
Learning Meta-Descriptions of the FOAF Network

Gunnar AAstrand Grimnes, Pete Edwards, and Alun Preece

Computing Science Dept.
King’s College

University of Aberdeen
AB24 3UE Scotland

{ggrimnes,pedwards,apreece}@csd.abdn.ac.uk

Abstract. We argue that in a distributed context, such as the Semantic Web, on-
tology engineers and data creators often cannot control (or even imagine) the pos-
sible uses their data or ontologies might have. Therefore ontologies are unlikely
to identify every useful or interesting classification possible in a problem domain,
for example these might be of a personalised nature and only appropriate for a
certain user in a certain context, or they might be of a different granularity than
the initial scope of the ontology. We argue that machine learning techniques will
be essential within the Semantic Web context to allow these unspecified clas-
sifications to be identified. In this paper we explore the application of machine
learning methods to FOAF, highlighting the challenges posed by the character-
istics of such data. Specifically, we use clustering to identify classes of people
and inductive logic programming (ILP) to learn descriptions of these groups. We
argue that these descriptions constitute re-usable, first class knowledge that is
neither explicitly stated nor deducible from the input data. These new descrip-
tions can be represented as simple OWL class restrictions or more sophisticated
descriptions using SWRL. These are then suitable either for incorporation into
future versions of ontologies or for on-the-fly use for personalisation tasks.

1 Introduction

If a Semantic Web as set in out [1] becomes reality one might imagine that machine
learning will no longer be required, as by manipulation of logical statements about se-
mantic resources and their descriptions anything can be inferred and understood. How-
ever, we believe that no matter how wide-spread and extensive the Semantic Web be-
comes, every little fact is still unlikely to be explicitly stated, and in addition agents
will need to know personalised facts, that although not generally true may be true in a
certain context for a certain user. The fundamental organising structure of the Semantic
Web is that of a set of inter-related classes; individual resources are members of one or
more classes. A large part of the challenge in defining RDF Schemas [2] and OWL [3]
ontologies is to identify a sufficiently rich set of classes to capture the various kinds
of resources that exist. Inevitably, in any such effort, some potentially interesting and
useful classes will be left unidentified. In some cases, they may be alternative ways
of viewing an existing conceptualisation (for example, dividing people into subsets ac-
cording to the kind of work they do, instead of by their gender). In some cases, these

may reflect conceptualisations that are true only locally, in a particular context for a
specific user (for example, the class of all restaurants liked by a particular individual).

We believe that machine learning techniques have enormous potential to discover
such unspecified classes. In some cases, the designers of schemas and ontologies may
be prompted to add the new classes into future versions of their conceptualisations. In
other cases, the discovered classes may be created on-the-fly in order to derive some
inference or perform some task.

For our discussion of learning from the Semantic Web, we assume it is using the
standard RDF representation based on (subject, object, predicate) triples [4]. We iden-
tify two types of Semantic Web data:

– “Semantic forests” - these consist of many small, disconnected, shallow resource
trees. The structure of such a forest is isomorphic to that of an XML document. Real
world examples of such semantic forests include meta-data using Dublin Core1, or
the use of RDF Site Summary (RSS)2. See Figure 1(left).

– “Semantic webs” - consist of a large graph of resources linking to each other, with
no clear distinction where one resource description ends and another begins. Such
data cannot easily be expressed in pure XML, and a richer representational lan-
guage, like RDF, is really needed. The only significant real-world example we are
aware of to date is Friend of a Friend (FOAF)3. See Figure 1(right).

title
year

title

author
url

name

authortitle

knows

name

name

supervises

email
knows

marriedTo

made

uses

A

B

C

A

B

C

D

E

F

knows

Fig. 1. Schematic Illustration of Semantic Forests and Semantic Webs.

Currently semantic forest data is pre-dominant. The number of true semantic webs
should increase as the Semantic Web develops, however we do not expect semantic

1 http://dublincore.org
2 http://web.resource.org/rss/1.0/
3 http://www.foaf-project.org

forests to disappear altogether. These different types of data present us with a challenge:
How should Semantic Web learners deal with them? How can the different structures
be exploited to improve learner performance? How should the learning outcome be
represented to be as useful as possible in both the original context (where it was learned)
as well as being portable to other scenarios?

In this paper we describe our experiences with aggregating, pre-processing and
learning from FOAF data. Details on our experiments with semantic forest data can
be found in [5]. We present experiments conducted using a hierarchical agglomerative
clustering [6] algorithm to identify groups of people, followed by the application of the
ILP system Aleph [7] to learn descriptions of these clusters. We evaluate some sample
learned descriptions to see if they “make sense” as newly-discovered classes of indi-
viduals (either in a local or global context). Finally we discuss related work in this area
and conclude with a summary of what we have achieved to date and our future plans.

2 Friend of a Friend

The Friend of a Friend (FOAF)4 project aims to create a Web of machine-readable
home-pages describing people, the links between individuals and the things they create
and do. The FOAF ontology is described using the Ontology Web Language (OWL) [3].
To join the FOAF world all one has to do is generate a FOAF profile describing oneself
and publish it on the Web. The profile must adhere to the ontology and could either be
generated by hand, or more often, by copy, paste and edit of other people’s FOAF, or
by semi-automated tools such as FOAF-a-matic5. Part of an example profile is shown
in Figure 2 6. This example illustrates several important things about FOAF:

– The foaf:knows property points to other people known by this person, creating a
networked community.

– People in the FOAF world don’t need URIs, they are identified through their
foaf:mbox (or foaf:mbox sha1sum), i.e. the email address. In the FOAF ontology
these are identified as owl:inverseFunctionalProperty, meaning they uniquely iden-
tify a person.

– foaf:knows properties do not take the value of the URI of other people’s FOAF,
instead they point to an anonymous RDF node of type foaf:Person, which contains
the foaf:mbox of the other person. Whether two anonymous nodes represent the
same person can then be decided based on the foaf:mbox values; merging these
nodes is known as “smushing”7.

– foaf:mbox sha1sum is used to disguise email-addresses for privacy reasons. The
use of a checksum rather than just omitting the value allows people to confirm that
the address actually does belong to a person.

– Other FOAF files are linked through rdfs:seeAlso, allowing Semantic Web bots to
crawl through FOAF space.

4 http://www.foaf-project.org/
5 http://www.ldodds.com/foaf/foaf-a-matic.html
6 The full example can be found at: http://www.csd.abdn.ac.uk/∼ggrimnes/foaf.rdf
7 http://rdfweb.org/topic/Smushing

<foaf:Person>

<foaf:mbox rdf:resource=“mailto:ggrimnes@csd.abdn.ac.uk” />
<foaf:name>Gunnar AAstrand Grimnes</foaf:name>
<foaf:homepage rdf:resource=“http://www.csd.abdn.ac.uk/∼ggrimnes” />
<foaf:workplaceHomepage rdf:resource=“http://www.csd.abdn.ac.uk”/>
<foaf:projectHomepage rdf:resource=“http://www.csd.abdn.ac.uk/research/agentcities”/>
<foaf:groupHomepage rdf:resource=“http://www.csd.abdn.ac.uk/research/agentsgroup” />
<foaf:phone rdf:resource=“tel:+441224272835” />

<foaf:depiction rdf:resource=“http://www.csd.abdn.ac.uk/∼ggrimnes/gfx/me.jpg” />

<foaf:interest rdf:resource=“http://www.w3.org/2001/sw/” />
<foaf:interest rdf:resource=“http://www.agentcities.net” />

<foaf:made rdf:resource=“http://www.csd.abdn.ac.uk/research/AgentCities/GraniteNights” />

<contact:nearestAirport>
<airport:Airport rdf:about=‘http://www.daml.org/cgi-bin/airport?ABZ’ />

</contact:nearestAirport>

<foaf:knows><foaf:Person>

<foaf:mbox rdf:resource=“mailto:maym@foobar.lu” />
<rdfs:seeAlso rdf:resource=“http://martinmay.net/foaf.rdf”/>

</foaf:Person></foaf:knows>
<foaf:knows><foaf:Person>

<foaf:mbox rdf:resource=“mailto:apreece@csd.abdn.ac.uk” />
</foaf:Person></foaf:knows>

<foaf:knows><foaf:Person>

<foaf:mbox rdf:resource=“mailto:pedwards@csd.abdn.ac.uk” />
</foaf:Person></foaf:knows>

<foaf:knows>
<foaf:Person foaf:name=“Sonja A Schramm”>

<foaf:mbox sha1sum>

83276f91273f2900cf0b6657b3708b736276ef81
</foaf:mbox sha1sum></foaf:Person>

</foaf:knows>

<rdfs:seeAlso rdf:resource=“http://www.csd.abdn.ac.uk/∼ggrimnes/codepict.rdf” />
<rdfs:seeAlso rdf:resource=“http://www.csd.abdn.ac.uk/research/agentsgroup/foaf.rdf” />

</foaf:Person>

<rdf:Description rdf:about=“”>
<wot:assurance rdf:resource=“foaf.rdf.asc” />

</rdf:Description>

Fig. 2. Parts of Example FOAF File.

– The wot:assurance property at the bottom of the file points to a signature of this
file, signed with the person’s PGP key, providing a secure way to know who made
these statements. This provides a basis for the trust layer of the Semantic Web
architecture.

2.1 Topology

The FOAF project began around 1999, but only gained significant momentum in the
past two years, due to the increased awareness of the Semantic Web and the existence

of FOAF visualisation tools such as Foafnaut8 and the FOAF co-depiction project9. The
co-depiction project allows searches to be made for pictures depicting multiple people,
effectively proving their foaf:knows relationship, in addition is allows one to visually
document the link from oneself to famous people, for example Bill Clinton or Frank
Sinatra, increasing the fun-factor and “instant-gratification” of creating a FOAF profile.
For our experiments we used a FOAF crawl from September 200310, which contains
9097 nodes of type person. When smushed, this is equivalent to 8908 people, of which
1980 people know at least one other person, i.e. they are not leaf-nodes of the FOAF
knows-graph. The data consists of 147527 triples, using 201 different namespaces, and
1066 distinct properties (compared to 49 in the FOAF ontology). Many of these prop-
erties are not widely used, only 116 are used more than 100 times.

Within the FOAF graph one can typically identify groups of people that are very
“close” in real-life. For example, the people within a single research group. In such a
group there are many interconnecting foaf:knows links, and the level of detail about
each person is similar since their profiles are often generated by copy and pasting one
person’s FOAF, or because they are all generated by the same person or from a database.
A group often has only a very narrow connection to the rest of the FOAF graph, or in
certain cases no connection at all. In the Aberdeen Computing Science FOAF graph for
example most people know each other, but as shown in Figure 3, the only link to the
rest of the FOAF network is through a single person node.

Foaf UniverseAgents@Aberdeen

Fig. 3. FOAF Group with Narrow Connection to FOAF World.

2.2 Problems

While the heterogeneity and distributed nature of FOAF is clearly a good thing and
makes a data-set based on FOAF very realistic, it does introduce a number of problems
when one attempts to reason with or learn from the data. These are summarised below:

8 http://jibbering.com/foaf/foafnaut.svg
9 http://swordfish.rdfweb.org/discovery/2001/08/codepict/

10 http://jibbering.com/foaf/dumps/

– Human errors. The majority of FOAF content is manually generated using a text
editor, causing several types of human error:
• Simple typing mistakes, i.e. foaf:knosw.
• Using properties with the wrong namespace, e.g. rdf:seeAlso vs. rdfs:seeAlso.
• Misunderstanding or misinterpretation of the FOAF ontology, e.g. using

foaf:mbox with the email address as a literal string as opposed to an
rdf:resource with a mailto: link.

– Weaknesses and/or inconsistencies of the FOAF ontology:
• foaf:mbox vs foaf:mbox sha1sum. Both properties are declared as

owl:inverseFunctionalProperty as detailed above. However, nowhere is it for-
mally declared that foaf:mbox sha1sum is the Secure Hash Algorithm11 check-
sum of the foaf:mbox property. The intention is of course that a node with a
foaf:mbox sha1sum matching the checksum of another’s foaf:mbox should be
smushed together. At the moment this must be hard-coded in an application
specific manner.

• No standard way of expressing interest. foaf:interest has range foaf:Document,
and most commonly points to the URL of a page about the concept. Again,
the use of literals vs. rdf:resource is inconsistent, but the main problem is that
people use different URLs for the same concept. For example:
http://www.w3.org/RDF/, http://rdfweb.org, http://rdfweb.org/, http://www.rdfweb.org/.

– Level of detail varies greatly. Our initial experiments with learning from FOAF
returned several rules based simply on the presence of an attribute, such as
foaf:groupHomepage, rather than the value of the attribute.

2.3 Enriching FOAF

The Advance Knowledge Technologies (AKT) project12 aims to tackle a number of
challenges of knowledge management, and as a show-case has created an ontology for
representing academic researchers and their organisations. An RDF dataset conform-
ing to this ontology has been created by “screen-scraping” the Web pages of UK based
research institutions. The lack of detail in the FOAF data could be addressed by en-
riching it using the information available in the AKT RDF repository. However, this
would involve further complicating the learning task by including yet another ontology.
We therefore decided to map the instances from the AKT ontology to FOAF, as the on-
tologies have very similar domains; the majority of the mappings were straightforward,
such as :

[akt:has-email-address ⇒ foaf:mbox]

Others were more complicated, for instance:

[rdf:type akt:Professor-In-Academia ⇒

(rdf:type foaf:Person & foaf:title ‘Professor’)].

11 http://www.w3.org/PICS/DSig/SHA1 1 0.html
12 http://www.aktors.org

rdf type(A, ‘akt Professor-In-Academia’):-
rdf type(A,’foaf Person’),
foaf title(A, ‘Dr’).

Fig. 4. Ontology Mapping Excerpts.

For the sake of re-usability these mappings were represented in OWL using
owl:equivalentProperty for the trivial mappings and our own RDF mapping of RuleML13

for the more sophisticated rules, like the rule shown in Figure 4.

3 RDF & ILP

Encouraged by our earlier experiences with learning from semantic forests using ILP [5],
the next step was to explore the application of these techniques to FOAF data. The map-
ping of RDF to Prolog is straightforward. Figure 5 illustrates a fragment of the FOAF
profile in Figure 2 converted to Prolog, some things to note about the representation are:

– Namespace handling. Namespaces of properties were converted to prefixes in Pro-
log, with namespace predicates giving the mapping from prefixes to actual names-
paces. For example foaf:mbox becomes:

foaf mbox(A, ‘mailto:ggrimnescsd.abdn.ac.uk’).
namespace(‘foaf’, ‘http://xmlns.com/foaf/0.1/’).

– RDF types. For each class in the ontology Prolog rules are created to determine if
a resource is a member of the specific class, or any sub-class thereof. This allows
RDF types to be mapped to ILP internal types, used for limiting which predicates
may be applied to a given resource, reducing the search-space dramatically. Fig-
ure 6 contains an example.

– Normalisation and inference over interests. In our initial experiments with the FOAF
data we attempted to fix the inconsistent foaf:interest problem by “smushing” nodes
that represented the same concept, for example http://rdfweb.org/foaf/ and
http://www.foaf-project.org/. In addition super/sub-concept links were created be-
tween concepts such as http://www.debian.org/ and http://www.linux.org/, and some
general nodes that did not appear in the original data, e.g. #ProgrammingLanguages
were added. Our preliminary experiments demonstrated that the ILP learner did not
use these generalisations, probably due to the low number of foaf:interest links ac-
tually appearing in the data. As a result, these extra rules were not included in our
full experiments.

An additional advantage of using ILP with RDF is that converting the learned results
back into RDF is trivial, given some way of representing Horn clause rules in RDF, e.g.
the Semantic Web Rule Language (SWRL) [8].

13 http://www.csd.abdn.ac.uk/∼qhuo/program/generaltool sources/ruleml.rdfs

rdf type(‘genid:002’, ‘foaf type’).
foaf name(‘genid:002’, ‘Gunnar AAstrand Grimnes’).
foaf mbox(‘genid:002’, ‘ggrimnes@csd.abdn.ac.uk’).
foaf knows(‘genid:002’, ‘genid:003’).
foaf mbox(‘genid:003’, ‘apreece@csd.abdn.ac.uk’).
. . .

Fig. 5. FOAF Fragment converted to Prolog.

foaf Person(A):-
instanceOf(A,‘http://xmlns.com/foaf/0.1/Person’).

foaf Document(A):-
instanceOf(A,‘http://xmlns.com/foaf/0.1/Document’).

instanceOf(A,B):-rdf type(A,B).
instanceOf(A,B):-rdf subClassOf(B,C),instanceOf(A,C).
instanceOf(A,unknown):-nonvar(A).

castAsfoaf Person(A,A):-foaf Person(A).

:-modeb(*,foaf interest(+foaf Person, -foaf Document)).
:-modeb(1,castAsfoaf Person(+resource,-foaf Person)).
:-modeb(1,castAsResource(+foaf Person,-resource)).

Fig. 6. RDF Type Inference in Prolog.

4 Learning from FOAF

For our experiments with FOAF data we used Aleph [7]. Before attempting to learn
from the FOAF data it was pre-processed by first smushing it, and then removing any
duplicate properties resulting from this merger. Aleph was initially configured to use
any of the predicates appearing in the input data when constructing a hypothesis, only
restricted by the RDF typing as detailed above. However, as there were 1066 predicates
in the full dataset, this was too much for Aleph to deal with and we moved to only
using a subset based on the most frequent occurring predicates. The 15 most frequently
predicates are shown in Figure 7, and the preliminary experiments were done with these,
excluding rdf:type as it is applied to every person node. However, this did not give very
good results and we moved instead to using the 100 most frequent predicates; for space
reasons that list is not re-produced here.

Initial exploratory experiments with Aleph highlighted problems with the scale of
the FOAF dataset. Even with a very small subset of the full data (less than 10% of
the people in the full crawl), the search-space was still far too large, and Aleph was
unable to make any generalisations over the data. To reduce the size of the search space
the problem was broken into sub-problems by first applying a clustering algorithm and
then feeding each cluster to Aleph separately. Such an operation does make sense in
the context of FOAF, as there are often clusters of people, reflecting real-life groups,
e.g. research groupings, where the group membership may not be explicitly stated. To
perform the clustering step a hierarchical agglomerative clustering algorithm (HAC) [6]
has been employed. HAC is a greedy bottom-up clusterer which works by initially

Frequency Property
1244 http://www.w3.org/1999/02/22-rdf-syntax-ns#type
1120 http://jibbering.com/foaf/jim.rdf#isKnownBy
1119 http://xmlns.com/foaf/0.1/knows
908 http://xmlns.com/foaf/0.1/mbox sha1sum
906 http://xmlns.com/foaf/0.1/name
846 http://www.w3.org/2000/01/rdf-schema#seeAlso
419 http://xmlns.com/foaf/0.1/depiction
392 http://xmlns.com/foaf/0.1/surname
344 http://xmlns.com/foaf/0.1/firstName
327 http://purl.org/dc/elements/1.1/title
273 http://xmlns.com/foaf/0.1/codepiction
266 http://xmlns.com/foaf/0.1/mbox
246 http://xmlns.com/foaf/0.1/nick
236 http://xmlns.com/foaf/0.1/homepage
230 http://purl.org/dc/elements/1.1/description

Fig. 7. 15 Most Frequent Predicates in FOAF.

creating one cluster for each individual, then repeatedly merging the two closest clusters
until there is only one left or some threshold for similarity is reached. Our version of
HAC computes the distance between two clusters as the average distance between each
of the individuals in the two clusters.

Initially, a modified version of Hamming distance [9] is used as similarity met-
ric; modifications were as follows: each RDF property appears as an attribute of the
instance, as does each (property, value) pair. All properties and values are treated as
nominal, including anonymous nodes. Although there could have been some scope for
treating datatyped properties as ordinal, few of the properties used in FOAF are typed,
so dealing with extra complexity was unlikely to pay off. The intention behind this sim-
ilarity metric is that two people that both have a certain property, say foaf:interest, are
more similar than two people who do not share any attributes, but less similar than two
people who have the same value for foaf:interest. Initial clustering experiments with
this similarity metric were unsuccessful, manual inspection of the clusters showed that
they did not in any way re-produce groups of people a human might have identified. It
was clear that considering only direct attributes of the Person node was flawed. A simi-
larity metric is needed that can take into account the FOAF graph immediately around
a person, and her position in the bigger graph, not just the immediate attributes. We are
not aware of any work to date on the subject of similarity metrics for RDF data. How-
ever, in [10] a similarity metric for conceptual graphs is presented. Conceptual graphs
are a data-structure commonly used for natural language processing. They consist of a
network of concept nodes, representing entities, attributes, or events and relation nodes
between them. A simple conceptual graph representing John loves Mary is as follows:

[John] ⇐ (subj) ⇐ [love] ⇒ (obj) ⇒ [Mary]

The similarity metric developed is based on the idea of the Dice coefficient [11], but
incorporating a combination of two complementary sources of similarity: the concep-
tual similarity and the relational similarity, i.e. the overlap of nodes and the overlap of
edges within the two graphs. Full details of the similarity metric can be found in [10].

Conceptual graphs and RDF instances are sufficiently similar that the same simi-
larity metric should be appropriate in both cases. The similarity metric is designed to

work on separate graphs, and in order to apply it to RDF we had to modify the algo-
rithm to extract a sub-graph around each person. The RDF graph is traversed in either
direction from the person node, i.e. triples were considered where the node in question
is either the subject or the object. To limit the size of the sub-graph the number of triples
traversed is limited. Trial and error showed that the optimal sub-graphs for clustering
were obtained if traversal was allowed two triples forwards and one backwards. Note
that these traversals may not be in any order, and backward-traversals are only permit-
ted from the initial node. Consider for instance Figure 8, the subgraph for the person
“Gunnar Grimnes” would include one backwards traversal, i.e. the “Comp. Sci. Dept”
node, but not the “University of Aberdeen” node. It would also include two forward
traversals, to both the anonymous node and the literal title node.

University of
Aberdeen

has-department

Comp. Sci. Dept.

has-researcher

Gunnar Grimnes

Semantic Web
Machine Learning

is-author-of
title

Fig. 8. Example of Extracting Person Subgraph.

Clustering with this similarity metric gave acceptable results. For example the al-
gorithm was able to discover clusters of people from different research-groups at Ab-
erdeen. Aleph was then applied to the generated clusters (as detailed above), to learn a
concise description of each cluster.

5 Results

The descriptions presented here were learned using the method detailed above on a
subset of 869 of the total FOAF people.

Initially experiments were conducted using the 100 most frequent predicates for
both clustering and rule learning; these included foaf:knows and its generated inverse
predicate. With these settings 219 clusters had rules generated by Aleph, out of the total
825 clusters generated. Most of the learned rules were of the type:

member(A) :-
jibbering isKnownBy(A,’http://norman.walsh.name/knows/who#norman-

walsh’). (This rule covered all the 216 people in the cluster it described.)

Specifically, out of the 219 rulesets 177 used either foaf:knows or its inverse. It was
apparent that the foaf:knows relation was so predominant in the FOAF data that it over-
shadowed everything else. Rules using foaf:knows are not very re-usable, and do not

really express general classifications of the data. Therefore, the next experiments were
conducted using the same 100 predicates, but removing foaf:knows and its inverse. The
results for these experiments were much more interesting, as the lack of foaf:knows
forced Aleph to generate rules using the other predicates. In addition, clustering and
learning from the FOAF data excluding foaf:knows was much more efficient, the clus-
tering step alone took only a third of the time when done without foaf:knows.

For space reasons we will not present all the learned descriptions here, but only
discuss a selection of rules describing interesting clusters. Figure 9 shows for each rule
the following: the size of the cluster; a recall measure (the number of instances covered
by the rule); the false negatives (the members of the cluster not covered by this rule);
and the false positives (people covered by this rule who are not a member of the cluster).

Rule Cluster Size Recall False Neg. False Pos.
1 member(A) :- trust trustsHighly(B,A). 8 8 0 0
2 member(A) :- foaf groupHomepage(A,’http://www.aktors.org’). 13 13 0 0
3 member(A) :- pim nearestAirport(A,

’http://www.daml.org/cgi-bin/airport?ABZ’). 12 12 0 2
4 member(A) :- dc creator(B,A),

dc format(B, ’application/postscript’). 17 15 2 0
5 member(A) :- dc creator(B,A),

dc title(B, ’Managing Reference: Ensuring Referential
Integrity of Ontologies for the Semantic Web’). 8 8 0 0

Fig. 9. Selected FOAF Cluster Description Rules.

Rule 1 appears interesting as it characterises people who are highly trusted by some-
one. The trust:trustedHighly predicate comes from the namespace
http://www.mindswap.org/∼golbeck/web/trust.daml#, and is part of an effort to extend
the FOAF network with the concept of trust; one application being email filtering [12].
Although the rule at first sight looks meaningful it becomes apparent that there are very
few people in (our subset of) the FOAF world that use this particular predicate. The
rule has no false positives, so the 8 people in this cluster represent all the uses of this
predicate in our data, and in fact 7 of them are trusted by the primary author of the paper
cited above. If the use of FOAF for enabling a Web of trust becomes more popular in
the future such a rule would indeed be interesting. However, the question that must be
raised is whether such a rule is too general to be useful, or if it is sufficient to know that
a person is highly trusted by someone. In a local context this might be significant, but
in a global context such knowledge is unlikely to have any great utility.

Rule 2 describes the Advanced Knowledge Technologies group at Aberdeen; these
people were originally described using the AKT ontology, but the descriptions were
converted to FOAF as described earlier. Based on the subset of data used for our ex-
periments this rule perfectly describes the AKT group of people. However, in the real
world there are other AKT groups at other institutions, and although this rule describes
a meaningful group of people, namely the group of all members of the AKT project, it
is not specific to the local Aberdeen group.

Rule 3 describes the Aberdeen Agents research group (Agents@Aberdeen), the air-
port referenced in the rule being Aberdeen airport, Dyce (ABZ). Although the people

in the AKT research group are also situated in Aberdeen, the AKT ontology has no in-
formation regarding location, and so the FOAF description is lacking this information.
A better description of the agent group might have been :

member(A) :- foaf groupHomepage(A,
‘http://www.csd.abdn.ac.uk/research/agentsgroup/’).

However, as there is one person who is a member of both the AKT and the Agents
research group, and in this experiment was inserted into the AKT cluster, this rule would
have had an additional false positive, and rule 3 was chosen in its place.

Rule 4 describes a cluster of people who have all created a postscript document.
There are 4 postscript documents in our dataset, and the 15 people covered by this rule
are the authors of these documents; all the people and documents are from the same
UK institution. This is a good example of the bizarre clusters and rules that sometimes
occur within the FOAF space. Although a human might perhaps identify this rule as
less significant than for instance one using foaf:groupHomepage, Aleph has no way of
making the distinction. This rule also illustrates how RDF created by copy and paste or
from a database can produce artificial clusters, based on the use of certain schemas or
predicates particular to that cluster.

Rule 5 describes a cluster made up of 8 people who co-authored a paper. This is
clearly a meaningful cluster, although quite small and the scope for using it for classi-
fication is limited. This rule is also interesting because the actual publication (Variable
B) is sometimes given a URI, and sometimes just referred to as an anonymous node.
Aleph must therefore use another clause to identify it. This is analogous to the FOAF
use of foaf:mbox to identify people. However, in the FOAF case we can pre-process
the data and smush the nodes because foaf:mbox is declared to be inverse functional in
the ontology; this illustrates how background knowledge in an ontology can facilitate
learning.

6 Related work

Improving learning performance by taking advantage of the structure that is inherit in
data that is marked up using XML is discussed in [13]. XML documents are represented
as ordered and labeled trees and the authors present an algorithm called XMiner to
extract the most frequent sub-trees for a given class; these are then converted into rules
for classifying new instances. The authors demonstrate that their classifier out-performs
information retrieval or association rule classifiers when learning from XML data.

Exploiting structure and semantics for learning is also discussed in [14], where on-
tologies are used to enrich plain text and do feature selection and aggregation. The aim
being to improve clustering results. The authors also use semantic meta-data about Web
pages to perform web-mining; a user’s navigational path through a site becomes a path
through semantic concepts, which might be more comprehensible than the raw access-
log. The paper also includes a brief discussion of applying ILP to Semantic Web data,
highlighting the challenge of solving the scalability problems of ILP to make it usable
on the Semantic Web.

Alani et al [15] uses ontologies to detect Communities of Practice (COP) that are
only implicitly expressed. For instance, two people might not have a direct relation, but
they might have written a paper together. The detection is based on analysis of the graph
of people and properties and allows weights to be attached to possible relations. For
example, it is more significant that two people have written a paper together, than the
fact that they subscribe to the same journal. Experiments are performed using the same
AKT ontology used for the work described in this paper. In [16], the COP detection
mechanism is combined with ontologies to generate an initial user-profile for a hybrid-
recommender system called Quickstep. Analysis of a user’s publications taken from her
homepage are used to determine interest weights for concepts in the ontology, the user
is then matched with similar users in the COP and their combined profiles are in turn
matched with the concept weights of research papers to recommend papers of interest,
even to new users of the system. Middleton et al also present experiments comparing
ontology supported recommendations to those made without ontological inference. This
work is continued further in [17], where a new system called Foxtrot which includes
profile visualisation, email notification and user feedback.

The European Elena project14 aims to demonstrate the feasibility of smart spaces for
education, and is using Semantic Web technology to achieve this. In [18] RDF meta-
data for educational resources is combined with an RDF profile to provide a person-
alised and adaptive view of a hypermedia learning-space.

7 Conclusion

In this paper we have shown how clustering and inductive logic programming can be
used to learn descriptions of groups of people from FOAF data. We believe that the
type of descriptions that have been shown to have been learned in this paper identify
interesting classifications in the data that were not initially specified in the RDF schemas
or OWL ontologies. Additionally, these new classes could be integrated back into the
original ontologies or instance data, for example by expressing them either as OWL
descriptions (using restrictions on property values) or using the Semantic Web Rule
Language [8].

Evaluating the information value of the newly-learned descriptions must ultimately
be done by a human, since the semantics can never truly be understood by a machine.
However, some steps can be taken to filter out the less useful descriptions. We have
shown that removal of the foaf:knows relation eliminated the generation of very spe-
cific clusters surrounding a particular person. These clusters were less useful as it ap-
pears in general very hard to generalise a foaf:knows relationship any further. Moreover,
rules without literal values have less information content than rules specifying a value.
Although to an ILP algorithm the presence of a predicate looks significant, we must
consider the open world assumption of RDF, in that other FOAF profiles outside our
current dataset may also make use of the predicate, which might render classification
by this rule incorrect.

We are planning to extend this work by conducting experiments in which we inte-
grate the learned knowledge into the original data, and then re-run the clustering and
14 http://www.elena-project.org/

learning steps, effectively creating a form of feedback learning. Our hope is that by
using the additional descriptors it should be possible to learn even richer and more
interesting classifications.

Any attempt to apply machine learning techniques to the Semantic Web will have
the problem of scale, and even in the limited domain of FOAF we had to limit our
experimental study to a relatively small dataset to gain acceptable performance from the
clustering and ILP steps. We will conduct further research into how the scalability of
the learning algorithms can be improved to a level where we can at least learn from the
whole FOAF crawl. However, for a global Semantic Web of interconnected information,
like FOAF, the scalability challenge is huge.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American (2001)
2. Brickley, D., Guha, R.V.: Resource description framework (rdf) schema specification. W3c

recommendation, World Wide Web Consortium (2000)
3. McGuinness, D.L., van Harmelen, F.: Web ontology language (owl): Overview. W3c work-

ing draft, World Wide Web Consortium (2003)
4. Lassila, O., Swick, R.R.: Resource description framework (rdf) model and syntax specifica-

tion. W3c recommendation, World Wide Web Consortium (1999)
5. Grimnes, G.A., Edwards, P., Preece, A.: Learning from semantic flora and fauna. In: AAAI,

Submitted to Semantic Web Personalization Workshop. (2004)
6. Vorhees, E.: Implementing agglomerative hierarchical clustering algorithms for use in doc-

ument retrieval. In: Information Processing & Management. Volume 22. (1986) 465–476
7. Srinivasan, A.: The Aleph Manual. (2001)
8. Horrocks, I., Patel-Scheider, P., Boley, H., Tabet, S., Groshof, B., Dean, M.: SWRL: A

Semantic Web Rule Language Combining OWL and RuleML. DARPA DAML Program.
(2003)

9. Hamming, R.: Error detecting and error correcting codes. Bell System Techincal Journal 29
(1950) 147–160

10. Montes-y-Gómez, M., Gelbukh, A., López-López, A.: Comparison of conceptual graphs.
In: Lecture Notes in Artificial Intelligence. Volume 1793. Springer Verlag (2000)

11. Rasmussen, E.: Clustering algorithms. In Frakes, W., Baeza-Yates, R., eds.: Information
Retrieval: Data structures & Algorithms, Prentice Hall (1992)

12. Golbeck, J., Parsia, B., Hendler, J.: Trust networks on the semantic web. In: Proceedings of
Cooperative Intelligent Agents 2003, Helsinki, Finland (2003)

13. Zaki, M.J., Aggarwal, C.C.: Xrules: An effective structural classifier for xml data. In: 9th
International Conference on Knowledge Discovery and Data-mining. (2003)

14. Berendt, B., Hotho, A., Stumme, G.: Towards semantic web mining. In: International Se-
mantic Web Conference. (2002)

15. Alani, H., Dasmahapatra, S., O’Hara, K., Shadbolt, N.: Identifying communities of practice
through ontology network analysis. In: IEEE IS. (2003) 18–25

16. Middleton, S., Alani, H., Shadbolt, N., De Roure, D.: Exploiting synergy between ontolo-
gies and recommender systems. In: 11th International WWW Conference, Semantic Web
Workshop. (2002)

17. Middleton, S., Shadbolt, N., Roure, D.D.: Ontological user profiling in recommender sys-
tems. In: ACM Transactions on Information Systems. Volume 22(1). (2004) 54–88

18. Dolog, P., Henze, N., Nejdl, W., Sintek, M.: Towards the adaptive semantic web. In: 1st
Workshop on Principles and Practice of Semantic Web Reasoning. (2003)

