1.22 (�) No No

HSP90AA1 Heat shock protein 90 isoform 2
990 AFP � fetoprotein �1.31 (�) �1.15 (�) RSD;�1.20 (�)
1006 SDHA Succinate dehydrogenase �1.23 (�) �1.26 (�) No
1090a CCT6A T-complex protein 1 subunit zeta

isoform a
No �1.15 (�) No

1123 CAT Catalase �1.14 (�) No ISD;�1.13 (�)
1129 GLUD1 Glutamate dehydrogenase 1,

mitochondrial precursor
�1.18 (f) No ISD;�1.23 (�)

CAT Catalase
1149 PDIA3 Protein disulphide isomerase A3 �1.21 (�) No ISD;�1.21 (�)
1150a SERPINA1 �-1-antitrypsin precursor �1.23 (�) No ISD;�1.28 (�)
1172 CALR Calreticulin precursor �1.30 (�) No ISD;�1.14 (�)
1190 KRT8 Keratin type II Cytoskeletal 8

isoform 2
�1.30 (�) No ISD;�1.16 (�)

1205 KRT8 Keratin type II cytoskeletal 8
isoform 2

�1.13 (�) No ISD;�1.24 (�)

1221a ALDH7A1 �-aminoadipic semialdehyde
dehydrogenase isoform 2

�1.22 (�); �1.24 (�) �1.27 (�) RSD;�1.26 (�)

1328 PGK1 Phosphoglycerate kinase 1 �1.27 (�) No ISD;�1.40 (�)
1501a CRYL1 Lambda crystallin homolog �1.25 (�) �1.16 (�) No
1589 ECHS1 Enoyl coenzyme hydratase 1 �1.28 (�) �1.33 (�) No ISD; �1.42 (�)
1591 PNP Purine nucleoside phosphorylase �1.24 (m) No ISD;�1.13 (�)
1645 EEF1B2 Elongation factor 1 � �1.20 (�) No ISD;�1.16 (�)

YWHAE 14-3-3 protein �
1673 ERP29 Endoplasmic reticulum resident

protein 29 isoform 1 precursor
No No ISD;�1.13 (�)

1678 ERP29 Endoplasmic reticulum resident
protein 29 isoform 1 precursor

�1.16 (�); �1.18 (�) �1.13 (�) RSD;�1.18 (�)

TPI1 Triose phosphate isomerase
isoform 1

1679 HSPB1 Heat shock protein � 1 �1.18 (�) No No
1684 ERP29 Endoplasmic reticulum resident

protein 29 isoform 1 precursor
�1.14 (�) No ISD;�1.16 (�)

1786 SPRYD4 SPRY domain-containing protein 4 �1.35 (�) No ISD;�1.22 (�)
FTL1 Ferritin light chain

Abbreviations: ISD, induction of sex difference; RSD, reversal of sex difference.

Only fold changes that achieved significance (P � .05) are shown.
a Detection of a single candidate.
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images to identify which antibody-stained spots showed
volume differences by Samespots analysis. For AFP,
PDIA3, HSPB1, and CAT the single band observed in 1D
Western blots resolved to two or more spots of similar
molecular weight but different pI, only one of which was
found to have a statistically significant volume difference
among groups (Figure 3). This demonstrated that total
protein level quantification (as in conventional 1D-West-
ern blots) will not always match proteomic predictions

and provided an explanation for the discrepancy between
1D-Western blot protein levels and spot volumes mea-
surements. Antibodies against SERPINA1, CALR, and
YWHAE identified two bands of close molecular weight
for each protein in 1D-Western blots. Protein bands for
SERPINA1, CALR, and YWHAE, resolved to a single spot
in 2D-Western blots and indicated that quantification of
1D-Western blot bands should mirror spot volume mea-
surements (Supplemental Figure 2); because that was not
the case, SERPINA1, CALR, and YWHAE proteins were
considered false positives.

Sex-specific liver proteome alterations by maternal
smoking

From the fetal liver proteins affected by maternal smok-
ing, only ECHS1, ALDH7A1, TPI1, KRT8, and ERP29
were affected in both sexes. AFP, PGK1, KRT8, GLUD1,
CAT, CRYL1, USP5, HSP90AA1, CAT, and SDHA were
primarily affected in females whereas SPRYD4, FTL1,
PNP, PDIA3, HSPB1, and EEF1B2 were primarily af-
fected in males (Table 1). The fetal liver proteins affected
by maternal smoking in either sex were functionally an-
alyzed and related to physiological and disease pathways
using IPA software (QIAGEN, Manchester, UK) (Table
2). Most proteins belonging to pathways relating to can-
cers, cancer development, and necrosis were dysregulated
in both sexes. Inflammation, cellular homeostasis, prolif-
eration, and apoptotic pathways were preferentially dys-
regulated in males and glucose metabolism disorder path-
way was preferentially dysregulated in females (Table 2).
Protein levels of the mitotic marker phospho-serine10 hi-
stone H3 were measured in protein extracts and the ab-
sence of any statistically significant differences suggests
that proliferation was not affected by fetal sex or maternal
smoking (Supplemental Figure 3).

Discussion

We took a global approach not previously used for the
human fetal liver and compared the proteomes of male and
female control and smoke-exposed second trimester fe-
tuses. This led to the identification of proteins primarily
involved in stress responses, homeostasis, metabolism,
post-translational protein processing, and secretion, par-
alleling the known effects of cigarette smoking in adults
(23–25). Even though maternal smoking modestly altered
the levels of affected proteins (alterations ranged from 15–
40% compared with controls; Table 1), small changes in
the levels of multiple proteins and/or protein post-trans-
lational modifications can lead to significant phenotypic
alterations in organ function (26). Given that the affected

Figure 2. Comparison between spot volume differences and
transcript levels of identified proteins. Panels A–D show 1) spot
volume, and 2) transcript of all data points with means represented by
a gray line. Significant differences (One-way ANOVA or Wilcoxon test)
between groups are indicated by letters in the boxes above each
graph. Within each spot volume 1) or transcript 2), groups that do not
share a letter are significantly (P � .05) different, ie, where the
superscript letters are shared between groups, there is not statistically
significant difference. C, control; SE, smoke exposed.
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proteins are involved in both pathological and physiolog-
ical processes, smoking-induced alterations in their levels
in the fetal liver may be linked to potentially adverse health
outcomes for the offspring. In some instances, smoke ex-

posure in utero has been associated with differential health
outcomes in prepubertal boys and girls; boys are at a
higher risk of conduct disorder (15) whereas girls are more
prone to drug dependence and increased body weight (15,

Figure 3. Comparison between spot volume differences and total protein levels of identified proteins. Panels A–D show 1) spot volume, 2) protein levels with
means represented by a gray line and, 3) representative 1D (each lane corresponding to a protein extract from each of the four groups) and 2D Western blots.
Significant differences (One-way ANOVA or Wilcoxon test) between groups are indicated by letters in the boxes above each graph. Groups that do not share a
letter are significantly (P � .05) different, ie, where the superscript letters are shared between groups, there is not statistically significant difference. Black
arrowheads in 3) indicate the protein band in question (1D) and the spot whose volume was altered (2D). Xed arrowheads represent bands from
immunoblotting of the membrane with other antibodies. C, Control; SE, smoke exposed.
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27). The differential responses between male and female
fetal livers described here suggests that sex-specific health
outcomes might be related to important differential in
utero molecular responses, indicating that sex differences
in fetal liver responses to maternal smoking may contrib-
ute to subsequent disease predisposition.

The approach used in this study relied on the 2D sep-
aration of proteomes by size and pI, which enabled us
to simultaneously compare protein levels in the observable
proteomes among the four groups. Subsequent LC-
MS/MS was used to identify the proteins whose volumes
showed significant changes and 2D-WBs were used to pro-
vide information regarding the putative post-translational
modification(s) of the identified proteins. In contrast with
the conventional, hypothesis-driven 1D WBs, our ap-
proach aimed to provide a top-down view of the pro-
teomes examined. However, the liver proteome contains
more than 6800 individual proteins (28) and the 494
good-quality Coomassie-stained spots included in our
analysis inevitably represent the most abundant proteins,
which is a significant disadvantage compared with con-
ventional 1D-WB approaches. Proteins can resolve to
multiple spots of different MW and/or pI depending on
isoform expression and/or post-translational modifica-
tions and obtaining 24 different proteins (Table 1) from 22
differentially expressed protein spots is by no means sur-
prising. 2D gel separation-based proteomic approaches as

described here can identify volume differences in a single
spot that may not correspond to the total protein levels but
rather specific forms/isoforms of a given protein. This is
the most likely explanation for most cases where poor
correlations between transcript/protein levels and spot
volumes were observed. Group differences in individual
fetal PDIA3, AFP, and HSBP1 total protein levels (quan-
tified using 1D-Western blots) were likely not matched to
proteomic spot volume differences because significant vol-
ume changes occurring in a single spot containing a given
protein, as opposed to total spot volume of all spots con-
taining that protein will not necessarily reflect total pro-
tein levels (Figure 3). In the case of SERPINA1, CALR, and
YWHAE, a single band by 1D-Western blot reflected a
single spot in 2D-Western blots (Supplemental Figure 2).
Therefore, a lack of correlation between spot volume dif-
ferences and protein level quantification strongly implies
that SERPINA1, CALR, and YWHAE were either false
positives or the spot volume differences reflected the pres-
ence of other unresolved proteins in our proteomic
analysis.

Endoplasmic reticulum changes induced by
maternal smoking

Changes in PDIA3, AFP, HSBP1, and CAT proteins
suggest that maternal smoking has subtle effects on the
fetal liver proteome. Single bands on 1D-Western blot for

Table 2. Pathways Affected in the Human Fetal Liver by Maternal Smoking

Diseases Molecules P-Value

Males
Abdominal cancer ALDH7A1, ECHS1, EEF1B2, FTL1, HSPB1, KRT8, PDIA3, PNP, TPI1 3.29E-02
Apoptosis FTL1, HSPB1, KRT8, PDIA3, PNP 2.13E-02
Cellular homeostasis FTL1, HSPB1, KRT8, PNP 1.38E-02
Genital tract cancer ALDH7A1, EEF1B2, FTL1, HSPB1, KRT8, PDIA3 1.55E-02
Inflammation of organ FTL1, KRT8, PDIA3, TPI1 5.44E-04
Lung cancer EEF1B2, FTL1, KRT8, TPI1 2.00E-03
Malignant neoplasm of

pelvis
ECHS1, EEF1B2, FTL1, HSPB1, KRT8, PDIA3 1.18E-02

Necrosis FTL1, HSPB1, KRT8, PDIA3, PNP 1.94E-02
Pelvic cancer EEF1B2, FTL1, HSPB1, KRT8, PDIA3, PNP 2.35E-02
Proliferation of cells EEF1B2, FTL1, HSPB1, KRT8, PDIA3, PNP 1.94E-02
Quantity of cells FTL1,HSPB1,KRT8,PNP 1.73E-02

Females
Abdominal cancer AFP, ALDH7A1, CAT, CRYL1, ECHS1, GLUD1, HSP90AA1, KRT8, PGK1, SDHA,

TPI1, USP5
7.88E-03

Breast and colorectal cancer AFP, CAT, CRYL1, ECHS1, HSP90AA1, KRT8, PGK1, TPI1 3.38E-02
Digestive tract cancer AFP, ALDH7A1, CAT, CRYL1, ECHS1, GLUD1, HSP90AA1, KRT8, PGK1, SDHA, TPI1 8.67E-03
Epithelial cancer AFP, ALDH7A1, CAT, ECHS1, GLUD1, HSP90AA1, KRT8, PGK1, SDHA, TPI1, USP5 4.16E-02
Genital tract cancer AFP, ALDH7A1, HSP90AA1, KRT8, PGK1, SDHA, USP5 1.87E-02
Glucose metabolism

disorder
CAT, ECHS1,GLUD1, KRT8 1.74E-02

Metastasis AFP, CAT, HSP90AA1, KRT8 2.27E-03
Necrosis AFP, CAT, GLUD1, HSP90AA1, KRT8, SDHA 1.64E-02
Proliferation of tumor cell

lines
AFP, CAT, HSP90AA1, KRT8 3.07E-02

Disease pathways formatted in bold were dysregulated in both sexes.
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these proteins resolved as two or more bands on 2D gels,
indicating alterations in protein conjugation or phosphor-
ylation. The chaperone protein PDIA3 has disulfide
isomerase activity and is involved in the folding of endo-
plasmic reticulum proteins. PDIA3 is frequently encoun-
tered in proteomic analyses of liver function (29) and its
different forms represent different phosphoforms (29–
31). PDIA3 phosphoform changes occur during sperm ca-
pacitation (31), in hyperoxic lung epithelial cells (30) and
in rat livers after fasting or leptin administration (29). Our
results suggest that the phosphorylation status of PDIA3
is affected in fetal human livers by maternal smoking. In-
terestingly, hyperoxia in lung epithelial cells and fasting or
leptin administration in the rat liver primarily alters the
spot volume of the second most acidic PDIA3 phospho-
form, which may modulate signal transducer and activa-
tor of transcription 3 (STAT3) signaling (29, 30, 32). This
probably corresponds to the same phosphoform increased
in male fetal livers in our analysis (Figure 3A). ERP29 is
another widely distributed endoplasmic reticulum protein
involved in processing secreted proteins. Isoelectric focus-
ing resolves ERP29 to a major spot and several more acidic
forms, likely the result of selective deamidations (33). Our
results show that both native and deamidated forms were
altered in response to maternal smoking. Taken together
with the change in PDIA3 phosphoforms, maternal smok-
ing clearly has the potential, via modifying protein com-
ponents of the endoplasmic reticulum, to affect the pro-
cessing and probably functionality and half-lives of fetal
liver secreted proteins. In support of the latter, cigarette
smoke disrupts endoplasmic reticulum components, in-
creases protein disulphide isomerase activity and the for-
mation of aberrant multiprotein complexes in mice (24),
and is associated with elevated protein secretory responses
in humans (25).

AFP, a major plasma protein secreted by the fetal liver,
binds fatty acids (34) and modulates estrogenic responses
(35). In adults, increased serum AFP levels are associated
with liver cirrhosis, hepatic carcinomas, or nonsemino-
matous germ cell tumors (36). Here the reduction in a
single AFP spot volume in female fetuses in response to
maternal smoking (Figure 3B) may be the result of altered
ERP29, which is also dysregulated in females.

Stress responses in the human fetal liver
Consistent with previous measurements of human fetal

liver transcripts (1, 2), the expression of fetal liver proteins
involved in stress responses and detoxification was altered
in response to maternal smoking, including the ubiquitous
molecular chaperone HSP90AA1 (up-regulated in female
smoke-exposed livers; Figure 2C). Given that HSP90AA1
is essential for the functionof thexenotoxicant sensor, aryl

hydrocarbon receptor (37), increased HSP90AA1 levels in
female smoke-exposed livers may reflect increased aryl
hydrocarbon receptor levels and/or signaling via elevated
smoking-delivered polycyclic aromatic hydrocarbon lev-
els in female fetuses (19). Levels of CAT (which inactivates
reactive oxygen species) were also increased in smoke-
exposed females, possibly counteracting the catalase-in-
hibiting activity of tobacco smoke (38), and/or the in-
crease of byproduct-reactive oxygen species from tobacco
smoke by phase I enzymes (39). In male fetal livers ma-
ternal smoking was associated with changes in the volume
of a single spot identified as HSBP1 (Figure 3D). HSBP1
resolves to several isoforms of similar MW but different pI,
corresponding to native (basic) and phosphorylated pro-
tein (more acidic) forms (40). Consistent with the in-
creased phosphorylation and shift in pI of HSBP1 in re-
sponse to stressors (40), the phosphorylated HSBP1 (more
acidic) form was up-regulated in smoke-exposed male fe-
tuses (Figure 3D). ALDH7A1 plays a role in detoxification
by reducing aldehydes (41) and both ALDH7A1 protein
and transcript levels decreased in females but increased in
males (Figure 2B). Such sex-specific responses in stress-
and detoxification-related protein expression reported
here have also been observed in zebrafish livers in response
to xenotoxicants (42).

Sex-specific pathway alterations in the fetal liver
Even though maternal smoking–affected pathways re-

lating to cancer in both sexes, there were sex differences in
the pathways involved (Table 2). Cellular homeostasis,
inflammation, and proliferation/apoptosis pathways are
linked to liver fibrosis and cirrhosis (43) and were pref-
erentially affected in male livers. In contrast, the glucose
metabolism disorder pathway, which is also linked to cir-
rhosis (44), was preferentially affected in females. This
finding is supported by animal studies where exposure of
male and female mice in utero to tobacco smoke can con-
tribute to liver fibrosis in adulthood (45) suggesting that
although different pathways may be affected by maternal
smoking, there can be a convergence in disease outcomes
later in life. Sexually dimorphic responses can manifest in
other typesof stress includingdifferential rodent liver responses
to chronic hydrocarbon exposure (46) as well as high-fat diet–
reducedinsulinsensitivity(47).Sex-specificgeneexpressiondif-
ferences in the human fetal liver (2) as well as other organs
including the placenta (48) underline that it is not surprising to
find sexually dimorphic responses to stress. Our findings are,
therefore, in linewithsimilarstudiesdemonstratingsex-specific
responses. This suggests that sex-specific ameliorative and/or
preventive treatments might be applicable for diseases develop-
ing in in utero smoke-exposed individuals.
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Overall, in this study we have shown that maternal
smoking disrupts diverse pathways in the fetal liver which
suggests that for a set of childhood and/or adulthood dis-
eases commonly linked to maternal smoking, disruption
of fetal liver physiology may be one of the bridges con-
necting developmental perturbations to disease later in
life. Our proteomic screen and IPA analysis has also high-
lighted the sex-specific manner in which fetal livers are
affected by maternal smoking, suggesting that males and
females may be predisposed to different diseases as a result
of smoke exposure.
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